KR101577503B1 - 1,3-프로판디올 생성능이 개선된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 생산 방법 - Google Patents

1,3-프로판디올 생성능이 개선된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 생산 방법 Download PDF

Info

Publication number
KR101577503B1
KR101577503B1 KR1020130156803A KR20130156803A KR101577503B1 KR 101577503 B1 KR101577503 B1 KR 101577503B1 KR 1020130156803 A KR1020130156803 A KR 1020130156803A KR 20130156803 A KR20130156803 A KR 20130156803A KR 101577503 B1 KR101577503 B1 KR 101577503B1
Authority
KR
South Korea
Prior art keywords
propanediol
pathway
artificial sequence
pyruvate
inhibited
Prior art date
Application number
KR1020130156803A
Other languages
English (en)
Other versions
KR20150069977A (ko
Inventor
양택호
라트나싱
Original Assignee
지에스칼텍스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지에스칼텍스 주식회사 filed Critical 지에스칼텍스 주식회사
Priority to KR1020130156803A priority Critical patent/KR101577503B1/ko
Priority to CN201480068693.6A priority patent/CN105829523B/zh
Priority to US15/104,979 priority patent/US9932609B2/en
Priority to PCT/KR2014/012429 priority patent/WO2015093832A1/ko
Publication of KR20150069977A publication Critical patent/KR20150069977A/ko
Application granted granted Critical
Publication of KR101577503B1 publication Critical patent/KR101577503B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01004R,R-butanediol dehydrogenase (1.1.1.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01304Diacetyl reductase, (S)-acetoin forming (1.1.1.304)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01006Acetolactate synthase (2.2.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01005Acetolactate decarboxylase (4.1.1.5)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 피루베이트 및 아세틸 코에이 생합성 경로를 갖는 미생물에 있어서, 피루베이트를 2,3-부탄디올로 전환하는 경로가 억제되는 것을 특징으로 하는 1,3-프로판디올 생산용 재조합 미생물에 대한 것이다. 또한 본 발명은 상기 재조합 미생물을 이용하여, 1,3-프로판디올을 생산하는 방법에 대한 것이다.

Description

1,3-프로판디올 생성능이 개선된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 생산 방법 {RECOMBINANT MICROORGANISM HAVING ENHANCED 1,3-PROPANEDIOL PRODUCING ABILITY AND METHOD FOR PRODUCING 1,3-PROPANEDIOL USING THE SAME}
본 발명은 1,3-프로판디올 생성능이 증강된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 생산 방법에 대한 것이다.
세 개의 탄소와 두 개의 하이드록시기(-OH)를 가지는 알코올의 하나(CH2OHCH2CH2OH)인 1,3-프로판디올은 폴리에스테르나 폴리우레탄 등 고분자의 단량체로 사용 가능하며, 또한, 화장품 및 개인 위생용품 등의 성질개선 용도로의 첨가제로 사용 가능하다. 특히 1,3-프로판디올과 테레프탈릭산 (terephthalic acid)의 중합 반응에 의해 생성되는 직선성의 방향족 폴리에스터인 폴리트리메틸렌 테레프탈레이트 (PTT, polytrimethylene terephthalate)는 semi-crystal 분자 구조 상에서 발생하는 킨크(kink)라 불리는 독특한 꼬임이 고분자 사슬 상에 존재하여 반방 탄성 및 형태 안정성이 우수하며, 이러한 구조적 특성으로 인해 섬유, 포장 및 필름, 부직포 구조물, 엔지니어링 플라스틱 등 폭넓고 다양한 분야에 적용이 가능하다.
1,3-프로판디올은 화학적 합성과 생물학적 합성으로 생산할 수 있다. 화학적 생산 방법으로는 에틸렌옥사이드(ethylene oxide)나 아크롤레인(acrolein)을 원료로 하여 수소첨가반응에 의해 제조하는 방법이 있으나, 비용이 많이 들고 환경 오염물질을 함유한 폐유출물을 발생시킨는 문제점이 있다.
생물학적 방법으로는 옥수수 유래의 당을 원료로 사용한 재조합 대장균 발효에 의한 생산과 글리세롤 등을 원료로 1,3-프로판디올 생성 균주 (1,3-propanediol natural producer) 발효에 의한 생산이 있다. 옥수수와 같은 바이오매스 유래의 당을 탄소 기질로 하여 1,3-프로판디올을 생산하는 단독 미생물 (재조합 대장균)은 미국 듀폰 (DuPont)社에 의해 개발되어 현재 상업 생산에 사용되고 있다 (WO 2001/12833). 한편, 글리세롤을 원료로 1,3-프로판디올을 생산하는 균주들에 대해서는 1세기 전부터 알려져 있는데, 예를 들어, 클렙시엘라 (Klebsiella), 엔테로박터 (Enterobacter), 클로스트리듐 (Clostridium), 시트로박터 (Citrobacter), 락토바실러스 (Lactobacillus) 군 등이 있다. 이러한 균주들은 글리세롤의 환원적 대사 경로를 통해 1,3-프로판디올을 생산하고, 산화적 대사경로를 통해 성장에 필요한 탄소원, 에너지원 및 1,3-프로판디올 생산에 필요한 조효소 (NAHD)를 공급 받는다.
대표적 1,3-프로판디올 생산 균주인 클렙시엘라 뉴모니아(Klebsiella pneumoniae)는 그람 음성 (G(-)) 세균으로, 1,3-프로판디올 뿐 아니라 2,3-부탄디올 생산 능력 역시 뛰어나다. 이러한 특성은 글리세롤을 원료로 1,3-프로판디올 생산에 제약점이 되는데, 2,3-부탄디올이 1,3-프로판디올과 유사한 비점을 가지고 있어 정제 과정을 어렵게 만들고 최종 정제 수율을 낮추는 문제를 발생시킨다. 이를 해결하기 위해 유전자 재조합 기술을 적용하여 글리세롤 대사 경로 중 부산물을 생성하는 산화 대사 경로를 차단하고, 1,3-프로판디올을 생성하는 환원 대사 경로만을 갖는 변이체를 제작하여 2,3-부탄디올을 비롯한 산화 대사 부산물들은 생성하지 않도록 시도하였으나, 1,3-프로판디올 생산성이 떨어져 상용화에 적용하기 힘든 경우도 있었다 (대한민국 특허출원 제 10-2008-0122166호).
이에, 본 발명자들은 1,3-프로판디올 생산 시 2,3-부탄디올을 포함한 산화 대사 부산물의 생성이 적은 재조합 미생물을 연구하던 중 특정 유전자들이 결실된 재조합 미생물의 경우, 1,3-프로판디올의 생산 수율, 생산성 저하 없이 부산물이 저감 생산되는 것을 확인하고 본 발명을 완성하였다.
본 발명의 목적은 1,3-프로판디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 생산 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여 본 발명은,
피루베이트 및 아세틸 코에이 생합성 경로를 갖는 미생물에 있어서,
피루베이트를 2,3-부탄디올로 전환하는 경로가 억제되는 것을 특징으로 하는 1,3-프로판디올 생산용 재조합 미생물을 제공한다.
또한 본 발명은,
본 발명의 재조합 미생물을 배양하는 단계; 및 상기 배양액으로부터 1,3-프로판디올을 회수하는 단계를 포함하는 1,3-프로판디올의 생산 방법을 제공한다.
본 발명의 재조합 미생물은 글리세롤 대상 경로에서 주요 부산물인 락테이트, 2,3-부탄디올, 포름산 생성이 억제됨으로써, 정제 과정을 어렵게 하는 2,3-부탄디올 생성이 없고, 높은 선택도 및 수율로 1,3-프로판디올을 생산할 수 있다.
도 1은 1,3-프로판디올 생산 균주인 클렙시엘라 뉴모니아의 글리세롤 대사 경로를 나타낸다.
도 2는 클렙시엘라 뉴모니아 내에 존재하는 2,3-부탄디올 합성 관련 유전자 오페론을 도식한 것이다.
도 3 내지 6은 재조합 클렙시엘라 균주들을 회분식 발효하여 2,3-부탄디올을 생산한 결과를 나타낸다(2,3-BDO: 2,3-부탄디올, 1,3-PDO:, 1,3-프로판디올) (도 3: Kp ldhA pflB, 도 4: Kp ldhA pflB budA, 도 5: Kp ldhA pflB △budC, 도 6: Kp ldhA pflB budRABC).
본 발명은,
피루베이트 및 아세틸 코에이 생합성 경로를 갖는 미생물에 있어서,
피루베이트를 2,3-부탄디올로 전환하는 경로가 억제되는 것을 특징으로 하는 1,3-프로판디올 생산용 재조합 미생물에 대한 것이다.
또한 본 발명은,
상기 재조합 미생물을 배양하는 단계;및
상기 배양액으로부터 1,3-프로판디올을 회수하는 단계를 포함하는 1,3-프로판디올의 생산 방법에 대한 것이다.
이하, 본 발명을 자세히 설명한다.
피루베이트 및 아세틸 코에이 생합성 경로를 갖는 미생물
본 발명의 미생물은 피루베이트 및 아세틸 코에이 생합성 경로를 갖는다. 본 발명의 아세틸 코에이(Acetyl-CoA) 생합성 경로는 미생물 내 특정 대사산물로부터 아세틸 코에이가 합성되는 경로를 의미한다. 본 발명의 아세틸 코에이 생합성 경로는 피루베이트(pyruvate)로부터 아세틸 코에이가 합성되는 경로 등이 될 수 있다. 본 발명의 피루베이트 생합성 경로는 미생물 내 특정 대사산물로부터 피루베이트가 합성되는 경로를 의미한다. 본 발명의 피루베이트 생합성 경로는 PEP로부터 피루베이트가 합성되는 경로 등이 될 수 있다. 바람직하게는 본 발명의 미생물은 글리세롤 등의 탄소원으로부터 피루베이트 및 아세틸 코에이를 생합성하는 경로를 갖는다.
본 발명의 피루베이트 및 아세틸 코에이 생합성 경로를 갖는 미생물은 전술한 상기 생합성 경로들을 갖는 미생물이면 되고 특별히 한정되지 않는다. 또한, 본 발명의 미생물은 피루베이트 및 아세틸 코에이 생합성 경로를 야생형으로 갖고 있는 미생물 또는 유전자 재조합에 의하여 갖게 되는 재조합 미생물일 수 있다. 바람직하게는 상기 미생물은 1,3-프로판디올의 생성능을 갖는 미생물이다. 상기 미생물은 클렙시엘라 (Klebsiella) 속, 엔테로벡터 (Enterobacter) 속, 락토바실러스 (Lactobacillus) 속으로 구성된 군에서 선택될 수 있으며, 바람직하게는 클렙시엘라 속이고, 더욱 바람직하게는 클렙시엘라 뉴모니아이다.
1,3- 프로판디올 생산용 재조합 미생물
본 발명의 1,3-프로판디올 생산용 재조합 미생물은 1,3-프로판디올의 생산성, 수율이 높으며, 상기 재조합 미생물은 발효 시 야생형 미생물에 비하여 발효액 내 1,3-프로판디올의 농도가 높은 특징이 있다. 또한 본 발명의 재조합 미생물은 락테이트, 포름산, 2,3-부탄디올, 숙신산 등과 같은 산화 부산물들의 생성이 억제되며, 특히 목표 산물인 1,3-프로판디올과 유사한 비점을 가지고 있어 정제 과정을 어렵게 만들고 최종 정제 수율을 낮추는 2,3-부탄디올의 생성이 억제된 것이다. 바람직하게는 본 발명의 재조합 미생물은 포름산, 2,3-부탄디올, 숙신산의 생성능이 없다. 상기, 포름산, 2,3-부탄디올, 숙신산의 “생성능이 없다”는 것은 이들을 실질적으로 생산하지 않는다는 것을 의미하며, 이는 포름산, 2,3-부탄디올, 숙신산을 제거하는 별도의 공정이 필요하지 않다는 것을 의미한다.
바람직하게는 본 발명의 1,3-프로판디올 생산용 재조합 미생물은 피루베이트 및 아세틸 코에이 생합성 경로를 갖는 미생물에 있어서, 피루베이트를 2,3-부탄디올로 전환하는 경로가 억제된 것이며, 더욱 바람직하게는, 피루베이트를 2,3-부탄디올로 전환하는 경로 및 피루베이트를 락테이트로 전환하는 경로가 억제되거나 피루베이트를 2,3-부탄디올로 전환하는 경로 및 피루베이트를 포름산으로 전환하는 경로가 억제된 것이며, 더더욱 바람직하게는 피루베이트를 2,3-부탄디올로 전환하는 경로, 피루베이트를 락테이트로 전환하는 경로 및 피루베이트를 포름산으로 전환하는 경로가 모두 억제된 것이다.
바람직하게는 본 발명의 1,3-프로판디올 생산용 재조합 미생물은 회분식 배양을 기준으로 1,3-프로판디올의 수율이 0.40 g/g 이상이며, 생산성이 1.5 g/L/hr 이상이다. 바람직하게는 본 발명의 1,3-프로판디올 생산용 재조합 미생물은 하기 식 1에 의하여 계산할 때, 발효 산물 내 1,3-프로판디올의 비율이 80 중량% 이상이며, 더욱 바람직하게는 85 중량% 이상이고, 더더욱 바람직하게는 88 중량% 이상이다. 바람직하게는 본 발명의 1,3-프로판디올 생산용 재조합 미생물은 발효 산물 내 락테이트의 비율이 5 중량% 미만이며, 더욱 바람직하게는 2 중량% 미만이다. 바람직하게는 본 발명의 1,3-프로판디올 생산용 재조합 미생물은 발효 산물 내 포름산의 비율이 1 중량% 미만이며, 더욱 바람직하게는 0.2 중량% 미만이고, 더더욱 바람직하게는 0.1 중량% 미만이다. 바람직하게는 본 발명의 1,3-프로판디올 생산용 재조합 미생물은 발효 산물 내 2,3-부탄디올의 비율이 1 중량% 미만이며, 더욱 바람직하게는 0.2 중량% 미만이고, 더더욱 바람직하게는 0.1 중량% 미만이다. 바람직하게는 본 발명의 1,3-프로판디올 생산용 재조합 미생물은 발효 산물 내 숙신산의 비율이 1 중량% 미만이며, 더욱 바람직하게는 0.2 중량% 미만이고, 더더욱 바람직하게는 0.1 중량% 미만이다.
<식 1>
발효 산물 내 특정 산물의 비율 = {발효 산물 내 특정 산물의 농도/(발효 산물 내 1,3-프로판디올, 락테이트, 포름산, 2,3-부탄디올, 에탄올, 초산 및 숙신산의 농도의 총 합)} X 100
피루베이트를 2,3-부탄디올로 전환하는 경로의 억제
피루베이트로부터 2,3-부탄디올을 생산하는 미생물은 도 1에서와 같이 알파-아세토락테이트 합성 효소 (α-acetolactate synthase), 알파-아세토락테이트 디카르복실라아제 (α-acetolactate decarboxylase), 아세토인 리덕타아제 (acetoin reductase)와 같은 일련의 전환 효소군을 가지고 있다. 하기 경로 1에서처럼 알파-아세토락테이트 합성 효소는 피루베이트를 알파-아세토락테이트로, 알파-아세토락테이트 디카르복실라아제는 알파-아세토락테이트를 아세토인으로, 아세토인 리덕타아제는 아세토인을 2,3-부탄디올로의 전환을 촉매한다.
<경로 1>
피루베이트 → 알파-아세토락테이트 (α-acetolactate) → 아세토인 (acetoin) → 2,3-부탄디올
이들 2,3-부탄디올 합성에 관련된 효소들의 전사는 전사 활성화 인자에 의해 조절 받으며, 2,3-부탄디올 합성 효소들 및 전사 활성화 인자를 코딩하는 유전자들은 미생물 내 유전체 상에서 도 2와 같이 군을 이루어 존재하며 이를 2,3-부탄디올 오페론이라 한다. 상기 2,3-부탄디올 오페론 상에 존재하는 효소들의 억제는 각 유전자들의 발현 억제, 효소 활성 억제 등에 의하여 이루어질 수 있다. 예컨대, 2,3-부탄디올 오페론 상의 효소들을 코드하는 유전자인 budR(레귤레이터(regulator)를 코드함), budA(ALDC, 알파-아세토락테이트 디카르복실라아제(α-acetolactate decarboxylase)를 코드함), budB(ALS, 알파-아세토락테이트 합성효소(α-acetolactate synthetase)를 코드함), budC(AR, 아세토인 리덕타아제(acetoin reductase)를 코드함) 중 하나 혹은 그 이상을 결실시키거나 상기 유전자에 돌연변이(일부 염기를 변이, 치환 또는 삭제하거나 일부 염기를 도입하여 정상적인 유전자의 발현을 억제시키는 등의 돌연변이)를 일으키거나, 전사 과정 또는 번역 과정에서의 유전자 발현 조절 등, 당업자는 적절한 방법을 선택하여 2,3-부탄디올 합성 효소를 억제할 수 있다.
바람직하게는 본 발명의 재조합 미생물은 알파-아세토락테이트 디카르복실라아제, 알파-아세토락테이트 합성효소 및 아세토인 리덕타아제 중 하나 이상이 억제됨으로써 피루베이트를 2,3-부탄디올로 전환하는 경로가 억제되며, 더욱 바람직하게는 알파-아세토락테이트 디카르복실라아제, 알파-아세토락테이트 합성효소 및 아세토인 리덕타아제가 억제되고, 더더욱 바람직하게는 이들을 코드하고 발현을 조절하는 유전자인 budR , budA , budB budC의 발현이 억제된다.
피루베이트를 아세틸 코에이와 포름산으로 전환하는 경로의 억제
피루베이트-포르메이트 리아제(pyruvate-formate lyase)는 통성 혐기 조건에서 피루베이트를 아세틸 코에이와 포름산으로의 전환을 촉매한다 (경로 2).
<경로 2>
피루베이트 → 아세틸 코에이 + 포름산
상기 피루베이트-포르메이트 리아제를 억제함으로써 피루베이트를 아세틸 코에이로 전환하는 경로 및 포름산으로 전환하는 경로가 억제될 수 있다. 상기 피루베이트-포르메이트 리아제의 억제는 피루베이트-포르메이트 리아제의 발현 억제, 피루베이트-포르메이트 리아제의 효소 활성 억제 등에 의하여 이루어질 수 있다. 예컨대, 피루베이트-포르메이트 리아제를 코드하는 유전자인 pflB를 결실시키거나 상기 유전자에 돌연변이(일부 염기를 변이, 치환 또는 삭제하거나 일부 염기를 도입하여 정상적인 유전자의 발현을 억제시키는 등의 돌연변이)를 일으키거나, 전사 과정 또는 번역 과정에서의 유전자 발현 조절 등, 당업자는 적절한 방법을 선택하여 피루베이트-포르메이트 리아제를 억제할 수 있다.
피루베이트를 락테이트로 전환하는 경로의 억제
락테이트 탈수소화효소 (lactate dehydrogenase)는 피루베이트의 락테이트로의 전환을 조절한다. 상기 락테이트 탈수소화효소를 억제함으로써 피루베이트를 락테이트로 전환하는 경로가 억제될 수 있다. 상기 락테이트 탈수소화효소의 억제는 락테이트 탈수소화효소의 발현 억제, 락테이트 탈수소화 효소 활성 억제 등에 의하여 이루어질 수 있다. 예컨대, 락테이트 탈수소화효소를 코드하는 유전자인 ldhA를 결실시키거나 상기 유전자에 돌연변이(일부 염기를 변이, 치환 또는 삭제하거나 일부 염기를 도입하여 정상적인 유전자의 발현을 억제시키는 등의 돌연변이)를 일으키거나, 전사 과정 또는 번역 과정에서의 유전자 발현 조절 등, 당업자는 적절한 방법을 선택하여 락테이트 탈수소화효소를 억제할 수 있다. 상기 경로가 억제된 본 발명의 재조합 미생물은 발효 산물 내 락테이트의 비율이 12 중량% 미만이며, 더욱 바람직하게는 8 중량% 미만이고, 더더욱 바람직하게는 5 중량% 미만이다.
1,3- 프로판디올의 생산 방법
본 발명은 본 발명의 재조합 미생물을 배양하는 단계;및 상기 배양액으로부터 1,3-프로판디올을 회수하는 단계를 포함하는 1,3-프로판디올의 생산 방법에 대한 것이다.
상기 배양은 호기 조건에서 수행되며, 바람직하게는 미세호기적 조건 (microaerobic condition)에서 수행된다. 예컨대, 상기 배양은 배양 시 산소, 즉 공기를 공급하면서 수행되며, 구체적인 예로서, 이는 교반을 통하여 이루어질 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
<재료 및 방법>
-1,3-프로판디올 농도(g/L): 단위 부피당 생산되는 1,3-프로판의 양
-1,3-프로판 수율(g/g): 1,3-프로판디올 생산량(g)/탄소원(g)
-1,3-프로판디올 생산성(g/L/h): 단위 시간, 단위 부피당 생산되는 1,3-프로판디올의 양
<실험예 1> 재조합 미생물의 제조
클렙시엘라 뉴모니아 GSC123 ldhA ( Kp ldhA ) 균주
락테이트 탈수소화효소 (ldhA)가 결실된 클렙시엘라 뉴모니아 GSC123 ldhA (Kp ldhA) 균주는 하기의 방법으로 제조하였다. 먼저, 클렙시엘라 뉴모니아의 락테이트 탈수소화효소를 클로닝하기 위해 표적 유전자인 ldhA(서열번호 1)의 상동 부위 1(서열번호 2)을 서열번호 3 및 4의 프라이머를 이용하여 PCR로 증폭하였다. 또한 상동 부위 2(서열번호 5)를 서열번호 6 및 7의 프라이머를 이용하여 PCR로 증폭하였다. 그 후, 상동 부위 1과 2를 동시에 주형으로 하여 PCR로 증폭하여 상동 부위 1과 2가 접합된 DNA 단편(서열번호 8)을 완성하였다(표 1).
표적 유전자의 재조합 확률을 높이기 위하여 상기 완성된 DNA 단편은 항생제 내성 유전자 등을 포함할 수 있고, 염색체 내에 재조합된 항생제 내성 유전자를 제거하기 위해서 레반수크라제 효소를 코딩하는 sacB 유전자를 포함할 수 있다.
상기 제작된 DNA 단편은 전기 천공법 (electroporation, 25 uF, 200 Ω, 18 kV/cm)을 이용하여 클렙시엘라 뉴모니아 야생형에 전달하였으며, 미생물이 자체적으로 가지고 있는 상동 재조합 기작 이용하여 표적 유전자를 제거하게 된다.
Figure 112013115198519-pat00001
Figure 112013115198519-pat00002
Figure 112013115198519-pat00003

클렙시엘라 뉴모니아 GSC123 ldhA pflB ( Kp ldhA pflB ) 균주
피루베이트-포르메이트 리아제(pflB)가 추가로 결실된 클렙시엘라 뉴모니아 GSC123 ldhA pflB ( Kp ldhA pflB) 균주는 하기의 방법으로 제조하였다. 먼저, 클렙시엘라 뉴모니아의 피루베이트-포르메이트 리아제를 클로닝하기 위해 표적 유전자인 pflB (서열번호 9)의 상동 부위 1(서열번호 10)을 서열번호 11 및 12의 프라이머를 이용하여 PCR로 증폭하였다. 또한 상동 부위 2(서열번호 13)를 서열번호 14 및 15의 프라이머를 이용하여 PCR로 증폭하였다. 그 후, 상동 부위 1과 2를 동시에 주형으로 하여 PCR로 증폭하여 상동 부위 1과 2가 접합된 DNA 단편(서열번호 16)을 완성하였다(표 2).
표적 유전자의 재조합 확률을 높이기 위하여 상기 완성된 DNA 단편은 항생제 내성 유전자 등을 포함할 수 있고, 염색체 내에 재조합된 항생제 내성 유전자를 제거하기 위해서 레반수크라제 효소를 코딩하는 sacB 유전자를 포함할 수 있다.
상기 제작된 DNA 단편은 전기 천공법 (electroporation, 25 uF, 200 Ω, 18 kV/cm)을 이용하여 락테이트 탈수소화효소 (ldhA)가 결실된 클렙시엘라 뉴모니아 GSC123 ldhA ( Kp ldhA ) 균주에 전달하였으며, 미생물이 자체적으로 가지고 있는 상동 재조합 기작 이용하여 표적 유전자를 제거하게 된다.
Figure 112013115198519-pat00004
Figure 112013115198519-pat00005
Figure 112013115198519-pat00006

클렙시엘라 뉴모니아 GSC123 ldhA pflB budA ( Kp ldhA pflB △budA) 균주
2,3-부탄디올 합성 경로 상에서 알파-아세토락테이트를 아세토인으로 전환시키는 알파-아세토락테이트 디카르복실라아제 (α-acetolactate decarboxylase, budA)가 추가로 결실된 클렙시엘라 뉴모니아 GSC123 ldhA pflB budA ( Kp △ldhA △ pflB budA) 균주는 하기의 방법으로 제조하였다. 먼저, 클렙시엘라 뉴모니아의 알파-아세토락테이트 디카르복실라아제를 클로닝하기 위해 표적 유전자인 budA (서열번호 17)의 상동 부위 1 (서열번호 18)을 서열번호 19 및 20의 프라이머를 이용하여 PCR로 증폭하였다. 또한 상동 부위 2 (서열번호 21)를 서열번호 22 및 23의 프라이머를 이용하여 PCR로 증폭하였다. 그 후, 상동 부위 1과 2를 동시에 주형으로 하여 PCR로 증폭하여 상동 부위 1과 2가 접합된 DNA 단편(서열번호 24)을 완성하였다(표 3).
표적 유전자의 재조합 확률을 높이기 위하여 상기 완성된 DNA 단편은 항생제 내성 유전자 등을 포함할 수 있고, 염색체 내에 재조합된 항생제 내성 유전자를 제거하기 위해서 레반수크라제 효소를 코딩하는 sacB 유전자를 포함할 수 있다.
상기 제작된 DNA 단편은 전기 천공법 (electroporation, 25 uF, 200 Ω, 18 kV/cm)을 이용하여 락테이트 탈수소화효소 (ldhA)와 피루베이트-포르메이트 리아제(pflB)가 결실된 클렙시엘라 뉴모니아 GSC123 ldhA pflB (Kp ldhA pflB) 균주에 전달하였으며, 미생물이 자체적으로 가지고 있는 상동 재조합 기작을 이용하여 표적 유전자를 제거하게 된다.
Figure 112013115198519-pat00007
Figure 112013115198519-pat00008
클렙시엘라 뉴모니아 GSC123 ldhA pflB budC ( Kp ldhA pflB △budC ) 균주
2,3-부탄디올 합성 경로 상에서 아세토인을 2,3-부탄디올로 전환시키는 아세토인 리덕타아제 (acetoin reductase, budC)가 추가로 결실된 클렙시엘라 뉴모니아 GSC123 ldhA pflB budC (Kp ldhA pflB budC) 균주는 하기의 방법으로 제조하였다. 먼저, 클렙시엘라 뉴모니아의 아세토인 리덕타아제를 클로닝하기 위해 표적 유전자인 budC (서열번호 25)의 상동 부위 1 (서열번호 26)을 서열번호 27 및 28의 프라이머를 이용하여 PCR로 증폭하였다. 또한 상동 부위 2 (서열번호 29)를 서열번호 30 및 31의 프라이머를 이용하여 PCR로 증폭하였다. 그 후, 상동 부위 1과 2를 동시에 주형으로 하여 PCR로 증폭하여 상동 부위 1과 2가 접합된 DNA 단편(서열번호 32)을 완성하였다(표 4).
표적 유전자의 재조합 확률을 높이기 위하여 상기 완성된 DNA 단편은 항생제 내성 유전자 등을 포함할 수 있고, 염색체 내에 재조합된 항생제 내성 유전자를 제거하기 위해서 레반수크라제 효소를 코딩하는 sacB 유전자를 포함할 수 있다.
상기 제작된 DNA 단편은 전기 천공법 (electroporation, 25 uF, 200 Ω, 18 kV/cm)을 이용하여 락테이트 탈수소화효소 (ldhA)와 피루베이트-포르메이트 리아제(pflB)가 결실된 클렙시엘라 뉴모니아 GSC123 ldhA pflB (Kp ldhA pflB) 균주에 전달하였으며, 미생물이 자체적으로 가지고 있는 상동 재조합 기작을 이용하여 표적 유전자를 제거하게 된다.
Figure 112013115198519-pat00009
Figure 112013115198519-pat00010

클렙시엘라 뉴모니아 GSC123 ldhA pflB budRABC ( Kp ldhA pflB △budRABC ) 균주
2,3-부탄디올 오페론을 구성하는 유전자들 (budRABC), 즉, 전사 활성화 인자 (budR), 알파-아세토락테이트 디카르복실라아제 (budA), 알파-아세토락테이트 합성 효소 (budB), 아세토인 리덕타아제 (budC)가 추가로 결실된 클렙시엘라 뉴모니아 GSC123 ldhA pflB budRABC (Kp ldhA pflB budRABC) 균주는 하기의 방법으로 제조하였다. 먼저, 클렙시엘라 뉴모니아의 2,3-부탄디올 오페론을 클로닝하기 위해 표적 유전자인 budRABC (서열번호 33)의 상동 부위 1 (서열번호 34)을 서열번호 35 및 36의 프라이머를 이용하여 PCR로 증폭하였다. 또한 상동 부위 2 (서열번호 37)를 서열번호 38 및 39의 프라이머를 이용하여 PCR로 증폭하였다. 그 후, 상동 부위 1과 2를 동시에 주형으로 하여 PCR로 증폭하여 상동 부위 1과 2가 접합된 DNA 단편(서열번호 40)을 완성하였다(표 5).
표적 유전자의 재조합 확률을 높이기 위하여 상기 완성된 DNA 단편은 항생제 내성 유전자 등을 포함할 수 있고, 염색체 내에 재조합된 항생제 내성 유전자를 제거하기 위해서 레반수크라제 효소를 코딩하는 sacB 유전자를 포함할 수 있다.
상기 제작된 DNA 단편은 전기 천공법 (electroporation, 25 uF, 200 Ω, 18 kV/cm)을 이용하여 락테이트 탈수소화효소 (ldhA)와 피루베이트-포르메이트 리아제(pflB)가 결실된 클렙시엘라 뉴모니아 GSC123 ldhA pflB (Kp ldhA pflB) 균주에 전달하였으며, 미생물이 자체적으로 가지고 있는 상동 재조합 기작 이용하여 표적 유전자를 제거하게 된다.
Figure 112013115198519-pat00011
Figure 112013115198519-pat00012
Figure 112013115198519-pat00013
Figure 112013115198519-pat00014

상기 본 발명을 위해 제작한 재조합 클렙시엘라 뉴모니아의 genotype은 하기 표 6과 같다.
Figure 112013115198519-pat00015
<실험예 2> 1,3-프로판디올의 생산
상기 실험예 1에서 제작한 재조합 균주들을 배양하여 1,3-프로판디올을 생산하였다. 이 때, 비교예로는 야생형 클렙시엘라 뉴모니아 GSC123 (Kp wt)를 사용하였다.
각 재조합 균주들을 250 ml의 복합배지에 접종하여 37 ℃에서 16 시간 동안 배양한 후, 이 배양액을 3 L 복합배지에 접종하여 발효시켰다. 이 때, 발효 조건은 미세호기조건 (micro-aerobic condition; 호기 속도 1 vvm, 교반 속도 200 rpm), 46 g/L 글리세롤(500mM glycerol), pH 7.0, 배양 온도 37℃로 하였다. 발효 중 pH의 조정을 위하여 암모니아 (NH3)를 사용하였다. 상기 재조합 클렙시엘라에 대해 발효 중 샘플을 채취하였으며, 채취된 시료의 OD600 (optical density)를 측정하여 생장 속도를 측정하였고, 채취된 시료는 13,000 rpm에서 10 분 동안 원심분리한 후, 상층액의 대사산물 및 1,3-프로판디올 농도를 액체크로마토그래피(HPLC)로 분석하였다.
그 결과, ldhA이 결실된 재조합 균주(Kp ldhA)는 야생형 클렙시엘라 뉴모니아 (Kp wt)의 최대 부산물이었던 락테이트가 획기적으로 감소하였다. 그러나, 그 외 부산물들인 포름산, 2,3-부탄디올, 에탄올, 초산, 숙신산 모두가 증가하여 최종 1,3-프로판디올 생산 농도 및 생산 수율이 오히려 감소하였다. 또한, ldhApflB 이 동시에 결실된 재조합 균주 (Kp ldhA pflB)의 경우 상기 야생형 클렙시엘라 뉴모니아 균주인 Kp wt 또는 ldhA가 결실된 클렙시엘라 뉴모니아 균주인 Kp ldhA와 비교할 때, 2,3-부탄디올을 제외한 모든 부산물들이 대폭 감소하였고, 최종 1,3-프로판디올 생산 농도 및 생산 수율이 증가하였다. 그러나, 2,3-부탄디올의 농도 증가는 상당하였다.
2,3-부탄디올 합성에 관여하는 효소군 중 일부를 제거한 재조합 균주들 즉, Kp ldhA pflB budA 나 Kp ldhA pflB budC 와 비교할 때, 전체 2,3-부탄디올 오페론을 결실시킨 재조합 균주인 Kp ldhA pflB budRABC의 경우에서 가장 높은 1,3-프로판디올 농도와 가장 낮은 부산물 생산을 얻을 수 있었고, 생산 수율 및 생산성 측면에서도 가장 우수한 결과를 얻을 수 있었다. 한편, 2,3-부탄디올 축적을 감소시키기 위한 유전자 결실에서 budA를 결실시킨 경우(Kp ldhA △pflB △ budA)와 budRABC를 결실시킨 경우(Kp ldhA pflB budRABC)는 효과가 있었으나 budC를 결실시킨 경우(Kp ldhA pflB budC)는 효과가 없었으며, budA가 결실된 재조합 균주 (Kp ldhA pflB budA)의 경우 발효 성능이 좋지 않아 발효 종료 시점인 24 시간 후에도 잔류 글리세롤이 관찰되었다. 그러나, budRABC가 결실된 재조합 균주 (Kp ldhA pflB budRABC)의 경우, 모균주(Kp △l d hA △ pflB)와 유사한 발효 패턴을 보이면서 2,3-부탄디올을 생산하지 않았다(표 7 및 8, 도 3 내지 6).
Figure 112013115198519-pat00016
Figure 112013115198519-pat00017
<110> GS CALTEX <120> RECOMBINANT MICROORGANISM HAVING ENHANCED 1,3-PROPANEDIOL PRODUCING ABILITY AND METHOD FOR PRODUCING 1,3-PROPANEDIOL USING THE SAME <130> GSP120902 <160> 40 <170> KopatentIn 2.0 <210> 1 <211> 987 <212> DNA <213> Klebsiella pneumoniae <400> 1 atgaaaatcg cggtttatag tacgaagcag tacgataaaa agtacctgca gcacgttaat 60 gatgcatacg gctttgaact ggaattcttc gatttcctgc tgacagcgaa gactgccaaa 120 accgccaacg gttgcgaagc ggtatgtatc ttcgtcaatg acgacggcag ccgcccggtg 180 ctggaagagc tgaaggccca cggggtgaaa tatatcgccc tgcgctgcgc cgggtttaac 240 aacgtcgacc ttgaggcggc aaaggagctt ggcctgcgcg tcgtgcgcgt tccagcttac 300 tctccggaag cggtcgctga gcatgcgatc ggtatgatga tgtcgctcaa ccgccgcatc 360 caccgcgctt accagcgtac ccgcgatgcc aatttctccc tcgaaggcct caccggcttc 420 accatgtacg gcaaaaccgc cggggtgatc ggcaccggga aaattggcgt agcgatgttg 480 cggatcctca aaggcttcgg catgcgcctg ctggcgttcg acccgtaccc aagcgccgcc 540 gcgctggagc tgggggtgga atatgttgac ctcgccacgc tgtacaagga atcggacgtg 600 atctccctgc actgtccgct gaccgacgaa aactaccacc tgctcaatcg cgaagctttc 660 gatcagatga aagacggggt gatggtgatc aacaccagcc gcggcgccct gatcgactct 720 caggcggcca tcgacgccct gaagcaccag aaaattggcg cgctggggct ggacgtttat 780 gagaacgaac gcgatctgtt ctttgaagac aaatccaacg acgtgatcca ggacgatgtc 840 ttccgccgcc tctccgcctg ccataacgtg ctgtttaccg gccaccaggc gttcctcacc 900 gccgaggcgc tgatcagcat ttcggagacc actctgggta acctgcagca ggtcgccaac 960 ggcgaaacct gtccgaacgc catcgtc 987 <210> 2 <211> 1200 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 2 caagcgtgcg cggtgaaccg ggagagggat cgctggccgg cagtttgctc aggcaggcgc 60 tgttgatctc cagctggcca atatgcagcc gccagcggct gggacgcgag agacgggcat 120 cggtcacccg ggcgatttca cagtcgccca ccagataacg cagatcgggg atcagcaggg 180 ccgaccgcgt caggcgcggg ctctcctgca aagagatacg cgtgcccacg ggcagccaga 240 tgcccgccag cgtcggcacc cagtgggtta gcgtcaacag cagggttagc ggcaataaca 300 ccagaactaa caccagcgcg atggcggctt tatatttacc cttcatgggc agttaatatc 360 ctgattcaac ataagtaaaa gccgaaaggc gtccattgtg acacgttcga ccagtgagtg 420 aaagtttacg gcctgttaaa gcatagttgc cagccggact cgcggcgcga cgttcggcca 480 ttatcattta actgttgttt aagtcgcccc tgccacactc cagccagacg ggaatagctt 540 gcgggagagg cggtgtcgtt aattatctcg ctcatagaga gcgcacagga ccactatcca 600 tgggtattgc tgattgtttt tctgcttacc ttcactaaat cctgcgcatt ggtctcgctg 660 gcaatccccg gcacctccgg cctgctgctg ctggggacat tcgcttccgc cagcctcgga 720 catttcctgt taatgtggtc cagcgccagc ctcggcgcca tcggcggatt ctggctatcg 780 tggcggctgg gcattcgcta ccgtcatcgc ctcacccatc tacgctggct gaccgccgag 840 cgtctggccc gcagccgcct cttctttcag cgctatggcc cgtgggctat ctttttcagc 900 cgctttctct ctcccctgag ggctacgctg cccttcgtta gcggcgccag cagtctgccg 960 ctgtggtcgt ttcagctggc taacgtcagc tccggtctgc tgtggccgct tctgctgctc 1020 gcccccggcg ctttcagcct cagtttgtgg tgaaaaaact ttgtctttca aagagattcc 1080 gcaagtccgc gatatgctct agaattagga ttagcaccct ctcattaaac tattttttaa 1140 taattgtacg attattttaa atatgctacc gtgacggtat aatcactgga gaaaagtctt 1200 1200 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 3 tagaggatcc caagcgtgcg cggtgaaccg 30 <210> 4 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 4 gaggagcaca aaagggaaag gcgaagactt ttctccagtg attatac 47 <210> 5 <211> 1199 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 5 cgcctttccc ttttgtgctc ctctcccggg gggagcacat tcagataatc cccacagatc 60 cctgctgcga taccgttaca ctggcttggt tttattagtt atatgattgt tttggagtga 120 aaatgaacaa atttgcggcg cttctggcgg caggtatgct gctgtccggc tgtgtctata 180 atagtaaggt gtccaccggt gcggaacagc tgcagcatca tcgtttcgtg ctgaccagcg 240 tcaacggcca ggcggtcaac gccagcgacc ggccgctgga gctgagcttc ggtgagaaga 300 tggctattac cggcaagatg tatgtatccg gcaatatgtg caacggcttt agcggggaag 360 gtaaagtgtc ggacggcgag ctgaaggtca aatcgctggc gatgacccgg atgctgtgcc 420 acgacgccca gctcaatacc ctggatgcga cgatcgacaa gatgctgcgc gagggtgcgc 480 aggtcgatct gacggaaaac cagttgacgc tggcgaccgc cgaccagacg ctggtctata 540 agctcgccga cctgatgcac tagccggcgt tgaggtgccg ctgacgctgc cccgcgacgg 600 ggccgctgtt agtagccgca gctgccaccc gccagcgcct gctcgctgca gcgtttgccg 660 ttcggcagcg cgcacatgcc aatcgccgaa ccatcgagct gacgagccac cgataacgag 720 ccgcctatca tggcgcagtt ggcctgaccg gcgtcgctca tcgccgcccg cattcccggc 780 gtgacgtgcg ccgccgtggc ctgctgaacg ggttcactac tgcacgcgga cagcaacagc 840 gccgcacatc ctactaacat cgcagctcgc attctctctc ccctcggaaa cgtcttaaaa 900 aagcaaaccc cagaataata ggcagcgtgg cgggcggcgt cgagagggga agtacgtatt 960 tatgcgcctc attaacattt tctagcaaat tttcgcctaa agcttgatct gcctcggcca 1020 tgtcgcccgg cgcaggtggt tcatctcccg gcaggcagcc attttctccg cgaaccacgc 1080 aaaatattga tctggtcacg ggtacccggc gcattgagga cacaaatgca aaaatggcgg 1140 ggtcagcggt ttgctaaact accccttata taattacagg gcgcgtcgcg gtttcacgc 1199 <210> 6 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 6 gtataatcac tggagaaaag tcttcgcctt tcccttttgt gctcctc 47 <210> 7 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 7 atcgcggccg cgcgtgaaac cgcgacgcgc c 31 <210> 8 <211> 2399 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 8 caagcgtgcg cggtgaaccg ggagagggat cgctggccgg cagtttgctc aggcaggcgc 60 tgttgatctc cagctggcca atatgcagcc gccagcggct gggacgcgag agacgggcat 120 cggtcacccg ggcgatttca cagtcgccca ccagataacg cagatcgggg atcagcaggg 180 ccgaccgcgt caggcgcggg ctctcctgca aagagatacg cgtgcccacg ggcagccaga 240 tgcccgccag cgtcggcacc cagtgggtta gcgtcaacag cagggttagc ggcaataaca 300 ccagaactaa caccagcgcg atggcggctt tatatttacc cttcatgggc agttaatatc 360 ctgattcaac ataagtaaaa gccgaaaggc gtccattgtg acacgttcga ccagtgagtg 420 aaagtttacg gcctgttaaa gcatagttgc cagccggact cgcggcgcga cgttcggcca 480 ttatcattta actgttgttt aagtcgcccc tgccacactc cagccagacg ggaatagctt 540 gcgggagagg cggtgtcgtt aattatctcg ctcatagaga gcgcacagga ccactatcca 600 tgggtattgc tgattgtttt tctgcttacc ttcactaaat cctgcgcatt ggtctcgctg 660 gcaatccccg gcacctccgg cctgctgctg ctggggacat tcgcttccgc cagcctcgga 720 catttcctgt taatgtggtc cagcgccagc ctcggcgcca tcggcggatt ctggctatcg 780 tggcggctgg gcattcgcta ccgtcatcgc ctcacccatc tacgctggct gaccgccgag 840 cgtctggccc gcagccgcct cttctttcag cgctatggcc cgtgggctat ctttttcagc 900 cgctttctct ctcccctgag ggctacgctg cccttcgtta gcggcgccag cagtctgccg 960 ctgtggtcgt ttcagctggc taacgtcagc tccggtctgc tgtggccgct tctgctgctc 1020 gcccccggcg ctttcagcct cagtttgtgg tgaaaaaact ttgtctttca aagagattcc 1080 gcaagtccgc gatatgctct agaattagga ttagcaccct ctcattaaac tattttttaa 1140 taattgtacg attattttaa atatgctacc gtgacggtat aatcactgga gaaaagtctt 1200 cgcctttccc ttttgtgctc ctctcccggg gggagcacat tcagataatc cccacagatc 1260 cctgctgcga taccgttaca ctggcttggt tttattagtt atatgattgt tttggagtga 1320 aaatgaacaa atttgcggcg cttctggcgg caggtatgct gctgtccggc tgtgtctata 1380 atagtaaggt gtccaccggt gcggaacagc tgcagcatca tcgtttcgtg ctgaccagcg 1440 tcaacggcca ggcggtcaac gccagcgacc ggccgctgga gctgagcttc ggtgagaaga 1500 tggctattac cggcaagatg tatgtatccg gcaatatgtg caacggcttt agcggggaag 1560 gtaaagtgtc ggacggcgag ctgaaggtca aatcgctggc gatgacccgg atgctgtgcc 1620 acgacgccca gctcaatacc ctggatgcga cgatcgacaa gatgctgcgc gagggtgcgc 1680 aggtcgatct gacggaaaac cagttgacgc tggcgaccgc cgaccagacg ctggtctata 1740 agctcgccga cctgatgcac tagccggcgt tgaggtgccg ctgacgctgc cccgcgacgg 1800 ggccgctgtt agtagccgca gctgccaccc gccagcgcct gctcgctgca gcgtttgccg 1860 ttcggcagcg cgcacatgcc aatcgccgaa ccatcgagct gacgagccac cgataacgag 1920 ccgcctatca tggcgcagtt ggcctgaccg gcgtcgctca tcgccgcccg cattcccggc 1980 gtgacgtgcg ccgccgtggc ctgctgaacg ggttcactac tgcacgcgga cagcaacagc 2040 gccgcacatc ctactaacat cgcagctcgc attctctctc ccctcggaaa cgtcttaaaa 2100 aagcaaaccc cagaataata ggcagcgtgg cgggcggcgt cgagagggga agtacgtatt 2160 tatgcgcctc attaacattt tctagcaaat tttcgcctaa agcttgatct gcctcggcca 2220 tgtcgcccgg cgcaggtggt tcatctcccg gcaggcagcc attttctccg cgaaccacgc 2280 aaaatattga tctggtcacg ggtacccggc gcattgagga cacaaatgca aaaatggcgg 2340 ggtcagcggt ttgctaaact accccttata taattacagg gcgcgtcgcg gtttcacgc 2399 <210> 9 <211> 2280 <212> DNA <213> Klebsiella pneumoniae <400> 9 atgtccgagc ttaatgaaaa gttagccaca gcctgggaag gttttgcgaa aggtgactgg 60 cagaatgaag tcaacgtccg tgactttatt cagaaaaact acaccccata tgaaggcgac 120 gaatccttcc tggctggcgc gactgaagcg accaccaagc tgtgggacac cgtaatggaa 180 ggtgtaaaac aggaaaaccg cactcacgcg cctgttgatt ttgacactgc cctggcttcc 240 accatcacct ctcacgacgc gggctatatc gagaaaggtc tggaaaaaat cgttggtctg 300 cagaccgaag cgccgctgaa acgtgcgatc atcccgttcg gtggtatcaa aatggttgaa 360 ggttcctgca aagcgtataa tcgcgagctg gacccgatgc tgaaaaaaat cttcacagag 420 taccgtaaaa ctcacaacca gggcgttttc gacgtctata ccccggacat tctgcgctgc 480 cgtaaatccg gcgtgctgac gggtctgccg gatgcttacg gtcgtggtcg tatcatcggt 540 gactaccgtc gcgttgcgct gtacggtatc gacttcctga tgaaagacaa attcgcccag 600 ttcaactctc tgcaagcgaa actggaaagc ggcgaagacc tggaagcgac catccgtctg 660 cgtgaagaaa tcgctgaaca acaccgcgca ctgggccaga tcaaagagat ggccgctaaa 720 tatggctatg acatctccgg tccggcgacc accgctcagg aagcgattca gtggacctac 780 ttcggttacc tggctgccgt gaaatctcag aacggcgcgg caatgtcctt cggtcgtacc 840 tccagcttcc tggatatcta catcgagcgt gacctgcagg cgggtaaaat caccgagcaa 900 gacgcgcagg aaatggttga ccacctggtc atgaaactgc gtatggttcg cttcctgcgt 960 accccggaat atgatgaact gttctccggc gacccgattt gggcaacgga atccatcggc 1020 ggtatgggcg ttgacggccg tactctggtg accaaaaaca gcttccgctt cctgaacacc 1080 ctgtacacca tggggccgtc tccggagccg aacattacta tcctgtggtc tgaaaaactg 1140 ccgctgagct tcaagaaatt cgccgctaaa gtgtccatcg atacctcttc tctgcagtat 1200 gagaacgatg acctgatgcg tccggacttc aacaacgacg actacgctat cgcatgctgc 1260 gtaagcccga tggttgttgg taagcaaatg cagttcttcg gcgctcgcgc taacctcgcg 1320 aaaaccatgc tgtacgctat caacggcggc gtggatgaaa aactgaaaat gcaggttggt 1380 ccgaaatctg aaccgatcaa aggcgacgtc ctgaacttcg acgaagtaat ggatcgcatg 1440 gatcacttca tggactggct ggctaaacag tacgtcaccg cgctgaacat catccactac 1500 atgcacgaca agtacagcta cgaagcctct ctgatggcgc tgcacgaccg tgacgttatc 1560 cgcaccatgg cgtgtggtat cgctggtctg tccgttgctg ctgactccct gtctgctatc 1620 aaatatgcga aagttaaacc gattcgtgac gaagacggtc tggctatcga cttcgaaatc 1680 gaaggcgaat acccgcagtt tggtaacaac gaccctcgcg tcgatgacat ggccgttgac 1740 ctggttgaac gtttcatgaa gaaaattcag aaactgcaca cctaccgcaa cgctatcccg 1800 actcagtctg ttctgaccat cacctctaac gtggtgtacg gtaagaaaac cggtaatacc 1860 ccagacggtc gtcgcgctgg cgcgccgttc ggtccaggtg ctaacccgat gcacggccgt 1920 gaccagaaag gcgcagtagc ctctctgacc tccgtcgcta aactgccgtt tgcttacgcg 1980 aaagatggta tctcttatac cttctctatc gtgccgaacg cgctgggtaa agacgacgaa 2040 gttcgtaaga ccaacctggc gggtctgatg gatggttact tccatcacga agcgtccatc 2100 gaaggtggtc agcacctgaa cgtgaacgtc atgaaccgcg aaatgctgct cgacgcgatg 2160 gaaaacccgg aaaaatatcc gcagctgacc atccgtgtat ctggctacgc cgtacgtttt 2220 aactccctga ccaaagaaca gcagcaggat gttattaccc gtaccttcac tcagaccatg 2280 2280 <210> 10 <211> 529 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 10 gtttgtgctg ctgatgtggt tatcaggcga atatatgact gccaacggcg gctgggggct 60 aaacgttctg cagaccgccg accacaaaat gcaccatact tttgtggagg ccgtgagcct 120 gggtatcctc gctaacctga tggtttgtct cgccgtatgg atgagctatt ccggtcgtag 180 cctgatggat aaagcgatga tcatggtcct gccggtagcg atgttcgttg ccagcggctt 240 tgagcacagc atcgccaaca tgtttatgat cccgatgggt atcgtaatcc gcaactttgc 300 aagcccggaa ttctggaccg ccatcggttc gactccggaa agtttctctc acttgaccgt 360 tatgaacttc atcactgata acctgattcc ggtaactatc gggaacatta tcggcggggg 420 tctgctggtc gggttgacat actgggtcat ttacctgcgt ggcaacgacc atcactaagg 480 gttgtttcag gcagtaaata aaaaatccac ttaagaaggt aggtgttac 529 <210> 11 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 11 ggatccgttt gtgctgctga tgtggttatc aggc 34 <210> 12 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 12 cgccttttca gtcagacagg gaagtaacac ctaccttctt aagtgg 46 <210> 13 <211> 596 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 13 ttccctgtct gactgaaaag gcgtacaata aaggccccac atcagtgggg cctttttaac 60 aagcattccc cgccccagcc tgctttgcca gttatctata ctttgggtac ctgtcaaaac 120 agactcgacg cagccgctga gctgcgcacc aacacggccc cggatgggcc acatctggag 180 aaaacaccgc aatgtcagtt attggtcgca ttcactcctt tgaatcctgt ggcaccgttg 240 atggcccagg catccgcttt attacctttt tccagggctg cctgatgcgc tgcctgtact 300 gccataaccg tgacacctgg gatacccacg gcggcaaaga aatcaccgtt gaagaattaa 360 tgaaagaggt ggtgacctat cgtcacttta tgaatgcttc cggcggcggc gtcaccgcct 420 cgggcggtga ggcgatcctg caggcggagt ttgttcgcga ctggttccgc gcgtgtaaga 480 aagaaggcat ccacacctgc ctggatacca acggcttcgt acgtcgctac gatccggtta 540 tcgacgagct gctggaggta acagacctgg tgatgctgga tctcaagcag atgaac 596 <210> 14 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 14 ccacttaaga aggtaggtgt tacttccctg tctgactgaa aaggcg 46 <210> 15 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 15 gcggccgcgt tcatctgctt gagatccagc atcacc 36 <210> 16 <211> 1125 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 16 gtttgtgctg ctgatgtggt tatcaggcga atatatgact gccaacggcg gctgggggct 60 aaacgttctg cagaccgccg accacaaaat gcaccatact tttgtggagg ccgtgagcct 120 gggtatcctc gctaacctga tggtttgtct cgccgtatgg atgagctatt ccggtcgtag 180 cctgatggat aaagcgatga tcatggtcct gccggtagcg atgttcgttg ccagcggctt 240 tgagcacagc atcgccaaca tgtttatgat cccgatgggt atcgtaatcc gcaactttgc 300 aagcccggaa ttctggaccg ccatcggttc gactccggaa agtttctctc acttgaccgt 360 tatgaacttc atcactgata acctgattcc ggtaactatc gggaacatta tcggcggggg 420 tctgctggtc gggttgacat actgggtcat ttacctgcgt ggcaacgacc atcactaagg 480 gttgtttcag gcagtaaata aaaaatccac ttaagaaggt aggtgttact tccctgtctg 540 actgaaaagg cgtacaataa aggccccaca tcagtggggc ctttttaaca agcattcccc 600 gccccagcct gctttgccag ttatctatac tttgggtacc tgtcaaaaca gactcgacgc 660 agccgctgag ctgcgcacca acacggcccc ggatgggcca catctggaga aaacaccgca 720 atgtcagtta ttggtcgcat tcactccttt gaatcctgtg gcaccgttga tggcccaggc 780 atccgcttta ttaccttttt ccagggctgc ctgatgcgct gcctgtactg ccataaccgt 840 gacacctggg atacccacgg cggcaaagaa atcaccgttg aagaattaat gaaagaggtg 900 gtgacctatc gtcactttat gaatgcttcc ggcggcggcg tcaccgcctc gggcggtgag 960 gcgatcctgc aggcggagtt tgttcgcgac tggttccgcg cgtgtaagaa agaaggcatc 1020 cacacctgcc tggataccaa cggcttcgta cgtcgctacg atccggttat cgacgagctg 1080 ctggaggtaa cagacctggt gatgctggat ctcaagcaga tgaac 1125 <210> 17 <211> 777 <212> DNA <213> Klebsiella pneumoniae <400> 17 atgaatcatt ctgctgaatg cacctgcgaa gagagtctat gcgaaaccct gcgggcgttt 60 tccgcgcagc atcccgagag cgtgctctat cagacatcgc tcatgagcgc cctgctgagc 120 ggggtttacg aaggcagcac caccatcgcc gacctgctga aacacggcga tttcggcctc 180 ggcaccttta atgagctgga cggggagctg atcgccttca gcagtcaggt ctatcagctg 240 cgcgccgacg gcagcgcgcg caaagcccag ccggagcaga aaacgccgtt cgcggtgatg 300 acctggttcc agccgcagta ccggaaaacc tttgaccatc cggtgagccg ccagcagctg 360 cacgaggtga tcgaccagca aatcccctct gacaacctgt tctgcgccct gcgcatcgac 420 ggccatttcc gccatgccca tacccgcacc gtgccgcgcc agacgccgcc gtaccgggcg 480 atgaccgacg tactcgacga tcagccggtg ttccgcttta accagcgcga aggggtgctg 540 gtcggcttcc ggaccccgca gcatatgcag gggatcaacg tcgccgggta tcacgagcat 600 tttattaccg atgaccgcaa aggcggcggt cacctgctgg attaccagct cgaccacggg 660 gtgctgacct tcggcgaaat tcacaagctg atgatcgacc tgcccgccga cagcgcgttc 720 ctgcaggcta atctgcatcc cgataatctc gatgccgcca tccgttccgt agaaagt 777 <210> 18 <211> 653 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 18 gcagattaaa ggctttactg ctctcgcacg gcaggcggac gaaggcgata tccagctcgg 60 cctcgctcag ggcggtcatc agattggcca tattgtcttc catctggtgc agggtcaccc 120 cggggtggtc gagctgaaaa cggtgcagca gcgtgaagat ttgcggatgg aaagcatcag 180 aactggtaat gcctagcgac aggctgccgt tcatcccgcg cgcaatgccc ttggccttct 240 ccagcgccgc atcgctcatg gcgaggatct ggcgggcatc ctcatagaaa gactctcccg 300 cttccgtcag ctccaccccg cgggttaaac gccggaacag cggggtcccc acctcgcgct 360 caagccgctg aatttgctga cttaacggag gctgtgaaat acccagctcc ttggcggcct 420 gggtgaagtg ccgcgtcctg gcgacggcga caaaatagcg aagataacga agttccatat 480 cgaaaacgtc tcaaaccagc atggtttcta tattggaact gtgagctgaa tcgggtcaac 540 atttatttaa cctttcttat atttgttgaa cgaggaagtg gtatatgaat cattctgctg 600 aatgcacctg cgaacccgat aatctcgatg ccgccatccg ttccgtagaa agt 653 <210> 19 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 19 tctagaggat ccgcagatta aaggctttac tgctctc 37 <210> 20 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 20 cggatggcgg catcgagatt atcgggttcg caggtgcatt cagcagaatg attc 54 <210> 21 <211> 601 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 21 atgaatcatt ctgctgaatg cacctgcgaa cccgataatc tcgatgccgc catccgttcc 60 gtagaaagtt aagggggtca catggacaaa cagtatccgg tacgccagtg ggcgcacggc 120 gccgatctcg tcgtcagtca gctggaagca cagggggtac gccaggtgtt cggcatcccc 180 ggcgccaaaa tcgacaaggt cttcgattca ctgctggatt cctccattcg cattattccg 240 gtacgccacg aagccaacgc cgcatttatg gccgccgccg tcggacgtat taccggcaaa 300 gcgggcgtgg cgctggtcac ctccggtccg ggttgttcta acctgatcac cggcatggcc 360 accgcgaaca gcgaaggcga cccggtggtg gccctgggcg gcgcggtaaa acgcgccgat 420 aaagccaaac aggtccacca gagtatggat acggtggcga tgttcagccc ggtcaccaaa 480 tacgccgtcg aggtgacggc gccggatgcg ctggcggaag tggtctccaa cgccttccgc 540 gccgccgagc agggccggcc gggcagcgcg ttcgttagcc tgccgcagga tgtggtcgat 600 g 601 <210> 22 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 22 gaatcattct gctgaatgca cctgcgaacc cgataatctc gatgccgcca tccg 54 <210> 23 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 23 gatcgcggcc gccatcgacc acatcctgcg gcagg 35 <210> 24 <211> 1185 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 24 gcagattaaa ggctttactg ctctcgcacg gcaggcggac gaaggcgata tccagctcgg 60 cctcgctcag ggcggtcatc agattggcca tattgtcttc catctggtgc agggtcaccc 120 cggggtggtc gagctgaaaa cggtgcagca gcgtgaagat ttgcggatgg aaagcatcag 180 aactggtaat gcctagcgac aggctgccgt tcatcccgcg cgcaatgccc ttggccttct 240 ccagcgccgc atcgctcatg gcgaggatct ggcgggcatc ctcatagaaa gactctcccg 300 cttccgtcag ctccaccccg cgggttaaac gccggaacag cggggtcccc acctcgcgct 360 caagccgctg aatttgctga cttaacggag gctgtgaaat acccagctcc ttggcggcct 420 gggtgaagtg ccgcgtcctg gcgacggcga caaaatagcg aagataacga agttccatat 480 cgaaaacgtc tcaaaccagc atggtttcta tattggaact gtgagctgaa tcgggtcaac 540 atttatttaa cctttcttat atttgttgaa cgaggaagtg gtatatgaat cattctgctg 600 aatgcacctg cgaacccgat aatctcgatg ccgccatccg ttccgtagaa agttaagggg 660 gtcacatgga caaacagtat ccggtacgcc agtgggcgca cggcgccgat ctcgtcgtca 720 gtcagctgga agcacagggg gtacgccagg tgttcggcat ccccggcgcc aaaatcgaca 780 aggtcttcga ttcactgctg gattcctcca ttcgcattat tccggtacgc cacgaagcca 840 acgccgcatt tatggccgcc gccgtcggac gtattaccgg caaagcgggc gtggcgctgg 900 tcacctccgg tccgggttgt tctaacctga tcaccggcat ggccaccgcg aacagcgaag 960 gcgacccggt ggtggccctg ggcggcgcgg taaaacgcgc cgataaagcc aaacaggtcc 1020 accagagtat ggatacggtg gcgatgttca gcccggtcac caaatacgcc gtcgaggtga 1080 cggcgccgga tgcgctggcg gaagtggtct ccaacgcctt ccgcgccgcc gagcagggcc 1140 ggccgggcag cgcgttcgtt agcctgccgc aggatgtggt cgatg 1185 <210> 25 <211> 768 <212> DNA <213> Klebsiella pneumoniae <400> 25 atgaaaaaag tcgcacttgt taccggcgcc ggccagggga ttggtaaagc tatcgccctt 60 cgtctggtga aggatggatt tgccgtggcc attgccgatt ataacgacgc caccgccaaa 120 gcggtcgcct ccgaaatcaa ccaggccggc ggccgcgcca tggcggtgaa agtggatgtt 180 tctgaccgcg accaggtatt tgccgccgtc gaacaggcgc gcaaaacgct gggcggcttc 240 gacgtcatcg tcaacaacgc cggcgtggcg ccatccacgc cgatcgagtc cattaccccg 300 gagattgtcg acaaagtcta caacatcaac gtcaaagggg tgatctgggg catccaggca 360 gcggtcgagg cctttaagaa agagggtcac ggcgggaaaa tcatcaacgc ctgttcccag 420 gccggccacg tcggcaaccc ggagctggcg gtatatagct cgagtaaatt cgcggtacgc 480 ggcttaaccc agaccgccgc tcgcgacctc gcgccgctgg gcatcacggt caacggctac 540 tgcccgggga ttgtcaaaac gccgatgtgg gccgaaattg accgccaggt gtccgaagcc 600 gccggtaaac cgctgggcta cggtaccgcc gagttcgcca aacgcatcac cctcggccgc 660 ctgtccgagc cggaagatgt cgccgcctgc gtctcctatc ttgccagccc ggattctgat 720 tatatgaccg gtcagtcatt gctgatcgac ggcggcatgg tgtttaac 768 <210> 26 <211> 640 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 26 gctgcgtatc gttcgcgcca tgcaggacat cgtcaacagc gacgtcacgt tgaccgtgga 60 catgggcagc ttccatatct ggattgcccg ctacctgtac agcttccgcg cccgccaggt 120 gatgatctcc aacggccagc agaccatggg cgtcgccctg ccctgggcca tcggcgcctg 180 gctggtcaat cctgagcgca aagtggtctc cgtctccggc gacggcggct tcctgcagtc 240 gagcatggag ctggagaccg ccgtccgcct gaaagccaac gtgctgcacc tgatctgggt 300 cgataacggc tacaacatgg tggccattca ggaagagaaa aaataccagc gcctgtccgg 360 cgtcgagttt gggccgatgg attttaaagc ctatgccgaa tccttcggcg cgaaagggtt 420 tgccgtggaa agcgccgagg cgctggagcc gaccctgcgc gcggcgatgg acgtcgacgg 480 cccggcggta gtggccatcc cggtggatta tcgcgataac ccgctgctga tgggccagct 540 gcatctgagt cagattctgt aagtcatcac aataaggaaa gaaaaatgaa aaaagtcgca 600 cttgttaccg gcgccatgac cggtcagtca ttgctgatcg 640 <210> 27 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 27 tctagaggat ccgctgcgta tcgttcgcgc catgc 35 <210> 28 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 28 cgatcagcaa tgactgaccg gtcatggcgc cggtaacaag tgcgactt 48 <210> 29 <211> 624 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 29 aagtcgcact tgttaccggc gccatgaccg gtcagtcatt gctgatcgac ggcggcatgg 60 tgtttaacta ataaaaaaaa gctctgacat ggcttgcccc tgctttcgcg caggggcttt 120 ttttggtttg ggtgtaagtg taagcatccc ggagaaacga agcatcgata tttgagggct 180 tctggcgttc tcacttacgc ttcgacacga cgtgggcaat ctgactggga tgaaggtctg 240 atttgagcga ggagcggaag ttcgggaacg ggatagctct gacctgccac caggattaga 300 tacaaccgtc agttagtaag gtcggtttgt ttaccttcac attttccatt tcgccaccgt 360 gctgcaaact ctgatggcgt ctgataattc agtgctgaat gtggacgaca ctcgttataa 420 tcctgccgcc agtcattaat gattttcctt gcgtgaacga tatcgctgaa ccagtgctca 480 ttcaggcatt catcgcgaaa tcgtccgtta aagctctcaa taaatccgtt ctgcgttggc 540 ttgcccggct ggattaagcg caactcaaca ccatgctcaa aggcccattg atccagtgca 600 cggcaagtga actccggccc ctgg 624 <210> 30 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 30 aagtcgcact tgttaccggc gccatgaccg gtcagtcatt gctgatcg 48 <210> 31 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 31 gcggccgccc aggggccgga gttcacttgc c 31 <210> 32 <211> 1216 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 32 gctgcgtatc gttcgcgcca tgcaggacat cgtcaacagc gacgtcacgt tgaccgtgga 60 catgggcagc ttccatatct ggattgcccg ctacctgtac agcttccgcg cccgccaggt 120 gatgatctcc aacggccagc agaccatggg cgtcgccctg ccctgggcca tcggcgcctg 180 gctggtcaat cctgagcgca aagtggtctc cgtctccggc gacggcggct tcctgcagtc 240 gagcatggag ctggagaccg ccgtccgcct gaaagccaac gtgctgcacc tgatctgggt 300 cgataacggc tacaacatgg tggccattca ggaagagaaa aaataccagc gcctgtccgg 360 cgtcgagttt gggccgatgg attttaaagc ctatgccgaa tccttcggcg cgaaagggtt 420 tgccgtggaa agcgccgagg cgctggagcc gaccctgcgc gcggcgatgg acgtcgacgg 480 cccggcggta gtggccatcc cggtggatta tcgcgataac ccgctgctga tgggccagct 540 gcatctgagt cagattctgt aagtcatcac aataaggaaa gaaaaatgaa aaaagtcgca 600 cttgttaccg gcgccatgac cggtcagtca ttgctgatcg acggcggcat ggtgtttaac 660 taataaaaaa aagctctgac atggcttgcc cctgctttcg cgcaggggct ttttttggtt 720 tgggtgtaag tgtaagcatc ccggagaaac gaagcatcga tatttgaggg cttctggcgt 780 tctcacttac gcttcgacac gacgtgggca atctgactgg gatgaaggtc tgatttgagc 840 gaggagcgga agttcgggaa cgggatagct ctgacctgcc accaggatta gatacaaccg 900 tcagttagta aggtcggttt gtttaccttc acattttcca tttcgccacc gtgctgcaaa 960 ctctgatggc gtctgataat tcagtgctga atgtggacga cactcgttat aatcctgccg 1020 ccagtcatta atgattttcc ttgcgtgaac gatatcgctg aaccagtgct cattcaggca 1080 ttcatcgcga aatcgtccgt taaagctctc aataaatccg ttctgcgttg gcttgcccgg 1140 ctggattaag cgcaactcaa caccatgctc aaaggcccat tgatccagtg cacggcaagt 1200 gaactccggc ccctgg 1216 <210> 33 <211> 4236 <212> DNA <213> Klebsiella pneumoniae <400> 33 gaacatcgcc agaaagcgtt tcaccgtacg cgagcgctcg aagcgccgcc aggcgatggc 60 gatatcggtc ttcagcggcg ccccgctaag cgggtgatag ctgacgttcg gctgctggat 120 gcaggtcatc gactgcggaa ccagcgcgaa gccgaagcca gcattgacca tgctcagcga 180 cgacgaaatt tgcgacgact gccaggcgcg ctccatatcg atcccggcgc gcagacagct 240 gttgtacacc agctcataca gcccgggggc cacctcccgc gggaagagga tcggcgccac 300 gtcgcgcagc tgctccaggg ccagggtcgg ctgcgtcgcc agcgggttat cgcgcggcag 360 cgcgataacc atcggctcct catcgataat ccgcagatta aaggctttac tgctctcgca 420 cggcaggcgg acgaaggcga tatccagctc ggcctcgctc agggcggtca tcagattggc 480 catattgtct tccatctggt gcagggtcac cccggggtgg tcgagctgaa aacggtgcag 540 cagcgtgaag atttgcggat ggaaagcatc agaactggta atgcctagcg acaggctgcc 600 gttcatcccg cgcgcaatgc ccttggcctt ctccagcgcc gcatcgctca tggcgaggat 660 ctggcgggca tcctcataga aagactctcc cgcttccgtc agctccaccc cgcgggttaa 720 acgccggaac agcggggtcc ccacctcgcg ctcaagccgc tgaatttgct gacttaacgg 780 aggctgtgaa atacccagct ccttggcggc ctgggtgaag tgccgcgtcc tggcgacggc 840 gacaaaatag cgaagataac gaagttccat atcgaaaacg tctcaaacca gcatggtttc 900 tatattggaa ctgtgagctg aatcgggtca acatttattt aacctttctt atatttgttg 960 aacgaggaag tggtatatga atcattctgc tgaatgcacc tgcgaagaga gtctatgcga 1020 aaccctgcgg gcgttttccg cgcagcatcc cgagagcgtg ctctatcaga catcgctcat 1080 gagcgccctg ctgagcgggg tttacgaagg cagcaccacc atcgccgacc tgctgaaaca 1140 cggcgatttc ggcctcggca cctttaatga gctggacggg gagctgatcg ccttcagcag 1200 tcaggtctat cagctgcgcg ccgacggcag cgcgcgcaaa gcccagccgg agcagaaaac 1260 gccgttcgcg gtgatgacct ggttccagcc gcagtaccgg aaaacctttg accatccggt 1320 gagccgccag cagctgcacg aggtgatcga ccagcaaatc ccctctgaca acctgttctg 1380 cgccctgcgc atcgacggcc atttccgcca tgcccatacc cgcaccgtgc cgcgccagac 1440 gccgccgtac cgggcgatga ccgacgtact cgacgatcag ccggtgttcc gctttaacca 1500 gcgcgaaggg gtgctggtcg gcttccggac cccgcagcat atgcagggga tcaacgtcgc 1560 cgggtatcac gagcatttta ttaccgatga ccgcaaaggc ggcggtcacc tgctggatta 1620 ccagctcgac cacggggtgc tgaccttcgg cgaaattcac aagctgatga tcgacctgcc 1680 cgccgacagc gcgttcctgc aggctaatct gcatcccgat aatctcgatg ccgccatccg 1740 ttccgtagaa agttaagggg gtcacatgga caaacagtat ccggtacgcc agtgggcgca 1800 cggcgccgat ctcgtcgtca gtcagctgga agcacagggg gtacgccagg tgttcggcat 1860 ccccggcgcc aaaatcgaca aggtcttcga ttcactgctg gattcctcca ttcgcattat 1920 tccggtacgc cacgaagcca acgccgcatt tatggccgcc gccgtcggac gtattaccgg 1980 caaagcgggc gtggcgctgg tcacctccgg tccgggttgt tctaacctga tcaccggcat 2040 ggccaccgcg aacagcgaag gcgacccggt ggtggccctg ggcggcgcgg taaaacgcgc 2100 cgataaagcc aaacaggtcc accagagtat ggatacggtg gcgatgttca gcccggtcac 2160 caaatacgcc gtcgaggtga cggcgccgga tgcgctggcg gaagtggtct ccaacgcctt 2220 ccgcgccgcc gagcagggcc ggccgggcag cgcgttcgtt agcctgccgc aggatgtggt 2280 cgatggcccg gtcagcggca aagtactgcc ggccagcggg gccccgcaga tgggcgccgc 2340 gccggatgat gccatcgacc aggtggcgaa gcttatcgcc caggcgaaga acccgatctt 2400 cctgctcggc ctgatggcca gccagccgga aaacagcaag gcgctgcgcc gtttgctgga 2460 gaccagccat attccagtca ccagcaccta tcaggccgcc ggagcggtga atcaggataa 2520 cttctctcgc ttcgccggcc gggttgggct gtttaacaac caggccgggg accgtctgct 2580 gcagcttgcc gacctggtga tctgcatcgg ctacagcccg gtggaatacg aaccggcgat 2640 gtggaacagc ggcaacgcga cgctggtgca catcgacgtg ctgcccgcct atgaagagcg 2700 caactacacc ccggatgtcg agctggtagg cgatatcgcc ggcactctca acaagctggc 2760 gcaaaatatc gatcatcggc tggtgctctc cccgcaggca gcggagatcc tccgcgaccg 2820 ccagcaccag cgcgagctgc tggaccgccg cggcgcgcag ctcaaccagt ttgccctgca 2880 tccgctgcgt atcgttcgcg ccatgcagga catcgtcaac agcgacgtca cgttgaccgt 2940 ggacatgggc agcttccata tctggattgc ccgctacctg tacagcttcc gcgcccgcca 3000 ggtgatgatc tccaacggcc agcagaccat gggcgtcgcc ctgccctggg ccatcggcgc 3060 ctggctggtc aatcctgagc gcaaagtggt ctccgtctcc ggcgacggcg gcttcctgca 3120 gtcgagcatg gagctggaga ccgccgtccg cctgaaagcc aacgtgctgc acctgatctg 3180 ggtcgataac ggctacaaca tggtggccat tcaggaagag aaaaaatacc agcgcctgtc 3240 cggcgtcgag tttgggccga tggattttaa agcctatgcc gaatccttcg gcgcgaaagg 3300 gtttgccgtg gaaagcgccg aggcgctgga gccgaccctg cgcgcggcga tggacgtcga 3360 cggcccggcg gtagtggcca tcccggtgga ttatcgcgat aacccgctgc tgatgggcca 3420 gctgcatctg agtcagattc tgtaagtcat cacaataagg aaagaaaaat gaaaaaagtc 3480 gcacttgtta ccggcgccgg ccaggggatt ggtaaagcta tcgcccttcg tctggtgaag 3540 gatggatttg ccgtggccat tgccgattat aacgacgcca ccgccaaagc ggtcgcctcc 3600 gaaatcaacc aggccggcgg ccgcgccatg gcggtgaaag tggatgtttc tgaccgcgac 3660 caggtatttg ccgccgtcga acaggcgcgc aaaacgctgg gcggcttcga cgtcatcgtc 3720 aacaacgccg gcgtggcgcc atccacgccg atcgagtcca ttaccccgga gattgtcgac 3780 aaagtctaca acatcaacgt caaaggggtg atctggggca tccaggcagc ggtcgaggcc 3840 tttaagaaag agggtcacgg cgggaaaatc atcaacgcct gttcccaggc cggccacgtc 3900 ggcaacccgg agctggcggt atatagctcg agtaaattcg cggtacgcgg cttaacccag 3960 accgccgctc gcgacctcgc gccgctgggc atcacggtca acggctactg cccggggatt 4020 gtcaaaacgc cgatgtgggc cgaaattgac cgccaggtgt ccgaagccgc cggtaaaccg 4080 ctgggctacg gtaccgccga gttcgccaaa cgcatcaccc tcggccgcct gtccgagccg 4140 gaagatgtcg ccgcctgcgt ctcctatctt gccagcccgg attctgatta tatgaccggt 4200 cagtcattgc tgatcgacgg cggcatggtg tttaac 4236 <210> 34 <211> 701 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 34 ccagctggtg ctcaatggct tcggcgacag cagccacgcc cgggctgaag tcgccgcgct 60 gggcaagatc cccggctatc acgacgccga cctgcgcgac gtcgggcaga tcgaggcgat 120 gatgcgctat gccgaaagca ccttcggcgg cgtcgatatc gtgatcaata acgccggcat 180 ccagcacgtg gccccggtgg agcagttccc ggtggacaaa tggaacgata ttctcgccat 240 caatctctcc agcgtcttcc acaccacccg cctggcgctg ccgggtatgc gccagcgcaa 300 ctgggggcgc atcatcaaca ttgcctcagt gcatggcctg gtggcgtcga aagagaaatc 360 ggcctacgtc gccgccaagc acgcggtggt cgggctgacc aaaaccgtgg ccctggaaac 420 cgcgcgcagc ggtatcacct gcaacgccat ctgccctggc tgggtgctaa ccccgctggt 480 gcagcagcag atcgacaaac gcatcgccga gggggtcgac ccggagcagg ccagcgccca 540 gctgctggcg gaaaaacagc cctccgggga gtttgtcacc ccgcagcagc tgggcgaaat 600 ggcgctgttt ctgtgcagcg atgccgccgc ccaggtgcgc ggcgccgcat ggaacatgga 660 tggcggctgg gtggcgcagt aagccgctgg cgccgcgaag a 701 <210> 35 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 35 tagaggatcc ccagctggtg ctcaatggct tcg 33 <210> 36 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 36 caagccatgt cagagctttt ttttatcttc gcggcgccag cggc 44 <210> 37 <211> 701 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 37 taaaaaaaag ctctgacatg gcttgcccct gctttcgcgc aggggctttt tttggtttgg 60 gtgtaagtgt aagcatcccg gagaaacgaa gcatcgatat ttgagggctt ctggcgttct 120 cacttacgct tcgacacgac gtgggcaatc tgactgggat gaaggtctga tttgagcgag 180 gagcggaagt tcgggaacgg gatagctctg acctgccacc aggattagat acaaccgtca 240 gttagtaagg tcggtttgtt taccttcaca ttttccattt cgccaccgtg ctgcaaactc 300 tgatggcgtc tgataattca gtgctgaatg tggacgacac tcgttataat cctgccgcca 360 gtcattaatg attttccttg cgtgaacgat atcgctgaac cagtgctcat tcaggcattc 420 atcgcgaaat cgtccgttaa agctctcaat aaatccgttc tgcgttggct tgcccggctg 480 gattaagcgc aactcaacac catgctcaaa ggcccattga tccagtgcac ggcaagtgaa 540 ctccggcccc tggtcagttc ttatcgtcgc cggatagcct cgaaacagtg caatgctgtc 600 cagaatacgc gagacctgaa cgcctgaaat cccaaaggca acagtgaccg tcaggcattc 660 ctttgtgaaa tcatcgacgc aggtaagaca cttgatcctg c 701 <210> 38 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 38 gccgctggcg ccgcgaagat aaaaaaaagc tctgacatgg cttg 44 <210> 39 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 39 gatcgcggcc gcgcaggatc aagtgtctta cctgcg 36 <210> 40 <211> 1402 <212> DNA <213> Artificial Sequence <220> <223> artificial sequence <400> 40 ccagctggtg ctcaatggct tcggcgacag cagccacgcc cgggctgaag tcgccgcgct 60 gggcaagatc cccggctatc acgacgccga cctgcgcgac gtcgggcaga tcgaggcgat 120 gatgcgctat gccgaaagca ccttcggcgg cgtcgatatc gtgatcaata acgccggcat 180 ccagcacgtg gccccggtgg agcagttccc ggtggacaaa tggaacgata ttctcgccat 240 caatctctcc agcgtcttcc acaccacccg cctggcgctg ccgggtatgc gccagcgcaa 300 ctgggggcgc atcatcaaca ttgcctcagt gcatggcctg gtggcgtcga aagagaaatc 360 ggcctacgtc gccgccaagc acgcggtggt cgggctgacc aaaaccgtgg ccctggaaac 420 cgcgcgcagc ggtatcacct gcaacgccat ctgccctggc tgggtgctaa ccccgctggt 480 gcagcagcag atcgacaaac gcatcgccga gggggtcgac ccggagcagg ccagcgccca 540 gctgctggcg gaaaaacagc cctccgggga gtttgtcacc ccgcagcagc tgggcgaaat 600 ggcgctgttt ctgtgcagcg atgccgccgc ccaggtgcgc ggcgccgcat ggaacatgga 660 tggcggctgg gtggcgcagt aagccgctgg cgccgcgaag ataaaaaaaa gctctgacat 720 ggcttgcccc tgctttcgcg caggggcttt ttttggtttg ggtgtaagtg taagcatccc 780 ggagaaacga agcatcgata tttgagggct tctggcgttc tcacttacgc ttcgacacga 840 cgtgggcaat ctgactggga tgaaggtctg atttgagcga ggagcggaag ttcgggaacg 900 ggatagctct gacctgccac caggattaga tacaaccgtc agttagtaag gtcggtttgt 960 ttaccttcac attttccatt tcgccaccgt gctgcaaact ctgatggcgt ctgataattc 1020 agtgctgaat gtggacgaca ctcgttataa tcctgccgcc agtcattaat gattttcctt 1080 gcgtgaacga tatcgctgaa ccagtgctca ttcaggcatt catcgcgaaa tcgtccgtta 1140 aagctctcaa taaatccgtt ctgcgttggc ttgcccggct ggattaagcg caactcaaca 1200 ccatgctcaa aggcccattg atccagtgca cggcaagtga actccggccc ctggtcagtt 1260 cttatcgtcg ccggatagcc tcgaaacagt gcaatgctgt ccagaatacg cgagacctga 1320 acgcctgaaa tcccaaaggc aacagtgacc gtcaggcatt cctttgtgaa atcatcgacg 1380 caggtaagac acttgatcct gc 1402

Claims (14)

  1. 피루베이트 및 아세틸 코에이 생합성 경로를 갖는 미생물에 있어서,
    피루베이트를 락테이트로 전환하는 경로 및 아세토락테이트를 아세토인으로 전환하는 경로가 억제되고,
    2,3-부탄디올의 생성이 억제된 것을 특징으로 하는 1,3-프로판디올 생산용 재조합 미생물.
  2. 제 1항에 있어서,
    알파-아세토락테이트 디카르복실라아제가 억제됨으로써 아세토락테이트를 아세토인으로 전환하는 경로가 억제되는 것을 특징으로 하는 1,3-프로판디올 생산용 재조합 미생물.
  3. 제 1항에 있어서,
    알파-아세토락테이트 디카르복실라아제, 알파-아세토락테이트 합성효소 및 아세토인 리덕타아제가 억제되는 것을 특징으로 하는 1,3-프로판디올 생산용 재조합 미생물.
  4. 제 1항에 있어서,
    서열번호 33의 염기 서열을 갖는 유전자가 억제된 것을 특징으로 하는 1,3-프로판디올 생산용 재조합 미생물.
  5. 제 1항에 있어서,
    포름산 생성이 억제된 것을 특징으로 하는 1,3-프로판디올 생산용 재조합 미생물.
  6. 제 1항에 있어서,
    피루베이트를 아세토락테이트로 전환하는 경로 또는 아세토인을 2,3 부탄디올로 전환하는 경로가 억제되는 것을 특징으로 하는 1,3-프로판디올 생산용 재조합 미생물.
  7. 제 1항에 있어서,
    숙신산 생성이 억제된 것을 특징으로 하는 1,3-프로판디올 생산용 재조합 미생물.
  8. 제 1항에 있어서,
    피루베이트를 아세토락테이트로 전환하는 경로 및 아세토인을 2,3 부탄디올로 전환하는 경로가 억제되는 것을 특징으로 하는 1,3-프로판디올 생산용 재조합 미생물.
  9. 제 1항에 있어서,
    락테이트 탈수소화효소가 억제된 것을 특징으로 하는 1,3-프로판디올 생산용 재조합 미생물.
  10. 제 1항에 있어서,
    피루베이트를 포름산으로 전환하는 경로가 추가로 억제된 것을 특징으로 하는 1,3-프로판디올 생산용 재조합 미생물.
  11. 제 1항에 있어서,
    피루베이트 포르메이트 리아제가 추가로 억제된 것을 특징으로 하는 1,3-프로판디올 생산용 재조합 미생물.
  12. 제 1항에 있어서,
    알파-아세토락테이트 합성효소 또는 아세토인 리덕타아제가 억제된 것을 특징으로 하는 1,3-프로판디올 생산용 재조합 미생물.
  13. 제 1항에 있어서,
    알파-아세토락테이트 합성효소 및 아세토인 리덕타아제가 억제된 것을 특징으로 하는 1,3-프로판디올 생산용 재조합 미생물.
  14. 제 1항 내지 제 13항 중 어느 한 항의 재조합 미생물을 배양하는 단계;및
    상기 배양물로부터 1,3-프로판디올을 회수하는 단계를 포함하는,
    1,3-프로판디올의 생산 방법.
KR1020130156803A 2013-12-16 2013-12-16 1,3-프로판디올 생성능이 개선된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 생산 방법 KR101577503B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020130156803A KR101577503B1 (ko) 2013-12-16 2013-12-16 1,3-프로판디올 생성능이 개선된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 생산 방법
CN201480068693.6A CN105829523B (zh) 2013-12-16 2014-12-16 1,3-丙二醇的生产率得到改善的重组微生物及利用其的1,3-丙二醇的生产方法
US15/104,979 US9932609B2 (en) 2013-12-16 2014-12-16 Recombinant microorganism having enhanced 1,3-propanediol producing ability and method for producing 1,3-propanediol using the same
PCT/KR2014/012429 WO2015093832A1 (ko) 2013-12-16 2014-12-16 1,3-프로판디올 생성능이 개선된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 생산 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130156803A KR101577503B1 (ko) 2013-12-16 2013-12-16 1,3-프로판디올 생성능이 개선된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 생산 방법

Publications (2)

Publication Number Publication Date
KR20150069977A KR20150069977A (ko) 2015-06-24
KR101577503B1 true KR101577503B1 (ko) 2015-12-14

Family

ID=53403099

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130156803A KR101577503B1 (ko) 2013-12-16 2013-12-16 1,3-프로판디올 생성능이 개선된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 생산 방법

Country Status (4)

Country Link
US (1) US9932609B2 (ko)
KR (1) KR101577503B1 (ko)
CN (1) CN105829523B (ko)
WO (1) WO2015093832A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190063899A (ko) * 2017-11-30 2019-06-10 고려대학교 산학협력단 1,3-프로판디올 생성능이 향상된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 제조방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101577503B1 (ko) * 2013-12-16 2015-12-14 지에스칼텍스 주식회사 1,3-프로판디올 생성능이 개선된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 생산 방법
CN105936915A (zh) * 2016-03-24 2016-09-14 中国科学院南海海洋研究所 一株双基因敲除工程菌及其构建方法和在发酵生产1,3-丙二醇中的应用
CN106282083B (zh) * 2016-09-26 2019-10-25 中国科学院青岛生物能源与过程研究所 一种利用葡萄糖合成d-乳酸的重组菌及其构建方法与应用
CN110423786A (zh) * 2019-06-26 2019-11-08 华东理工大学 强化丙酮酸脱氢酶途径高效生产1,3-丙二醇的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024843A (zh) 1999-08-18 2007-08-29 纳幕尔杜邦公司 用于生产高效价1,3-丙二醇的生物学方法
KR100456450B1 (ko) 2002-12-04 2004-11-10 주식회사 무궁화 폐글리세롤을 1,3-프로판디올로 전환하는 신균주 및이를 이용한 1,3-프로판디올 생산방법
JP2010508013A (ja) 2006-10-31 2010-03-18 メタボリック エクスプローラー グリセロールから1,3−プロパンジオールを高収量で生物学的に製造する方法
US8455224B2 (en) * 2008-09-29 2013-06-04 Butamax(Tm) Advanced Biofuels Llc Enhanced pyruvate to 2,3-butanediol conversion in lactic acid bacteria
KR101145405B1 (ko) 2008-12-03 2012-05-16 한국생명공학연구원 글리세롤 산화경로가 차단된 1、3―프로판디올 생산 변이체
CN102952826B (zh) * 2012-04-01 2015-02-04 中国科学院上海高等研究院 消除克雷伯氏肺炎杆菌合成2,3-丁二醇和乙偶姻能力的方法
CN103305543A (zh) * 2013-06-09 2013-09-18 中国科学院南海海洋研究所 一株失活乙酰乳酸合成酶的工程菌及其在生产1,3-丙二醇中的应用
KR101577503B1 (ko) * 2013-12-16 2015-12-14 지에스칼텍스 주식회사 1,3-프로판디올 생성능이 개선된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 생산 방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Appl Microbiol Biotechnol, vol.(73), pp. 1017-1024(2007)*
KSBB, Abstracts of Current Biotechnology and Bioengineering(XXXII), OP18(2013. 10.)*
Microbial Cell Factories, 12:20(2013.2.27.)*
논문1: J BIOTECHNOL.*

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190063899A (ko) * 2017-11-30 2019-06-10 고려대학교 산학협력단 1,3-프로판디올 생성능이 향상된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 제조방법
KR101990104B1 (ko) * 2017-11-30 2019-06-18 고려대학교 산학협력단 1,3-프로판디올 생성능이 향상된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 제조방법

Also Published As

Publication number Publication date
CN105829523A (zh) 2016-08-03
KR20150069977A (ko) 2015-06-24
US9932609B2 (en) 2018-04-03
CN105829523B (zh) 2020-08-11
WO2015093832A1 (ko) 2015-06-25
US20160319308A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
CA2679989C (en) New micro-organisms for the production of 1,2-propanediol obtained by a combination of evolution and rational design
US8507250B2 (en) Methods and genetically engineered micro-organisms for the combined production of PDO, BDO and PHP by fermentation
KR101577503B1 (ko) 1,3-프로판디올 생성능이 개선된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 생산 방법
JP2012506716A (ja) グリセロールを化学物質に変換するための微好気性培養
CN105829524B (zh) D(-)型2,3-丁二醇的生产率得到增强的重组微生物及利用其的d(-)型2,3-丁二醇的生产方法
CN105051181B (zh) 2,3-丁二醇的生成能力增加的重组微生物及利用其的2,3-丁二醇的制备方法
JP5706907B2 (ja) グリセロールから3−ヒドロキシプロピオン酸を産生する新しい方法
KR102109763B1 (ko) 2,3―부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3―부탄디올의 생산 방법
US20110262980A1 (en) Micro-organisms for the production of acetol obtained by a combination of evolution and rational design
US11814663B2 (en) Microorganisms with improved 1,3-propanediol and butyric acid production
CN112280723B (zh) 联产1,3-丙二醇和1,3-丁二醇的重组菌及其应用
KR20150011111A (ko) 대장균 돌연변이체 및 이를 사용한 유기산 합성방법
WO2010050231A1 (ja) シロ-イノシトール産生細胞および当該細胞を用いたシロ-イノシトール製造方法
KR101473532B1 (ko) 부탄올 생성능이 증강된 재조합 미생물 및 이를 이용한 부탄올 생산 방법
KR20150010904A (ko) 부티르알데히드 데히드로게나제 변이체, 상기 변이체를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터, 미생물, 및 이를 이용한 1,4-부탄디올의 생산 방법
JP6528295B1 (ja) ヒドロゲノフィラス属細菌形質転換体
EP3257945B1 (en) Recombinant microorganism for diol production
US20160244730A1 (en) Recombinant microorganism having enhanced ability to produce 2,3-butanediol and method for producing 2,3-butanediol using same
JP6450912B1 (ja) ヒドロゲノフィラス属細菌形質転換体
JP2024513194A (ja) 副産物の生成が低減した2,3-ブタンジオール生産用の組換え微生物、及びこれを用いる2,3-ブタンジオールの生産方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181210

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191209

Year of fee payment: 5