KR102146794B1 - foam ceramic fabrication and manufacturing method thereof - Google Patents

foam ceramic fabrication and manufacturing method thereof Download PDF

Info

Publication number
KR102146794B1
KR102146794B1 KR1020180159426A KR20180159426A KR102146794B1 KR 102146794 B1 KR102146794 B1 KR 102146794B1 KR 1020180159426 A KR1020180159426 A KR 1020180159426A KR 20180159426 A KR20180159426 A KR 20180159426A KR 102146794 B1 KR102146794 B1 KR 102146794B1
Authority
KR
South Korea
Prior art keywords
weight
parts
bioceramic
manufacturing
silica
Prior art date
Application number
KR1020180159426A
Other languages
Korean (ko)
Other versions
KR20200071925A (en
Inventor
이규식
Original Assignee
이규식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이규식 filed Critical 이규식
Priority to KR1020180159426A priority Critical patent/KR102146794B1/en
Priority to CN201980081776.1A priority patent/CN113195436A/en
Priority to PCT/KR2019/017355 priority patent/WO2020122543A1/en
Publication of KR20200071925A publication Critical patent/KR20200071925A/en
Application granted granted Critical
Publication of KR102146794B1 publication Critical patent/KR102146794B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/14Minerals of vulcanic origin
    • C04B14/18Perlite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/14Minerals of vulcanic origin
    • C04B14/18Perlite
    • C04B14/185Perlite expanded
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0016Granular materials, e.g. microballoons
    • C04B20/002Hollow or porous granular materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment
    • C04B20/06Expanding clay, perlite, vermiculite or like granular materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres

Abstract

본 발명은 바이오 세라믹 제조방법에 관한 것으로, 더욱 상세하게는 단열성, 초경량성, 불연성, 가스 유해성, 열전도율, 탈취성이 우수하며, 원적외선 방사율, 방사에너지, 음이온 발생, 항균 성능을 통해 면역 기능 향상 및 염증 개선 효능을 제공하는 바이오 세라믹 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a bioceramic, and more particularly, has excellent thermal insulation, ultra-lightweight, non-flammable, gas-hazardous, thermal conductivity, and deodorization , and improves immune function through far-infrared emissivity, radiation energy, anion generation, and antibacterial performance. It relates to a method of manufacturing a bioceramic that provides an effect of improving inflammation .

Description

바이오 세라믹 및 그 제조방법{foam ceramic fabrication and manufacturing method thereof}Bioceramic and its manufacturing method TECHNICAL FIELD

본 발명은 바이오 세라믹 제조방법에 관한 것으로, 더욱 상세하게는 단열성, 초경량성, 불연성, 가스 유해성, 열전도율, 탈취성이 우수하며, 원적외선 방사율, 방사에너지, 음이온 발생, 항균 성능을 통해 면역 기능 향상 및 염증 개선 효능을 제공하는 바이오 세라믹 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a bioceramic, and more particularly, has excellent thermal insulation, ultra-lightweight, non-flammable, gas hazard, thermal conductivity, and deodorization, and improves immune function through far-infrared emissivity, radiation energy, anion generation, and antibacterial performance. It relates to a method of manufacturing a bioceramic that provides an inflammation improvement effect.

발포세라믹은 세라믹을 발포시켜 초경량의 인공골재 및 석재를 대체할 수 있는 재료로 각광받고 있다. 상기 발포세라믹 제조 기술은 일반점토와 황토, 제올라이트(Zeolite)와 알루미나 등 몇 가지의 원료를 용도에 맞게 배합하는 기술을 바탕으로 강도발현, 기공의 수와 크기, 제품의 형태와 크기의 자유로운 조정이 가능한 특징이 있다. 또한 원료의 배합과 소성(燒成)기술을 바탕으로 비중도 0.4 내지 0.9까지 자유롭게 제조할 수 있다.Foamed ceramics are in the spotlight as a material that can replace ultra-light weight artificial aggregates and stones by foaming ceramics. The foamed ceramic manufacturing technology is based on the technology of mixing several raw materials such as ordinary clay and loess, zeolite and alumina, etc. to suit the purpose, allowing free adjustment of strength expression, number and size of pores, and shape and size of products. There are possible features. In addition, the specific gravity of 0.4 to 0.9 can be freely manufactured based on the blending of raw materials and firing technology.

발포세라믹 제조의 가장 큰 기술적 가치는 원료의 배합과 소성과정, 즉 예열대(豫熱帶)에서의 예열곡선과 용융점에서의 용융시간 조정, 발포가스의 통제, 냉각구간에서의 온도 수율( 度受) 조정으로 요약된다. 또한 각 단계별 시간과 온도의 조정을 통한 비중 및 크기, 형태, 기포의 인위적 조작이 가능한 특징이 있다. The greatest technical value of manufacturing foamed ceramics is the mixing and firing process of raw materials, i.e., the preheating curve in the preheating zone and the melting time adjustment at the melting point, control of the foaming gas, and the temperature yield in the cooling section. It is summarized as an adjustment. In addition, it is possible to manipulate specific gravity, size, shape, and air bubbles through adjustment of time and temperature for each step.

발포세라믹은 비중 0.5 수준의 초경량 인공골재 및 판형의 석재를 대체할 수 있는 마감재, 가공 및 절단의 용이성을 이용한 목재대체재 등으로 활용이 가능하다.Foamed ceramics can be used as a finishing material that can replace an ultra-light artificial aggregate with a specific gravity of 0.5 and a plate-shaped stone, and as a wood substitute using the ease of processing and cutting.

또한 제조된 발포세라믹을 이용하여 발포성 소재 특유의 흡음, 단열, 경량성을 이용한 다양한 용도로서 응용이 가능하다.In addition, by using the foamed ceramic produced, it can be applied for various purposes using sound absorption, heat insulation, and light weight peculiar to the foamable material.

종래 폐자원을 이용하여 경량 바이오 세라믹을 개발했지만, 발포 팽창시 과도한 기공으로 불량률이 높은 단점이 따른다. 폐자원의 이용이라는 측면도 있지만, 이 역시 오랜 시간의 경과함에 따라 인체에 유해한 물질이 방출되는 것으로 알려지고 있다. 현재 기술의 발달로 단열, 방음의 효과를 나타내어 주는 자재가 많이 보급되고 있지만, 대부분 열에 약한 특성이 있고 화재 발생시 유독 가스를 발생시키는 주요 원인이 되고 있다.Conventionally, lightweight bioceramics have been developed using waste resources, but there is a disadvantage in that the defect rate is high due to excessive pores during expansion of foam. There is also an aspect of the use of waste resources, but it is also known that harmful substances are released over a long period of time. With the development of the current technology, materials that exhibit the effects of insulation and sound insulation are widely distributed, but most have properties that are weak against heat and are the main cause of generating toxic gases in case of fire.

한편, 18세기 이래 과학계는 빛을 파동으로 생각하였다. 1900년 12월 독일의 물리학자 "막스 플랑크(Max Planck)"는 빛이 에너지의 알갱이인 입자로서 빛의 양자가 띄엄띄엄 전달된다는 사실을 밝혔다. 20세기가 시작되면서 물리학자들은 물질을 분해하면 분자가 되고, 분자를 분해하면 원자가 되며, 원자를 분해하면원자핵과 전자가 된다는 사실을 알게 되었다. 전자를 정체를 밝히는 과정에서 전자 또한 입자와 파동의 이중성을 갖는다는 사실을 입증하게 되었다. 존재하는 모든 물질은 입자와 파동이라는 이중구조로 되어있다는 것이다. 양자란, 더 이상 나눌 수 없는 에너지의 최소단위라고 알려져 있다. 초양자장이 중첩되면 파동단계로 변하고, 파동이 중첩되면 에너지로 변하고, 에너지가 중첩되면 소립자가 중첩될 시 원자가 되며, 원자가 중첩되면 분자로, 분자가 중첩되면 물질로 형성된다.Meanwhile, since the 18th century, the scientific community has considered light as a wave. In December 1900, the German physicist "Max Planck" revealed that light is a particle, a grain of energy, that the quantum of light is intermittently transmitted. At the beginning of the 20th century, physicists learned that breaking down matter becomes a molecule, breaking down a molecule becomes an atom, and breaking down an atom becomes an atomic nucleus and an electron. In the process of identifying electrons, it was proved that electrons also have duality between particles and waves. All substances that exist have a dual structure of particles and waves. Quantum is known as the smallest unit of energy that can no longer be divided. When super-quantum fields overlap, they change into wave stages, when waves overlap, they change into energy, when energy overlaps, when elementary particles overlap, they become atoms, when atoms overlap, they become molecules, and when molecules overlap, they become substances.

즉, 모든 물질(사람, 동물, 식물 등)은 초양자장의 중첩에 의해 파동, 에너지 단계를 거쳐 물질로 형성됨에 따라 초양자장이 중첩된 양자에너지가 있는 영역에서는 사람을 비롯한 생명이 활성화된다. 반면, 양자에너지가 없고 초양자장이 중첩되지 못한 영역에서는 사람과 모든 생명이 활성화 되지 못하고 병들고 죽게 된다.In other words, as all matters (people, animals, plants, etc.) are formed into matter through wave and energy stages by the superposition of super-quantum fields, life including humans is activated in the area where super-quantum fields are superimposed quantum energy. On the other hand, in an area where there is no quantum energy and the super-quantum field does not overlap, people and all life cannot be activated and become sick and die.

차원적인 현실에서 살아가는 우리는 감각(오감)을 통해 모든 것을 인식하고 그것이전부라고 생각하지만, 모든 물질의 최소단위인 소립자(원자핵, 전자) 아래의 극미세계로 들어가면 세상은 눈에 보이지 않는 양자에너지장의 세계로 존재한다.Living in a dimensional reality, we recognize everything through our senses (the five senses) and think that it is all, but when we enter the microscopic world under elementary particles (atomic nuclei, electrons), the smallest unit of all matter, the world Exists in the world.

모든 물질은 마이크로(초극미)세계에 이르면 속이 꽉 찬 소재가 아니라원자핵의주위를 하염없이 돌아가는 전자의 활동으로 이루어진다.When it comes to the micro (ultra-micro) world, all matter is not a stuffed material, but consists of electrons that revolve around the atomic nucleus.

소립자인 원자핵 주위를 회전하는 전자의 활동을 통해 그 주변에 전자기장이 형성되면서 그 물질의 고유 정보를 담은 미세한 양자에너지가 발산되는데, 이러한 양자에너지 장은 자연계와 물질계 또는 정신계에 대한 고유정보를 담고 서로간에 파동을통해 정보를 주고 받는다. 아이슈타인도 양자물리학을 통해 우리가 살고 있는 이 세상의 물질을 쪼개고 쪼개다보면 결국 하나의 진동하는 에너지 장으로 서로 연결되어있다고 하였다.Through the activity of electrons rotating around the atomic nucleus, which is an elementary particle, an electromagnetic field is formed around the nucleus, and minute quantum energy containing the specific information of the substance is emitted.These quantum energy fields contain the inherent information about the natural, physical, or mental Information is exchanged through waves. Einstein also said that when we split and split the material of this world in which we live through quantum physics, they are eventually connected to each other by a vibrating energy field.

원적외선을 방출하는 본 발명의 바이오 세라믹은 양자파동 에너지가 발생해 온열 효과를 전달할 뿐만 아니라, 통증 완화, 면역력 향상, 차가운 몸의 혈액순환을 개선하는 역할을 한다.The bioceramic of the present invention, which emits far-infrared rays, generates quantum wave energy to deliver a thermal effect, as well as relieves pain, improves immunity, and improves blood circulation in a cold body.

1. 대한민국 공개특허 제10-2012-0077746호1. Korean Patent Application Publication No. 10-2012-0077746 2. 대한민국 등록특허 제10-1067371호2. Korean Patent Registration No. 10-1067371 3. 대한민국 등록특허 제10-1220726호3. Korean Patent Registration No. 10-1220726 4. 대한민국 등록특허 제10-0803513호4. Korean Patent Registration No. 10-0803513 5. 대한민국 등록특허 제10-1383875호5. Korean Patent Registration No. 10-1383875

이에 본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 단열성, 초경량성, 불연성, 가스 유해성, 열전도율, 탈취성에서 우수한 성능을 가지는 바이오 세라믹 제조방법을 제공하는 것이다.Accordingly, the present invention has been conceived to solve the above problems, and an object of the present invention is to provide a method for manufacturing a bioceramic having excellent performance in heat insulation, ultra lightness, non-combustibility, gas hazard, thermal conductivity, and deodorization.

본 발명은 원적외선 방사율, 방사에너지, 음이온 발생, 항균 성능을 통해 면역 기능 향상 및 염증 개선 효능을 제공하는 바이오 세라믹 제조방법을 제공하는 것이다.The present invention is to provide a bioceramic manufacturing method that provides an effect of improving immune function and improving inflammation through far-infrared emissivity, radiation energy, anion generation, and antibacterial performance.

본 발명의 해결하고자 하는 과제는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해되어 질 수 있을 것이다.The problem to be solved of the present invention is not limited to those mentioned above, and other problems that are not mentioned will be clearly understood by those skilled in the art from the following description.

이를 위해 본 발명에 따른 바이오 세라믹 제조방법은 진주암을 분쇄한 다음 850~950℃의 온도로 가열하여 발포 규석을 마련하는 S1단계와; 상기 발포 규석 100중량부를 기준으로 무기 결합재 20~40중량부를 혼합한 다음 성형하는 S2단계와; 상기 S2단계를 거친 성형체를 900~1,200℃의 온도에서 소성하는 S3단계;를 포함하는 것을 특징으로 한다.To this end, the bioceramic manufacturing method according to the present invention includes step S1 of pulverizing perlite and then heating to a temperature of 850 to 950°C to prepare foamed silica; S2 step of mixing and then molding 20 to 40 parts by weight of the inorganic binder based on 100 parts by weight of the foamed silica; It characterized in that it comprises a; S3 step of firing the molded body subjected to the S2 step at a temperature of 900 ~ 1,200 ℃.

또한, 본 발명에 따른 바이오 세라믹 제조방법에 있어서, S2단계의 무기 결합재는 점토 100중량부와, 물 40~60중량부로 이루어지는 것을 특징으로 한다.In addition, in the bioceramic manufacturing method according to the present invention, the inorganic binder in step S2 is characterized in that it consists of 100 parts by weight of clay and 40 to 60 parts by weight of water.

또한, 본 발명에 따른 바이오 세라믹 제조방법에 있어서, S2단계의 무기 결합재는 아타풀자이트(Attapulgite) 100중량부와, 중공체 30~50중량부와, 발포제 5~15중량부와, 물 50~70중량부로 이루어지며, 상기 S3단계는 성형체가 소성되면서 발포하는 것을 특징으로 한다.In addition, in the bioceramic manufacturing method according to the present invention, the inorganic binder of step S2 is 100 parts by weight of Attapulgite, 30 to 50 parts by weight of hollow body, 5 to 15 parts by weight of foaming agent, and 50 to water. It consists of 70 parts by weight, and the step S3 is characterized in that the molded body is foamed while being fired.

또한, 본 발명에 따른 바이오 세라믹 제조방법에 있어서, S2단계의 혼합물에는 상기 발포 규석 100중량부를 기준으로 규조토, 벤토나이트, 제올라이트, 알루미나 중 적어도 하나의 무기 충전재 10~30중량부를 더 포함하는 것을 특징으로 한다.In addition, in the bioceramic manufacturing method according to the present invention, the mixture of step S2 further comprises 10 to 30 parts by weight of an inorganic filler of at least one of diatomaceous earth, bentonite, zeolite, and alumina based on 100 parts by weight of the foamed silica. do.

또한, 본 발명에 따른 바이오 세라믹 제조방법에 있어서, 중공체는 표면에 실리카흄이 코팅된 중공 실리카 분말이고, 상기 발포제는 탄화규소 또는 탄산칼슘인 것을 특징으로 한다.In addition, in the bioceramic manufacturing method according to the present invention, the hollow body is a hollow silica powder coated with silica fume on the surface, and the blowing agent is silicon carbide or calcium carbonate.

이에 본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명에 따른 바이오 세라믹 제조방법은 단열성, 초경량성, 불연성, 가스 유해성, 열전도율, 탈취성이 우수하다.Accordingly, the present invention has been devised to solve the above problems, and the bioceramic manufacturing method according to the present invention is excellent in thermal insulation, ultralightness, non-combustibility, gas hazard, thermal conductivity, and deodorization.

또한, 본 발명은 원적외선 방사율, 방사에너지, 음이온 발생, 항균 성능을 통해 면역 기능 향상 및 염증 개선 효능을 제공하는 바이오 세라믹 제조방법에 관한 것이다.In addition, the present invention relates to a method for manufacturing a bioceramic that provides an effect of improving immune function and improving inflammation through far-infrared emissivity, radiation energy, generation of negative ions, and antibacterial performance.

본 발명의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해되어 질 수 있을 것이다.The effects of the present invention are not limited to those mentioned above, and other problems that are not mentioned will be clearly understood by those skilled in the art from the following description.

도 1은 본 발명에 따른 바이오 세라믹 제조방법의 각 단계를 도시하는 공정도이다.1 is a process diagram showing each step of the method for manufacturing a bioceramic according to the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 판례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In describing the present invention, when it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted. In addition, terms to be described later are terms defined in consideration of functions in the present invention, which may vary according to intentions or precedents of users or operators. Therefore, the definition should be made based on the contents throughout this specification.

도 1은 본 발명에 따른 바이오 세라믹 제조방법의 각 단계를 도시하는 공정도이다.1 is a process diagram showing each step of the method for manufacturing a bioceramic according to the present invention.

도 1을 참조하면, 본 발명에 따른 바이오 세라믹 제조방법은 크게 진주암을 분쇄한 다음 850~950℃의 온도로 가열하여 발포 규석을 마련하는 S1단계와, 상기 발포 규석 100중량부를 기준으로 무기 결합재 20~40중량부를 혼합한 다음 성형하는 S2단계와, 상기 S2단계를 거친 성형체를 900~1,200℃의 온도에서 소성하는 S3단계;를 포함하여 이루어지는 것을 예시할 수 있다.Referring to Figure 1, the bioceramic manufacturing method according to the present invention is largely crushed perlite and then heated to a temperature of 850 ~ 950 ℃ step S1 to prepare foamed silica, and the inorganic binder 20 based on 100 parts by weight of the foamed silica It may be exemplified that including: S2 step of mixing ~40 parts by weight and then molding, and S3 step of sintering the molded body through the S2 step at a temperature of 900 to 1,200°C.

상기 S1단계는 화성암의 일종인 진주암을 분쇄하여 80~90℃의 온도에서 20~30분 동안 예열 후 850~950℃의 온도로 급속 가열하여 내부에 함유된 결정수에 의해 발포되도록 한 다음 냉각시켜 발포 규석을 마련하는 단계이다.In the S1 step, perlite, a type of igneous rock, is crushed, preheated at a temperature of 80 to 90°C for 20 to 30 minutes, then rapidly heated to a temperature of 850 to 950°C so that it is foamed by the crystal water contained therein, and then cooled. This is the step of preparing foamed silica.

기존의 바이오 세라믹 제조과정은 대한민국 공개특허 제10-0803513호에 개시된 바와 같이 세라믹 원료를 발포제와 혼합한 다음, 성형한 다음 소성하면서 발포하는 방식으로 세라믹 패널 등을 제조하였으나, 이 경우 소성시 크랙이 발생하거나 성형체가 서로 뭉치는 등의 문제가 있었지만, 본 발명에서는 S1단계에서 바이오 세라믹의 원료 중 하나인 진주암을 먼저 1차 발포시킨 다음 나머지 재료와 혼합하고, 소성하는 과정을 거치도록 함으로써, 상술한 문제를 해결할 수 있다.In the conventional bioceramic manufacturing process, as disclosed in Korean Patent Laid-Open No. 10-0803513, ceramic panels were manufactured by mixing ceramic raw materials with a foaming agent, molding, and then firing and foaming. However, in this case, cracks occurred during firing. Although there were problems such as occurrence or clumping of molded bodies together, in the present invention, in step S1, perlite, one of the raw materials for bioceramics, is first first foamed, then mixed with the remaining materials, and then calcined. You can solve the problem.

상기 S2단계는 상기 발포 규석과 무기 결합재, 무기 충전재를 혼합하는 단계이다.The step S2 is a step of mixing the foamed silica stone, an inorganic binder, and an inorganic filler.

상기 무기 충전재는 상기 발포 규석 100중량부를 기준으로 10~30중량부 혼합되며, 규조토, 벤토나이트, 제올라이트, 알루미나 중 적어도 하나가 선택되는 것을 예시할 수 있다.The inorganic filler is mixed with 10 to 30 parts by weight based on 100 parts by weight of the foamed silica, and at least one of diatomaceous earth, bentonite, zeolite, and alumina may be selected.

상기 무기 결합재는 상기 발포 규석 100중량부를 기준으로 20~40중량부인 것이 바람직한데, 20중량부 미만인 경우에는 성형성도 불량하고 결합력이 급격히 저하되는 문제가 있고, 40중량부를 초과하는 경우에는 기공률이 낮아지고 제품의 밀도가 증가하여 경량성을 제공하기 어려워지기 때문에 상술한 범위로 제한하는 것이 바람직하다.It is preferable that the inorganic binder is 20 to 40 parts by weight based on 100 parts by weight of the foamed silica, but if it is less than 20 parts by weight, there is a problem that the moldability is also poor and the bonding force is rapidly deteriorated, and if it exceeds 40 parts by weight, the porosity is low. It is preferable to limit it to the above-described range because it becomes difficult to provide light weight due to an increase in the density of the product.

본 발명에서 두 가지의 무기 결합재를 제시한다.In the present invention, two inorganic binders are presented.

첫 번째 무기 결합재는 일라이트 또는 몬모릴로나이트 100중량부와, 물 40~60중량부로 이루어지는 것을 예시할 수 있다.The first inorganic binder may be exemplified by 100 parts by weight of illite or montmorillonite and 40 to 60 parts by weight of water.

두 번째 무기 결합재는 아타풀자이트 100중량부와, 중공체 30~50중량부와, 발포제 5~15중량부와, 물 50~70중량부로 이루어지는 것을 예시할 수 있다.The second inorganic binder may be exemplified by 100 parts by weight of attapulgite, 30 to 50 parts by weight of a hollow body, 5 to 15 parts by weight of a foaming agent, and 50 to 70 parts by weight of water.

두 가지 무기 결합재의 차이점은, 첫 번째 무기 결합재의 경우에는 2차 발포가 이루어지지 않기 때문에 발포 규석의 제조 과정에서의 1차 발포에 의한 기공만이 형성되는 반면, 두 번째 무기 결합재는 발포 규석의 제조 과정에서의 1차 발포에 더하여 2차 발포가 이루어지기 때문에 기공율을 현저히 증가시킬 수 있다.The difference between the two inorganic binders is that only pores are formed by the primary foaming in the manufacturing process of foamed silica, because the second foaming is not performed in the case of the first inorganic binder, whereas the second inorganic binder is In addition to the first foaming in the manufacturing process, since the second foaming is performed, the porosity can be significantly increased.

이하에서는 두 번째 무기 결합재를 중심으로 설명한다.Hereinafter, a description will be given focusing on the second inorganic binder.

상기 아타풀자이트(Attapulgite)는 점토 광물로서 화학식은 (Mg,Al)5Si8O20.4H2O)이며, 일라이트 또는 몬모릴로나이트와 달리 침상이며, 규산 4면체의 사슬구조에 의한 터널(tunnel)구조를 가지며 터널 내에 물 분자를 함유하기 때문에 내부에 함유된 물 분자에 의해 소성시 발포 성능을 향상시키는 역할을 할 뿐만 아니라, S2단계의 성형시 점도 조절을 통해 성형성을 향상시키는 역할을 한다.The attapulgite is a clay mineral and has a chemical formula of (Mg,Al) 5 Si 8 O 20 .4H 2 O), and unlike illite or montmorillonite, it is acicular, and a tunnel by a chain structure of a silicic acid tetrahedron. )As it has a structure and contains water molecules in the tunnel, it not only plays a role in improving the foaming performance during firing by water molecules contained inside, but also plays a role of improving the moldability through viscosity control during molding in the S2 stage. .

상기 중공체는 평균 입경이 50~300㎛인 중공 실리카 분말인 것을 예시할 수 있다.The hollow body may be exemplified as a hollow silica powder having an average particle diameter of 50 ~ 300㎛.

중공 실리카 분말은 실리카(Silica)와 산화칼슘을 혼합하여 용융한 뒤, 급냉시켜 분쇄하고, 분쇄된 입자를 발포시켜 얻는 것을 예시할 수 있으나, 이에 한정되는 것은 아니고, 분무 열분해, 졸-겔 공정 등 공지된 제법으로 제조될 수 있다. Hollow silica powder may be exemplified by mixing silica and calcium oxide and melting, then quenching to pulverize, and foaming the pulverized particles, but is not limited thereto, and spray pyrolysis, sol-gel process, etc. It can be prepared by a known method.

상기 중공 실리카 분말은 재활용 자원인 실리카흄과 용매로 이루어지는 용액에 함침한 다음 건조하는 과정을 거쳐, 표면에 실리카흄이 코팅된 복합 구조인 것이 바람직하다. 상기 실리카흄은 중공 실리카 분말끼리 고착되는 것을 방지하여 분산성을 향상시킬 뿐만 아니라, 중공 실리카 분말의 내구성을 향상시키는 역할을 한다.The hollow silica powder is preferably a composite structure in which silica fume is coated on the surface after being impregnated with a solution comprising silica fume and a solvent, which are recycled resources, and then dried. The silica fume not only improves dispersibility by preventing the hollow silica powder from sticking to each other, but also serves to improve the durability of the hollow silica powder.

상기 발포제는 탄화규소 또는 탄산칼슘인 것을 예시할 수 있다.The blowing agent may be a silicon carbide or calcium carbonate.

상기 탄화규소의 발포 메카니즘은 등록특허 제10-1067371호에, 탄산칼슘의 발포 메카니즘은 공개특허 제10-2012-0077746호에 각각 상세히 설명되어 있으므로 그 자세한 설명은 생략한다.Since the foaming mechanism of the silicon carbide is described in detail in Registration Patent No. 10-1067371 and the foaming mechanism of calcium carbonate in Patent Publication No. 10-2012-0077746, detailed descriptions thereof will be omitted.

한편, 실리카흄은 공개특허 제10-2012-0077746호에서도 개시하고 있으나, 1~3㎛의 크기의 초미세 입자이기 때문에 상호 응집되는 현상으로 인해 분산이 어렵고, 특히 본 발명과 같이 건식 성형 방식에서는 상술한 바와 같이 별도로 혼합하는 것보다는 중공 실리카 분말에 코팅하는 방식을 적용하는 것이 바람직하다.On the other hand, silica fume is also disclosed in Korean Patent Application Publication No. 10-2012-0077746, but since it is an ultrafine particle having a size of 1 to 3 μm, it is difficult to disperse due to the phenomenon of coagulation. In particular, in the dry molding method as in the present invention, It is preferable to apply a method of coating the hollow silica powder rather than mixing separately as described above.

본 발명의 바이오 세라믹은 건물 내장재, 온열기의 방열판 등으로 사용할 수 있는데, 특히 온열기용 방열판으로 사용할 경우 온열 효과를 극대화하기 위해 바이오 세라믹 표면에 기능성 입자가 포함된 코팅액을 분무한 다음 건조하거나, 코팅액에 침지시킨 다음 건조하여 바이오 세라믹 표면 또는 내부 기공의 일부에 기능성 입자가 부착 내지 삽입되도록 구성할 수 있다.The bioceramic of the present invention can be used as a heat sink for a building interior or a warmer. In particular, when used as a heat sink for a warmer, a coating solution containing functional particles is sprayed on the surface of the bioceramic to maximize the heating effect, and then dried or applied to the coating solution. After being immersed and dried, the functional particles may be attached or inserted into the surface of the bioceramic or part of the internal pores.

상기 기능성 입자는 100~500nm의 평균 입경을 가진 것으로서, 내부의 오일과, 상기 오일을 수용하는 실리카 껍질로 구성되는데, 오일은 베이스 오일 100중량부를 기준으로 작약 추출물 10~30중량부를 혼합된 것을 예시할 수 있다.The functional particles have an average particle diameter of 100 to 500 nm, and are composed of an oil inside and a silica shell accommodating the oil, wherein the oil is an example of a mixture of 10 to 30 parts by weight of peony extract based on 100 parts by weight of the base oil can do.

상기 베이스 오일은 무염증, 무균, 소독의 기능을 하고, 경련을 예방하고, 통증을 완화하며 독성을 예방하는 효과가 있는 라벤더 오일인 것이 바람직하다. 상기 작약 추출물 작약 뿌리를 건조한 다음 열수추출한 것으로서, 여성의 월경불순, 통증완화에 효과가 있다. 그리고 주성분으로 알려진 paeoniflorin은 진통, 진정, 항염증, 혈압강하, 혈관 확장, 평활근 이완 작용에 효과가 있다고 알려져 있다.The base oil is preferably a lavender oil having an effect of preventing inflammation, sterilization and disinfection, preventing convulsions, alleviating pain, and preventing toxicity. The peony extract is obtained by hot water extraction after drying the peony root, and is effective in relieving menstrual irregularities and pain in women. In addition, paeoniflorin, which is known as the main ingredient, is known to be effective in analgesic, sedative, anti-inflammatory, lowering blood pressure, vasodilation, and smooth muscle relaxation.

상기 기능성 입자는 물 100중량부에 오일 1~10중량부와, 자당지방산에스테르 0.1~1중량부를 혼합한 에멀젼을 마련한다. 그리고 에멀젼에 디에톡시디메틸실란 0.1~1중량부와, 에피클로로하이드린 0.1~1중량부를 첨가한 다음 교반하고, 이어서 물유리 10~20중량부를 5~10시간 동안 조금씩 첨가하면서 반응시켜 얻을 수 있다. 최종 생성물 100중량부를 기준으로 아라비아검 1~5중량부를 혼합하여 기능성 입자가 함유된 코팅액을 마련한다.The functional particles are prepared by mixing 1 to 10 parts by weight of oil and 0.1 to 1 part by weight of sucrose fatty acid ester in 100 parts by weight of water. In addition, 0.1 to 1 parts by weight of diethoxydimethylsilane and 0.1 to 1 parts by weight of epichlorohydrin are added to the emulsion, followed by stirring, and then 10 to 20 parts by weight of water glass can be reacted while adding little by little for 5 to 10 hours. A coating solution containing functional particles is prepared by mixing 1 to 5 parts by weight of gum arabic based on 100 parts by weight of the final product.

상기 기능성 입자의 실리카 껍질 내부에 충진된 작약 추출물, 라벤더 오일은 바이오 세라믹이 가열되면 상기 라벤더 오일과 함께 작약 추출물의 유효성분이 방출되어 생리 불순, 항염증 등의 효능을 발휘하게 된다.When the bioceramic is heated, the peony extract and lavender oil filled in the silica shell of the functional particles release the active ingredients of the peony extract together with the lavender oil, thereby exerting efficacies such as physiological impurities and anti-inflammatory.

이하에서는 본 발명에 따른 바이오 세라믹 제조방법을 보다 바람직한 실시예를 통해 상세히 설명한다.Hereinafter, a method for manufacturing a bioceramic according to the present invention will be described in detail through more preferred embodiments.

진주암을 130~140㎛로 분쇄한 분말을 85℃의 온도에서 25분 동안 예열 후 890~900℃의 온도로 급속 가열하여 부피비로 11~12배로 발포 팽창한 발포 규석을 마련한다.The powder obtained by pulverizing perlite into 130-140㎛ is preheated at 85℃ for 25 minutes, and then rapidly heated at 890~900℃ to prepare foamed silica which expands by 11-12 times by volume.

상기 발포 규석 100중량부를 기준으로 무기 결합재 30중량부와, 무기 충전재 20중량부를 혼합한 다음 압축 성형한다. 여기서, 무기 결합재는 아타풀자이트 100중량부를 기준으로 실리카흄 코팅된 중공 실리카 분말 40중량부와, 탄산칼슘 10중량부와, 물 50중량부로 구성되며, 무기 충전재는 규조토와 제올라이트를 1 : 1의 중량비로 혼합한 것을 사용하였다.Based on 100 parts by weight of foamed silica, 30 parts by weight of an inorganic binder and 20 parts by weight of an inorganic filler are mixed and then compression molded. Here, the inorganic binder is composed of 40 parts by weight of silica fume-coated hollow silica powder, 10 parts by weight of calcium carbonate, and 50 parts by weight of water based on 100 parts by weight of attapulgite, and the inorganic filler consists of diatomaceous earth and zeolite in a weight ratio of 1:1. The mixture was used.

상기 성형체를 950℃의 전기로에서 온도에서 소성하여 바이오 세라믹 제조를 완료한다.The molded body is fired at a temperature in an electric furnace of 950° C. to complete bioceramic production.

[실험예 1][Experimental Example 1]

실시예 1의 바이오 세라믹의 밀도, 휨 강도, 습윤시 휨 강도 측정하였으며, 그 결과를 아래 표 1에 기재하였다.The density, flexural strength, and flexural strength when wet of the bioceramic of Example 1 were measured, and the results are shown in Table 1 below.

- 밀도는 KSF 2459:2002에 의해 측정하였으며, 휨 강도, 습윤시 휨 강도는 KSF3200:2006에 의해 측정하였고, 전흡수율은 KSF 3504:2003에 의해 측정하였다.-The density was measured by KSF 2459:2002, the flexural strength and wet flexural strength were measured by KSF3200:2006, and the total water absorption was measured by KSF 3504:2003.

시험 항목Test Items 밀도(g/㎤)Density (g/cm3) 휨 강도(N/㎟)Flexural strength (N/㎟) 습윤시 휨 강도(N/㎟)Flexural strength when wet (N/㎟) 전흡수율(%)Total absorption rate (%) 실시예 1Example 1 0.320.32 2.52.5 2.32.3 8989

위 표 1을 참조하면, 실시예 1의 바이오 세라믹 밀도는 0.32g/㎤로, 공개특허 제10-2012-0077746호의 0.44g/㎤와 대비할 때 초경량성을 가지며, 강도도 매우 우수하다는 것을 확인할 수 있다. 그리고 실시예 1의 바이오 세라믹의 전흡수율을 보면, 자체 중량의 89%까지 수분을 함유할 수 있어 건조 시에는 수분을 배출하고 습한 기후에는 수분을 흡수하여 시공 공간 내의 습도를 조절하는 기능이 매우 우수하다는 것을 확인할 수 있다.Referring to Table 1 above, it can be seen that the bioceramic density of Example 1 is 0.32g/cm3, which has ultra-light weight and excellent strength when compared to 0.44g/cm3 of Korean Patent Application Publication No. 10-2012-0077746. have. And looking at the total water absorption rate of the bioceramic in Example 1, it can contain moisture up to 89% of its own weight, so it discharges moisture during drying and absorbs moisture in a humid climate to control the humidity in the construction space. You can confirm that it is.

[실험예 2][Experimental Example 2]

실시예 1의 바이오 세라믹의 불연성시험을 하였으며, 그 결과를 아래 표 2에 기재하였다. The non-flammability test of the bioceramic of Example 1 was conducted, and the results are shown in Table 2 below.

- 불연성시험은 KSF ISO 1182 : 2004에 의해 측정하였다.-The non-flammability test was measured according to KSF ISO 1182: 2004.

시험 항목Test Items 질량감소율(%)Mass reduction rate (%) 노의 온도 상승(℃)Furnace temperature rise (℃) 불꽃 지속시간(s)Flame duration (s) 기준standard 30 % 이하30% or less 20℃ 이하 20℃ or less 10sec 이하10sec or less 실시예 1Example 1 0.30.3 1.91.9 00

위 표 2를 참조하면, 건설교통부고시 제2006-476호 건축물 내부 마감재료의 난연성능 기준 제2조1항 불연 재료의 규정은 질량 감소율 30%이하, 온도상승은 20K 이하, 불꽃지속시간은 10초 이하로 규정하고 있는데, 실시예 1의 바이오 세라믹의 경우 난연성능에 대한 기준을 모두 크게 상회한다는 것을 확인할 수 있었다.Referring to Table 2 above, Ministry of Construction and Transportation Notice No. 2006-476 Standards for Flame Retardant Performance of Building Interior Finishing Materials Article 2 Clause 1 Non-combustible materials are regulated by a mass reduction rate of 30% or less, a temperature rise of 20K or less, and a flame duration of 10. Although it is specified to be less than seconds, it was confirmed that the bioceramic of Example 1 greatly exceeded the standards for flame retardant performance.

[실험예 3][Experimental Example 3]

실시예 1의 바이오 세라믹의 가스 유해성 시험 및 신축 공동주택의 실내 공기질 권고 기준(제7조의 2 관련)시험을 하였으며, 그 결과를 아래 표 3에 기재하였다.The gas hazard test of the bioceramic of Example 1 and the indoor air quality recommendation standard (related to Article 7 2) of the new apartment house were tested, and the results are shown in Table 3 below.

- 가스 유해성 시험은 KSF 2271 : 2006에 의해 측정하였다.-Gas hazard test was measured by KSF 2271: 2006.

시험 항목Test Items 가스유해성시험
(마우스행동정지시간)
Gas hazard test
(Mouse stop time)
총 휘발성 유기화합물(TVOC)
(mg/㎡,h)
Total Volatile Organic Compounds (TVOC)
(mg/㎡,h)
포름알데히드(HCHO)
(mg/㎡,h)
Formaldehyde (HCHO)
(mg/㎡,h)
기준standard 9분 이상9 minutes or more 4.04.0 1.251.25 실시예 1Example 1 17.93분17.93 minutes 0.010.01 TrTr

위 표 3을 참조하면, 가스 유해성 시험의 경우 건설고시 제2006-476호 제2조제2항에 쥐의 행동정지시간은 9분 이상으로 규정되어 있는데, 실시예 1의 바이오 세라믹은 최소 15분 93초로 크게 상회하고, 총 휘발성 유기화합물(TVOC) 및 포름알데히드(HCHO)(mg/㎡,h)는 기준을 만족한다는 것을 확인할 수 있었다.Referring to Table 3 above, in the case of the gas hazard test, the stoppage time of the rat in Article 2 (2) of Construction Notification No. 2006-476 is stipulated to be 9 minutes or longer, but the bioceramic of Example 1 is at least 15 minutes 93 It was confirmed that the total volatile organic compounds (TVOC) and formaldehyde (HCHO) (mg/m 2 ,h) were significantly higher than the second and satisfies the criteria.

[실험예 4][Experimental Example 4]

실시예 1의 바이오 세라믹의 열전도율 시험을 하였으며, 그 결과를 아래 표 4에 기재하였다.The thermal conductivity test of the bioceramic of Example 1 was performed, and the results are shown in Table 4 below.

- 열전도율 시험은 KSL9016:2005에 의해 측정하였다.-The thermal conductivity test was measured by KSL9016:2005.

시험 항목Test Items 열전도율 (w/mK)Thermal conductivity (w/mK) 실시예 1Example 1 0.0590.059

위 표 4를 참조하면, 실시예 1의 바이오 세라믹의 열전도율(w/mK)은 0.059로, 공개특허 제10-2012-0077746호의 0.12와 대비할 때 열전도율이 현저히 향상되었다는 것을 확인할 수 있다. Referring to Table 4 above, it can be seen that the thermal conductivity (w/mK) of the bioceramic of Example 1 is 0.059, and the thermal conductivity is significantly improved when compared to 0.12 of Korean Patent Application Publication No. 10-2012-0077746.

[실험예 5][Experimental Example 5]

실시예 1의 바이오 세라믹의 탈취 성능 시험을 하였으며, 그 결과를 아래 표 5에 기재하였다.The deodorizing performance test of the bioceramic of Example 1 was conducted, and the results are shown in Table 5 below.

- 아래 표 5의 BLANK란 시료를 넣지 않은 상태에서 측정한 값이고, 시험방법은 한국원적외선 응용평가연구원 규격 KFIA-1004로 시험가스는 암모니아 가스로 가스농도측정은 가스 검지 관을 사용한 값이다.-BLANK in Table 5 below is a value measured without a sample, and the test method is KFIA-1004, the test gas is ammonia gas, and the gas concentration is measured using a gas detection tube.

시험 항목Test Items 경과시간(분)Elapsed time (minutes) BLANK 농도(ppm)BLANK concentration (ppm) 시료농도(ppm)Sample concentration (ppm) 탈취율(%)Deodorization rate (%)

탈취시험



Deodorization test

초기Early 500500 500500 --
3030 490490 4545 9191 6060 480480 3535 9393 9090 460460 2525 9595 120120 450450 2020 9696

위 표 5를 참조하면, 실시예 1의 바이오 세라믹은 탈취율이 최고 96%로 매우 우수한 탈취 성능을 발휘한다는 것을 확인할 수 있다.Referring to Table 5 above, it can be seen that the bioceramic of Example 1 exhibits very excellent deodorization performance with a maximum deodorization rate of 96%.

[실험예 6][Experimental Example 6]

실시예 1의 바이오 세라믹의 원적외선 방사율, 방사에너지 및 음이온 발생량을 측정하였으며, 그 결과를 아래 표 6에 기재하였다.The far-infrared emissivity, radiation energy, and anion generation amount of the bioceramic of Example 1 were measured, and the results are shown in Table 6 below.

- 원적외선 방사율, 방사에너지의 시험방법은 한국원적외선 응용평가 연구원 시험방법 KFIA-FI-1005로 40℃ FT-IR spectrometer를 이용한 BLANK BODY 대비 측정결과이고, 음이온 발생량 시험방법은 원적외선 응용평가연구원 규격 KFIA-FI-1042로 전하입자 측정장치를 이용하여 실내 온도 23℃, 습도 32% 대기 중 음이온 수 102/cc 조건에서 시험하였으며 측정 대상물에서 방출되는 음이온을 측정하여 단위 체적당 ION수로 표시한 결과이다.-The test method of far-infrared ray emissivity and radiation energy is KFIA-FI-1005, the test method of Korea Far-Infrared Application Evaluation Research Institute, which is the measurement result compared to the BLANK BODY using FT-IR spectrometer at 40℃. FI-1042 was tested using a charged particle measuring device at room temperature of 23°C and humidity of 32% in the air at 102/cc of number of negative ions. The result is the number of ions per unit volume by measuring negative ions emitted from the object to be measured.

시험 항목Test Items 원적외선 방사율(5~20㎛)Far infrared ray emissivity (5~20㎛) 방사에너지(w/m,㎛40℃)Radiation energy (w/m,㎛40℃) 음이온(ION/CC)Anion (ION/CC) 실시예 1Example 1 0.9210.921 3.71×102 3.71×10 2 1.0301.030

위 표 6을 참조하면, 실시예 1의 바이오 세라믹의 원적외선 방사 및 음이온 발생이 우수하다는 것을 확인할 수 있다. Referring to Table 6 above, it can be seen that the bioceramic of Example 1 exhibits excellent far-infrared radiation and negative ions.

[실험예 7][Experimental Example 7]

실시예 1의 바이오 세라믹에 대한 항균 시험을 하였으며, 그 결과를 아래 표 7에 기재하였다.An antibacterial test was performed on the bioceramic of Example 1, and the results are shown in Table 7 below.

- 열전도율 시험은 KSL9016:2005에 의해 측정하였다.-The thermal conductivity test was measured by KSL9016:2005.

시험 항목Test Items 시료 구분Sample classification 초기농도Initial concentration 24시간 후 농도Concentration after 24 hours 정균감소율(%)Bacteriostatic reduction rate (%) 대장균에 의한
항균시험
E. coli
Antibacterial test
BLANKBLANK 3.2×106
3.2×10 6
1.4×106 1.4×10 6 --
실시예 1Example 1 1.0×105 1.0×10 5 92.192.1 녹농균에 의한
항균시험
Pseudomonas aeruginosa
Antibacterial test
BLANKBLANK 3.3×106
3.3×10 6
1.5×106 1.5×10 6 --
실시예 1Example 1 9.5×104 9.5×10 4 93.793.7

위 표 7을 참조하면, 실시예 1의 바이오 세라믹은 우수한 항균 성능을 발휘한다는 것을 확인할 수 있다.Referring to Table 7 above, it can be seen that the bioceramic of Example 1 exhibits excellent antibacterial performance.

한편, 본 발명의 상세한 설명 및 첨부도면에서는 구체적인 실시예에 관해 설명하였으나, 본 발명은 개시된 실시예에 한정되지 않고 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다. 따라서, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안되며 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들을 포함하는 것으로 해석되어야 할 것이다.Meanwhile, in the detailed description of the present invention and the accompanying drawings, specific embodiments have been described, but the present invention is not limited to the disclosed embodiments, and the technical idea of the present invention is given to those of ordinary skill in the art. Various substitutions, modifications and changes are possible within the range not departing from. Therefore, the scope of the present invention is limited to the described embodiments and should not be defined, and should be construed as including the claims and equivalents as well as the claims to be described later.

Claims (6)

진주암을 130~140㎛로 분쇄한 다음 80~90℃의 온도에서 20~30분 동안 예열한 후 850~950℃의 온도로 가열하여 발포 규석을 마련하는 S1 단계;
상기 발포 규석 100중량부를 기준으로 아타풀자이트 100중량부와, 표면에 실리카 흄이 코팅된 입경이 50~300㎛인 중공 실리카 분말로 이루어진 중공체 30~50중량부, 발포제 5~15중량부 및 물 50~70중량부로 이루어진 무기 결합재 20~40중량부 및 규조토, 벤토나이트, 제올라이트, 알루미나 중에서 선택된 적어도 하나인 무기 충전제 10~30중량부를 혼합한 다음 성형하는 S2 단계;
상기 S2 단계를 거친 성형체를 900~1,200℃의 온도에서 소성, 발포하는 S3 단계;를 포함하는 것을 특징으로 하는 바이오 세라믹 제조방법.
Step S1 of pulverizing the perlite into 130 ~ 140㎛, preheating for 20 ~ 30 minutes at a temperature of 80 ~ 90 ℃ and then heating to a temperature of 850 ~ 950 ℃ to prepare a foamed silica stone;
100 parts by weight of attapulgite based on 100 parts by weight of foamed silica, 30 to 50 parts by weight of a hollow body composed of hollow silica powder having a particle diameter of 50 to 300 μm coated with silica fume on the surface, 5 to 15 parts by weight of a foaming agent, and S2 step of mixing 20 to 40 parts by weight of an inorganic binder consisting of 50 to 70 parts by weight of water and 10 to 30 parts by weight of an inorganic filler selected from diatomaceous earth, bentonite, zeolite, and alumina;
A method for producing a bioceramic, comprising a; S3 step of firing and foaming the molded body after the S2 step at a temperature of 900 to 1,200°C.
삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 발포제는 탄화규소 또는 탄산칼슘인 것을 특징으로 하는 바이오 세라믹 제조방법.
The method of claim 1,
Bioceramic manufacturing method, characterized in that the blowing agent is silicon carbide or calcium carbonate.
청구항 1 또는 청구항 5의 어느 하나의 제조방법으로 제조되는 발포 규석 100중량부, 아타풀자이트 100중량부와, 표면에 실리카흄이 코팅된 입경이 50~300㎛인 중공 실리카 분말로 이루어진 중공체 30~50중량부, 발포제 5~15중량부와 및 물 50~70중량부로 이루어진 무기 결합재 20~40중량부 및 규조토, 벤토나이트, 제올라이트, 알루미나 중 적어도 하나가 선택된 무기 충전제 10~30중량부로 구성된 것을 특징으로 하는 바이오 세라믹.


A hollow body 30 to consisting of 100 parts by weight of foamed silica, 100 parts by weight of attapulgite, and a hollow silica powder having a particle diameter of 50 to 300 µm coated with silica fume on the surface, prepared by the manufacturing method of claim 1 or 5 50 parts by weight, 5 to 15 parts by weight of a foaming agent, and 20 to 40 parts by weight of an inorganic binder consisting of 50 to 70 parts by weight of water and at least one of diatomaceous earth, bentonite, zeolite, and alumina is composed of 10 to 30 parts by weight of an inorganic filler selected. Bio ceramic.


KR1020180159426A 2018-12-11 2018-12-11 foam ceramic fabrication and manufacturing method thereof KR102146794B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020180159426A KR102146794B1 (en) 2018-12-11 2018-12-11 foam ceramic fabrication and manufacturing method thereof
CN201980081776.1A CN113195436A (en) 2018-12-11 2019-12-10 Biological ceramic and preparation method thereof
PCT/KR2019/017355 WO2020122543A1 (en) 2018-12-11 2019-12-10 Bioceramic and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180159426A KR102146794B1 (en) 2018-12-11 2018-12-11 foam ceramic fabrication and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20200071925A KR20200071925A (en) 2020-06-22
KR102146794B1 true KR102146794B1 (en) 2020-08-24

Family

ID=71077439

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180159426A KR102146794B1 (en) 2018-12-11 2018-12-11 foam ceramic fabrication and manufacturing method thereof

Country Status (3)

Country Link
KR (1) KR102146794B1 (en)
CN (1) CN113195436A (en)
WO (1) WO2020122543A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102351167B1 (en) * 2020-06-12 2022-01-13 최승규 Continuous porous architectural ceramic panel for recycling purified water sludge and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193684A (en) * 2000-10-17 2002-07-10 Oda Kensetsu Kk Porous sound absorbing ceramic compact and its manufacturing method
WO2010123251A2 (en) 2009-04-21 2010-10-28 ㈜엘지하우시스 Porous ceramic structure, and dehumidification/humidification apparatus comprising same
KR101311700B1 (en) 2013-05-07 2013-09-26 강상수 Cement mortar composite having improved adiabatic capacity and durability, manufacturing method of panel and manufacturing method block using the composite

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283082A (en) * 1995-04-14 1996-10-29 Nippon Concrete Ind Co Ltd Porous ceramic and sound absorbing body using the same
EP1333014A4 (en) * 2000-10-17 2005-07-20 Oda Construction Co Ltd Porous, sound absorbing ceramic moldings and method for production thereof
KR100803513B1 (en) 2005-11-02 2008-02-14 주식회사 엘지화학 Super light weight ceramic panel and process for preparing the same
WO2007126178A1 (en) 2006-05-01 2007-11-08 Shin Jong Jin Bubble ceremic material with low weight and method for preparing thereof
EP2522627A4 (en) * 2010-01-07 2014-03-26 Mitsubishi Materials Corp Synthetic amorphous silica powder
KR101286259B1 (en) * 2010-11-17 2013-07-18 주철완 Manufacture method of inorganic foam using geopolymer silica sol·gel method
KR20120077746A (en) 2010-12-31 2012-07-10 한국세라믹기술원 Fire resistant curtain wall board composition having high fire resistance and fire resistant light-weight board using it
KR101383875B1 (en) 2011-09-08 2014-04-09 (주)굿세라 A MANUFACTURING METHOD OF COMPOSITION FOR ADIABATIC MATERIAL WITH inorganic porous material
KR101220726B1 (en) 2011-09-16 2013-01-09 단국대학교 산학협력단 Method for manufacturing a light, flexible and thermal insulating ceramic pad by foaming process and a light, flexible and thermal insulating ceramic pad manufactured by the same method
CN105314999A (en) * 2014-07-29 2016-02-10 金承黎 Nano porous high-temperature-insulating material taking thixotropic colloid as template agent and preparation method for high-temperature-insulating material
WO2016174503A1 (en) * 2015-04-30 2016-11-03 Kpt Ltd. Compositions for cosmetic raw material and methods for making the same
KR101781269B1 (en) * 2015-11-10 2017-09-25 부경대학교 산학협력단 A ceramic foam containing cellulose carbonated particles and the method thereof
CN106431245A (en) * 2016-09-21 2017-02-22 蒋文兰 Production method of multifunctional quincuncial illite light through-hole ceramsite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193684A (en) * 2000-10-17 2002-07-10 Oda Kensetsu Kk Porous sound absorbing ceramic compact and its manufacturing method
WO2010123251A2 (en) 2009-04-21 2010-10-28 ㈜엘지하우시스 Porous ceramic structure, and dehumidification/humidification apparatus comprising same
KR101311700B1 (en) 2013-05-07 2013-09-26 강상수 Cement mortar composite having improved adiabatic capacity and durability, manufacturing method of panel and manufacturing method block using the composite

Also Published As

Publication number Publication date
WO2020122543A1 (en) 2020-06-18
CN113195436A (en) 2021-07-30
KR20200071925A (en) 2020-06-22

Similar Documents

Publication Publication Date Title
KR101440943B1 (en) Incombustible panel for interior decoration and facing of architectures and method thereof
KR100543886B1 (en) Ceramic powder emitting far infrared ray and manufacturing method of a high-density physical therapy stone thereby
KR100822073B1 (en) Forming material including charcoal and manufacturing method thereof
KR101649052B1 (en) Mortar composition comprising rice hull and preparation method thereof
KR102146794B1 (en) foam ceramic fabrication and manufacturing method thereof
KR100799694B1 (en) The heat insulating material with loess mortar and the manufacturing method thereof
KR101215634B1 (en) Natural stone panel and manufacturing method thereof
KR102146800B1 (en) Heater-combined Chair type Fumigation device using bio ceramic
KR101812111B1 (en) Eco-friendly building materials using perlite and the manufacturing method thereof
KR100602522B1 (en) Far-Infrared Ray Radiating Porcelain and Manufacturing Method Thereof
CN113416056B (en) Ceramic energy storage tube and preparation method thereof
KR100292930B1 (en) Far Infrared Emitter Using Ocher and Its Manufacturing Method
KR102132541B1 (en) Hyperthermia treatment system using bio ceramics
KR101140797B1 (en) Composition of functional collar cotton spray its manufacturing method and building material using it
KR100625688B1 (en) Paint additives composition comprising charcoal powder as a main ingredient
KR100673383B1 (en) Wallpaper and preparing method thereof
KR100503915B1 (en) Structure Concrete Wall and the manufacturing method
KR101511517B1 (en) Clay brick and method for manufacturing the same
KR20050080831A (en) Non-fire plate with expansive stone
KR20060104643A (en) Interrior decoration grout of a building
KR101434383B1 (en) The mortar composition using pozzolan
KR20020008892A (en) Loese tile and it's manufacturing method
JPH11335157A (en) Production of infrared rays irradiation material
KR101964956B1 (en) Forming material including charcoal with thermal conductors and manufacturing method thereof
KR101214238B1 (en) Multi-functional Non-fire Plate using a neutralized industrial by-product and expansive stone and weathered mineral soil

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right