KR20210091534A - Far Infrared Emitter Composition Using Inorganic Minerals and Emitters Prepared Using Same - Google Patents

Far Infrared Emitter Composition Using Inorganic Minerals and Emitters Prepared Using Same Download PDF

Info

Publication number
KR20210091534A
KR20210091534A KR1020200004821A KR20200004821A KR20210091534A KR 20210091534 A KR20210091534 A KR 20210091534A KR 1020200004821 A KR1020200004821 A KR 1020200004821A KR 20200004821 A KR20200004821 A KR 20200004821A KR 20210091534 A KR20210091534 A KR 20210091534A
Authority
KR
South Korea
Prior art keywords
far
infrared emitter
mixed
mineral
soil
Prior art date
Application number
KR1020200004821A
Other languages
Korean (ko)
Inventor
김정봉
Original Assignee
김정봉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김정봉 filed Critical 김정봉
Priority to KR1020200004821A priority Critical patent/KR20210091534A/en
Publication of KR20210091534A publication Critical patent/KR20210091534A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/08Apparatus or processes for treating or working the shaped or preshaped articles for reshaping the surface, e.g. smoothing, roughening, corrugating, making screw-threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/006Pressing by atmospheric pressure, as a result of vacuum generation or by gas or liquid pressure acting directly upon the material, e.g. jets of compressed air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63408Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • C04B2235/945Products containing grooves, cuts, recesses or protusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

The present invention relates to a far-infrared emitter composition comprising a mixture of a powdery mixed inorganic mineral and composite PP prepared by mixing a plurality of natural inorganic minerals with excellent radioactivity in a certain ratio, and a far-infrared emitter manufactured by injection molding using the same. In the present invention, a natural mineral mineral and a composite PP (Poly Propylene) resin are mixed in a weight ratio of 40:60, and the natural inorganic minerals are meteorite, woodmunite, megalithic stone, mica, feldspar, alum, serpentine, granite, quartz, jade, germanium, elvan, aluminima, tourmaline, gneiss, zeolite, ocher, white soil, red soil, black soil, and green soil, which are mixed inorganic minerals which are pulverized after combustion, separation and vacuum fusion at high temperature. After mixing the same in the same weight ratio.

Description

무기질 광물을 이용한 원적외선 방사체 조성물 및 이를 이용하여 제조된 방사체{Far Infrared Emitter Composition Using Inorganic Minerals and Emitters Prepared Using Same}Far Infrared Emitter Composition Using Inorganic Minerals and Emitters Prepared Using Same

본 발명은 무기질 광물을 이용한 원적외선 방사체 조성물 및 이를 이용하여 제조된 방사체에 관한 것으로, 보다 상세하게는 원적외선을 방사능이 우수한 천연 무기광물을 다수개를 일정비율로 혼합하여 준비된 분말상의 혼합무기광물질과 복합PP를 혼합하여 구성되는 원적외선 방사체 조성물과 이를 이용하여 사출성형하여 제조되는 원적외선 방사체에 관한 것이다. The present invention relates to a far-infrared emitter composition using an inorganic mineral and an emitter manufactured using the same, and more particularly, to a powdery mixed inorganic mineral prepared by mixing a number of natural inorganic minerals with excellent radioactivity for far-infrared rays in a certain ratio in a certain ratio and complex The present invention relates to a far-infrared emitter composition composed of mixing PP and a far-infrared emitter manufactured by injection molding using the composition.

일반적으로 원적외선은 3 ∼ 1000 ㎛까지의 파장을 총칭하는 것으로서 가시광선 보다는 파장이 길고 마이크로파보다는 짧은 파장을 가지며, 공명흡수작용과 방사 및 심달력의 물성을 가지고 있다.In general, far-infrared rays are a generic term for wavelengths ranging from 3 to 1000 μm, and have longer wavelengths than visible light and shorter wavelengths than microwaves.

공명흡수 작용이라 함은 물질에 원적외선을 조사할 때의 방사에너지 진동수와 분자의 진동수가 일치하게 되면 분자는 원적외선 방사에너지를 흡수하여 진동이 더욱 격렬해지는 작용을 말하며, 상기 공명흡수 작용으로 인해 운동에너지의 일부는 활성에너지로 변하여 분자운동이 활성화된다. 또한, 방사라 함은 물체에서 방출되는 원적외선이 열로 전달되는 것을 말하며, 심달력이라 함은 조사되는 방사에너지의 파장의 제곱근에 비례하여 침투력이 결정된다는 것으로서 짧은 파장의 원적외선은 긴 파장의 원적외선에 비하여 침투력이 떨어지게 된다.The resonance absorption action refers to an action in which, when the frequency of radiation energy when irradiating a material with the frequency of the molecule matches the frequency of the molecule, the molecule absorbs the radiation energy of the far infrared and the vibration becomes more intense, and the kinetic energy due to the resonance absorption action A part of it is converted into activation energy, and molecular motion is activated. In addition, radiation refers to the transfer of far-infrared radiation emitted from an object as heat, and the deep calendar means that penetrating power is determined in proportion to the square root of the wavelength of radiant energy to be irradiated. Short-wavelength far-infrared rays are compared to long-wavelength far-infrared rays. penetration decreases.

원적외선을 방사하는 원적외선 방사체로서는 인위적인 열처리에 의해 소성하여 만든 비금속 무기질 재료인 세라믹스가 그 대표적이며, 이들 세라믹스는 점토, 제올라이트, 고령토 등과 같이 일반적으로 규산염을 주성분으로 하는 재료에 필요에 따라 다른 재료들을 혼합 및 혼련하여, 소정의 형상으로 성형 및 건조한 뒤에 고온에서 소성하는 과정을 거쳐 제조된다.As a far-infrared emitter that emits far-infrared rays, ceramics, which are non-metallic inorganic materials made by firing artificial heat treatment, are typical. These ceramics are generally silicate-based materials such as clay, zeolite, and kaolin, and other materials are mixed as needed. and kneading, forming and drying into a predetermined shape, and then calcining at a high temperature.

이런 세라믹스를 온열 치료기와 같이 신체에 직접적으로 작용하는 장치의 원적외선 방사체로 사용하기 위해 일정한 형상으로 제조함에 있어서는, 규산염을 제공하는 주원료가 구하기 쉽고 저가 일 것, 충분한 치료 효과를 얻을 수 있도록 원적외선 방사성능이 양호할 것, 소성 과정과 이후의 냉각 과정에서 뒤틀림이나 균열과 같은 결함이 발생하지 않을 것, 낮은 온도에서 소성할 수 있어서 관련 비용을 줄일 수 있을것 등이 요구되는 바, 종래의 이와 같은 조건을 모두 만족하는 원적외선 방사체 세라믹스가 개발된 바 없다. 즉, 종래의 원적외선 방사체 세라믹스는 일반적으로 1300℃ 이상의 고온의 소성 온도를 요하는 경우가 대부분이였고, 소성된 최종 성형물에서 뒤틀림과 균열과 같은 결함이 발생하여 피부 접촉감이 좋지 못하였을 뿐만 아니라 일정한 규격으로 제조되는 온열 치료기와 같은 장치에 장착할 때 그 조립성이 양호하지 못하였다는 등의 문제점이 있었다.In manufacturing such ceramics in a certain shape for use as a far-infrared emitter for devices that directly act on the body, such as a thermotherapy device, the main raw material providing silicate should be easy to obtain and inexpensive, and the far-infrared radioactivity should be sufficient to obtain a sufficient therapeutic effect. It is required that this condition is good, that defects such as distortion or cracking do not occur during the firing process and subsequent cooling process, and that the related cost can be reduced because it can be fired at a low temperature. Far-infrared emitter ceramics that satisfy all requirements have not been developed. That is, the conventional far-infrared emitter ceramics generally require a high firing temperature of 1300° C. or higher in most cases, and defects such as distortion and cracks occur in the fired final molded product. There was a problem that the assembly was not good when it was installed in a device such as a thermotherapy device manufactured according to the standard.

1. 대한민국등록특허공보 제10-0809555호1. Republic of Korea Patent Publication No. 10-0809555 2. 대한민국공개특허공보 제10-2002-0022453호2. Republic of Korea Patent Publication No. 10-2002-0022453 3. 대한민국등록특허공보 제10-1878897호3. Republic of Korea Patent Publication No. 10-1878897

본 발명에서는 원적외선 발산능이 우수한 천연무기광물질을 선정하고, 그 천연무기광물질들을 일정비율로 혼합한 다음, 고온에서 진공 융합한 후, 320메쉬 이상의 분말상으로 가공한 다음, 그 가공된 무기광물질을 복합PP수지와 혼합하여 무기질 광물을 이용한 원적외선 방사체 조성물을 제공하고, 그 제공된 원적외선 방사체 조성물을 사출성형 가공하여 되는 원적외선 방사체를 제공하는 것을 그 해결과제로 한다.In the present invention, a natural inorganic mineral having excellent far-infrared emitting ability is selected, the natural inorganic minerals are mixed in a certain ratio, and then vacuum fused at a high temperature, then processed into a powder of 320 mesh or more, and then the processed inorganic mineral is combined with PP To provide a far-infrared emitter composition using an inorganic mineral mixed with a resin, and to provide a far-infrared emitter obtained by injection molding the provided far-infrared emitter composition.

상기한 과제를 해결한 본 발명의 무기질 광물을 이용한 원적외선 방사체 조성물은 천연무기질광물과 복합PP(Poly Propylene) 수지를 40:60의 중량비로 혼합하여 되는 것으로, 상기 천연무기광물은 운기석, 목문석, 거장석, 경운모, 장석, 명반석, 사문암, 화강암, 석영, 비취, 게르마늄, 맥반석, 알루니마, 토르마린, 편마암, 제오라이트, 황토, 백토, 적토, 흑토, 청토를 동일 중량비로 혼합한 후 고온에서 연소분리 진공 융합한 후 미분쇄하여된 혼합무기광물인 것을 특징으로 한다. The far-infrared emitter composition using the inorganic mineral of the present invention, which has solved the above problems, is obtained by mixing a natural mineral mineral and a composite PP (Poly Propylene) resin in a weight ratio of 40:60, and the natural inorganic mineral is Ungi-seok, Mokmunseok. , megalith, travertine, feldspar, alum, serpentine, granite, quartz, jade, germanium, elvan, aluminima, tourmaline, gneiss, zeolite, ocher, white clay, red earth, black earth, and blue earth are mixed in the same weight ratio and then heated at a high temperature. It is characterized in that it is a mixed inorganic mineral that is pulverized after combustion, separation and vacuum fusion.

여기서, 상기 천연무기질광물은 운기석, 목문석, 거장석, 경운모, 장석, 명반석, 사문암, 화강암, 석영, 비취, 게르마늄, 맥반석, 알루니마, 토르마린, 편마암, 제오라이트, 황토, 백토, 적토, 흑토, 청토를 동일 중량비로 혼합한 혼합무기광물을 준비하고, 상기 혼합무기광물을 연소분리를 위한 진공융합기에 넣고, 850℃이상의 온도에서 진공융합한 후, 분쇄기로 320메쉬 이상의 입도분포를 가지도록 분쇄하여 준비되는 천연무기광물질인 것을 특징으로 한다. Here, the natural mineral minerals are meteorite, wood munite, megalithic stone, mica, feldspar, alum, serpentine, granite, quartz, jade, germanium, elvan, aluminima, tourmaline, gneiss, zeolite, ocher, white clay, red soil, Prepare a mixed inorganic mineral mixed with black earth and green earth in the same weight ratio, put the mixed inorganic mineral in a vacuum fusion machine for combustion separation, vacuum fusion at a temperature of 850 ° C. or higher, and then use a grinder to have a particle size distribution of 320 mesh or more It is characterized in that it is a natural inorganic mineral prepared by grinding.

본 발명세서는 또한, 상기에 개시된 원적외선 방사체 조성물을 준비하는 단계(a);와, 상기 방사체 조성물을 사출성형기에 넣고 130℃이상의 온도에서 300톤 이상의 압력으로 냉각수 15℃ 이하이 조건에서 1, 2차 순환방식으로 금형에 통과시켜 20㎜의 두께, 120~130㎜의 폭을 가지는 판상형의 사출물로 사출하는 단계;와, 상기 사출물을 외주에 R10규격으로 모따기하여 외주면이 다수개의 돌출부를 형성하고, 상기 외주면과 동일모양으로 내측에 다수개의 천공부가 형성되고, 상기 천공부 주위로 소형통공이 형성되도록 가공하는 성형단계를 포함하여 이루어지는 것을 특징으로 하는 원적외선 방사체 제조방법을 제공한다. The present invention also includes the steps of (a) preparing the far-infrared emitter composition disclosed above; and putting the emitter composition into an injection molding machine at a temperature of 130° C. or more and a pressure of 300 tons or more, and cooling water at 15° C. or less under these conditions. Passing through the mold in a circulation method and injecting into a plate-shaped injection product having a thickness of 20 mm and a width of 120 to 130 mm; and chamfering the injection product to the R10 standard on the outer periphery to form a plurality of protrusions on the outer peripheral surface, It provides a method of manufacturing a far-infrared emitter, comprising a molding step of forming a plurality of perforations on the inner side in the same shape as the outer circumferential surface, and processing to form small through-holes around the perforations.

여기서, 상기 방사체 조성물은 천연무기광물질과 복합PP를 40:60의 중량비로 혼합하여 준비된 혼합물인 것을 특징으로 한다. Here, the emitter composition is characterized in that it is a mixture prepared by mixing the natural inorganic mineral material and the composite PP in a weight ratio of 40:60.

여기서, 상기 천연무기광물질은 운기석, 목문석, 거장석, 경운모, 장석, 명반석, 사문암, 화강암, 석영, 비취, 게르마늄, 맥반석, 알루니마, 토르마린, 편마암, 제오라이트, 황토, 백토, 적토, 흑토, 청토를 동일 중량비로 혼합한 혼합무기광물을 준비하고, 상기 혼합무기광물을 연소분리를 위한 진공융합기에 넣고, 850℃이상의 온도에서 진공융합한 후, 분쇄기로 320메쉬 이상의 입도분포를 가지도록 분쇄하여 준비되는 천연무기광물질인 것을 특징으로 한다. Here, the natural inorganic minerals include meteorite, wood mite, megalithic stone, mica, feldspar, alum, serpentine, granite, quartz, jade, germanium, elvan, aluminima, tourmaline, gneiss, zeolite, ocher, white clay, red soil, Prepare a mixed inorganic mineral mixed with black earth and green earth in the same weight ratio, put the mixed inorganic mineral in a vacuum fusion machine for combustion separation, vacuum fusion at a temperature of 850 ° C. or higher, and then use a grinder to have a particle size distribution of 320 mesh or more It is characterized in that it is a natural inorganic mineral prepared by grinding.

또한, 본 발명에서는 상기 개시되는 제조방법에 의해 제조되는 것을 특징으로 하는 원적외선 방사체를 제공하며, 상기 원적외선 방사체는 중심횡축으로 지름 120㎜, 두께 20㎜의 규격을 가지며, 그 외주로 R10의 사이즈로 라운딩모따기를 하여 다수의 라운딩 돌출부를 형성하여 해바라기 모양의 원형판으로 성형되고, 내측에 중심부에 상기 해바리기 모양의 원형판과 동일형상을 가지도록 중심횡축의 지름이 40㎜의 규격의 중심타공부가 형성되고, 상기 중심타공부를 축으로 6방향에 중심횡축의 지름이 30㎜인 6개의 변두리타공부가 형성되고, 상기 중심타공부를 축으로 하여 상기 중심타공부와 상기 변두리타공부와의 사이에 지름 6㎜의 통공이 다수개 형성된 구조로 되는 것을 특징으로 한다. In addition, the present invention provides a far-infrared emitter, characterized in that it is manufactured by the manufacturing method disclosed above, the far-infrared emitter has a diameter of 120 mm and a thickness of 20 mm on the central horizontal axis, and the outer periphery is R10 in size. A number of rounding protrusions are formed by rounding chamfering, and it is molded into a sunflower-shaped circular plate, and a central perforated part with a diameter of 40 mm on the central transverse axis is formed in the center to have the same shape as the sunflower-shaped circular plate on the inside. , Six edge ridges having a diameter of 30 mm on a central transverse axis are formed in 6 directions with the central punched part as an axis, and a diameter between the central punched part and the edge retard part with the central punched part as an axis It is characterized in that it has a structure in which a plurality of 6 mm through holes are formed.

본 발명에 의해 제공되는 원적외선 방사체 조성물을 사용하여 사출성형되는 원적외선 방사체는 원적외선발산 효율이 우수한 천연무기광물을 포함함으로써 우수한 원적외선 방사효율을 가지는 원적외선 방사체 사출물을 제공할 수 있고, 그 원적외선 방사체 사출물을 가공하여 완성되는 본 발명에 따른 원적외선 방사체는 그 형성된 형상에 따라 원적외선 발산 효율을 극대화 시켜 자동차 엔진등에 적용시 엔진의 출력효율을 높일 수 있는 효과를 가진다. The far-infrared emitter injection molded using the far-infrared emitter composition provided by the present invention contains a natural inorganic mineral having excellent far-infrared emission efficiency, thereby providing an injection-molded far-infrared emitter having excellent far-infrared radiation efficiency, and processing the far-infrared emitter The far-infrared emitter according to the present invention, which is completed by maximizing the far-infrared emission efficiency according to the formed shape, has the effect of increasing the output efficiency of the engine when applied to an automobile engine.

또한, 본 발명에서 제공되는 원적외선 방사체 조성물은 자동차 엔진효율 증대용 뿐만 아니라 의료용, 섬유용 등 원적외선 효과를 가미하여 가공할 수 있는 다양한 제품에 적용가능한 장점을 가지고 있다. In addition, the far-infrared emitter composition provided in the present invention has the advantage of being applicable to various products that can be processed by adding the effect of far-infrared rays, such as for medical purposes and textiles, as well as for increasing automobile engine efficiency.

도 1 은 본 발명의 일실시예에 따른 원적외선 방사체의 구조를 도시한 평면도 이다. 1 is a plan view showing the structure of a far-infrared emitter according to an embodiment of the present invention.

이하, 본 발명을 보다 구체적으로 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명의 발명자들은 원적외선을 방사능이 우수한 천연 무기광물을 선별하고, 그 선별된 천연무기광물들을 일정비율로 혼합한 다음, 고온유합과정을 거친 후 미분쇄하여 준비된 분말상의 혼합무기광물질과 복합PP를 혼합하여 구성되는 원적외선 방사체 조성물과 이를 이용하여 사출성형하여 제조되는 원적외선 방사체 및 그제조방법을 제공하는 것에 그 목적이 있는 것으로, The inventors of the present invention select natural inorganic minerals with excellent radioactivity with far-infrared rays, mix the selected natural inorganic minerals in a certain ratio, and then go through a high-temperature coalescence process and then finely pulverize the powdered mixed inorganic minerals and composite PP. An object of the present invention is to provide a far-infrared emitter composition composed of mixing, a far-infrared emitter manufactured by injection molding using the same, and a manufacturing method thereof

상기 목적을 달성한 본 발명에 따르는 무기질 광물을 이용한 원적외선 방사체 조성물은 천연무기질광물과 복합PP(Poly Propylene) 수지를 40:60의 중량비로 혼합하여 되는 것으로, 상기 천연무기광물은 운기석, 목문석, 거장석, 경운모, 장석, 명반석, 사문암, 화강암, 석영, 비취, 게르마늄, 맥반석, 알루니마, 토르마린, 편마암, 제오라이트, 황토, 백토, 적토, 흑토, 청토를 동일 중량비로 혼합한 후 고온에서 연소분리 진공 융합한 후 미분쇄하여된 혼합무기광물인 것을 특징으로 한다. The far-infrared emitter composition using an inorganic mineral according to the present invention that has achieved the above object is obtained by mixing a natural mineral mineral and a composite PP (Poly Propylene) resin in a weight ratio of 40:60, and the natural inorganic mineral is Ungi-seok, Mokmunseok. , megalith, travertine, feldspar, alum, serpentine, granite, quartz, jade, germanium, elvan, aluminima, tourmaline, gneiss, zeolite, ocher, white clay, red earth, black earth, and blue earth are mixed in the same weight ratio and then heated at a high temperature. It is characterized in that it is a mixed inorganic mineral that is pulverized after combustion, separation and vacuum fusion.

본 발명에 따르면, 바람직하게 상기 천연무기질광물은 운기석, 목문석, 거장석, 경운모, 장석, 명반석, 사문암, 화강암, 석영, 비취, 게르마늄, 맥반석, 알루니마, 토르마린, 편마암, 제오라이트, 황토, 백토, 적토, 흑토, 청토를 동일 중량비로 혼합한 혼합무기광물을 준비하고, 상기 혼합무기광물을 연소분리를 위한 진공융합기에 넣고, 850℃이상의 온도에서 진공융합한 후, 분쇄기로 320메쉬 이상의 입도분포를 가지도록 분쇄하여 준비되는 천연무기광물질을 준비하여 사용하는 것이 좋다. 이때, 상기 무기광물들의 혼합비율은 동일중량으로 혼합하는 것이다. 즉, 모든 무기광물을 동일한 중량으로 칭량하여 혼합하는 것이다. According to the present invention, preferably, the natural mineral mineral is meteorite, mite, megalith, mica, feldspar, alum, serpentine, granite, quartz, jade, germanium, elvan, alunima, tourmaline, gneiss, zeolite, ocher , white clay, red soil, black soil, and green soil are mixed in the same weight ratio, mixed inorganic minerals are prepared, the mixed inorganic minerals are put in a vacuum fusion machine for combustion separation, and vacuum fused at a temperature of 850 ° C. or higher, and then 320 mesh or more with a grinder It is recommended to prepare and use natural inorganic minerals prepared by grinding to have a particle size distribution. At this time, the mixing ratio of the inorganic minerals is to mix the same weight. That is, all inorganic minerals are weighed and mixed with the same weight.

본 발명에 따르면, 상기 본 발명에 의해 제공되는 원적외선 방사체 조성물은 사출성형하여 성형품으로 가공이 용이한 장점을 가지는 것으로, 본 발명에서는 상기 원적외선 방사체 조성물을 이용한 원적외선 방사체 제조방법과 그 제조방법에 의해 제조되는 원적외선 방사체를 더 제공할 수 있다. According to the present invention, the far-infrared emitter composition provided by the present invention has the advantage of being easily processed into a molded article by injection molding, and in the present invention, a method for manufacturing a far-infrared emitter using the far-infrared emitter composition and manufacturing method thereof It is possible to further provide a far-infrared emitter.

즉, 본 발명에 따라 제공되는 원적외선 방사체 제조방법은 상기에 개시된 원적외선 방사체 조성물을 준비하는 단계(a);와, 상기 방사체 조성물을 사출성형기에 넣고 130℃이상의 온도에서 300톤 이상의 압력으로 냉각수 15℃ 이하이 조건에서 1, 2차 순환방식으로 금형에 통과시켜 20㎜의 두께, 120~130㎜의 폭을 가지는 판상형의 사출물로 사출하는 단계;와, 상기 사출물을 외주에 R10규격으로 모따기하여 외주면이 다수개의 돌출부를 형성하고, 상기 외주면과 동일모양으로 내측에 다수개의 천공부가 형성되고, 상기 천공부 주위로 소형통공이 형성되도록 가공하는 성형단계를 포함하여 이루어지는 것에 그 특징이있다.That is, the method for manufacturing a far-infrared emitter provided according to the present invention comprises the steps of (a) preparing the far-infrared emitter composition disclosed above; and putting the emitter composition into an injection molding machine at a temperature of 130° C. or more and a pressure of 300 tons or more with cooling water 15° C. Hereinafter, the step of passing through the mold in the first and second circulation method under these conditions and injecting into a plate-shaped injection product having a thickness of 20 mm and a width of 120 to 130 mm; And, by chamfering the injection product to the R10 standard on the outer periphery, the outer peripheral surface has a plurality It is characterized in that it comprises a forming step of forming four protrusions, forming a plurality of perforations on the inside in the same shape as the outer circumferential surface, and processing such that small through holes are formed around the perforations.

이때, 상기 방사체 조성물은 천연무기광물질과 복합PP를 40:60의 중량비로 혼합하여 준비된 혼합물을 사용하는 것이고, 바람직하게 상기 천연무기광물질은 운기석, 목문석, 거장석, 경운모, 장석, 명반석, 사문암, 화강암, 석영, 비취, 게르마늄, 맥반석, 알루니마, 토르마린, 편마암, 제오라이트, 황토, 백토, 적토, 흑토, 청토를 동일 중량비로 혼합한 혼합무기광물을 준비하고, 상기 혼합무기광물을 연소분리를 위한 진공융합기에 넣고, 850℃이상의 온도에서 진공융합한 후, 분쇄기로 320메쉬 이상의 입도분포를 가지도록 분쇄하여 준비되는 천연무기광물질을 사용하는 것이 바람직하다. At this time, the emitter composition is to use a mixture prepared by mixing natural inorganic minerals and composite PP in a weight ratio of 40:60, preferably, the natural inorganic minerals are meteorite, woodmunite, megalith, hard mica, feldspar, alum , serpentine, granite, quartz, jade, germanium, elvan, alumina, tourmaline, gneiss, zeolite, ocher, white clay, red earth, black earth, and blue earth mixed in the same weight ratio to prepare a mixed inorganic mineral, and burn the mixed inorganic mineral It is preferable to use a natural inorganic mineral prepared by putting it in a vacuum fusion machine for separation, vacuum fusion at a temperature of 850° C. or higher, and then pulverizing it to have a particle size distribution of 320 mesh or more with a grinder.

본 발명에서는 또한, 이상과 같은 제조방법에 의해 제조되는 것을 특징으로 하는 원적외선 방사체를 제공할 수 있으며, 보다 바람직하게 첨부도면 도 1을 참조하여 설명하면, 상기 원적외선 방사체(100)는 중심횡축(A-A)으로 지름 120㎜, 두께 20㎜의 규격을 가지며, 그 외주로 R10의 사이즈로 라운딩모따기를 하여 다수의 라운딩 돌출부(120)를 형성하여 해바라기 모양의 원형판(110)으로 성형되고, 내측에 중심부에 상기 해바리기 모양의 원형판과 동일형상을 가지도록 중심횡축(B-B)의 지름이 40㎜의 규격의 중심타공부(130)가 형성되고, 상기 중심타공부(130)를 중심으로 6방향에 중심횡축(C-C)의 지름이 30㎜인 6개의 변두리타공부(140)가 형성되고, 상기 중심타공부(130)를 축으로 하여 상기 중심타공부(130)와 상기 변두리타공부(140)와의 사이에 지름 6㎜의 통공(150)이 다수개 형성된 구조로 되는 것에 그 특징이 있다. In the present invention, it is also possible to provide a far-infrared emitter characterized in that it is manufactured by the manufacturing method as described above, and more preferably described with reference to the accompanying drawings, the far-infrared emitter 100 is a central transverse axis (AA). ), having a diameter of 120 mm and a thickness of 20 mm, and rounding chamfering to a size of R10 on the outer periphery to form a number of rounding protrusions 120 to form a sunflower-shaped circular plate 110, and on the inside at the center A central puncture 130 having a diameter of 40 mm of the central transverse axis BB is formed to have the same shape as the sunflower-shaped circular plate, and a central transverse axis ( CC) of which the diameter of 30 mm is formed six edge piercing part 140, the diameter between the center piercing part 130 and the edge piercing part 140 with the central piercing part 130 as an axis. It is characterized in that it has a structure in which a plurality of through-holes 150 of 6 mm are formed.

이하, 본 발명을 바람직한 실시예를 들어 보다 구체적으로 설명하기로 한다. Hereinafter, the present invention will be described in more detail with reference to preferred embodiments.

단, 하기의 설명되는 실시예는 본 발명을 한정하는 것은 아니며, 본 발명을 설명하기 위한 바람직한 예시로, 바람직하게는 특허청구범위에 기재되는 발명의 구성의 범위를 벗어나지 않는 범위 내에서 통상의 기술자라면 얼마든지 변형가능한 것이다. However, the examples described below are not intended to limit the present invention, and are preferred examples for explaining the present invention, preferably within a range that does not depart from the scope of the invention described in the claims. If anything, it can be transformed.

[실시예 1][Example 1]

<천연무기광물 준비><Preparation of natural inorganic minerals>

운기석, 목문석, 거장석, 경운모, 장석, 명반석, 사문암, 화강암, 석영, 비취, 게르마늄, 맥반석, 알루니마, 토르마린, 편마암, 제오라이트, 황토, 백토, 적토, 흑토, 청토를 각각 1㎏을 준비하여 혼합한 혼합무기광물을 준비하고, 상기 혼합무기광물을 연소분리를 위한 진공융합기에 넣고, 850℃이상의 온도에서 진공융합한 후, 분쇄기로 320메쉬 이상의 입도분포를 가지도록 분쇄하여 미분쇄된 분말상의 혼합무기광물을 준비하였다. 1kg each of meteorite, woodmunite, megalith, hard mite, feldspar, alum, serpentine, granite, quartz, jade, germanium, elvan, aluminima, tourmaline, gneiss, zeolite, ocher, white soil, red soil, black soil, and blue soil Prepare mixed inorganic minerals, put the mixed inorganic minerals in a vacuum fusion machine for combustion separation, vacuum fusion at a temperature of 850 ° C. or higher, and pulverize to have a particle size distribution of 320 mesh or more with a grinder and finely pulverize A powdery mixed inorganic mineral was prepared.

<원적외선 방사체 제조><Manufacture of far-infrared emitter>

상기 준비된 혼합무기광물과 복합PP수지를 40:60의 중량비로 혼합하여 원적외선 방사체 조성물을 준비하고, 상기 방사체 조성물을 사출성형기에 넣고 130℃이상의 온도에서 300톤 이상의 압력으로 냉각수 15℃ 이하이 조건에서 1, 2차 순환방식으로 금형에 통과시켜 20㎜의 두께, 120~130㎜의 폭을 가지는 판상형의 사출물로 사출한다. Prepare a far-infrared emitter composition by mixing the prepared mixed inorganic mineral and composite PP resin in a weight ratio of 40:60, put the emitter composition into an injection molding machine, and apply cooling water at a temperature of 130°C or higher to a pressure of 300 tons or more at 15°C or lower under this condition. , it is passed through the mold in the secondary circulation method and injected into a plate-shaped injection product with a thickness of 20 mm and a width of 120 to 130 mm.

상기 사출물을 첨부도면 도 1에 도시된 바와 같이, 상기 원적외선 방사체는 중심횡축으로 지름 120㎜, 두께 20㎜의 규격을 가지며, 그 외주로 R10의 사이즈로 라운딩모따기를 하여 다수의 라운딩 돌출부를 형성하여 해바라기 모양의 원형판으로 성형되고, 내측에 중심부에 상기 해바리기 모양의 원형판과 동일형상을 가지도록 중심횡축의 지름이 40㎜의 규격의 중심타공부가 형성되고, 상기 중심타공부를 축으로 6방향에 중심횡축의 지름이 30㎜인 6개의 변두리타공부가 형성되고, 상기 중심타공부를 축으로 하여 상기 중심타공부와 상기 변두리타공부와의 사이에 지름 6㎜의 통공이 다수개 형성된 구조로 되도록 성형하여 되는 원적외선 방사체를 준비하였다. 1, the far-infrared emitter has a diameter of 120 mm and a thickness of 20 mm on the central transverse axis, and rounding chamfering is performed on the outer periphery to a size of R10 to form a plurality of rounding protrusions. It is molded into a sunflower-shaped circular plate, and a central perforated part having a diameter of 40 mm on the central transverse axis is formed in the center to have the same shape as the sunflower-shaped circular plate in the center, and the center perforated part is axially in 6 directions. Six edge ridges with a diameter of 30 mm on the central transverse axis are formed, and a plurality of through holes with a diameter of 6 mm are formed between the central pierced part and the edge rib part with the central pierced part as an axis. A far-infrared emitter to be molded was prepared.

상기 준비된 원적외선 방사체를 무작위 선별하여 시료 5개를 준비하고, 사용온도를 50℃로 세팅하여 유지한 상태로 7~25㎛와 9~28㎛의 환경에서의 방사율로 원적외선 방사 특성을 조사하여보았으며, 그 각각의 시료의 원적외선 방사 특성의 시험결과는 하기 표 1에 나타낸 바와 같다. Five samples were prepared by randomly selecting the prepared far-infrared emitter, and the far-infrared radiation characteristics were investigated with the emissivity in the environment of 7-25 μm and 9-28 μm while the operating temperature was set and maintained at 50 ° C. , The test results of the far-infrared radiation characteristics of each sample are as shown in Table 1 below.

구 분division 7~22㎛에서 방사율(%)Emissivity (%) at 7~22㎛ 9~28㎛에서 방사율(%)Emissivity (%) at 9~28㎛ 시료 1sample 1 8787 9595 시료 2sample 2 8888 9696 시료 3sample 3 8787 9494 시료 4sample 4 9090 9494 시료 5sample 5 8989 9696

상기 표 1의 결과로 본 발명에 따른 원적외선 방사체는 매우 우수한 원적외선 방사율을 나타내는 것을 알 수 있었다. As a result of Table 1, it was found that the far-infrared emitter according to the present invention exhibited very excellent far-infrared emissivity.

100: 원적외선 방사체
110: 원형판
120: 돌출부
130: 중심타공부
140: 변두리타공부
150: 통공
100: far-infrared emitter
110: circular plate
120: protrusion
130: central perforation
140: Studying the edge of the city
150: through hole

Claims (7)

천연무기질광물과 복합PP(Poly Propylene) 수지를 40:60의 중량비로 혼합하여 되는 것으로, 상기 천연무기광물은 운기석, 목문석, 거장석, 경운모, 장석, 명반석, 사문암, 화강암, 석영, 비취, 게르마늄, 맥반석, 알루니마, 토르마린, 편마암, 제오라이트, 황토, 백토, 적토, 흑토, 청토를 동일 중량비로 혼합한 후 고온에서 연소분리 진공 융합한 후 미분쇄하여된 혼합무기광물인 것을 특징으로 하는 무기질 광물을 이용한 원적외선 방사체 조성물.
It is made by mixing natural mineral minerals and composite PP (Poly Propylene) resin in a weight ratio of 40:60, and the natural inorganic minerals are ungite, wood mite, megalith, hard mica, feldspar, alum, serpentine, granite, quartz, Jade, germanium, elvan, alumina, tourmaline, gneiss, zeolite, loess, white clay, red earth, black earth, and blue earth are mixed in the same weight ratio, then burned, separated and vacuum fused at a high temperature, characterized in that they are finely pulverized. A far-infrared emitter composition using an inorganic mineral.
제 1 항에 있어서,
상기 천연무기질광물은 운기석, 목문석, 거장석, 경운모, 장석, 명반석, 사문암, 화강암, 석영, 비취, 게르마늄, 맥반석, 알루니마, 토르마린, 편마암, 제오라이트, 황토, 백토, 적토, 흑토, 청토를 동일 중량비로 혼합한 혼합무기광물을 준비하고, 상기 혼합무기광물을 연소분리를 위한 진공융합기에 넣고, 850℃이상의 온도에서 진공융합한 후, 분쇄기로 320메쉬 이상의 입도분포를 가지도록 분쇄하여 준비되는 천연무기광물질인 것을 특징으로 하는 무기질 광물을 이용한 원적외선 방사체 조성물.
The method of claim 1,
The natural mineral minerals are meteorite, wood mite, megalithic stone, mica, feldspar, alum, serpentine, granite, quartz, jade, germanium, elvan, aluminima, tourmaline, gneiss, zeolite, ocher, white soil, red soil, black soil, Prepare a mixed inorganic mineral mixed with green earth in the same weight ratio, put the mixed inorganic mineral in a vacuum fusion machine for combustion separation, vacuum fusion at a temperature of 850 ° C. or higher, and pulverize to have a particle size distribution of 320 mesh or more with a grinder A far-infrared emitter composition using an inorganic mineral, characterized in that it is a prepared natural inorganic mineral.
청구항 제1항 내지 제2항 중 어느 한 항 기재의 원적외선 방사체 조성물을 준비하는 단계(a);
상기 방사체 조성물을 사출성형기에 넣고 130℃이상의 온도에서 300톤 이상의 압력으로 냉각수 15℃ 이하이 조건에서 1, 2차 순환방식으로 금형에 통과시켜 20㎜의 두께, 120~130㎜의 폭을 가지는 판상형의 사출물로 사출하는 단계;
상기 사출물을 외주에 R10규격으로 모따기하여 외주면이 다수개의 돌출부를 형성하고, 상기 외주면과 동일모양으로 내측에 다수개의 천공부가 형성되고, 상기 천공부 주위로 소형통공이 형성되도록 가공하는 성형단계를 포함하여 이루어지는 것을 특징으로 하는 원적외선 방사체 제조방법.
A method for preparing a far-infrared emitter composition according to any one of claims 1 to 2 (a);
Put the radiator composition in an injection molding machine and pass it through the mold in the primary and secondary circulation method under the condition of 15° C. or less of cooling water at a temperature of 130° C. or more and a pressure of 300 tons or more, and a plate shape having a thickness of 20 mm and a width of 120 to 130 mm injecting into an injection molding material;
A molding step of processing the injection molded product to form a plurality of protrusions on the outer periphery by R10 standard, forming a plurality of perforations on the inside in the same shape as the outer periphery, and forming small through holes around the perforations A method of manufacturing a far-infrared emitter, characterized in that it is made by
제 3 항에 있어서,
상기 방사체 조성물은 천연무기광물질과 복합PP를 40:60의 중량비로 혼합하여 준비된 혼합물인 것을 특징으로 하는 원적외선 방사체 제조방법.
4. The method of claim 3,
The emitter composition is a method for producing a far-infrared emitter, characterized in that it is a mixture prepared by mixing natural inorganic minerals and composite PP in a weight ratio of 40:60.
제 4 항에 있어서,
상기 천연무기광물질은 운기석, 목문석, 거장석, 경운모, 장석, 명반석, 사문암, 화강암, 석영, 비취, 게르마늄, 맥반석, 알루니마, 토르마린, 편마암, 제오라이트, 황토, 백토, 적토, 흑토, 청토를 동일 중량비로 혼합한 혼합무기광물을 준비하고, 상기 혼합무기광물을 연소분리를 위한 진공융합기에 넣고, 850℃이상의 온도에서 진공융합한 후, 분쇄기로 320메쉬 이상의 입도분포를 가지도록 분쇄하여 준비되는 천연무기광물질인 것을 특징으로 하는 원적외선 방사체 제조방법.
5. The method of claim 4,
The natural inorganic minerals are meteorite, woodmunite, megalithic stone, mica, feldspar, alum, serpentine, granite, quartz, jade, germanium, elvan, aluminima, tourmaline, gneiss, zeolite, ocher, white soil, red soil, black soil, Prepare a mixed inorganic mineral mixed with green earth in the same weight ratio, put the mixed inorganic mineral in a vacuum fusion machine for combustion separation, vacuum fusion at a temperature of 850 ° C. or higher, and pulverize to have a particle size distribution of 320 mesh or more with a grinder A method for producing a far-infrared emitter, characterized in that it is a prepared natural inorganic mineral.
청구항 제3항 내지 제5항 중 어느 한 항 기재의 제조방법에 의해 제조되는 것을 특징으로 하는 원적외선 방사체.
A far-infrared emitter, characterized in that it is manufactured by the manufacturing method according to any one of claims 3 to 5.
제 6 항에 있어서,
상기 원적외선 방사체는 중심횡축으로 지름 120㎜, 두께 20㎜의 규격을 가지며, 그 외주로 R10의 사이즈로 라운딩모따기를 하여 다수의 라운딩 돌출부를 형성하여 해바라기 모양의 원형판으로 성형되고, 내측에 중심부에 상기 해바리기 모양의 원형판과 동일형상을 가지도록 중심횡축의 지름이 40㎜의 규격의 중심타공부가 형성되고, 상기 중심타공부를 축으로 6방향에 중심횡축의 지름이 30㎜인 6개의 변두리타공부가 형성되고, 상기 중심타공부를 축으로 하여 상기 중심타공부와 상기 변두리타공부와의 사이에 지름 6㎜의 통공이 다수개 형성된 구조로 되는 것을 특징으로 하는 원적외선 방사체.
7. The method of claim 6,
The far-infrared emitter has a diameter of 120 mm and a thickness of 20 mm on a central transverse axis, and rounding chamfering to a size of R10 on its outer periphery to form a plurality of rounding protrusions is molded into a sunflower-shaped circular plate, and the To have the same shape as a sunflower-shaped circular plate, a central perforated part having a diameter of 40 mm on a central transverse axis is formed, and six edge rib parts having a diameter of 30 mm on a central transverse axis in 6 directions using the central perforated part as an axis. is formed, and the far-infrared emitter has a structure in which a plurality of through-holes having a diameter of 6 mm are formed between the center perforated portion and the edge pierced portion with the center perforated portion as an axis.
KR1020200004821A 2020-01-14 2020-01-14 Far Infrared Emitter Composition Using Inorganic Minerals and Emitters Prepared Using Same KR20210091534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200004821A KR20210091534A (en) 2020-01-14 2020-01-14 Far Infrared Emitter Composition Using Inorganic Minerals and Emitters Prepared Using Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200004821A KR20210091534A (en) 2020-01-14 2020-01-14 Far Infrared Emitter Composition Using Inorganic Minerals and Emitters Prepared Using Same

Publications (1)

Publication Number Publication Date
KR20210091534A true KR20210091534A (en) 2021-07-22

Family

ID=77158103

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200004821A KR20210091534A (en) 2020-01-14 2020-01-14 Far Infrared Emitter Composition Using Inorganic Minerals and Emitters Prepared Using Same

Country Status (1)

Country Link
KR (1) KR20210091534A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020022453A (en) 2000-09-20 2002-03-27 한종웅 compositions of ceramics for extreme infrared radiation
KR100809555B1 (en) 2006-01-10 2008-03-04 이수길 Manufacturing method of far infrared radiator
KR101878897B1 (en) 2017-03-09 2018-07-17 손상호 High efficiency far infrared ray and anion radiator and producing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020022453A (en) 2000-09-20 2002-03-27 한종웅 compositions of ceramics for extreme infrared radiation
KR100809555B1 (en) 2006-01-10 2008-03-04 이수길 Manufacturing method of far infrared radiator
KR101878897B1 (en) 2017-03-09 2018-07-17 손상호 High efficiency far infrared ray and anion radiator and producing method thereof

Similar Documents

Publication Publication Date Title
KR100543886B1 (en) Ceramic powder emitting far infrared ray and manufacturing method of a high-density physical therapy stone thereby
CN101910361A (en) Be used for of the scattering of light of the optical ceramics of photodiode by controlled porosity
KR101994140B1 (en) Glaze composition for high hardness glaze layer and manufacturing method of ceramic floor tile having excellent scratch resistance using the composition
CN1683270A (en) Microwave baking furnace
CN1122649C (en) Process for the prepn., preferably from waste materials, of silicate foam with closed pores, and products produced by the process
KR20210091534A (en) Far Infrared Emitter Composition Using Inorganic Minerals and Emitters Prepared Using Same
KR101571356B1 (en) Ceramic manufacture method containing oystershell powder
JP2008024575A (en) Germanium material and method for producing germanium ceramic
KR101472282B1 (en) Ceramic Composition for Lampshade and Preparing Methods Thereof
KR20140014829A (en) Manufacturing method for building in or outside interior brick
KR101447412B1 (en) Cookware for microwave oven
KR20130017145A (en) Eco-friendly interior materials for building using expanded perlite and its manufacturing method
KR101433881B1 (en) Method for manufacturing carbon molding for bed top using scoria
KR101878897B1 (en) High efficiency far infrared ray and anion radiator and producing method thereof
KR101355490B1 (en) Manufacturing method of activated carbon molded articles
KR101288342B1 (en) Fabrication method of porous silicon carbide heating element
KR19980085370A (en) Method for manufacturing far-infrared radiation ceramic using waste ferrite core
KR20070010511A (en) Preparing accessories using jade
KR100783486B1 (en) Squared dome shape ceramics plate for radiating the far infrared and anion
KR102523761B1 (en) pendant using composition of bio being mineral and the manufacturing method
KR20030017935A (en) A Method for Manufacture Radiation Body include Amethyst
KR100516623B1 (en) Manufacturing process of Grill radiating the Distant Infrared Rays
KR20040041989A (en) a ceramic emitted far infrared rays and anion, and manufacturing method thereof
KR20120031534A (en) Charcoal and it&#39;s manufacture method
KR100336450B1 (en) The ceramic chacoals and their preparation methods

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application