KR101784446B1 - 리페어장치 및 리페어방법 - Google Patents

리페어장치 및 리페어방법 Download PDF

Info

Publication number
KR101784446B1
KR101784446B1 KR1020110046832A KR20110046832A KR101784446B1 KR 101784446 B1 KR101784446 B1 KR 101784446B1 KR 1020110046832 A KR1020110046832 A KR 1020110046832A KR 20110046832 A KR20110046832 A KR 20110046832A KR 101784446 B1 KR101784446 B1 KR 101784446B1
Authority
KR
South Korea
Prior art keywords
laser beam
laser
liquid crystal
diameter
repair
Prior art date
Application number
KR1020110046832A
Other languages
English (en)
Other versions
KR20120128900A (ko
Inventor
김태희
김기태
김지훈
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to KR1020110046832A priority Critical patent/KR101784446B1/ko
Publication of KR20120128900A publication Critical patent/KR20120128900A/ko
Application granted granted Critical
Publication of KR101784446B1 publication Critical patent/KR101784446B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • G02F2201/506Repairing, e.g. with redundant arrangement against defective part

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)

Abstract

본발명은, 레이저빔을 출력하는 레이저발진부와; 상기 레이저빔의 집속부분의 지름이 가공부 지름의 90%에서 95%가 되도록 집속하여 출력하는 빔형상변조부를 포함하는 레이저 리페어 장치를 제공한다.

Description

리페어장치 및 리페어방법{apparatus for repairing defect and method of repairing the same}
본발명은 리페어장치에 관한 것으로서, 보다 상세하게는, 리페어장치 및 리페어방법에 관한 것이다.
정보화 사회가 발전함에 따라 화상을 표시하기 위한 표시장치에 대한 요구가 다양한 형태로 증가하고 있으며, 근래에는 액정표시장치(LCD : liquid crystal display), 플라즈마표시장치(PDP : plasma display panel), 유기전계발광소자 (OLED : organic light emitting diode)와 같은 여러 가지 평판표시장치(FPD : flat panel display)가 활용되고 있다.
여기서, 액정표시장치는 나란한 두 기판(substrate) 사이로 액정층을 개재하여 합착시킨 액정패널(liquid crystal panel)을 필수 구성요소로 하며, 액정패널 내의 전기장으로 액정분자의 배열방향을 변화시켜 투과율 차이를 구현한다.
이러한, 액정패널은 제조 후에 불량 검사를 하게 된다. 액정패널의 불량 검사를 통해 액정패널의 전기소자 및 패턴에 이상이 있는지 검사한다. 여기서, 통상적으로 치명적인 불량이 발생한 액정패널은 폐기 처분한다. 하지만, 배선의 단선이나 단락과 같은 불량이 발생하는 경우, 액정패널을 폐기 처분하는 것은 낭비가 되므로, 이와 같은 배선의 단선이나 단락은 리페어(repair)공정을 통해 불량을 제거하여 양품으로 만든다.
여기서, 리페어 공정에 사용되는 리페어 장비 중 레이저빔을 에너지원으로 하여 국소적인 화학기상증착 반응을 일으킴으로써, 단선된 배선을 연결시키는 장치가 있다. 이러한 장치를 리페어용 레이저 화학기상증착(laser chemical vapor deposition : 이하, LCVD) 장치라고 한다.
리페어용 LCVD장치를 이용하여, 단락이 발생한 지점(이하, 단락부)을 중심으로, 단락부의 양 지점에 홀(hole)을 형성하여, 단락부와 다른 부분과의 전기적 연결을 끊고, 단락부 상부에 또는 우회적으로 도전성 물질을 화학기상증착을 함으로써 리페어패턴(repair pattern)을 형성하게 된다.
이때, 홀을 형성하는 단계는 레이저 리페어 장치에서 출사되는 레이저빔을 이용하게 되는데, 이에 대해서 좀 더 구체적으로 살펴본다.
도 1은 종래에 홀 형성 단계에서 이용되는 레이저빔의 형상을 나타낸 단면도이고, 도 2a는 종래 레이저빔을 이용하여 홀이 형성된 액정패널의 단면도이고, 도 2b는 종래 레이저빔을 이용하여 형성된 홀에 도전성 금속물질을 화학기상증착 한 후의 액정패널의 단면도이고, 도 3은 종래 레이저빔을 이용하여 단락부의 리페어공정의 과정을 나타낸 도면이다.
먼저, 액정패널에 레이저빔을 출사하는 레이저장치는 도시하지 않았으나, 레이저빔을 출력하는 레이저발진부와, 레이저빔의 형상을 변조 및 집속(focusing)하는 빔형상변조부와, 집속된 레이저빔을 확장하여 홀(도 2a의 H) 가공 위치에 출사하는 가공렌즈부를 포함할 수 있다.
즉, 레이저장치에서 출력되는 레이저빔은 집속 및 확장 단계를 거쳐 도 1처럼 액정패널로 출사된다.
구체적으로, 빔형상변조부에 의해 레이저빔은 가우시안빔으로 변조되고, 집속되는데, 이때 설명의 편의를 위하여 집속되는 부분을 집속부분이라고 칭한다.
여기서, 가우시안빔은 중심거리가 0인 지점 즉, 초점(F)에서 밀도가 가장 높고, 초점(F)을 중심으로 중심거리가 커질수록 즉 외각부로 갈수록 밀도가 점점 낮아진다. 이에 따라, 가우시안빔의 밀도 그래프는 곡선 형태가 된다. 이때, 초점(F)에서 외각부로 갈수록 밀도 변화가 큰 경우에는 곡선은 더욱 급속하게 휘어져서 나타난다.
이때, 가우시안빔의 집속부분의 지름(Wo)은 홀(도 2a의 H) 크기에 대응하여 조절되는데, 일반적으로 홀(도 2a의 H) 지름(가장 넓은 부분을 기준(W))의 약 60% 이하로 조절된다. 이에 따라, 가우시안빔은, 가우시안빔의 초점(F)에서 주변부로 갈수록 그 강도(밀도(intensity))가 급속하게 변하게 된다. 즉, 가우시안빔의 곡선은 급격하게 변하게 된다.
이와 같은 가우시안빔을 이용하여 홀(도 2a의 H)을 형성하게 될 경우, 가우시안빔의 집속부분의 좁은 지름과, 가우시안빔의 급격한 곡선 형상에 의해 홀(도 2a의 H)의 내면 및 홀(도 2a의 H) 주변부의 표면은 평탄하게 형성되지 않는다.
즉, 도 2a에서 보는 바와 같이, 보호층(PAS) 하부에 있는 게이트배선(GL) 및 게이트절연막(GI) 층이 용융되어 상부로 돌출되어 표면에 적층됨으로써 리플(R)이 생성된다.
이와 같이 형성된 컨택홀(CH)에 화학기상증착을 할 경우, 도 2b에 도시된 바와 같이, 리플(R)에 의해 홀의 입구 부분이 막힘으로 인해서, 유리기판(GLASS)까지 온전히 도전성 금속물질(CM)이 증착되지 못할 뿐만 아니라, 리플(R) 주위에 도전성 금속물질(CM)이 증착되어 실질적으로 전기적 연결하고자 하는 예를 들면 게이트배선(GL)에 도전성 금속물질(CM)이 온전히 증착되지 못하는 문제점이 발생한다. 이에 따라, 리페어패턴이 불완전하게 형성되는 문제점도 더욱 발생하게 된다.
이를 방지하기 위하여, 도 3에 도시된 바와 같이, 컨택홀(CH) 형성 과정에서 생성된 리플(R)을 제거하기 위하여, 다시 한번 레이저빔을 출사하게 된다.
구체적으로, 종래의 레이저빔을 이용할 경우, 1단계에서는 컨택홀(CH)을 형성하고, 2단계에서는 1단계의 컨택홀(CH) 형성 단계에서 생성된 리플(R)을 제거하고, 3단계에서는 화학기상증착을 하게 된다.
그러나, 리플(R)을 제거하기 위해 레이저빔을 다시 한번 더 출사하게 됨에 따라, 즉 2단계에 의해, 리플(R)은 제거되더라도, 레이저빔의 높은 에너지로 인하여, 보호층(PAS)의 하부면이 들뜨게 되거나, 보호층(PAS)이 깨지는 현상이 발생한다. 즉, 홀(H) 내면이 평탄하지 못하고 굴곡지거나, 홈이 형성된다. 구체적으로, 홀(H)을 구성하는 각 층의 지름의 단차 없이, 급격하게 형성된다.
이에 따라, 3단계에서 화학기상증착을 하더라도 홀(H) 내면에 완전하게 도전성 금속물질(CM)이 증착되지 않는다. 즉, 불완전한 리페어공정이 이루어진다.
전술한 바와 같이, 종래 레이저빔을 이용하여 리페어 공정을 거치게 될 경우, 리플(R) 제거를 위한 단계가 필요하고, 이에 따라 리페어 공정 비용이 증가된다. 뿐만 아니라, 이와 같은 단계를 거치더라도 내면이 평탄한 홀(H)을 형성할 수 없는 바, 온전하게 리페어 공정이 이루어지지 않는 문제점이 있다.
가우시안빔의 집속부분의 지름을 조절하여, 액정패널의 리페어공정 과정을 줄이고, 효율적으로 액정패널을 리페어 할 수 있는 액정패널의 리페어 장치를 제공하는데 그 과제가 있다.
전술한 바와 같은 과제를 달성하기 위해, 본발명은, 레이저빔을 출력하는 레이저발진부와; 상기 레이저빔의 집속부분의 지름이 가공부 지름의 90%에서 95%가 되도록 집속하여 출력하는 빔형상변조부를 포함하는 레이저 리페어 장치를 제공한다.
집속된 상기 레이저빔의 사이즈를 상기 가공부 지름의 90%에서 95%가 되도록 축소하는 빔사이즈변경부를 더욱 포함한다.
사이즈가 축소된 상기 레이저빔을 확장하여 상기 가공부에 출사하는 가공렌즈부를 더욱 포함한다.
상기 레이저빔은 가우시안빔이다.
레이저빔을 출력하는 단계와; 상기 레이저빔의 집속부분의 지름이 가공부 지름의 90%에서 95%가 되도록 집속하는 단계와; 집속된 상기 레이저빔을 상기 가공부에 출사하는 단계를 포함하는 리페어 방법을 제공한다.
상기 가공부에 도전성 금속물질을 증착하는 단계를 더욱 포함한다.
상기 레이저빔은 가우시안빔이다.
가우시안빔의 곡선을 밀도 변화율을 작게 함으로써, 리플 생성 없이 홀을 효율적으로 생성할 수 있다.
또한, 홀 형성 단계에서 리플이 생성되지 않는 바, 리플 제거 단계를 삭제 할 수 있으며, 이에 따라 리페어 공정의 완성도를 높일 수 있는 효과를 제공한다.
또한, 리페어 공정 단계가 줄어들게 되는 바, 비용절감 효과를 제공한다.
도 1은 종래 가우시안빔 형상을 나타낸 단면도.
도 2a는 종래 가우시안빔을 이용하여 홀이 생성된 액정패널의 단면도.
도 2b는 종래 가우시안빔을 이용하여 생성된 홀에 화학기상증착을 한 액정패널의 단면도.
도 3은 종래 가우시안빔을 이용하여 액정패널의 리페어공정 단계를 나타낸 도면.
도 4는 본발명의 실시예에 따른 액정표시장치를 개략적으로 나타낸 단면도.
도 5는 단락부가 발생된 액정패널의 일부를 도시한 단면도.
도 6a 내지 도 6d는 도 5의 A-A’선으로 자른 단면도를 기준으로 단락부 리페어 공정 과정을 개략적으로 도시한 도면.
도 7은 본발명의 실시예에 따른 레이저 리페어 장치를 개략적으로 나타낸 도면.
도 8은 본발명의 실시예에 따른 가우시안빔을 나타낸 단면도.
도 9는 본발명의 실시예에 따른 가우시안빔을 이용하여 액정패널에 홀 형성하는 것을 나타낸 단면도.
도 10은 본발명의 실시예에 따른 가우시안빔을 이용하여 홀이 생성된 액정패널의 단면도.
도 11은 본발명의 실시예에 따른 가우시안빔을 이용하여 액정패널의 리페어공정 단계를 나타낸 도면.
이하, 도면을 참조하여 본발명의 실시예를 설명한다.
도 4는 본발명의 실시예에 따른 액정표시장치를 개략적으로 도시한 도면이다.
도시한 바와 같이, 본발명의 실시예에 따른 액정표시장치(100)는 액정패널(200)과 구동회로부(800)와, 백라이트 유닛(900)을 포함한다.
액정패널(200)에는, 제 1 방향 예를 들면 행방향으로 다수의 게이트배선(GL)이 연장되어 있다. 그리고, 제 1 방향과 교차하는 제 2 방향 예를 들면 열 방향으로 다수의 데이터배선(DL)이 연장되어 있다. 이와 같이 서로 교차하는 다수의 게이트배선(GL)과 다수의 데이터배선(DL)은 매트릭스(matrix) 형태로 배치된 다수의 화소(P)를 정의한다.
각 화소(P)는, 박막트랜지스터(T)와, 액정커패시터(Clc)와, 스토리지커패시터(Cst)를 포함한다.
박막트랜지스터(T)는 게이트배선(GL)과 데이터배선(DL)의 교차부에 형성된다. 화소전극(도 5의 210)은 박막트랜지스터(T)와 연결되어 있다. 한편, 화소전극(도 5의 210)에 대응하여 공통전극(미도시)이 형성된다. 화소전극(도 5의 210)에 데이터전압이 인가되고, 공통전극에 공통전압이 인가되면, 이들 사이에 전기장이 형성되어 액정을 구동하게 된다. 화소전극(도 5의 210)과 공통전극 그리고 이들 전극 사이에 위치하는 액정은 액정커패시터(Clc)를 구성하게 된다. 한편, 각 화소(P)에는, 스토리지커패시터(Cst)가 더욱 구성되며, 이는 화소전극(도 5의 210)에 인가된 데이터전압을 다음 프레임까지 저장하는 역할을 하게 된다.
각 화소(P)는, 예를 들면, 적색(red), 녹색(green), 청색(blue)을 표시하는 R, G, B 부화소로 구성될 수 있다. 즉, 서로 이웃하는 R, G, B 부화소는, 영상표시의 단위인 화소(P)를 구성하게 된다.
백라이트 유닛(900)은, 빛을 액정패널(200)에 공급하는 역할을 하게 된다. 구체적으로, 액정패널(200)의 배면에 위치하여 액정패널(200)이 나타내는 투과율의 차이가 외부로 발현되도록 빛을 공급한다.
여기서, 백라이트 유닛(900)의 광원으로서, 냉음극형광램프(Cold Cathode Fluorescent Lamp : CCFL), 외부전극형광램프(External Electrode Fluorescentt Lamp), 그리고 발광다이오드(Light Emitting Diode : LED, 이하 LED라 함) 등이 사용될 수 있다.
구동회로부(800)는, 타이밍제어부(300)와, 게이트구동부(400)와, 데이터구동부(500)와, 감마전압공급부(600)와, 전원발생부(700)를 포함할 수 있다.
여기서, 타이밍제어부(300)는, TV시스템이나 비디오카드와 같은 외부시스템으로부터 영상데이터(RGB)와, 수직동기신호(Vsync)와 수평동기신호(Hsync)와 클럭신호(CLK)와 데이터인에이블신호(DE) 등의 제어신호(TCS)를 입력 받게 된다. 한편, 도시하지는 않았지만, 이와 같은 신호들은, 타이밍제어부(300)에 구성된 인터페이스(interface)를 통해 입력될 수 있다.
타이밍제어부(300)는, 입력된 제어신호(TCS)를 사용하여, 게이트구동부(400)를 제어하기 위한 게이트제어신호(GCS)와 데이터구동부(500)를 제어하기 위한 데이터제어신호(DCS)를 생성한다.
또한, 타이밍제어부(300)는, 외부의 시스템으로부터 영상데이터(RGB)를 전달받고, 이를 정렬하여 데이터구동부(500)에 전달하게 된다.
게이트구동부(400)는, 타이밍제어부(300)로부터 공급되는 게이트제어신호(GCS)에 응답하여, 다수의 게이트배선(GL)을 순차적으로 스캔(scan)한다. 예를 들면, 매 프레임(frame) 동안 다수의 게이트배선(GL)을 순차적으로 선택하고, 선택된 게이트배선(GL)에 대해 게이트전압을 출력하게 된다. 게이트전압에 의해, 해당 행라인에 위치하는 박막트랜지스터(T)는 턴온(turn on)된다. 한편, 다음 프레임의 스캔시까지는 게이트배선(GL)에 턴오프(turn off) 전압이 공급되어, 박막트랜지스터(T)는 턴오프 상태를 유지하게 된다.
데이터구동부(500)는, 타이밍제어부(300)로부터 공급되는 데이터제어신호(DCS)와 영상데이터(RGB)에 응답하여, 데이터전압을 다수의 데이터배선(DL)에 공급하게 된다. 즉, 감마전압(Vgamma)을 사용하여, 영상데이터(RGB)에 대응되는 데이터전압을 생성하고, 생성된 데이터전압을 데이터배선(DL)에 출력하게 된다.
감마전압공급부(600)는, 전원발생부(800)로부터 발생되는 고전위전압과 저전위전압을 분압하여 감마전압(Vgamma)을 생성하고, 이를 데이터구동부(500)에 공급한다.
전원발생부(700)는, 액정표시장치(100)를 구동함에 있어 필요한 다양한 구동전압들을 생성하게 된다. 예를 들면, 타이밍제어부(300)와 데이터구동부(500)와 게이트구동부(400)에 공급되는 전원전압과, 게이트구동부(400)에 공급되는 게이트하이전압과 게이트로우전압 등을 생성하게 된다.
이러한 액정표시장치(100)는 제조공정 이후, 불량 여부 검사를 하게 된다. 불량 여부 검사를 통해, 액정패널(200)의 전기소자 및 패턴에 이상이 있는지 검사하게 된다.
통상적으로 치명적인 불량이 발생한 액정패널(200)은 폐기 처분한다. 하지만, 배선들 예를 들면, 게이트배선(GL), 데이터배선(DL) 등의 단선이나 단락과 같은 불량이 발생하는 경우, 액정패널(200)을 폐기 처분한다는 것은 매우 심한 낭비가 되므로, 이와 같은 배선의 단선이나 단락는 리페어(repair)공정을 통해 불량을 제거하여 양품으로 만든다. 이하, 설명의 편의를 위하여, 단선이나 단락을 단락부로 칭한다.
이하, 도 5 내지 도 6d를 참조하여, 액정패널(200)의 배선에 발생한 단선 및 단선의 리페어공정 단계에 대해서 살펴본다.
도 5는 액정패널(200)의 일부를 도시한 도면으로서, 게이트배선(GL)에 발생한 단락부를 일예로서 도면이고, 도 6a 내지 도 6d는 액정패널(200)을 Ⅵ-Ⅵ선으로 자른 단면도로서, 리페어공정 단계를 일예로서 도시한 도면이다.
먼저, 도 5에 도시된 바와 같이, 액정패널(200)에는 게이트배선(GL)과 데이터배선(DL)이 서로 교차되어 화소(P)가 정의된다.
또한, 게이트배선(GL)과 데이터배선(DL)의 교차영역에는 박막트랜지스터(T)가 형성된다.
박막트랜지스터(T)는 게이트전극(221)과, 반도체층(222)과, 오믹컨택층(미도시)과, 소스전극(223) 및 드레인전극(224)을 포함한다.
여기서, 게이트전극(221)은 게이트배선(GL)과 연결되어 형성되고, 게이트전극(221) 상부에는 반도체층(222)과 오믹컨택층(미도시)이 차례대로 형성된다.
또한, 오믹컨택층(미도시) 상부에는 소스전극(223) 및 드레인전극(224)이 형성된다. 소스전극(223)은 데이터배선(DL)과 연결되고, 드레인전극(224)은 게이트전극(221)을 사이에 두고 소스전극(223)과 대응되게 형성되는데, 소스전극(223) 및 드레인전극(224)은 오믹컨택층(미도시)을 개재하여 반도체층(222)의 양측과 중첩되게 형성된다.
또한, 화소(P)에는 화소전극(210)이 형성된다. 화소전극(210)은 박막트랜지스터(T)를 통해 데이터배선(DL)으로부터 데이터전압이 인가되는 것으로, 게이트절연막(미도시)에 형성된 컨택트홀(230)을 통해 박막트랜지스터(T)의 드레인전극(224)과 전기적으로 접속된다.
이와 같이 구성된 액정패널(200)에서 예를 들어 게이트배선(GL)이 단선되어 단락부(DW)가 발생하는 경우, 게이트배선(GL)의 상부에서 단락부(DW) 인근의 두 지점에 컨택홀(contact holl : CH)을 형성한다.
또한, 형성된 컨택홀(CH)에 국소적인 화학기상증착 반응을 일으킴으로써, 단선된 게이트배선(GL)을 연결하여 리페어한다. 이때 사용되는 리페어 장비 중 특히 레이저빔(laser beam)을 에너지원으로 하여 컨택홀(CH)을 형성하고, 국소적인 화학기상증착 반응을 일으킴으로써 단선된 게이트배선(GL)을 연결시키는 장치가 리페어용 레이저 화학기상증착장치(이하, 설명의 편의를 위하여 LCVD(laser chemical vapour deposition)로 칭한다)이다.
이하, 도 6a 내지 도 6d를 참조하여, 게이트배선(GL)에 발생한 단락부(DW)의 리페어공정에 대해서 살펴본다.
먼저, 도 6a에 도시된 바와 같이, 투명한 유리기판(GLASS) 상부에 게이트배선(GL)이 형성된다. 여기에 게이트배선(GL)을 덮도록 게이트절연막(GI)이 형성된다. 또한, 게이트절연막(GI) 상부에 보호층(passivation layer : PAS)이 형성된다. 이때, 게이터배선(GL)은 단선되어 단락부(DW)가 발생되어 있다.
여기서, 단락부(DW)를 리페어 하기 위하여, 게이트배선(GL)의 상부 중 단락부(DW) 인근의 두 지점에 레이저 리페어 장치(미도시)에서 출사되는 레이저를 이용하여 보호층(PAS) 및 게이트절연막(GI)을 제거하여 컨택홀(CH)을 형성한다. 이때, 사용되는 레이저는 예를 들어, 펄스 형태의 레이저가 될 수 있다.
이어서, 도 6b에 도시된 바와 같이, 형성된 컨택홀(CH)에 예를 들어, CW레이저를 이용하여, 화학기상증착을 한다.
구체적으로 설명하면, 액정패널(200)은 화학기상증착을 위하여 예를 들면, 진공챔버(미도시)에 안착 될 수 있는데, 진공챔버(미도시)에는 원료공급탱크(미도시)로부터 도전성 금속물질인 리페어패턴의 원료가스를 공급받는다. 이때, 원료가스로는 예를 들면, Mo(CO)6, W(CO)6 또는 WF6가 될 수 있다.
즉, 컨택홀(CH)에 도전성 금속물질을 주입하여 CW레이저를 이용한 레이저 화학기상증착을 한다. 이에 따라, 컨택홀(CH)은 도전성 금속물질로 채워지게 된다.
이어서, 도 6c 및 도 6d에 도시된 바와 같이, 도전성 금속물질로 채워진 두 개의 컨택홀(CH)을 서로 연결함으로써 리페어패턴(RP)을 형성하게 된다.
즉, 리페어패턴(RP)은, 하나의 컨택홀(CH)에서부터 다른 하나의 컨택홀(CH)까지, CW레이저를 이용하여, 레이저 화학기상증착으로 Mo 또는 W 등의 도전성물질로 형성될 수 있다.
이와 같이, 게이트배선(GL)의 상부이고 단락부(DW) 인근인 두 지점에 보호층(PAS) 및 게이트절연막(GI)을 제거하여 컨택홀(CH)을 형성하고, 컨택홀(CH)에 레이저 화학기상증착을 이용하여 도전성 금속물질로 채우고, 도전성 금속물질로 채워진 컨택홀(CH)을 레이저 화학기상증착을 이용하여 서로 연결함으로써, Mo 또는 W 등의 도전성 금속물질로 구성되는 리페어패턴(RP)을 형성하게 된다.
이와 같은 리페어 공정을 통하여, 단락부(DW)가 발생한 액정패널(200)을 양품으로 만든다.
여기서, 게이트배선(GL)이 단선되어 단락부(DW)가 발생한 것은 액정패널(200)에 발생하는 결함의 일예로서, 다른 금속배선 예를 들면 데이터배선(DL) 또는 공통배선(미도시) 등에 단락부(DW)가 발생할 수도 있으며, 이 경우 단락부(DW)가 발생한 금속배선의 종류에 따라 다른 복수개의 층들이 형성될 수 있다.
또한, 이와 같은 리페어 공정은 금속배선에 발생한 결함뿐만 아니라, 다른 형태의 결함에도 이용될 수 있다.
이하, 도 7을 참조하여, 리페어용 LCVD에 대해서 살펴본다.
도 7은 본발명의 실시예에 따른 리페어용 LCVD 장치의 일부를 도시한 도면으로서, 리페어용 LCVD 장치를 구성하는 부분 중 레이저 리페어 장치 부분을 개략적으로 도시한 도면이다.
도 7에 도시된 바와 같이, 본발명의 실시예에 따른 레이저 리페어 장치(1000)는, 레이저발진부(1100)와, 빔형상변조부(1200)와, 반사경(1300)과, 빔사이즈변경부(1400)와, 스캐너(1500)와, 가공렌즈부(1600)를 포함할 수 있다.
먼저, 레이저발진부(1100)에서 발진된 레이저빔(laser beam)은 빔현상변경부(1200)에서 변조되어 반사경(1300)으로 향한다. 반사경(1300)으로 진행한 레이저빔은 빔사이즈변경부(1400)를 거쳐 축소되고 스캐너(1500)에서 스캔되어 가공렌즈부(1600)를 통해 액정패널(200)의 목표로 하는 가공 위치에 조사된다. 즉, 컨택홀(CH)을 형성하고자 하는 위치 및 레이저를 이용하여 화학기상증착 하고자 하는 위치에 조사된다.
보다 구체적으로 설명하면, 레이저발진부(1100)는, 레이저빔(laser beam)을 생성하여 출력한다.
예를 들면, 레이저발진부(1100)는, 펄스 형태의 레이저와 CW레이저를 선택적으로 출력할 수 있는데, 펄스 형태의 레이저는 컨택홀(도 6a의 CH)를 형성할 때 출력되고(도 6a 단계), CW레이저는 레이저를 이용한 화학기상증착시(도 6b 내지 도 6d 단계) 출력된다.
빔형상변조부(1200)는, 조사 조건에 따라 레이저빔의 형상을 변조 및 집속(focusing)하여 출력한다.
구체적으로 예를 들면, 빔현상변조부(1200)는 레이저빔의 형상을 가우시안빔(Gaussian beam)으로 변조한다. 이때, 가우시안빔은 빔현상변조부(1200)를 통과하면서 집속되는데, 빔현상변조부(1200)는 가우시안빔의 집속부분의 지름을 조절한다. 이에 대해서는 차후에 보다 상세하게 설명한다.
반사경(1300)은, 레이저빔의 경로를 원하는 방향으로 변경하기 위한 것으로서, 구체적으로, 레이저발진부(1100)에서 발진된 레이저빔의 방향을 액정패널(200)로 향하도록 변경한다.
빔사이즈변경부(1400)는, 레이저빔의 사이즈를 액정패널(200)에 가공하고자 하는 컨택홀(CH) 사이즈에 대응하도록 축소한다. 이를 위하여, 빔사이즈변경부(1400)는, 슬릿(1410)을 포함할 수 있다. 구체적으로, 빔사이즈변경부(1400)는, 슬릿(1410)의 오픈 영역을 조절함으로써, 레이저빔의 사이즈를 조절한다.
구체적으로 예를 들면, 빔사이즈변경부(1400)는 빔형상변조부(1200)와 반사경(1300)을 통한 레이저빔을 슬릿(1410)의 오픈 영역을 조절함으로써, 예를 들면 액정패널(200)에 가공되는 컨택홀(CH) 크기의 약 90%에서 95%가 되도록 레이저빔을 축소한다. 이를 통하여, 레이저빔의 불필요한 에너지 부분을 제거한다.
스캐너(1500)는, 레이저빔의 초점을 조정한다. 구체적으로, 레이저빔의 초점을 액정패널(200) 상에서 미세하게 수평이동 시킨다. 즉, 스캐너(1500)는, 레이저빔의 초점을 미세하게 조정함으로써 액정패널(200)의 가공하고자 하는 위치에 레이저빔을 조사할 수 있도록 한다.
가공렌즈부(1600)는, 스캐너(1500)에 의해 초점이 미세하게 조정된 레이저빔을 확장하여, 액정패널(200)에 조사되도록 한다. 여기서, 가공렌즈부(1600)는 대물렌즈 기능을 하는 것으로서, 볼록렌즈, 오목렌즈 등 여러 개의 렌즈를 포함하여 구성되거나, 하나 이상의 렌즈와 기타 광학계의 조합으로 구성될 수 있다.
이하, 도 8을 참조하여, 본발명의 실시예에 따른 레이저빔에 대해서 보다 상세하게 설명한다.
도 8은 본발명의 실시예에 따라 생성된 가우시안빔의 단면을 나타낸 도면이다.
도 8에 도시된 바와 같이, 본발명의 실시예에 따라 레이저 리페어 장치(1000)에서 액정패널(도 7의 200)로 출사되는 레이저빔은 가우시안빔으로 출사된다.
먼저, 도 8에서 보는 바와 같이, 가우시안빔은 중심거리가 0인 지점 즉, 초점(F)에서 밀도가 가장 높고, 초점(F)을 중심으로 중심거리가 커질수록 즉 외각부로 갈수록 밀도가 점점 낮아진다. 이에 따라, 가우시안빔의 밀도 그래프는 곡선 형태가 된다. 이때, 초점(F)에서 외각부로 갈수록 밀도 변화가 큰 경우에는 곡선은 더욱 급속하게 휘어져서 나타난다.
전술한 바와 같이, 본발명의 실시예에 따른 가우시안빔은 빔형상변조부(도 7의 1200)를 통과하면서 집속되는데, 이때 집속되는 부분(포커싱 부분 : 이하, 집속부분)의 지름(Wo)은 액정패널(도 7의 200)에서 가공하고자 하는 컨택홀(도 7의 CH) 즉, 가공부에 대응하여 조절된다.
구체적으로 예를 들면, 레이저빔은 빔형상변조부(도 7의 1200)를 통과하면서 한 부분으로 집속되고, 이 집속부분의 지름(Wo)은 액정패널(도 7의 200)에 형성되는 컨택홀(도 7의 CH) 사이즈의 약 90%에서 95%가 된다. 여기에서, 기준이 되는 컨택홀(도 7의 CH)의 사이즈는, 컨택홀(도 7의 CH)의 가장 넓은 부분의 길이(D)(또는 지름)가 될 수 있다. 구체적으로 설명하면, 컨택홀(도 7의 CH)은 적층막의 표면 부분에서 적층막의 하부로 내려 갈수록 컨택홀(도 7의 CH)의 지름(D)은 점점 작아진다. 이는 가우시안빔의 밀도에 대응하여 컨택홀(도 7의 CH)이 형성되기 때문이다.
이와 같이, 집속부분의 지름(Wo)을 넓힘으로써, 가우시안빔의 밀도 곡선의 휘어짐을 완만하게 변경 할 수 있다. 이에 따라, 가우시안빔의 초점(F)에서 외각부로 가면서 밀도 변화율을 작게 할 수 있다.
다시 도 1을 참조하여 종래 가우시안빔과 비교하여 설명하면, 집속부분의 지름(Wo)이 작아짐에 따라, 종래 가우시안빔의 곡선은 본발명의 실시예보다 더욱 급속하게 변하게 된다. 이에 따라, 초점(F)에서 외각부로 갈수록 그 밀도 변화율은 본발명의 실시예보다 커지게 된다.
즉, 종래에서는 가우시안빔의 집속부분의 지름을 컨택홀의 약 60%이하로 출사하던 것에 비하여, 본발명의 실시예에서는 가우시안빔의 집속부분의 지름(Wo)을 컨택홀(도 7의 CH)의 약 90%에서 95%가 되도록 출사함으로써, 가우시안빔의 밀도 변화율을 작게 하고, 이에 따라 가우시안빔의 곡선을 완만하게 할 수 있다.
이에 따라, 본발명의 실시예에서는, 종래에 홀 형성 과정에서 발생하던 리플을 최소화하여 컨택홀(도 7의 CH)을 형성할 수 있다.
이하, 도 9 내지 도 11을 참조하여 본발명의 실시예에 따라 집속부분의 지름이 조절된 가우시안빔을 이용하는 경우의 효과에 대해서 살펴본다.
도 9는 본발명의 실시예에 따른 가우시안빔을 이용하여 컨택홀(CH)을 형성하는 것을 나타낸 단면도이고, 도 10은 본발명의 실시예에 따른 가우시안빔을 이용하여 게이트절연막(GI)까지 제거하여 생성된 컨택홀(CH)을 일예로서 나타낸 단면도이고, 도 11은 본발명의 실시예에 따른 가우시안빔을 이용하여, 단락부 리페어 과정을 개략적으로 나타낸 도면이다.
먼저, 도 9에서 보는 바와 같이, 본발명의 실시예에 따른 가우시안빔의 집속부분의 지름(Wo)은, 컨택홀(CH) 지름의 약 90%에서 95%가 된다. 여기에서, 컨택홀(CH)의 지름은 가장 큰 부분을 기준으로 한다.
이에 따라, 가우시안빔은 초점(F)에서부터 외각부로 갈수록 에너지 변화율이 종래보다 완화되고, 이에 따라, 가우시안빔의 곡선 또한 완만하게 형성된다(도 2a 참조).
본발명의 실시예에서는 완만한 곡선을 가진 가우시안빔을 이용하여 컨택홀(CH)을 형성함에 따라, 종래 홀 형성 과정에서 발생하던 리플 생성을 최소화 할 수 있다. 이에 따라, 액정패널(도 7의 200)의 표면이 평탄하게 컨택홀(CH)을 형성할 수 있다. 또한, 액정패널(도 7의200)의 표면에서 하부로 갈수록 각 층의 컨택홀(CH)의 지름이 작아지게 형성된다. 구체적으로 예를 들면, 보호층(PAS)의 컨택홀(CH)의 지름(D1)이 게이트절연막(GI)의 지름(D2)보다 크다. 즉, 액정패널(도 7의 200)의 표면층에서 하부층으로 갈수록 지름의 작아지게 형성되는데, 이때, 가우시안빔의 완만한 곡선에 의해서, 각 층의 지름의 차이가 커지게 된다. 따라서, 컨택홀(CH) 내면의 경사도(A)가 작아지도록, 컨택홀(CH) 각 층의 지름의 단차가 생기도록 컨택홀(CH)은 생성된다.
이는, 전술한 바와 같이, 컨택홀 형성 단계에서 발생하는 리플의 생성 이유는, 가우시안빔의 초점에서 외각부로 갈수록 에너지 변화율이 크게 나타남에 따라, 가우시안빔의 곡선이 급격하게 형성되기 때문이다.
구체적으로, 가우시안빔의 큰 에너지 변화율과, 가우시안빔의 집속부분의 좁은 지름으로 인하여 게이트배선 등의 금속층이 용융되어 돌출되고, 돌출된 금속층의 성분이 액정패널의 상부에 적층되게 된다.
이에 본발명의 실시예에서는 가우시안빔의 에너지 변화율을 줄이고, 가우시안빔의 집속부분의 지름(Wo)을 넓힘으로써, 컨택홀(CH) 형성시 금속층이 돌출되어 상부에 적층되는 것을 개선하여 리플 생성을 최소화 할 수 있다.
즉, 도 10에서 보는 바와 같이, 리플 생성을 최소화 하여 컨택홀(CH)을 형성할 수 있다.
또한, 도 11에서 보는 바와 같이, 컨택홀(CH) 형성 과정에서 리플 생성을 최소화 할 수 있는 바, 단락부(도 6a 내지 도 6d의 DW)를 리페어 하기 위한 과정 중에서 리플을 제거하기 위한 단계를 생략할 수 있다.
구체적으로, 1단계에서 레이저 리페어 장치(도 7의 1000)로 컨택홀(CH)을 형성하고(도 6a 참조), 2단계에서 컨택홀(CH)에 리페어패턴의 도전성 금속물질(CM)을 증착(deposition) 함으로써, 국소적인 레이저 화학기상증착 반응을 일으킨다(도 6b 참조). 여기서, 원료가스로서 도전성 금속물질은 주로 W(CO)6 또는 Mo(CO)6가 사용되는데, 원료가스의 종류에 따라 리페어패턴으로 W패턴이나 Mo패턴이 형성될 것이다. 이때, 리페어패턴은 예를 들면, 단락부(도 6의 DW) 상부에 형성될 수 있다(도 6c 및 도 6d 참조).
즉, 단락부(도 6a 내지 도 6d의 DW)의 양 지점에 컨택홀(CH)을 형성하여, 컨택홀(CH)에 화학기상증착 반응을 일으킴으로써, 단락부(도 6의 DW)를 리페어 할 수 있다.
종래에는, 단락부를 리페어하기 위하여, 홀을 형성하는 첫 번째 단계와, 홀 형성 과정 중 생성된 리플을 제거하는 두 번째 단계와, 도전성 금속물질을 증착하는 세 번째 단계를 거쳐야 했다.
반면에, 본발명에서는 종래에 비해서 리플을 제거하는 단계를 생략할 수 있는 바, 액정패널(도 7의 200)의 리페어 공정과정을 간소화 할 수 있다.
또한, 리플을 제거하기 위한 단계가 생략되는 바, 리플을 제거하기 위하여 다시 액정패널에 레이저빔을 출사하지 않아도 된다. 이에 따라, 종래에 리플을 제거하기 위하여 레이저빔을 출사함으로써 발생하던 보호층(도 6a 내지 도 6d의 PAS) 하부층 예를 들면 게이트배선(도 6a 내지 도 6d의 GL) 또는 게이트절연막(도 6a 내지 도 6d의 GI) 등이 상부로 들뜨는 현상과 적층막의 상부 표면의 깨지는 현상을 방지 할 수 있다. 즉, 컨택홀(CH)의 내면의 경사도(도 9의 A)가 작도록, 컨택홀(CH) 각 층은 단차를 가지고 형성된다. 이때, 하부층으로 갈수록 지름이 작아지는 것은 전술하였다. 이에 따라, 컨택홀(CH)의 내면의 굴곡짐, 흠 또는 액정패널의 표면층이 하부층보다 더 좁은 입구에 의해 부분적으로 리페어패턴의 원료가스가 덜 증착되는 부분을 개선할 수 있는 바, 보다 효과적으로 리페어패턴의 원료가스를 증착할 수 있다.
이와 같이, 본발명의 실시예에서는 레이저빔 즉, 가우시안빔의 곡선을 완만하게 함으로써, 홀 형성을 효율적으로 할 수 있으며, 리페어 과정을 간소화 할 수 있는 바, 보다 효율적으로 단락부를 리페어 할 수 있다.
전술한 본발명의 실시예는 본발명의 일예로서, 본발명의 정신에 포함되는 범위 내에서 자유로운 변형이 가능하다. 따라서, 본발명은, 첨부된 특허청구범위 및 이와 등가되는 범위 내에서의 본발명의 변형을 포함한다.
100 : 액정표시장치 200 : 액정패널 1000 : 레이저장치
Wo : 레이저빔의 집속부분의 지름
CH : 컨택홀 R : 홀 생성시 발생하는 리플
CM : 화학기상증착 물질

Claims (7)

  1. 레이저빔을 출력하는 레이저발진부와;
    상기 레이저빔의 집속부분의 지름이 가공부 최대 지름의 90%에서 95%가 되도록 집속하여 출력하는 빔형상변조부를 포함하며,
    상기 가공부는 신호 배선 상에 적층된 절연막에 형성되어 상기 신호 배선을 노출하는 컨택홀이고, 상기 가공부의 지름은 하부로 갈수록 작아지는
    레이저 리페어 장치.
  2. 제 1 항에 있어서,
    집속된 상기 레이저빔의 사이즈를 상기 가공부 최대 지름의 90%에서 95%가 되도록 축소하는 빔사이즈변경부를 더욱 포함하는
    레이저 리페어 장치.
  3. 제 1 항에 있어서,
    사이즈가 축소된 상기 레이저빔을 확장하여 상기 절연막에 출사하는 가공렌즈부를 더욱 포함하는
    레이저 리페어 장치.
  4. 제 1 항에 있어서,
    상기 레이저빔은 가우시안빔인
    레이저 리페어 장치.
  5. 레이저빔을 출력하는 단계와;
    상기 레이저빔의 집속부분의 지름이 가공부 최대 지름의 90%에서 95%가 되도록 집속하는 단계와;
    집속된 상기 레이저빔을 출사하여 상기 가공부를 형성하는 단계를 포함하고,
    상기 가공부는 신호 배선 상에 적층된 절연막에 형성되어 상기 신호 배선을 노출하는 컨택홀이고, 상기 가공부의 지름은 하부로 갈수록 작아지는
    리페어 방법.
  6. 제 5 항에 있어서,
    상기 가공부에 도전성 금속물질을 증착하는 단계를 더욱 포함하는
    리페어 방법.
  7. 제 5 항에 있어서,
    상기 레이저빔은 가우시안빔인
    리페어 방법.
KR1020110046832A 2011-05-18 2011-05-18 리페어장치 및 리페어방법 KR101784446B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110046832A KR101784446B1 (ko) 2011-05-18 2011-05-18 리페어장치 및 리페어방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110046832A KR101784446B1 (ko) 2011-05-18 2011-05-18 리페어장치 및 리페어방법

Publications (2)

Publication Number Publication Date
KR20120128900A KR20120128900A (ko) 2012-11-28
KR101784446B1 true KR101784446B1 (ko) 2017-10-12

Family

ID=47513484

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110046832A KR101784446B1 (ko) 2011-05-18 2011-05-18 리페어장치 및 리페어방법

Country Status (1)

Country Link
KR (1) KR101784446B1 (ko)

Also Published As

Publication number Publication date
KR20120128900A (ko) 2012-11-28

Similar Documents

Publication Publication Date Title
KR100879010B1 (ko) 표시장치의 휘점불량 수리방법
CN1228677C (zh) 基板导电布线切断方法及装置、电子装置制造方法及装置
JP2006227621A (ja) 表示装置の修理装置及び修理方法
CN1945384A (zh) 用于修补平板显示器中的制造缺陷的设备和方法
US9140947B2 (en) Array substrate, method for repairing the same and display apparatus
JP5235896B2 (ja) レーザーを用いた液晶パネルの黒化装置および方法
KR20060102145A (ko) 액정표시소자 및 그 휘점 리페어 방법
KR20040060047A (ko) 액정표시장치의 게이트 라인 오픈 리페어 방법
TWI409559B (zh) 液晶顯示面板
KR20110137460A (ko) 레이저 리페어 장치 및 그 리페어 방법
JP2017054049A (ja) 表示装置とその輝度欠陥修正方法及び輝度欠陥修正装置
JP2006276368A (ja) アレイ基板とその検査方法
KR100829005B1 (ko) 칼라필터 흑화장치 및 그 방법
KR101784446B1 (ko) 리페어장치 및 리페어방법
JP2011134490A (ja) 有機elディスプレイパネル修正設備及び修正方法
US10895766B2 (en) Display device and repair method thereof
KR101152555B1 (ko) 액정패널의 리페어패턴 형성장치 및 방법
KR101034959B1 (ko) 메탈라인의 결함을 리페어하기 위한 리페어 장치 및리페어방법
JP2000075319A (ja) アクティブマトリクス基板の欠陥修正方法、製造方法及び欠陥修正装置
KR20020030897A (ko) 레이저 화학증착장비를 이용한 원 픽셀 리페어 방법
JP2004279753A (ja) 輝点画素の滅点化方法および液晶モジュール
CN112711156B (zh) 显示面板的制造装置和制造方法
US10656485B2 (en) Display device and method for manufacturing the same
JP5773970B2 (ja) 液晶表示装置の輝点欠陥修正方法および製造方法
JP2005309356A (ja) 薄膜トランジスタアレイおよびその修復方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant