KR101566328B1 - 메탈로센 화합물 및 그 제조방법 - Google Patents

메탈로센 화합물 및 그 제조방법 Download PDF

Info

Publication number
KR101566328B1
KR101566328B1 KR1020140067698A KR20140067698A KR101566328B1 KR 101566328 B1 KR101566328 B1 KR 101566328B1 KR 1020140067698 A KR1020140067698 A KR 1020140067698A KR 20140067698 A KR20140067698 A KR 20140067698A KR 101566328 B1 KR101566328 B1 KR 101566328B1
Authority
KR
South Korea
Prior art keywords
carbon atoms
formula
aryl
group
arylalkyl
Prior art date
Application number
KR1020140067698A
Other languages
English (en)
Inventor
김세영
조민석
김대환
이승민
박성호
이기수
홍복기
이용호
조경진
한창완
박진영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020140067698A priority Critical patent/KR101566328B1/ko
Priority to US14/911,995 priority patent/US9701774B2/en
Priority to CN201580001739.7A priority patent/CN105518033B/zh
Priority to JP2017516624A priority patent/JP6458138B2/ja
Priority to EP15802807.6A priority patent/EP3006471B1/en
Priority to PCT/KR2015/005530 priority patent/WO2015186952A1/ko
Application granted granted Critical
Publication of KR101566328B1 publication Critical patent/KR101566328B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged

Abstract

본 발명은 분자량 분포가 높고 높은 분자량을 갖는 폴리올레핀을 제조할 수 있는 신규한 구조의 메탈로센 화합물 및 그 제조방법에 관한 것이다. 본 발명에 따른 메탈로센 화합물은 비가교된 촉매 구조를 포함하며, ansa-type 촉매 수준의 공중합성을 구현하여 30만 이상의 높은 분자량을 갖는 폴리올레핀을 제조할 수 있다.

Description

메탈로센 화합물 및 그 제조방법 {Metallocene compound and method for preparing the same}
본 발명은 고중합성을 갖는 폴리에틸렌을 제조하기 위한 신규한 구조의 비가교형 메탈로센 촉매 및 그 제조방법에 관한 것이다.
기존의 상업 프로세스에 널리 적용되는 지글러-나타 촉매는 다활성점 촉매이기 때문에 생성 고분자의 분자량 분포가 넓은 것이 특징이며 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다.
반면, 메탈로센 촉매는 하나의 종류의 활성점을 가진 단일 활성점 촉매로 생성 중합체의 분자량 분포가 좁고 촉매와 리간드의 구조에 따라 분자량, 입체 규칙도, 결정화도, 특히 공단량체의 반응성을 대폭 조절할 수 있는 장점이 있다.
이러한 메탈로센 촉매로서, 국제공개특허 제2008/084931호에는 아미도 그룹이 도입된 모노시클로펜타디에닐 리간드가 배위된 전이금속 화합물을 개시하고 있다. 그러나, 이러한 방법에 따른 메탈로센 촉매로 중합한 폴리올레핀은 분자량 분포가 좁아 일부 제품에 응용할 경우, 압출부하 등의 영향으로 생산성이 현저히 떨어지는 등 현장적용이 어려운 문제가 있어 이와 관련된 폴리올레핀의 분자량 분포를 조절하려는 노력을 많이 해왔다. 분자량 분포가 좁은 고분자는 용융 유동성 및 용융 장력이 낮고, 성형성이 떨어지며, 강성이 저하되는 요인으로 작용할 수 있다.
그런데, 일반적으로 저분자량 폴리에틸렌 제조시 사용하는 메탈로센 촉매 전구체는 중심 금속에 배위된 리간드의 크기가 작고, 가교되지 않은 형태의 구조를 갖는다. 이들 촉매는 높은 활성으로 저분자량의 폴리머를 제조할 수 있으나, 기타 ansa-type의 촉매에 비해 작은 바이트 각도 (bite angle) (Cp-Metal-Cp)에 의해 1-헥센(1-hexene)과 같은 공단량체(comonomer)의 공중합성이 상대적으로 감소하는 문제점이 있다.
또한 담지 중합 기준으로 중저분자량을 구현하기 위해 리간드에 추가로 치환기를 도입하거나 부피를 키우는 경우 분자량 상승 효과는 얻을 수 있으나 공중합성은 더욱 감소하는 결과를 가져오는 것이 일반적인 경향이다.
따라서, 우수한 공중합성을 가지며 높은 분자량을 갖는 폴리에틸렌 제조용 촉매의 개발이 필요하다.
본 발명의 목적은 비가교된 촉매 구조를 유지하면서 분자량의 크기를 높이기 위한 치환기의 위치를 변경하여 30만 이상의 높은 분자량(Mw)과 함께 ansa-type 촉매 수준의 공중합성을 구현할 수 있는 신규한 구조의 메탈로센 화합물 및 그의 제조 방법을 제공하고자 한다.
본 발명의 다른 목적은 상기 고공중합성을 갖는 폴리에틸렌 제조용 비가교형 메탈로센 화합물을 이용한 메탈로센 촉매 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 촉매 조성물을 이용한 폴리에틸렌의 제조방법을 제공하는 것이다.
본 발명은 하기 화학식 1로 표시되는 메탈로센 화합물을 제공한다:
[화학식 1]
Figure 112014052669816-pat00001
상기 화학식 1에서,
R1은 하기 화학식 a 또는 b로 표시되는 벤젠 고리에 퓨즈된(fused) 5각 또는 6각의 방향족 고리를 포함하는 구조를 가지며,
[화학식 a]
Figure 112014052669816-pat00002
[화학식 b]
Figure 112014052669816-pat00003
상기 화학식 a 및 b의 식에서, X는 C, N, O 또는 S이고;
R2는 수소이고,
R3 내지 R6은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며;
R9 내지 R12은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 4 내지 20의 직쇄 또는 분지쇄의 알킬기, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며;
M은 4족 전이금속이고; 및
X1 및 X2는 서로 같거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이다.
또한, 본 발명의 다른 구현예에 따르면, 하기 화학식 2로 표시되는 화합물과; 하기 화학식 3으로 표시되는 화합물을 반응시키는 단계;를 포함하는, 청구항 1의 화학식 1의 메탈로센 화합물의 제조방법을 제공한다:
[화학식 1]
Figure 112014052669816-pat00004
상기 화학식 1에서,
R1은 하기 화학식 a 또는 b로 표시되는 벤젠 고리에 퓨즈된 5각 또는 6각의 방향족 고리를 포함하는 구조를 가지며,
[화학식 a]
Figure 112014052669816-pat00005
[화학식 b]
Figure 112014052669816-pat00006
상기 화학식 a 및 b의 식에서, X는 C, N, O 또는 S이고;
R2는 수소이고,
R3 내지 R6은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며;
R9 내지 R12은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 4 내지 20의 직쇄 또는 분지쇄의 알킬기, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며;
M은 4족 전이금속이고; 및
X1 및 X2는 서로 같거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이고;
[화학식 2]
Figure 112014052669816-pat00007
상기 화학식 2에서,
R1은 화학식 1의 정의와 같으며,
R2 내지 R7은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며;
[화학식 3]
Figure 112014052669816-pat00008
상기 화학식 3에서,
R9 내지 R12은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 4 내지 20의 직쇄 또는 분지쇄의 알킬기, -MX1X2, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며, 이때 R8 내지 R12 중 적어도 하나는 -MX1X2로 치환되어 있으며;
M은 4족 전이금속이고; 및
X1 및 X2는 서로 같거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이다.
또한 본 발명은 상술한 메탈로센 화합물을 포함하는 촉매 조성물의 존재 하에, 올레핀계 단량체를 중합하는 단계를 포함하는, 올레핀계 중합체의 제조 방법을 제공한다.
본 발명에 따른 메탈로센 화합물은 비가교형 촉매로서 ansa-type 수준의 공중합성을 가지는 신규한 구조를 제공한다. 특히, 본 발명의 메탈로센 촉매 화합물은 유사한 구조의 비가교형 촉매 대비 높은 공중합성과 활성을 보이며, 담지 촉매 제조 후 중합시 30만 이상의 높은 분자량을 구현할 수 있는 효과를 제공한다. 따라서, 본 발명의 방법으로 제조된 폴리올레핀은 분자량 분포가 넓고 고분자량을 나타낼 수 있다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하에서 본 발명을 상세하게 설명한다.
본 발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 메탈로센 화합물이 제공된다.
[화학식 1]
Figure 112014052669816-pat00009
상기 화학식 1에서,
R1은 하기 화학식 a 또는 b로 표시되는 벤젠 고리에 퓨즈된 5각 또는 6각의 방향족 고리를 포함하는 구조를 가지며,
[화학식 a]
Figure 112014052669816-pat00010
[화학식 b]
Figure 112014052669816-pat00011
상기 화학식 a 및 b의 식에서, X는 C, N, O 또는 S이고;
R2는 수소이고,
R3 내지 R6은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며;
R9 내지 R12은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 4 내지 20의 직쇄 또는 분지쇄의 알킬기, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며;
M은 4족 전이금속이고; 및
X1 및 X2는 서로 같거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이다.
안사 메탈로센(ansa-metallocene) 화합물은 브릿지 그룹에 의해 서로 연결된 두 개의 리간드를 포함하는 촉매 화합물로서, 상기 브릿지 그룹(bridge group)에 의해 리간드의 회전이 방지되고, 메탈 센터의 활성 및 구조가 결정된다.
이러한 구조 특성에 착안하여, 본 발명에서는 5각 또는 6각의 고리형 구조가 도입된 인데닐기와 시클로펜타디에닐기 리간드를 포함하는 구조를 메탈로센 화합물로 제공함으로써, 기존 대비 우수한 촉매 특성을 나타냄을 확인하였다.
즉, 상기 화학식 1의 화합물은 메탈로센 촉매의 특징인 비가교형을 가져 높은 활성을 나타내고, 또한 안사형 촉매 수준의 공중합성을 나타내어 1-헥센과 같은 공단량체와의 공중합성이 우수한 효과가 있다. 또한 상기 인데닐기와 시클로펜타디에닐기의 리간드는 높은 입체 규칙성을 요구하는 올레핀 제조에 사용 가능하다.
그러므로, 본 발명은 올레핀 중합시 중합 촉매로서 일반적으로 사용되는 기존의 일반적인 메탈로센 촉매 대비, 비가교형의 ansa-type 촉매 수준의 높은 공중합성을 구현할 수 있는 신규 구조의 전이금속 촉매의 합성방법을 제공할 수 있다.
또한 본 발명의 메탈로센 화합물은 비가교된 촉매 구조를 유지하면서 분자량의 크기를 높이기 위한 치환기 위치를 변경하여, 30만 이상의 높은 분자량을 갖는 올레핀계 중합체, 바람직하게 폴리에틸렌을 제공할 수 있다.
또한, 본 발명의 메탈로센 화합물은 일반적인 담체를 포함하지 않아도 우수한 활성을 나타낼 수 있고, 폴리올레핀 중합시 올레핀계 고분자의 미세 구조를 쉽게 제어할 수 있다. 즉, 본 발명은 담체 없이 전구체 자체 특성만으로도 우수한 효과를 나타낼 수 있다. 따라서, 본 발명의 메탈로센 화합물은 비담지 및 비균일계 촉매일 수 있다.
이러한 본 발명의 일 실시예에 따르면, 상기 화학식 1의 메탈로센 화합물에 있어서, 상기 화학식 a 및 b는 X치환기와 인접하는 탄화수소를 갖는 치환기가 서로 연결되어 5각 또는 6각의 방향족 고리를 형성할 수 있으며, 이에 따라 벤젠고리에 퓨즈된 고리를 갖는 구조를 형성한다. 따라서, 상기 화학식 a 및 b는 인덴 또는 나프탈렌 구조를 포함할 수 있다. 또한, 상기 화학식 a 및 b에서 5각 또는 6각의 고리형 구조는 탄소수 1 내지 20의 알킬기로 치환되거나 비치환된 질소를 포함할 수도 있다. 바람직하게, 상기 화학식 a 및 b의 X는 각각 탄소원자(C)이고, 벤젠고리에 퓨즈된 6각의 방향족 고리를 갖는 나프탈렌 구조를 포함하는 것이 바람직하다.
또한, 상기 화학식 1의 R2 내지 R6은 각각 독립적으로 수소이고, R9 내지 R12은 각각 독립적으로 수소 또는 탄소수 4 내지 10의 직쇄 또는 분지쇄의 알킬기일 수 있다. 보다 바람직하게, 상기 화학식 1의 R2 내지 R6은 각각 독립적으로 수소이고, R9 내지 R12 중 적어도 하나는 부틸기이고 나머지 치환기는 수소일 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다.
또한, 상기 M은 티타늄(Ti), 지르코늄(Zr), 또는 하프늄(Hf)일 수 있고, 상기 X1및 X2는 각각 독립적으로 할로겐 또는 탄소수 1 내지 20의 알킬기일 수 있으나, 본 발명이 이에 한정되는 것은 아니다.
또한 본 발명의 메탈로센 화합물은 7 내지 15 g/molㆍhr의 촉매 활성을 가질 수 있다.
상기 화학식 1로 표시되는 메탈로센 화합물의 예로는 하기 구조식의 화합물 중에서 선택된 어느 하나일 수 있으나, 이에 한정되는 것은 아니다.
Figure 112014052669816-pat00012
또는
Figure 112014052669816-pat00013

한편, 본 발명의 다른 일 측면에 따르면, 하기 화학식 2로 표시되는 화합물과 하기 화학식 3으로 표시되는 화합물을 반응시키는 단계를 포함하는, 하기 화학식 1로 표시되는 메탈로센 화합물의 제조방법이 제공된다.
[화학식 1]
Figure 112014052669816-pat00014
상기 화학식 1에서,
R1은 하기 화학식 a 또는 b로 표시되는 벤젠 고리에 퓨즈된 5각 또는 6각의 방향족 고리를 포함하는 구조를 가지며,
[화학식 a]
Figure 112014052669816-pat00015
[화학식 b]
Figure 112014052669816-pat00016
상기 화학식 a 및 b의 식에서, X는 C, N, O 또는 S이고;
R2는 수소이고,
R3 내지 R6은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며;
R9 내지 R12은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 4 내지 20의 직쇄 또는 분지쇄의 알킬기, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며;
M은 4족 전이금속이고; 및
X1 및 X2는 서로 같거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이고;
[화학식 2]
Figure 112014052669816-pat00017
상기 화학식 2에서,
R1은 화학식 1의 정의와 같으며,
R2 및 R7은 각각 독립적으로 수소이고,
R3 내지 R6은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며;
[화학식 3]
Figure 112014052669816-pat00018
상기 화학식 3에서,
R9 내지 R12은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 4 내지 20의 직쇄 또는 분지쇄의 알킬기, -MX1X2, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며, 이때 R8 내지 R12 중 적어도 하나는 -MX1X2로 치환되어 있으며;
M은 4족 전이금속이고; 및
X1 및 X2는 서로 같거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이다.
본 발명의 화학식 2로 표시되는 화합물과 화학식 3으로 표시되는 화합물을 반응시킬 때, 그 반응은 저온 및 용매 하에서 수행될 수 있다. 바람직하게, 상기 반응은 염기 존재하에 유기 용매 하에 -80℃ 내지 -20℃의 온도에서 교반하여 수행될 수 있다. 본 발명에서는 저온에서 반응을 진행함에 따라, 반응의 선택성을 높일 수 있다.
상기 염기는 n-BuLi 등이 있으나, 본 발명이 이에 한정되는 것은 아니다. 상기 화학식 2의 화합물과 화학식 3의 화합물은 1:1의 몰비로 반응시킬 수 있다.
한편, 상기 화학식 2로 표시되는 화합물은 유기 용매 하에, 하기 화학식 4의 인덴계 화합물과 하기 화학식 5의 5각 또는 6각의 방향족 고리를 포함하는 고리형 화합물을 촉매 하에 반응시켜 제조될 수 있다.
[화학식 4]
Figure 112014052669816-pat00019
상기 화학식 4에서,
R2 내지 R6은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며;
X3은 할로겐이고;
[화학식 5]
Figure 112014052669816-pat00020
또는
Figure 112014052669816-pat00021
상기 식에서,
X는 C, N, O 또는 S이고;
A는 -B(OH)2, 또는 그리냐드 시약이다.
상기 화학식 4의 화합물에서, X3은 브롬원자일 수 있고, R2 내지 R7은 각각 수소일 수 있지만, 본 발명이 이에 한정되지 않는다. 이러한 화학식 4의 할로겐 치환된 화합물은 인덴계 화합물로부터 NBS과 p-톨루엔 술폰산 등을 이용한 반응을 통해 제조될 수 있으며, 그 방법은 유기 합성 분야에서 잘 알려진 방법으로 진행될 수 있다.
상기 화학식 5의 고리형 화합물은 벤젠 고리에 퓨즈된 5각 또는 6각의 방향족 고리를 포함하는 것을 의미한다.
상기 화학식 5의 A에서 그리냐드 시약(Grignard reagent)은 -MgCl 또는 -MgBr을 포함할 수 있다.
또한, 상기 화학식 5의 화합물은 루이스산으로 사용되며, 화학식 4의 화합물 1몰 대비 1: 1 내지 2의 몰비로 사용할 수 있다.
또한 상기 화학식 2의 화합물을 제조하는 반응은 팔라듐 또는 니켈계 금속 촉매 하에서 진행할 수 있다. 예를 들어, 상기 화학식 5의 A가 "-B(OH)2"인 경우, 팔라듐 촉매하에서 반응이 진행될 수 있다. 또한 상기 화학식 5의 A가 그리냐드 시약일 경우는 팔라듐 대신 니켈계 촉매를 사용하는 커플링 반응을 통해 화학식 2의 화합물을 얻을 수 있다.
또한, 본 발명에서 메탈로센 화합물을 제조할 때 사용되는 용매는, 톨루엔, 벤젠등의 방향족 용매, THF, DMSO 등의 용매를 단독 또는 혼합 사용이 가능하다.
상기 메탈로센 화합물의 제조 방법에서, 각 반응의 교반 방법과 그 시간은 특별히 한정되지 않는다. 또한, 메탈로센 화합물을 얻기 위해 사용되는 정제 방법은 유기합성 방법에서 사용되는 일반적인 방법이 사용될 수 있다.
한편, 본 발명의 다른 구현예에 따르면, 상술한 메탈로센 화합물을 포함하는 촉매 조성물의 존재 하에, 올레핀계 단량체를 중합하는 단계를 포함하는, 올레핀계 중합체의 제조 방법이 제공된다.
상기 화학식 1로 표시되는 메탈로센 화합물은 단독으로 또는 조촉매와 함께 촉매 조성물로써 폴리올레핀 중합체를 제조하는데 사용할 수 있으며, 특히 고분자량의 폴리올레핀을 고활성으로 생산할 수 있다. 예를 들어, 상기 화학식 1로 표시되는 메탈로센 화합물을 포함하는 촉매 조성물과 올레핀계 단량체를 접촉시켜 중합 공정을 수행하면, 공단량체와의 중합성이 크게 향상되어 높은 분자량을 갖는 올레핀계 중합체를 제조할 수 있다.
상기 올레핀계 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센 및 1-아이토센으로 이루어진 군에서 선택되는 1 종 이상일 수 있다.
따라서, 본 발명의 올레핀계 중합체는 에틸렌과 알파올레핀계 공단량체의 중합한 에틸렌/알파올레핀 공중합체를 포함할 수 있다.
상기 알파 올레핀계 공단량체로는 탄소수 4 이상인 알파 올레핀이 사용될 수 있다. 예를 들면, 탄소수 4 이상의 알파 올레핀으로는 상술한 바와 같은 1-부텐, 1-펜텐, 1-헥센, 4-메틸-1-펜텐, 1-옥텐, 1-데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-옥타데센 등이 있으나, 이에만 한정되는 것은 아니다. 이 중 탄소수 4 ~ 10의 알파 올레핀이 바람직하며, 1종 또는 여러 종류의 알파 올레핀이 함께 공단량체로 사용될 수도 있다.
또한 본 발명에서 상기 중합 반응은 하나의 연속식 슬러리 중합 반응기, 루프 슬러리 반응기, 기상 반응기 또는 용액 반응기를 이용하여, 하나의 올레핀 단량체로 호모중합하거나 또는 2종 이상의 단량체로 공중합하여 진행할 수 있다.
상기 올레핀계 단량체의 중합은 약 25 내지 약 500℃의 온도 및 약 1 내지 약 100 kgf/cm2에서 약 1 내지 약 24시간 동안 반응시켜 수행할 수 있다. 구체적으로, 상기 올레핀계 단량체의 중합은 약 25 내지 약 500℃, 바람직하게는 약 25 내지 약 200℃, 보다 바람직하게는 약 50 내지 약 100℃ 의 온도에서 수행할 수 있다. 또한 반응 압력은 약 1 내지 약 100 kgf/cm2, 바람직하게는 약 1 내지 약 50 kgf/cm2, 보다 바람직하게는 약 5 내지 약 40 kgf/cm2에서 수행할 수 있다.
또한, 본 발명은 필요에 따라 촉매 조성물에 조촉매를 더 포함할 수 있으며, 그 종류가 특별히 한정되지 않는다.
바람직하게, 상기 촉매 조성물은 하기 화학식 6, 화학식 7 또는 화학식 8로 표시되는 화합물로 이루어진 군에서 선택된 1종 이상의 조촉매를 더욱 포함할 수 있다.
[화학식 6]
-[Al(R13)-O]n-
상기 화학식 6에서,
R13은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
n은 2 이상의 정수이며;
[화학식 7]
J(R13)3
상기 화학식 7에서,
R13은 상기 화학식 8에서 정의된 바와 같고;
J는 알루미늄 또는 보론이며;
[화학식 8]
[E-H]+[ZA'4]- 또는 [E]+[ZA'4]-
상기 화학식 8에서,
E는 중성 또는 양이온성 루이스 산이고;
H는 수소 원자이며;
Z는 13족 원소이고;
A'는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
상기 화학식 6으로 표시되는 화합물의 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있으며, 더욱 바람직한 화합물은 메틸알루미녹산이다.
상기 화학식 7로 표시되는 화합물의 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등이 포함되며, 더욱 바람직한 화합물은 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄 중에서 선택된다.
상기 화학식 8로 표시되는 화합물의 예로는 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라(p-톨릴)보론, 트리메틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리메틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리부틸암모니움테트라펜타플로로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플로로페닐보론, 디에틸암모니움테트라펜타플로로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라(p-톨릴)알루미늄, 트리프로필암모니움테트라(p-톨릴)알루미늄, 트리에틸암모니움테트라(o,p-디메틸페닐)알루미늄, 트리부틸암모니움테트라(p-트리플로로메틸페닐)알루미늄, 트리메틸암모니움테트라(p-트리플로로메틸페닐)알루미늄, 트리부틸암모니움테트라펜타플로로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플로로페닐알루미늄, 디에틸암모니움테트라펜타테트라페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리프로필암모니움테트라(p-톨릴)보론, 트리에틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라(p-트리플로로메틸페닐)보론, 트리페닐카보니움테트라펜타플로로페닐보론 등이 있다.
바람직하게는, 조촉매는 알룸옥산을 사용할 수 있으며, 더 바람직하게는 알킬알룸옥산인 메틸알룸옥산(MAO)이다.
또한, 본 발명에서 상기 메탈로센 화합물과 조촉매 화합물의 몰비는 특별히 한정되지 않지만, 1:10 내지 10:1일 수 있다.
또한, 상기 촉매 조성물은 반응 용매를 추가로 포함할 수 있고, 상기 반응 용매로는 펜탄, 헥산 또는 헵탄 등과 같은 탄화수소계 용매; 벤젠 또는 톨루엔 등과 같은 방향족계 용매 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
이상과 같은 방법으로 제조되는 올레핀계 중합체는 높은 분자량을 가질 수 있는데, 바람직하게 30만 이상의 중량평균분자량을 가질 수 있다. 또한, 본 발명의 일 실시예에 따르면, 상기 올레핀계 중합체의 경우 에틸렌 단량체 대비 알파올레핀의 몰%(branch)가 4 내지 8몰%일 수 있다.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상세히 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
< 실시예 >
하기 실시예에 사용된 유기 시약 및 용매는 특별한 언급이 없으면 알드리치(Aldrich) 사에서 구입하여 표준 방법으로 정제하여 사용하였다. 합성의 모든 단계에서 공기와 수분의 접촉을 차단하여 실험의 재현성을 높였다.
< 실시예 1>
(1) 브로모히드린 합성
500mL 플라스크에 35mL (300mmol)의 인덴(indene)을 넣고 150 mL의 DMSO와 15mL의 물에 희석하였다. 이 용액을 0℃까지 냉각시킨 후, 여기에 53g (300mmol, 1 equiv.)의 N-브로모숙신이미드(N-bromosuccineimide)를 10분에 걸쳐 천천히 넣어주었다. 2시간 후, 반응물은 800mL의 차가운 물에 부어주고 생성되는 결정을 여과하면서 충분한 양의 물로 씻어주어, 약 80% 수율로 흰색의 결정 형태의 브로모히드린(bromohydrin)을 얻었다.
1H NMR(500MHz, CDCl3): δ 3.24(1H, m), 3.60(1H, m), 4.30(1H, m), 5.33 (1H, m), 7.23-7.32(3H, m), 7.44(1H, m)
(2) 2-브로모인덴(2-bromoindene) 합성
위의 반응으로 얻어진 브로모히드린 화합물 중 25g을 취해 300mL의 톨루엔에 녹인 다음, 500mg의 p-톨루엔 술폰산(p-toluene sulfonic acid)을 넣고 90℃까지 승온시켜 20시간 이상 교반하였다. 반응물을 상온까지 식힌 후 충분한 양의 물로 씻어준 다음, MgSO4로 수분을 제거하고, 여과 및 감압 건조하여 갈색의 농축물을 얻었다. 이를 100mL 정도의 헥산에 녹여 실리카 패드(silica pad)를 통해 헥산을 용리제(eluent)로 여과하여, 노란색의 점성이 없는 오일(2-브로모인덴(2-bromoindene))을 60 내지 70%의 수율로 얻었다.
1H NMR(500MHz, CDCl3): δ 3.61(3H, s), 6.95(1H, s), 7.18-7.20(3H, m), 7.27-7.32(1H, m), 7.39(1H, m)
(3) 1-(1H-인덴-2-일)나프탈렌(1-(1H-indene-2-yl)naphthalene) 합성
마지막으로, 100mL 슈랭크 플라스크(schlenk flask)에 2.7g(13.8 mmol)에 2-브로모인덴(2-bromoindene)을 넣고 60mL의 DME(dimethyl ether)와 20mL 물의 혼합액에 녹였다. 여기에 3.4g(18mmol)의 1-나프탈렌 보론산(1-naphthalene boronic acid), 2.8g(21mmmol)의 K2CO3를 넣고, 아르곤 가스를 10분간 버블링하여 용매 내의 산소를 제거하였다. 이후, 아르곤 하에서 가열을 시작하고 온도가 90℃에 이르면 800mg(0.7mmol, 5mol%)의 팔라듐(O)테트라키스(트리페닐포스핀)(Palladium(O)tetrakis(triphenylphosphine)(Pd/C)을 넣고 6시간 동안 교반하였다. 이후, 반응 혼합물은 상온까지 식히고, 200mL의 물에 부어 생성되는 갈색 침전을 여과하고, 50mL 정도의 에테르(ether)로 씻어낸 다음 건조하여 2.4g(67%)의 흰색 고체를 얻었다.
1H NMR(500MHz, CDCl3): δ 3.95(2H, s), 7.20-7.39(7H, s), 7.82-7.87(4H, m), 8.00(1H, s)
(4) 하기 구조식으로 표시되는 화학식 1의 화합물(A-1) 합성
Figure 112014052669816-pat00022
250mL 슈렌크 플라스크에 1.50g(6.2mmol)의 1-(1H-인덴-2-일)나프탈렌(1-(1H-indene-2-yl)naphthalene)을 넣고 40mL의 톨루엔과 20mL의 THF에 녹였다. 이 용액을 0℃로 냉각한 다음, 3mL(7.5mmol)의 2.5M nBuLi 용액을 가하였다. 이 반응 혼합물은 상온에서 하루 동안 교반한 후 -78℃에서 (2-부틸시클로펜타-2,4-디에닐)지르코늄(IV) 클로라이드(2-butylcyclopenta-2,4-dienyl)zirconium(IV) chloride)의 저장 용액(stock solution) 11.6 g(6.2mmol)을 천천히 가하였다. 반응물은 상온에서 하루 동안 교반한 후 감압하에서 용매를 처음의 1/10 부피가 될 때까지 증류한 다음 100mL의 헥산을 가하였다. 이때 생성되는 침전을 여과를 통해 분리하여 2.2g의 노란색 분말을 얻었다.
1H NMR(500MHz, CDCl3): δ 0.80(3H, t), 1.23(2H, m), 1.35(2H, m), 2.42(2H, t), 5.80(1.5H, t), 5.93(1.5H, t), 7.05(2H, m), 7.29(2H, m), 7.49(2H, m), 7.66(2H, m), 7.85(2H, m), 8.17(1H, s)
< 실시예 2>
(1) 브로모히드린 합성
500mL 플라스크에 35mL (300mmol)의 인덴(indene)을 넣고 150 mL의 DMSO와 15mL의 물에 희석하였다. 이 용액을 0℃까지 냉각시킨 후, 여기에 53g (300mmol, 1 equiv.)의 N-브로모숙신이미드(N-bromosuccineimide)를 10분에 걸쳐 천천히 넣어주었다. 2시간 후, 반응물은 800mL의 차가운 물에 부어주고 생성되는 결정을 여과하면서 충분한 양의 물로 씻어주어, 약 80% 수율로 흰색의 결정 형태의 브로모히드린(bromohydrin)을 얻었다.
1H NMR(500MHz, CDCl3): δ 3.24(1H, m), 3.60(1H, m), 4.30(1H, m), 5.33 (1H, m), 7.23-7.32(3H, m), 7.44(1H, m)
(2) 2-브로모인덴(2-bromoindene) 합성
위의 반응으로 얻어진 브로모히드린 화합물 중 25g을 취해 300mL의 톨루엔에 녹인 다음, 500mg의 p-톨루엔 술폰산(p-toluene sulfonic acid)을 넣고 90℃까지 승온시켜 20시간 이상 교반하였다. 반응물을 상온까지 식힌 후 충분한 양의 물로 씻어준 다음, MgSO4로 수분을 제거하고, 여과 및 감압 건조하여 갈색의 농축물을 얻었다. 이를 100mL 정도의 헥산에 녹여 실리카 패드(silica pad)를 통해 헥산을 용리제(eluent)로 여과하여, 노란색의 점성이 없는 오일(2-브로모인덴(2-bromoindene))을 60 내지 70%의 수율로 얻었다.
1H NMR(500MHz, CDCl3): δ 3.61(3H, s), 6.95(1H, s), 7.18-7.20(3H, m), 7.27-7.32(1H, m), 7.39(1H, m)
(3) 2-(1H-인덴-2-일)나프탈렌(2-(1H-indene-2-yl)naphthalene) 합성
마지막으로, 100mL 슈랭크 플라스크(schlenk flask)에 2.7g(13.8 mmol)에 2-브로모인덴(2-bromoindene)을 넣고 60mL의 DME(dimethyl ether)와 20mL 물의 혼합액에 녹였다. 여기에 3.4g(18mmol)의 2-나프탈렌 보론산(2-naphthalene boronic acid), 2.8g(21mmmol)의 K2CO3를 넣고, 아르곤 가스를 10분간 버블링하여 용매 내의 산소를 제거하였다. 이후, 아르곤 하에서 가열을 시작하고 온도가 90℃에 이르면 800mg(0.7mmol, 5mol%)의 팔라듐(O)테트라키스(트리페닐포스핀)(Palladium(O)tetrakis(triphenylphosphine)(Pd/C)을 넣고 6시간 동안 교반하였다. 이후, 반응 혼합물은 상온까지 식히고, 200mL의 물에 부어 생성되는 갈색 침전을 여과하고, 50mL 정도의 에테르(ether)로 씻어낸 다음 건조하여 2.4g(67%)의 흰색 고체를 얻었다.
1H NMR(500MHz, CDCl3): δ 3.96 (2H, s), 7.23 (1H, m), 7.31 (1H, m), 7.48 - 7.54 (4H, m), 7.69 - 7.74 (1H, m), 7.76 - 7.83(4H, m), 8.01 (1H, s).
(4) 하기 구조식으로 표시되는 화학식 1의 화합물(A-2) 합성
Figure 112014052669816-pat00023
250mL 슈렌크 플라스크에 1.50g(6.2mmol)의 2-(1H-인덴-2-일)나프탈렌(2-(1H-indene-2-yl)naphthalene)을 넣고 40mL의 톨루엔과 20mL의 THF에 녹였다. 이 용액을 0℃로 냉각한 다음, 3mL(7.5mmol)의 2.5M nBuLi 용액을 가하였다. 이 반응 혼합물은 상온에서 하루 동안 교반한 후 -78℃에서 (3-부틸시클로펜타-2,4-디에닐)지르코늄(IV) 클로라이드(3-butylcyclopenta-2,4-dienyl)zirconium(IV) chloride)의 저장 용액(stock solution) 11.6 g(6.2mmol)을 천천히 가하였다. 반응물은 상온에서 하루 동안 교반한 후 감압하에서 용매를 처음의 1/10 부피가 될 때까지 증류한 다음 100mL의 헥산을 가하였다. 이때 생성되는 침전을 여과를 통해 분리하여 2.2g의 노란색 분말을 얻었다.
1H NMR(500MHz, CDCl3): δ 0.78 - 0.82 (3H, m), 1.17 - 1.19 (2H, m), 1. 33 - 1.36 (2H, m), 2.40 - 2.44 (2H, m), 5.80 (1.5H, s), 5.92 (1.5H, s), 7.04 (1H, m), 7.29 (2H, m), 7.53 (2H, m), 7.62 (2H, m), 7.87 - 7.93 (4H, m), 8.17 (1H, s).
< 비교예 1>
Figure 112014052669816-pat00024
250mL 슈렌크 플라스크에 3.1g(15.0 mmol)의 2-메틸-7-페닐-1H-인덴(2-methyl-7-페닐-1H-indene)을 넣고 40mL의 톨루엔과 20mL의 THF에 녹였다. 이 용액을 0℃로 냉각한 다음, 3mL(7.5mmol)의 2.5M nBuLi 용액을 가하였다. 이 반응 혼합물은 상온에서 하루 동안 교반한 후 -78℃에서 (3-부틸시클로펜타-2,4-디에닐)지르코늄(IV) 클로라이드(3-butylcyclopenta-2,4-dienyl)zirconium(IV) chloride)의 저장 용액(stock solution) 37g(15 mmol)을 천천히 가하였다. 반응물은 상온에서 하루 동안 교반한 후 감압하에서 용매를 처음의 1/10 부피가 될 때까지 증류한 다음 100mL의 헥산을 가하였다. 이때 생성되는 침전을 여과를 통해 분리하여 2.2g의 노란색 분말을 얻었다.
1H NMR(500MHz, CDCl3) : δ 0.85 (3H, m), 1.23 (2H, m), 1.37 (2H, m), 2.44 (3H, s), 2.49 (2H, m), 5.59 (0.5H, s), 5.72 (0.5H, s), 5.78 (0.5H, s), 5.89 (0.5H, s), 6.54 (1H, d), 7.11 (1H, m), 7.26 - 7.29 (2H, m), 7.42 - 7.52 (4H, m), 7.74 (1H, m).
< 실시예 3 및 비교예 2>
공중합체 제조
아르곤 하에서 촉매(20μmol)를 플라스크에 담고, 20mL의 톨루엔을 넣고 교반하여 1mM의 촉매 용액을 만들었다. 이때, 촉매는 상기 실시예 1 내지 2 및 비교예 1의 촉매를 각각 사용하였다.
이후, 100mL 용량의 앤드류 바틀(Andrew bottle)을 두 개 준비하여 임펠러 부분(impeller part)과 조립한 후 글로브 박스 내에서 내부를 아르곤으로 치환하였다. 글로브 박스 처리가 끝나고 소량의 TMA가 처방되어 있는 앤드류 바틀 내부에, 각각 70mL의 톨루엔을 넣고 10mL의 MAO(10wt% 톨루엔) 용액을 주입하였다. 1mM 촉매 용액 (톨루엔) 5mL (5 μmol)을 반응기에 주입하였다. 각각을 90℃로 가열된 오일조(oil bath)에 담근 채 기계적 교반기(mechanical stirrer)에 바틀의 상부를 고정시킨 후 두 개의 앤드류 바틀 중 하나에 공단량체로 사용할 1-헥센(1-hexene)을 5mL 주입하였다. 바틀 내부를 에틸렌 가스로 3회 퍼지한 후, 에틸렌 밸브를 열고, 기계적 교반기를 가동시켜 500rpm에서 30분간 반응시켰다. 반응 중 용기 내부의 vortex line을 수시로 확인하여 상기 라인이 플랫(flat)해진 경우 조기에 반응을 종료하였다. 반응 후에는 상온까지 온도를 내린 후, 용기 내부의 가스를 배출(vent)시켰다. 그리고, 약 400mL의 에탄올에 내용물을 부어 넣고, 1시간 정도 교반한 후, 여과를 거쳐 얻어진 고분자를 60℃로 셋팅된 진공 오븐에서 20시간 동안 건조시켰다.
얻어진 고분자는 질량을 계산하여 이로부터 촉매의 활성을 산출하고, 10mg의 샘플을 취해 GPC 분석을 하여 분자량과 분포 정도를 확인하였다. 그 결과는 다음 표 1과 같다.
촉매 1-헥센
(mL)
Activity a
(×106)
Mw b
(g/mol)
PDI b Branch
(1-헥센 mol%)
실시예1 A-1 - 10.0 79,700 9.5 -
A-1 5.0 13.7 38,700 10.3 5.3
실시예2 A-2 - 7.9 53,300 7.1
A-2 5.0 8.3 39,400 7.8 4.3
비교예2 5.7 87,500 5.0
5.0 5.2 30,400 7.1 3.1
conditions: 촉매량(5 μmol), 에틸렌 압력(PE=50psig), Al/Zr=3000, 온도: 90℃, 반응시간: 30min.
a g/molㆍhr
b GPC
상기 표 1을 참고하면, 본 발명의 메탈로센 화합물은 일반적인 메탈로센 화합물에 비해, 촉매활성이 높고 공단량체 반응성이 우수하여 분자량이 높은 폴리올레핀을 제조할 수 있었다.

Claims (12)

  1. 하기 화학식 1로 표시되는 메탈로센 화합물:
    [화학식 1]
    Figure 112014052669816-pat00025

    상기 화학식 1에서,
    R1은 하기 화학식 a 또는 b로 표시되는 벤젠 고리에 퓨즈된 5각 또는 6각의 방향족 고리를 포함하는 구조를 가지며,
    [화학식 a]
    Figure 112014052669816-pat00026

    [화학식 b]
    Figure 112014052669816-pat00027

    상기 화학식 a 및 b의 식에서, X는 C, N, O 또는 S이고;
    R2 내지 R6은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며;
    R9 내지 R12은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 4 내지 20의 직쇄 또는 분지쇄의 알킬기, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며;
    M은 4족 전이금속이고; 및
    X1 및 X2는 서로 같거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이다.
  2. 제1항에 있어서, 상기 화학식 a 및 b의 X는 각각 탄소원자(C)이고, 벤젠고리에 퓨즈된 6각의 방향족 고리를 갖는 나프탈렌 구조를 포함하는, 메탈로센 화합물.
  3. 제1항에 있어서, 상기 화학식 1의 R2 내지 R6은 각각 독립적으로 수소이고, R9 내지 R12은 각각 독립적으로 수소 또는 탄소수 4 내지 10의 직쇄 또는 분지쇄의 알킬기인, 메탈로센 화합물.
  4. 제1항에 있어서, 상기 M은 티타늄(Ti), 지르코늄(Zr), 또는 하프늄(Hf)인 메탈로센 화합물.
  5. 제1항에 있어서, 상기 X1및 X2는 각각 독립적으로 할로겐 또는 탄소수 1 내지 20의 알킬기인 메탈로센 화합물.
  6. 제1항에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 구조식의 화합물 중에서 선택된 어느 하나인 메탈로센 화합물.
    Figure 112014052669816-pat00028
    또는
    Figure 112014052669816-pat00029

  7. 하기 화학식 2로 표시되는 화합물과;
    하기 화학식 3으로 표시되는 화합물을 반응시키는 단계;
    를 포함하는, 청구항 1의 화학식 1의 메탈로센 화합물의 제조방법:
    [화학식 1]
    Figure 112014052669816-pat00030

    상기 화학식 1에서,
    R1은 하기 화학식 a 또는 b로 표시되는 벤젠 고리에 퓨즈된 5각 또는 6각의 방향족 고리를 포함하는 구조를 가지며,
    [화학식 a]
    Figure 112014052669816-pat00031

    [화학식 b]
    Figure 112014052669816-pat00032

    상기 화학식 a 및 b의 식에서, X는 C, N, O 또는 S이고;
    R2 내지 R6은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며;
    R9 내지 R12은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 4 내지 20의 직쇄 또는 분지쇄의 알킬기, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며;
    M은 4족 전이금속이고; 및
    X1 및 X2는 서로 같거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이고;
    [화학식 2]
    Figure 112014052669816-pat00033

    상기 화학식 2에서,
    R1은 화학식 1의 정의와 같으며,
    R2 내지 R7은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며;
    [화학식 3]
    Figure 112014052669816-pat00034

    상기 화학식 3에서,
    R9 내지 R12은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 4 내지 20의 직쇄 또는 분지쇄의 알킬기, -MX1X2, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며, 이때 R8 내지 R12 중 적어도 하나는 -MX1X2로 치환되어 있으며;
    M은 4족 전이금속이고; 및
    X1 및 X2는 서로 같거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 알킬; 탄소수 2 내지 20의 알케닐; 탄소수 6 내지 20의 아릴; 탄소수 7 내지 20의 알킬아릴; 탄소수 7 내지 20의 아릴알킬; 탄소수 1 내지 20의 알킬 아미도; 탄소수 6 내지 20의 아릴 아미도; 또는 탄소수 1 내지 20의 알킬리덴이다.
  8. 제7항에 있어서, 상기 반응은 염기 존재 하에 유기 용매 하에 -80℃ 내지 -20℃의 온도에서 교반하여 수행되는, 메탈로센 화합물의 제조방법.
  9. 제7항에 있어서, 상기 화학식 2로 표시되는 화합물은
    유기 용매 하에, 하기 화학식 4의 인덴계 화합물과 하기 화학식 5의 5각 또는 6각의 방향족 고리를 포함하는 고리형 화합물을 반응시켜 제조되는, 메탈로센 화합물의 제조방법.
    [화학식 4]
    Figure 112014052669816-pat00035

    상기 화학식 4에서,
    R2 내지 R6은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기, 탄소수 1 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 알킬아릴 또는 탄소수 6 내지 20의 아릴알킬이며;
    X3은 할로겐이고;
    [화학식 5]
    Figure 112014052669816-pat00036
    또는
    Figure 112014052669816-pat00037

    상기 식에서,
    X는 C, N, O 또는 S이고;
    A는 -B(OH)2, 또는 그리냐드 시약이다.
  10. 제1항 내지 제6항 중 어느 한 항에 따른 메탈로센 화합물을 포함하는 촉매 조성물의 존재 하에,
    올레핀계 단량체를 중합하는 단계를 포함하는,
    올레핀계 중합체의 제조 방법.
  11. 제10항에 있어서, 상기 올레핀계 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센 및 1-아이토센으로 이루어진 군에서 선택되는 1 종 이상인 올레핀계 중합체의 제조 방법.
  12. 제10항에 있어서, 상기 촉매 조성물은
    하기 화학식 6, 화학식 7 또는 화학식 8로 표시되는 화합물로 이루어진 군에서 선택된 1종 이상의 조촉매;를 더욱 포함하는 올레핀계 중합체의 제조 방법:
    [화학식 6]
    -[Al(R13)-O]n-
    상기 화학식 6에서,
    R13은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄화수소이고;
    n은 2 이상의 정수이며;
    [화학식 7]
    J(R13)3
    상기 화학식 7에서,
    R13은 상기 화학식 6에서 정의된 바와 같고;
    J는 알루미늄 또는 보론이며;
    [화학식 8]
    [E-H]+[ZA'4]- 또는 [E]+[ZA'4]-
    상기 화학식 8에서,
    E는 중성 또는 양이온성 루이스 산이고;
    H는 수소 원자이며;
    Z는 13족 원소이고;
    A'는 서로 동일하거나 다를 수 있으며, 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
KR1020140067698A 2014-06-03 2014-06-03 메탈로센 화합물 및 그 제조방법 KR101566328B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020140067698A KR101566328B1 (ko) 2014-06-03 2014-06-03 메탈로센 화합물 및 그 제조방법
US14/911,995 US9701774B2 (en) 2014-06-03 2015-06-02 Metallocene compound and method of preparing the same
CN201580001739.7A CN105518033B (zh) 2014-06-03 2015-06-02 茂金属化合物及其制备方法
JP2017516624A JP6458138B2 (ja) 2014-06-03 2015-06-02 メタロセン化合物およびその製造方法
EP15802807.6A EP3006471B1 (en) 2014-06-03 2015-06-02 Metallocene compound and preparation method therefor
PCT/KR2015/005530 WO2015186952A1 (ko) 2014-06-03 2015-06-02 메탈로센 화합물 및 그 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140067698A KR101566328B1 (ko) 2014-06-03 2014-06-03 메탈로센 화합물 및 그 제조방법

Publications (1)

Publication Number Publication Date
KR101566328B1 true KR101566328B1 (ko) 2015-11-05

Family

ID=54600746

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140067698A KR101566328B1 (ko) 2014-06-03 2014-06-03 메탈로센 화합물 및 그 제조방법

Country Status (6)

Country Link
US (1) US9701774B2 (ko)
EP (1) EP3006471B1 (ko)
JP (1) JP6458138B2 (ko)
KR (1) KR101566328B1 (ko)
CN (1) CN105518033B (ko)
WO (1) WO2015186952A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180103349A (ko) * 2017-03-09 2018-09-19 주식회사 엘지화학 올레핀 공중합체
WO2021187780A1 (ko) * 2020-03-17 2021-09-23 한화솔루션 주식회사 전이금속 화합물의 제조방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594080A (en) 1994-03-24 1997-01-14 Leland Stanford, Jr. University Thermoplastic elastomeric olefin polymers, method of production and catalysts therefor
CA2183419A1 (en) * 1994-12-20 1996-07-04 Luigi Resconi Reactor blend polypropylene, process for the preparation thereof and process for preparing metallocene ligands
US5780659A (en) * 1996-03-29 1998-07-14 Phillips Petroleum Company Substituted indenyl unbridged metallocenes
CA2292538A1 (en) * 1997-06-14 1998-12-23 Charles L. Myers Ethylene enhancement of processes for synthesis of high melting thermoplastic elastomeric .alpha.-olefin polymers (pre/epe effects)
US6894131B2 (en) * 1998-08-21 2005-05-17 Univation Technologies, Llc Polymerization process using a metallocene catalyst system
JP2001329006A (ja) * 2000-03-17 2001-11-27 Chisso Corp ポリプロピレン組成物
US6635733B2 (en) * 2000-05-23 2003-10-21 Chisso Corporation Elastomeric polypropylene
JP2002179722A (ja) * 2000-12-18 2002-06-26 Idemitsu Petrochem Co Ltd ステレオブロックオレフィン重合体製造用触媒
US7226886B2 (en) 2005-09-15 2007-06-05 Chevron Phillips Chemical Company, L.P. Polymerization catalysts and process for producing bimodal polymers in a single reactor
US7625982B2 (en) * 2005-08-22 2009-12-01 Chevron Phillips Chemical Company Lp Multimodal polyethylene compositions and pipe made from same
US7619047B2 (en) * 2006-02-22 2009-11-17 Chevron Phillips Chemical Company, Lp Dual metallocene catalysts for polymerization of bimodal polymers
KR100976131B1 (ko) 2007-01-10 2010-08-16 주식회사 엘지화학 전이금속 화합물의 제조 방법, 상기 방법으로 제조된전이금속 화합물 및 상기 전이금속 화합물을 포함하는 촉매조성물
KR101269202B1 (ko) 2010-12-29 2013-05-28 대림산업 주식회사 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀의 중합 방법
JP5884457B2 (ja) 2011-12-12 2016-03-15 日本ポリプロ株式会社 オレフィン重合用触媒の製造方法
RU2529020C2 (ru) * 2012-10-17 2014-09-27 ЭлДжи КЕМ, ЛТД. Новое металлоценовое соединение, содержащая его каталитическая композиция и способ получения полимеров на основе олефинов с ее применением

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180103349A (ko) * 2017-03-09 2018-09-19 주식회사 엘지화학 올레핀 공중합체
KR102260362B1 (ko) 2017-03-09 2021-06-02 주식회사 엘지화학 올레핀 공중합체
WO2021187780A1 (ko) * 2020-03-17 2021-09-23 한화솔루션 주식회사 전이금속 화합물의 제조방법

Also Published As

Publication number Publication date
US20160194422A1 (en) 2016-07-07
EP3006471A4 (en) 2017-01-18
EP3006471A1 (en) 2016-04-13
WO2015186952A1 (ko) 2015-12-10
CN105518033B (zh) 2017-09-05
EP3006471B1 (en) 2017-10-18
JP2017524730A (ja) 2017-08-31
CN105518033A (zh) 2016-04-20
JP6458138B2 (ja) 2019-01-23
US9701774B2 (en) 2017-07-11

Similar Documents

Publication Publication Date Title
KR101824638B1 (ko) 메탈로센 화합물
KR101769097B1 (ko) 메탈로센 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용하는 폴리올레핀의 제조방법
JP6499195B2 (ja) ポリオレフィンの製造方法およびこれから製造されたポリオレフィン
JP6328239B2 (ja) 加工性に優れたオレフィン系重合体
JP6440832B2 (ja) メタロセン化合物、メタロセン担持触媒およびこれを用いるポリオレフィンの製造方法
JP6450393B2 (ja) メタロセン化合物、これを含む触媒組成物、およびこれを用いるポリオレフィンの製造方法
KR20160057930A (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
US20120071615A1 (en) Bi-Nuclear Metallocene Compound and the Preparation Method of Polyolefin Using the Same
KR101566328B1 (ko) 메탈로센 화합물 및 그 제조방법
KR102101878B1 (ko) 프로필렌 중합용 혼성 담지 촉매 시스템 및 이를 이용한 프로필렌 중합체의 제조 방법
KR101734427B1 (ko) 담지 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
KR20150066344A (ko) 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀계 중합체의 제조방법
CN108290971B (zh) 金属茂负载型催化剂及使用该催化剂制备聚烯烃的方法
KR101663797B1 (ko) 메탈로센 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용하는 폴리올레핀의 제조방법
KR101601935B1 (ko) 이핵 메탈로센 화합물, 촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
KR102065163B1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR20200060279A (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR101785705B1 (ko) 촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
US11731123B2 (en) Method of preparing supported metallocene catalyst and method of preparing polypropylene using catalyst prepared thereby
KR102418590B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법, 및 상기 혼성 담지 메탈로센 촉매를 이용한 폴리프로필렌의 제조 방법
KR102423660B1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR102230621B1 (ko) 바이메탈 메탈로센 화합물, 이의 제조방법, 촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
KR102011927B1 (ko) 촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
KR102092271B1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR20160144208A (ko) 담지 메탈로센 촉매 및 이를 이용한 올레핀계 중합체의 제조방법

Legal Events

Date Code Title Description
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181016

Year of fee payment: 4