KR19980085370A - Method for manufacturing far-infrared radiation ceramic using waste ferrite core - Google Patents

Method for manufacturing far-infrared radiation ceramic using waste ferrite core Download PDF

Info

Publication number
KR19980085370A
KR19980085370A KR1019970021432A KR19970021432A KR19980085370A KR 19980085370 A KR19980085370 A KR 19980085370A KR 1019970021432 A KR1019970021432 A KR 1019970021432A KR 19970021432 A KR19970021432 A KR 19970021432A KR 19980085370 A KR19980085370 A KR 19980085370A
Authority
KR
South Korea
Prior art keywords
weight
parts
far
waste
infrared radiation
Prior art date
Application number
KR1019970021432A
Other languages
Korean (ko)
Inventor
김종운
Original Assignee
김종운
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김종운 filed Critical 김종운
Priority to KR1019970021432A priority Critical patent/KR19980085370A/en
Publication of KR19980085370A publication Critical patent/KR19980085370A/en

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은 전자파를 흡수하여 발열 및 원적외선을 방사하는 세라믹의 제조방법에 관한 것으로, 특히 단결정 또는 다결정 자성체인 폐기 페라이트 코어의 분말과 무기재료를 혼합하여 소성한 폐기 페라이트 코어를 활용한 원적외선 방사 세라믹의 제조방법에 관한 것으로, 일반 폐기물로 분리되어 처리가 곤란하고 다른 용도의 변형이 곤란했던 폐기 페라이트 코어를 분쇄하여 분쇄물을 제조하고, 흑점토 30∼40중량부, 활성백토 20∼30중량부, 장석 10∼20중량부, 규조토 5∼15중량부, 분쇄산화철(Fe2O3) 5∼10중량부, 이산화지르코늄(ZrO2) 1∼3중량부, 이산화니켈(NiO2) 2∼4중량부 및 산화알루미늄(Al2O3) 1∼3중량부의 혼합물 100중량부에 상기 분쇄물 6 - 12 중량부를 혼합하여 1150∼1300℃의 온도에서 소성한 후 400매쉬 이하로 재분쇄하여 자성화가 90% 이상 되도록 제조함으로써 전자파 흡수능력이 우수하고 단시간에 높은 온도를 발열할 수 있으며, 폐기물로 분류된 물질을 이용하여 원적외선 방사 세라믹을 제조함으로써 폐기물의 재활용과 자원의 낭비를 방지할 수 있으며, 제조 원가를 현저히 절감시킬 수 있는 유용한 발명이다.The present invention relates to a method for producing a ceramic that absorbs electromagnetic waves and radiates heat and far infrared rays. In particular, the present invention relates to a far-infrared radiation ceramic using waste ferrite cores obtained by mixing powders and inorganic materials of waste ferrite cores, which are single crystals or polycrystalline magnetic materials, and firing. The present invention relates to a method for producing a ground product by grinding a waste ferrite core, which is separated from general waste, which is difficult to treat and difficult to deform for other uses, to prepare a ground product, 30 to 40 parts by weight of black clay, 20 to 30 parts by weight of activated clay, 10 to 20 parts by weight of feldspar, 5 to 15 parts by weight of diatomaceous earth, 5 to 10 parts by weight of crushed iron oxide (Fe 2 O 3 ), 1 to 3 parts by weight of zirconium dioxide (ZrO 2 ), 2 to 4 parts by weight of nickel dioxide (NiO 2 ) To 12 parts by weight of a mixture of 1 to 3 parts by weight of aluminum oxide (Al 2 O 3 ) and 6 to 12 parts by weight of the pulverized product were mixed and calcined at a temperature of 1150 to 1300 ° C., followed by regrinding to 400 mesh or less. % More than It is excellent in absorbing electromagnetic waves and can generate high temperature in a short time. By manufacturing far-infrared radiation ceramics using materials classified as wastes, it is possible to prevent waste recycling and waste of resources. It is a useful invention that can be saved.

Description

폐기 페라이트 코어를 활용한 원적외선 방사 세라믹의 제조방법Method for manufacturing far-infrared radiation ceramic using waste ferrite core

본 발명은 전자파를 흡수하여 발열 및 원적외선을 방사하는 세라믹의 제조방법에 관한 것으로, 특히 단결정 또는 다결정 자성체인 폐기 페라이트 코어를 분쇄하여 무기재료와 혼합 소성하여 세라믹을 제조하는 폐기 페라이트 코어를 활용한 원적외선 방사 세라믹의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a ceramic that absorbs electromagnetic waves and radiates heat and far infrared rays. In particular, the present invention relates to a far-infrared ray that utilizes waste ferrite cores prepared by pulverizing a waste ferrite core, which is a single crystal or polycrystalline magnetic material, and mixing and baking the inorganic ferrite core. The present invention relates to a method for producing a spin ceramic.

일반적으로 온열 효과를 일으키는 상기 원적외선은 가시광선 중에서 적색광선보다도 파장이 긴 적외선으로 파장이 4∼1000㎛의 전자파를 말하는 것으로, 그 중 8∼15㎛의 파장의 원적외선이 생체에 가장 놓은 작용을 하며, 상기 원적외선은 신진대사의 활성화와 세포의 기능 증진을 도모하여 세포내에 생긴 노폐물의 반출을 촉진하며 세포기능에 활력을 부여하는 것으로 알려져 있으며, 상기 원적외선을 VITA-RAY(생기성 생체 친화 파장)로 표현하기도 한다.In general, the far-infrared rays causing the warming effect are infrared rays having a wavelength longer than that of red rays, and refers to electromagnetic waves having a wavelength of 4 to 1000 µm, of which far infrared rays having a wavelength of 8 to 15 µm have the most effect on the living body. The far-infrared rays are known to promote metabolism and enhance cell function, promote the export of waste products generated in cells, and give vitality to cell functions. The far-infrared rays are referred to as VITA-RAY (viable biocompatible wavelength). Sometimes expressed.

한편, 단결정 자성재료인 페라이트와 도전재인 산화철 및 카본 등과 같은 고주파 손실재는 마이크로파를 조사하게 되면 자성 손실, 유전 손실, 도전 손실이 증가하는 것이 일반적인 특성으로, 전파에너지를 열에너지로 변환하는 전기적인 에너지 손실을 일으켜 인체에 유익한 원적외선을 방사하는 성질을 이용하여 상기 고주파 손실재를 무기재료와 혼합하여 일정한 온도로 소성한 후 분쇄하여 원적외선을 방사하는 세라믹을 제조할 수 있다.On the other hand, high frequency loss materials such as ferrite, a single crystal magnetic material, and iron oxide and carbon, which are conductive materials, generally increase magnetic loss, dielectric loss, and conductive loss when microwave is irradiated, and electrical energy loss that converts radio wave energy into thermal energy. By using the property of radiating far infrared rays which is beneficial to the human body, the high frequency loss material may be mixed with an inorganic material, fired at a predetermined temperature, and then pulverized to produce a ceramic that emits far infrared rays.

본 발명의 목적은 폐기 페라이트 코어의 분말과 축열성이 뛰어난 일반 무기 재료를 혼합 사용함으로써 전자파 흡수능력이 우수하고, 전자파를 받아 열에너지로의 전환이 용이하므로 단시간에 높은 온도를 발열할 수 있는 폐기 페라이트 코어를 활용한 원적외선 방사 세라믹의 제조방법을 제공하는데 있다.An object of the present invention is to use a mixture of the powder of the waste ferrite core and the general inorganic material having excellent heat storage properties, excellent in the ability to absorb electromagnetic waves, and easy to convert to thermal energy by receiving electromagnetic waves, waste ferrite that can generate a high temperature in a short time The present invention provides a method of manufacturing a far-infrared radiation ceramic using a core.

본 발명의 또다른 목적은 일반 폐기물로 분류된 물질을 이용하여 원적외선 방사 세라믹을 제조함으로써 현저한 원가 절감 및 폐기물의 재활용과 산업 자원의 낭비를 방지할 수 있는 폐기 페라이트 코어를 활용한 원적외선 방사 세라믹의 제조방법을 제공하는데 있다.Still another object of the present invention is to manufacture far-infrared radiation ceramics using waste ferrite cores that can significantly reduce cost and prevent waste recycling and waste of industrial resources by manufacturing far-infrared radiation ceramics using materials classified as general wastes. To provide a method.

상기 목적을 달성하기 위한 본 발명에 따른 폐기 페라이트 코어를 활용한 원적외선 방사 세라믹의 제조방법은, 자성화가 30% 이하로 소성된 페라이트 코어를 정류기나 콘덴서 등 용도에 따라 기성형을 거쳐서 가공과정에서 부품으로 부적격 판정되어 다른 용도로의 변형이 불가능하고, 그 결과 일반 폐기물로 분리되어 처리가 곤란했던 폐기 페라이트 코어를 분쇄하여 분쇄물을 제조하고, 흑점토 30∼40중량부, 활성백토 20∼30중량부, 장석 10∼20중량부, 규조토 5∼15중량부, 분쇄산화철(Fe2O3) 5∼10중량부, 이산화지르코늄(ZrO2) 1∼3중량부, 이산화니켈(NiO2) 2∼4중량부 및 산화알루미늄(Al2O3) 1∼3중량부의 혼합물 100중량부에 상기 분쇄물 6 - 12 중량부를 혼합하여 1150∼1300℃의 온도에서 소성한 후 400매쉬 이하로 재분쇄하여 분말 상태의 모재를 제조한 결과 자성화가 90%이 되었다.In order to achieve the above object, a method of manufacturing a far-infrared radiation ceramic using the waste ferrite core according to the present invention is characterized in that the ferrite core with magnetization less than 30% is subjected to preforming according to the purpose of rectifier or condenser, etc. The waste ferrite core, which was determined to be ineligible for use and cannot be transformed into another use, was pulverized to produce a pulverized product, which was separated into general waste and difficult to treat. Part, 10-20 parts by weight of feldspar, 5-15 parts by weight of diatomaceous earth, 5-10 parts by weight of ground iron oxide (Fe 2 O 3 ), 1-3 parts by weight of zirconium dioxide (ZrO 2 ), nickel dioxide (NiO 2 ) 2- 4 parts by weight and 6 to 12 parts by weight of the mixture are mixed with 100 parts by weight of a mixture of 1 to 3 parts by weight of aluminum oxide (Al 2 O 3 ) and calcined at a temperature of 1150 to 1300 ° C., followed by regrinding to 400 mesh or less. I manufactured the base material of the state As a result, magnetization became 90%.

도1은 본 발명의 실시예에 따른 축열 및 발열효과를 도시한 그래프이다.1 is a graph showing the heat storage and heat generating effect according to an embodiment of the present invention.

이하, 본 발명의 실시예에 대해서 상세히 설명하면 다음과 같다.Hereinafter, the embodiment of the present invention will be described in detail.

[실시예1]Example 1

일반 폐기물로 분리되어 처리가 곤란하고 다른 용도로의 변형이 곤란했던 폐기 페라이트를 분쇄한다. 그 후 분쇄한 페라이트 코어분말 8중량부에 자성화를 높이고 축열성을 보완하기 위해 산화철(Fe2O3) 8중량부 및 이산화지르코늄(ZrO2) 2중량부, 이산화니켈(NiO2) 3중량부, 산화알루미늄(Al2O3) 2중량부와 장석 15중량부, 규조토 10중량부, 활성백토 25중량부, 흑점토 35중량부를 배합한다. 상기와 같이 배합된 폐기 페라이트 코어의 분말과 산화금속 분말 및 일반 무기재료인 점토, 장석 등의 분말을 물과 혼합하여 도자기 재료를 만들 때 사용하는 토련기로 수분 함유가 20∼30% 정도 되도록 CAKE(도자기 공장에서 도자기를 만들 수 있는 반죽 상태)를 만든 후, 이를 1150℃까지 9시간 정도 서서히 소성하여 마지막 소성온도가 1300℃가 되도록 셔틀가마의 온도 환경을 설정해서 3시간 정도 소성하여 서서히 냉각시킨다. 그 후, 이와 같이 소성된 고형상태의 모제를 400매쉬 이하의 평균 입도로 재분쇄하여 자성화가 90% 이상 되도록 원적외선 방사 세라믹을 제조하여 분말형태 또는 과립형태 및 벽돌형태 등의 원하는 형상으로 소성하여 사용한다.Waste ferrite is pulverized, which is separated into general waste, which is difficult to treat and difficult to transform into other uses. After that, 8 parts by weight of ferrite core powder pulverized, 8 parts by weight of iron oxide (Fe 2 O 3 ), 2 parts by weight of zirconium dioxide (ZrO 2 ), and 3 parts of nickel dioxide (NiO 2 ) to increase magnetization and supplement heat storage properties. 2 parts by weight of aluminum oxide (Al 2 O 3 ), 15 parts by weight of feldspar, 10 parts by weight of diatomaceous earth, 25 parts by weight of activated clay, and 35 parts by weight of black clay. The above-mentioned waste ferrite core powder, metal oxide powder, and powders such as clay and feldspar, which are general inorganic materials, are mixed with water and used to make porcelain materials. After making dough in the pottery factory), it is slowly baked for 9 hours to 1150 ° C, and the temperature of the shuttle kiln is set to a temperature of 1300 ° C, and then fired for 3 hours and gradually cooled. Thereafter, the fired solid state mother is regrind to an average particle size of 400 mesh or less to produce far-infrared radiation ceramics for magnetization of 90% or more, and then fired into a desired shape such as powder form or granule form and brick form. do.

[실시예 2-6]Example 2-6

하기 표1에 기재된 성분 및 성분량 만큼 사용된 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.It was carried out in the same manner as in Example 1 except that the components and the amount of components described in Table 1 were used.

단위: 중량부Unit: parts by weight 번호number 페라이트코아 분쇄물Ferrite Core Grinding 산화철Iron oxide ZrO2 ZrO 2 NiO2 NiO 2 Al2O2 Al 2 O 2 장석feldspar 적조토Red soil 활성백토Activated clay 흑점토Dark clay 22 77 99 22 33 22 1515 1010 2424 3535 33 66 88 22 33 33 1313 1212 2222 3737 44 99 1010 1One 22 44 1717 88 2626 3333 55 1010 77 1One 22 33 1414 1414 2525 3434 66 1111 99 33 44 33 1212 77 2424 2828

시험exam

상기에서 제조된 각각의 모재를 두께 2㎝, 지름 10㎝의 원판으로 성형하여 시편을 제조하고, 이를 전자레인지로 3분간 약 100∼130℃로 가열한 다음, 시간에 다른 축열 효과를 적외선 온도계를 사용하여 그결과로 도1에 도시하였다.Each base material prepared above was molded into a disc having a thickness of 2 cm and a diameter of 10 cm to prepare a specimen. The specimen was heated at about 100 to 130 ° C. for 3 minutes in a microwave oven, and then another thermal storage effect was obtained. As a result it is shown in FIG.

또한 전술한 방법으로 제조된 원적외선 방사 세라믹은 원적외선의 방사 성능을 배가시키기 위해서 일정량의 실리콘오일, 식물성오일, 광물성오일과 같은 유, 무기성 액체 등에 혼합하여 액상으로도 사용할 수 있다.In addition, the far-infrared radiation ceramic prepared by the above-described method can be used in a liquid state by mixing a certain amount of silicon oil, vegetable oil, mineral oil, such as mineral oil, etc. in order to double the radiation performance of the far infrared.

이상에서와 같이 본 발명은 폐기 페라이트 코어의 분말과 산화금속 분말 및 무기재료를 혼합하여 소성분쇄한 것으로서, 상기 혼합물의 소성공정에서 상호반응이 일어나 새로운 화합물이 생성되어 페라이트 가소물이 가지고 있는 전자파를 흡수하는 흡수력에 전자파 에너지를 열에너지로 변환시켜 축열된 열에너지를 다중 복사시키는 현상이 추가됨으로써 전자파 흡수능력이 향상되고 발열온도가 높아지며 양질의 원적외선을 방사할 뿐만아니라, 일반 폐기물로 분류되어 다른 용도로의 변형이 불가능했던 물질을 이용하여 원적외선 방사 세라믹을 제조함으로써 폐기물의 재활용과 산업용 자원의 낭비를 방지할 수 있고, 제조 원가를 현저히 절감시킬 수 있는 유용한 발명이다.As described above, the present invention is a small-component chain by mixing the powder of the waste ferrite core, the metal oxide powder and the inorganic material, and the reaction occurs in the firing process of the mixture to generate a new compound to absorb the electromagnetic waves contained in the ferrite plasticizer In addition to absorbing energy to convert electromagnetic energy into thermal energy, the multi-radiation of the accumulated thermal energy is added, which improves the ability to absorb electromagnetic waves, increases the heat generation temperature, emits high-quality far-infrared rays, and classifies it as a general waste and transforms it into other uses. By manufacturing a far-infrared radiation ceramic using this impossible material, it is a useful invention that can prevent waste recycling and waste of industrial resources, and can significantly reduce manufacturing costs.

Claims (3)

원적외선 방사 세라믹의 제조방법에 있어서, 폐기 페라이트 코어를 분쇄하고 분쇄물을 제조하고, 흑점토 30∼40중량부, 활성백토 20∼30중량부, 장석 10∼20중량부, 규조토 5∼15중량부, 분쇄산화철(Fe2O3) 5∼10중량부, 이산화지르코늄(ZrO2) 1∼3중량부, 이산화니켈(NiO2) 2∼4중량부 및 산화알루미늄(Al2O3) 1∼3중량부의 혼합물 100중량부에 상기 분쇄물 6 - 12 중량부를 혼합하여 소성하는 것을 특징으로 하는 폐기 페라이트 코어를 활용한 원적외선 방사 세라믹의 제조방법.In the method of producing a far-infrared radiation ceramic, the waste ferrite core is pulverized to prepare a pulverized product, and 30 to 40 parts by weight of black clay, 20 to 30 parts by weight of activated clay, 10 to 20 parts by weight of feldspar, and 5 to 15 parts by weight of diatomaceous earth. , 5 to 10 parts by weight of ground iron oxide (Fe 2 O 3 ), 1 to 3 parts by weight of zirconium dioxide (ZrO 2 ), 2 to 4 parts by weight of nickel dioxide (NiO 2 ) and 1 to 3 of aluminum oxide (Al 2 O 3 ) Method for producing a far-infrared radiation ceramic using a waste ferrite core, characterized in that the mixture by ignited 6-12 parts by weight of 100 parts by weight of the mixture. 제 1항에 있어서, 상기 혼합된 폐기 페라이트 코어 분말과 산화금속 및 무기재료를 1150∼1300℃의 온도에서 소성하고, 이를 400매쉬 이하로 재분쇄하여 자성화가 90%이상되도록 하고, 이를 원하는 형상으로 성형하는 것을 특징으로 하는 폐기 페라이트 코어를 활용한 원적외선 방사 세라믹의 제조방법.The method of claim 1, wherein the mixed waste ferrite core powder, the metal oxide and the inorganic material is calcined at a temperature of 1150 ~ 1300 ℃, and regrind to 400 mesh or less so that the magnetization is 90% or more, and the desired shape Method for producing a far-infrared radiation ceramic using a waste ferrite core, characterized in that the molding. 제 1항에 있어서, 상기 원적외선 방사 세라믹이 입상(粒狀)으로도 사용 가능하며, 원적외선의 방사 성능을 배가시키기 위해서 일정량의 실리콘오일, 식물성오일, 광물성오일과 같은 유, 무기성 액체에 혼합하여 액상으로도 사용할 수 있는 것을 특징으로 하는 폐기 페라이트 코어를 활용한 원적외선 방사 세라믹의 제조방법.The method of claim 1, wherein the far-infrared radiation ceramics can also be used as a granule, and in order to double the radiation performance of the far-infrared radiation, it is mixed with a certain amount of oil and inorganic liquids such as silicon oil, vegetable oil and mineral oil. A method for producing far-infrared radiation ceramics using a waste ferrite core, which can be used in a liquid phase.
KR1019970021432A 1997-05-26 1997-05-26 Method for manufacturing far-infrared radiation ceramic using waste ferrite core KR19980085370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970021432A KR19980085370A (en) 1997-05-26 1997-05-26 Method for manufacturing far-infrared radiation ceramic using waste ferrite core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970021432A KR19980085370A (en) 1997-05-26 1997-05-26 Method for manufacturing far-infrared radiation ceramic using waste ferrite core

Publications (1)

Publication Number Publication Date
KR19980085370A true KR19980085370A (en) 1998-12-05

Family

ID=65999352

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970021432A KR19980085370A (en) 1997-05-26 1997-05-26 Method for manufacturing far-infrared radiation ceramic using waste ferrite core

Country Status (1)

Country Link
KR (1) KR19980085370A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000074481A (en) * 1999-05-21 2000-12-15 조옥정 Manufacturing method of compound for electromagnetic wave shield and far infrared radiation
KR100428404B1 (en) * 2001-05-16 2004-04-27 반석제로파 주식회사 The electromagnetic wave absorptive and the far infra red ray emissive high intensive and conductive ceramic and method for its preparation
KR100478079B1 (en) * 2002-02-19 2005-03-23 김동일 High Performance Microwave Absorber Using Natural Lacquar Binder
KR100606174B1 (en) * 2004-08-20 2006-08-01 김동일 Broad-band electromagnetic wave absorber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000074481A (en) * 1999-05-21 2000-12-15 조옥정 Manufacturing method of compound for electromagnetic wave shield and far infrared radiation
KR100428404B1 (en) * 2001-05-16 2004-04-27 반석제로파 주식회사 The electromagnetic wave absorptive and the far infra red ray emissive high intensive and conductive ceramic and method for its preparation
KR100478079B1 (en) * 2002-02-19 2005-03-23 김동일 High Performance Microwave Absorber Using Natural Lacquar Binder
KR100606174B1 (en) * 2004-08-20 2006-08-01 김동일 Broad-band electromagnetic wave absorber

Similar Documents

Publication Publication Date Title
CN104310980B (en) A kind of microwave dielectric ceramic materials and preparation method thereof
Ganesh et al. Microwave assisted solid state reaction synthesis of MgAl2O4 spinel powders
GB2081560A (en) A method of improving the susceptibility of a material to microwave energy heating
US3773669A (en) Vessel for use in heating food in a microwave oven
CN101531505B (en) Anti-radiation ceramics and preparation method thereof
CN101671174B (en) Method for preparing high dielectric, low-loss and insulating calcium copper titanate ceramics
AU2018418789A1 (en) Method of quickly preparing geopolymer having high strength using coal bottom ash
CN109928753A (en) A kind of low-k silicon substrate microwave dielectric ceramic materials and preparation method thereof
KR19980085370A (en) Method for manufacturing far-infrared radiation ceramic using waste ferrite core
Panneerselvam et al. Translucent yttrium aluminum garnet: microwave-assisted route to synthesis and processing
JPH0244058A (en) Production of superconductive ceramics using microwave energy
CN110526701B (en) Method for preparing electromagnetic wave absorbing material by recycling ferrite solid waste
CN102515746A (en) Microwave dielectrically-adjustable material of barium strontium titanate composite molybdate and preparation method for same
KR19980016204U (en) Far Infrared Radiation Ceramic
KR930009893B1 (en) Process for the production ceramic
KR101878897B1 (en) High efficiency far infrared ray and anion radiator and producing method thereof
KR100783486B1 (en) Squared dome shape ceramics plate for radiating the far infrared and anion
KR940002031B1 (en) Composition of Far Infrared Radiation Powder
US3634566A (en) Method for providing improved lossy dielectric structure for dissipating electrical microwave energy
CN112521142B (en) Photocatalytic ceramic, preparation method thereof and method for degrading organic dye RhB
KR20000018929A (en) Ceramic to emit far-infrared rays using ocher
KR950000696B1 (en) Ceramic materials
CN101696118B (en) Method for preparing microwave dielectric ceramic material
JP2001093719A (en) Partial carbonized ferrite and method for manufacturing thereof
JPH0292861A (en) Far infrared-radiative material

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination