KR101439562B1 - 플라즈마 처리 방법 및 레지스트 패턴의 개질 방법 - Google Patents

플라즈마 처리 방법 및 레지스트 패턴의 개질 방법 Download PDF

Info

Publication number
KR101439562B1
KR101439562B1 KR1020090082583A KR20090082583A KR101439562B1 KR 101439562 B1 KR101439562 B1 KR 101439562B1 KR 1020090082583 A KR1020090082583 A KR 1020090082583A KR 20090082583 A KR20090082583 A KR 20090082583A KR 101439562 B1 KR101439562 B1 KR 101439562B1
Authority
KR
South Korea
Prior art keywords
resist pattern
plasma
applying
gas
high frequency
Prior art date
Application number
KR1020090082583A
Other languages
English (en)
Other versions
KR20100028486A (ko
Inventor
진 후지하라
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20100028486A publication Critical patent/KR20100028486A/ko
Application granted granted Critical
Publication of KR101439562B1 publication Critical patent/KR101439562B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/36Imagewise removal not covered by groups G03F7/30 - G03F7/34, e.g. using gas streams, using plasma
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/427Stripping or agents therefor using plasma means only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

본 발명은 플라즈마 에칭을 위한 미세 레지스트 패턴을 플라즈마에 의해 에칭해서 트리밍하는 플라즈마 처리 방법 및 트리밍에 앞서 레지스트 패턴을 개질하는 레지스트 패턴의 개질 방법을 제공한다.
본 발명의 플라즈마 처리 방법은 피처리 기판이 수용되고 내부가 진공배기 가능한 처리용기와, 상기 처리용기내에 배치되고 기판의 탑재대로서 기능하는 하부 전극과, 상기 하부 전극에 대향하도록 상기 처리용기내에 배치된 상부 전극과, 상기 처리용기내에 처리 가스를 공급하는 처리 가스 공급 유닛과, 상기 상부 전극 또는 하부 전극의 적어도 한쪽에 고주파 전력을 인가하여 플라즈마를 생성하는 고주파 전력 인가 유닛과, 상기 상부 전극에 부의 직류 전압을 인가하는 직류 전원을 구비하는 플라즈마 처리 장치를 이용하고, 상기 하부 전극에 표면에 레지스트 패턴이 형성된 피처리 기판을 탑재한 상태에서, 상기 처리용기내에 상기 처리 가스 공급 유닛으로부터 개질용 처리 가스를 공급하고, 상기 고주파 전력 인가 유닛으로부터 고주파 전력을 인가해서 개질용 처리 가스의 플라즈마를 생성하고, 또한 상기 상부 전극에 상기 직류 전원으로부터 부의 직류 전압을 인가하는 것에 의해 상기 레지

Description

플라즈마 처리 방법 및 레지스트 패턴의 개질 방법 {PLASMA PROCESSING METHOD AND RESIST PATTERN MODIFYING METHOD}
본 발명은 플라즈마 에칭을 위한 미세 레지스트 패턴을 플라즈마에 의해 에칭해서 트리밍하는 플라즈마 처리 방법 및 트리밍에 앞서 레지스트 패턴을 개질하는 레지스트 패턴의 개질 방법에 관한 것이다.
반도체 디바이스의 제조 프로세스에 있어서는 피처리 기판인 반도체 웨이퍼에 대해, 포토리도그래피 공정에 의해 포토 레지스트 패턴을 형성하고, 이것을 마스크로 해서 에칭을 실행하고 있다.
최근, 반도체 디바이스의 미세화가 점점 진행되고, 에칭에 있어서도 점점 미세가공이 요구되고 있으며, 이와 같은 미세화에 대응하여, 마스크로서 이용되는 포토 레지스트의 막두께가 얇아지고, 사용되는 포토 레지스트도 KrF 레지스트(즉, KrF 가스를 발광원으로 한 레이저광으로 노광하는 포토 레지스트)에서, 약 0.13㎛ 이하의 패턴 개구를 형성할 수 있는 ArF 레지스트(즉, ArF 가스를 발광원으로 한 더욱 단파장(파장 193㎚)의 레이저광으로 노광하는 포토 레지스트)로 이행되고 있 다.
한편, 포토리도그래피 기술에 있어서는 원리상, 실현 가능한 최소 치수가 존재하기 때문에, 그보다도 작은 패턴 폭을 실현할 목적으로, 등방성 에칭에 의해서 레지스트 패턴을 트리밍하는 기술이 제안되어 있다(특허문헌 1 등).
그러나, 이와 같은 트리밍에 의해 미세 레지스트 패턴을 형성하는 경우에는 트리밍 후에 패턴 붕괴(Pattern collapse)가 발생하는 경우가 있다. 특히, ArF 레지스트는 원래 미세 패턴을 형성하는 것이며, 강도가 낮은 것과 아울러, 패턴 붕괴가 발생하기 쉽다. 또한, 트리밍시에 종방향의 에칭량이 많게 되어 버려, 잔존하는 레지스트의 두께가 작아진다고 하는 문제도 있다.
특허문헌 1: 일본국 특허공개공보 제2004-31944호
본 발명은 이와 같은 사정을 감안해서 이루어진 것으로써, 레지스트 패턴의 트리밍시에 패턴 붕괴가 잘 발생하지 않고, 패턴의 종방향의 에칭량을 적게 할 수 있는 플라즈마 처리 방법 및 트리밍에 앞서 레지스트 패턴을 개질하는 레지스트 패턴의 개질 방법을 제공하는 것을 목적으로 한다.
또한, 그와 같은 레지스트 패턴의 개질 방법을 실시하기 위한 프로그램을 기억한 기억 매체를 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위해, 본 발명의 일 측면에 따르면 피처리 기판이 수용되고 내부가 진공배기 가능한 처리용기와, 상기 처리용기내에 배치되고 기판의 탑재대로서 기능하는 하부 전극과, 상기 하부 전극에 대향하도록 상기 처리용기내에 배치된 상부 전극과, 상기 처리용기내에 처리 가스를 공급하는 처리 가스 공급 유닛과, 상기 상부 전극 또는 하부 전극의 적어도 한쪽에 고주파 전력을 인가하여 플라즈마를 생성하는 고주파 전력 인가 유닛과, 상기 상부 전극에 부의 직류 전압을 인가하는 직류 전원을 구비하는 플라즈마 처리 장치를 이용하고, 상기 하부 전극에 표면에 레지스트 패턴이 형성된 피처리 기판을 탑재한 상태에서, 상기 처리용기내에 상기 처리 가스 공급 유닛으로부터 개질용 처리 가스를 공급하고, 상기 고주파 전력 인가 유닛으로부터 고주파 전력을 인가해서 개질용 처리 가스의 플라즈 마를 생성하고, 또한 상기 상부 전극에 상기 직류 전원으로부터 부의 직류 전압을 인가하는 것에 의해 상기 레지스트 패턴을 개질하는 공정과, 개질된 레지스트 패턴을 플라즈마 에칭해서 트리밍하는 공정을 갖는 것을 특징으로 하는 플라즈마 처리 방법을 제공한다.
상기 트리밍하는 공정은 상기 플라즈마 처리 장치내에서 상기 레지스트 패턴을 개질하는 공정에 계속해서 실행되는 것이 바람직하다. 이 경우에, 상기 트리밍하는 공정은 상기 레지스트 패턴을 개질하는 공정 후, 상기 피처리 기판을 상기 하부 전극에 탑재한 채의 상태에서, 상기 처리용기내에 상기 처리 가스 공급 유닛으로부터 트리밍용 처리 가스를 공급하고, 상기 고주파 전력 인가 유닛으로부터 고주파 전력을 인가해서 트리밍용 처리 가스의 플라즈마를 생성하고, 그 플라즈마에 의해 상기 레지스트 패턴을 에칭하도록 할 수 있다.
상기 개질용 처리 가스는 플로로카본 가스를 포함하는 것으로 할 수 있고, 상기 플로로카본 가스로서 CF4 가스를 바람직하게 이용할 수 있다.
상기 레지스트 패턴을 개질하는 공정은 상기 직류 전원으로부터의 직류 전압값을 0∼-1500V(0을 포함하지 않음)의 범위내로 해서 실행하는 것이 바람직하다. 또한, 상기 레지스트 패턴이 ArF 레지스트로 구성되어 있는 경우에 특히 유효하다.
상기 레지스트 패턴을 개질하는 공정에 의해 그 표면에 개질층이 형성되고, 상기 개질층의 두께는 상기 트리밍하는 공정에 의해 에칭되는 에칭량보다 두꺼운 것이 바람직하다.
또한, 본 발명의 다른 측면에 따르면, 피처리 기판이 수용되고 내부가 진공배기 가능한 처리용기와, 상기 처리용기내에 배치되고 기판의 탑재대로서 기능하는 하부 전극과, 상기 하부 전극에 대향하도록 상기 처리용기내에 배치된 상부 전극과, 상기 처리용기내에 처리 가스를 공급하는 처리 가스 공급 유닛과, 상기 상부 전극 또는 하부 전극의 적어도 한쪽에 고주파 전력을 인가해서 플라즈마를 생성하는 고주파 전력 인가 유닛과, 상기 상부 전극에 부의 직류 전압을 인가하는 직류 전원을 구비하는 플라즈마 처리 장치를 이용하여, 피처리 기판상에 형성된 레지스트 패턴을 플라즈마 에칭하여 트리밍하기에 앞서 상기 레지스트 패턴을 개질하는 레지스트 패턴의 개질 방법으로서, 상기 하부 전극에 피처리 기판을 탑재한 상태에서, 상기 처리용기내에 상기 처리 가스 공급 유닛으로부터 개질용 처리 가스를 공급하고, 상기 고주파 전력 인가 유닛으로부터 고주파 전력을 인가해서 개질용 처리 가스의 플라즈마를 생성하고, 또한 상기 상부 전극에 상기 직류 전원으로부터 부의 직류 전압을 인가하는 것에 의해 상기 레지스트 패턴을 개질하는 것을 특징으로 하는 레지스트 패턴의 개질 방법을 제공한다.
상기 개질용 처리 가스는 플로로카본 가스를 포함하는 것으로 할 수 있고, 상기 플로로카본 가스로서 CF4 가스를 바람직하게 이용할 수 있다.
상기 직류 전원으로부터의 직류 전압값은 0∼-1500V(0을 포함하지 않음)의 범위내인 것이 바람직하다. 또한, 상기 레지스트 패턴이 ArF 레지스트로 구성되어 있는 경우에 특히 유효하다.
상기 레지스트 패턴을 개질할 때에 그 표면에 개질층이 형성되고, 상기 개질층의 두께는 그 후의 트리밍에 의해 에칭되는 에칭량보다 두꺼운 것이 바람직하다.
또한, 본 발명의 또 다른 측면에 따르면 컴퓨터상에서 동작하고, 플라즈마 처리 장치를 제어하기 위한 프로그램이 기억된 기억 매체로서, 상기 프로그램은 실행시에, 상기 레지스트 패턴 개질 방법이 실행되도록 컴퓨터에 플라즈마 처리 장치를 제어시키는 것을 특징으로 하는 기억 매체를 제공한다.
본 발명에 따르면, 레지스트 패턴의 트리밍 처리에 앞서, 평행 평판형 플라즈마 처리 장치에 있어서, 상부 전극에 부의 직류 전압을 인가하면서 피처리 기판을 처리하므로, 상부 전극 근방에 존재하는 전자가 상부 전극에 인가되는 부의 직류 전압에 의해 연직 방향 아래쪽으로 가속되고, 전자가 피처리 기판상의 레지스트 패턴에 조사된다. 이것에 의해 레지스트 패턴의 전자조사 부분이 개질되고, 레지스트 패턴이 강화된다. 따라서, 그 후의 트리밍 공정에 있어서 패턴 붕괴의 발생을 억제할 수 있고, 또한 레지스트 패턴이 개질되는 것에 의해 내플라즈마성이 향상하므로, 종방향의 에칭량을 감소시킬 수 있다.
이하, 첨부 도면을 참조해서 본 발명의 실시형태에 대해 구체적으로 설명한다.
도 1은 본 발명의 실시에 이용되는 플라즈마 에칭 장치의 1예를 나타내는 개략 단면도이다.
이 플라즈마 에칭 장치는 용량 결합형 평행 평판 플라즈마 에칭 장치로서 구성되어 있으며, 예를 들면 표면이 양극산화 처리된 알루미늄으로 이루어지는 대략 원통형상의 챔버(처리용기)(10)를 갖고 있다. 이 챔버(10)는 보안 접지되어 있다.
챔버(10)의 바닥부에는 세라믹스 등으로 이루어지는 절연판(12)을 거쳐서 원주형상의 서셉터 지지대(14)가 배치되고, 이 서셉터 지지대(14)의 위에 예를 들면 알루미늄으로 이루어지는 서셉터(16)가 마련되어 있다. 서셉터(16)는 하부 전극을 구성하고, 그 위에 피처리 기판인 반도체 웨이퍼(이하, 단지 웨이퍼라 함) W가 탑재된다.
서셉터(16)의 상면에는 웨이퍼 W를 정전력(electrostatic force)으로 흡착 유지하는 정전 척(18)이 마련되어 있다. 이 정전 척(18)은 도전막으로 이루어지는 전극(20)을 한쌍의 절연층 또는 절연 시트의 사이에 둔 구조를 갖는 것이며, 전극(20)에는 직류 전원(22)이 전기적으로 접속되어 있다. 그리고, 직류 전원(22)으로부터의 직류 전압에 의해 생긴 쿨롱력 등의 정전력에 의해 웨이퍼 W가 정전 척(18)에 흡착 유지된다.
정전 척(18)(웨이퍼 W)의 주위에서 서셉터(16)의 상면에는 에칭의 균일성을 향상시키기 위한, 예를 들면 실리콘으로 이루어지는 도전성의 포커스 링(보정 링)(24)이 배치되어 있다. 서셉터(16) 및 서셉터 지지대(14)의 측면에는 예를 들면 석영으로 이루어지는 원통형상의 내벽부재(26)가 마련되어 있다.
서셉터 지지대(14)의 내부에는 예를 들면 원주형상으로 냉매실(28)이 마련되어 있다. 이 냉매실(28)에는 외부에 마련된 도시하지 않은 칠러 유닛으로부터 배관(30a, 30b)을 거쳐서 소정 온도의 냉매, 예를 들면 냉각수가 순환 공급되고, 냉매의 온도에 의해서 서셉터(16) 상의 웨이퍼 W의 처리온도를 제어할 수 있다.
다음에, 도시하지 않은 전열 가스 공급 기구로부터의 전열 가스, 예를 들면 He 가스가 가스 공급 라인(32)을 거쳐서 정전 척(18)의 상면과 웨이퍼 W의 이면의 사이에 공급된다.
하부 전극인 서셉터(16)의 위쪽에는 서셉터(16)와 대향하도록 평행하게 상부 전극(34)이 마련되어 있다. 그리고, 상부 및 하부 전극(34, 16)간의 공간이 플라즈마 생성 공간으로 된다. 상부 전극(34)은 하부 전극인 서셉터(16)상의 웨이퍼 W와 대향해서 플라즈마 생성 공간과 접하는 면, 즉 대향면을 형성한다.
이 상부 전극(34)은 절연성 차폐 부재(42)를 거쳐서, 챔버(10)의 상부에 지지되어 있고, 서셉터(16)와의 대향면을 구성하고 또한 다수의 토출 구멍(37)을 갖는 전극판(36)과, 이 전극판(36)을 착탈 자유롭게 지지하고, 도전성 재료 예를 들면 표면이 양극산화 처리된 알루미늄으로 이루어지는 수냉 구조의 전극 지지체(38)에 의해서 구성되어 있다. 전극판(36)은 줄열이 적은 저저항의 도전체 또는 반도체가 바람직하고, 또한 후술하는 바와 같이 레지스트를 강화하는 관점에서는 실리콘 함유 물질이 바람직하다. 이와 같은 관점에서, 전극판(36)은 실리콘이나 SiC로 구성되는 것이 바람직하다. 전극 지지체(38)의 내부에는 가스 확산실(40)이 마련되고, 이 가스 확산실(40)로부터는 가스 토출 구멍(37)에 연통하는 다수의 가스 통 류 구멍(41)이 아래쪽으로 연장하고 있다.
전극 지지체(38)에는 가스 확산실(40)에 처리 가스를 보내는 가스 도입구(62)가 형성되어 있고, 이 가스 도입구(62)에는 가스 공급관(64)이 접속되며, 가스 공급관(64)에는 처리 가스 공급원(66)이 접속되어 있다. 가스 공급관(64)에는 상류측부터 차례로 매스플로 컨트롤러(Mass Flow Controller (MFC))(68) 및 개폐 밸브(70)가 마련되어 있다(MFC 대신에 플로 컨트롤 시스템 (Flow Control System (FCS))라도 좋다). 그리고, 처리 가스 공급원(66)으로부터, 레지스트 패턴 개질 및 트리밍을 위한 처리 가스가 공급되도록 되어 있다. 레지스트 패턴 개질에 이용하는 처리 가스로서는 CF4로 대표되는 플로로카본 가스를 바람직하게 이용할 수 있다. 또한, Ar과 같은 불활성 가스 등, 다른 가스를 포함하고 있어도 좋다. 트리밍을 위한 처리 가스로서는 예를 들면 N2나 O2, 플로로카본 가스를 들 수 있다. 처리 가스는 처리 가스 공급원(66)으로부터 가스 공급관(64)을 경유해서 가스 확산실(40)에 이르고, 가스 통류 구멍(41) 및 가스 토출 구멍(37)을 거쳐서 샤워 형상으로 플라즈마 생성 공간에 토출된다. 즉, 상부 전극(34)은 처리 가스를 공급하기 위한 샤워헤드로서 기능한다.
상부 전극(34)에는 정합기(46) 및 급전봉(44)을 거쳐서, 제 1 고주파 전원(48)이 전기적으로 접속되어 있다. 제 1 고주파 전원(48)은 10㎒ 이상의 주파수, 예를 들면 60㎒의 고주파 전력을 출력한다. 정합기(46)는 제 1 고주파 전원(48)의 내부(또는 출력) 임피던스에 부하 임피던스를 정합시키는 것으로써, 챔 버(10)내에 플라즈마가 생성되어 있을 때에 제 1 고주파 전원(48)의 출력 임피던스와 부하 임피던스가 외견상 일치하도록 기능한다. 정합기(46)의 출력 단자는 급전봉(44)의 상단에 접속되어 있다.
한편, 상기 상부 전극(34)에는 제 1 고주파 전원(48) 이외에, 가변 직류 전원(50)이 전기적으로 접속되어 있다. 가변 직류 전원(50)은 바이폴라 전원이어도 좋다. 구체적으로는 이 가변 직류 전원(50)은 상기 정합기(46) 및 급전봉(44)을 거쳐서 상부 전극(34)에 접속되어 있고, 온·오프 스위치(52)에 의해 급전의 온·오프가 가능하게 되어 있다. 가변 직류 전원(50)의 극성 및 전류· 전압과 온·오프 스위치(52)의 온·오프는 컨트롤러(51)에 의해 제어되도록 되어 있다.
정합기(46)는 도 2에 나타내는 바와 같이, 제 1 고주파 전원(48)의 급전 라인(49)으로부터 분기해서 마련된 제 1 가변 콘덴서(54)와, 급전 라인(49)의 그 분기점의 하류측에 마련된 제 2 가변 콘덴서(56)를 갖고 있으며, 이들에 의해 상기 기능을 발휘한다. 또한, 정합기(46)에는 직류 전압 전류가 상부 전극(34)에 유효하게 공급 가능하도록, 제 1 고주파 전원(48)으로부터의 고주파 및 후술하는 제 2 고주파 전원(90)으로부터의 고주파를 트랩하는 필터(58)가 마련되어 있다. 즉, 가변 직류 전원(50)으로부터의 직류 전류가 필터(58)를 거쳐서 급전 라인(49)에 접속된다. 이 필터(58)는 코일(59)과 콘덴서(60)로 구성되어 있으며, 이들에 의해 제 1 고주파 전원(48)으로부터의 고주파 및 후술하는 제 2 고주파 전원(90)으로부터의 고주파가 트랩된다.
챔버(10)의 측벽으로부터 상부 전극(34)의 높이 위치보다도 위쪽으로 연장하 도록 원통형상의 접지도체(10a)가 마련되어 있고, 이 원통형상 접지도체(10a)의 천벽 부분은 통형상의 절연 부재(44a)에 의해 상부 급전봉(44)으로부터 전기적으로 절연되어 있다.
하부 전극인 서셉터(16)에는 정합기(88)를 거쳐서 제 2 고주파 전원(90)이 전기적으로 접속되어 있다. 이 제 2 고주파 전원(90)으로부터 하부 전극 서셉터(16)에 고주파 전력이 공급되는 것에 의해, 웨이퍼 W측에 이온이 인입된다. 제 2 고주파 전원(90)은 800㎑ 이상의 주파수, 예를 들면 13㎒의 고주파 전력을 출력한다. 정합기(88)는 제 2 고주파 전원(90)의 내부(또는 출력) 임피던스에 부하 임피던스를 정합시키기 위한 것으로써, 챔버(10)내에 플라즈마가 생성되어 있을 때에 제 2 고주파 전원(90)의 내부 임피던스와 부하 임피던스가 외견상 일치하도록 기능한다.
상부 전극(34)에는 제 1 고주파 전원(48)으로부터의 고주파는 통과시키지 않고 제 2 고주파 전원(90)으로부터의 고주파를 그라운드에 통과시키기 위한 로우 패스 필터(Low Pass Filter (LPF))(92)가 전기적으로 접속되어 있다. 이 로우 패스 필터(LPF)(92)는 바람직하게는 LR 필터 또는 LC 필터로 구성되지만, 1개의 도선만으로도 제 1 고주파 전원(48)으로부터의 고주파에 대해서는 충분히 큰 리액턴스를 부여할 수 있으므로, 그것으로 좋을 수도 있다. 한편, 하부 전극인 서셉터(16)에는 제 1 고주파 전원(48)으로부터의 고주파를 그라운드에 통과시키기 위한 하이 패스 필터(HPF)(94)가 전기적으로 접속되어 있다.
챔버(10)의 바닥부에는 배기구(80)가 마련되고, 이 배기구(80)에 배기관(82) 을 거쳐서 배기 장치(84)가 접속되어 있다. 배기 장치(84)는 터보 분자 펌프 등의 진공 펌프를 갖고 있으며, 챔버(10)내를 원하는 진공도까지 감압 가능하게 되어 있다. 또한, 챔버(10)의 측벽에는 웨이퍼 W의 반입출구(85)가 마련되어 있고, 이 반입출구(85)는 게이트밸브(86)에 의해 개폐 가능하게 되어 있다. 또한, 챔버(10)의 내벽을 따라 챔버(10)에 에칭 부생물(Deposition)이 부착되는 것을 방지하기 위한 데포 실드(11)가 착탈 자유롭게 마련되어 있다. 즉, 데포 실드(11)가 챔버벽을 구성하고 있다. 또한, 데포 실드(11)는 내벽부재(26)의 외주에도 마련되어 있다. 챔버(10)의 바닥부의 챔버벽측의 데포 실드(11)와 내벽부재(26)측의 데포 실드(11)의 사이에는 배기 플레이트(83)가 마련되어 있다. 데포 실드(11) 및 배기 플레이트(83)로서는 알루미늄재에 Y2O3 등의 세라믹스를 피복한 것을 바람직하게 이용할 수 있다.
데포 실드(11)의 챔버 내벽을 구성하는 부분의 웨이퍼 W와 대략 동일한 높이 부분에는 그라운드에 DC적으로 접속된 도전성 부재(GND 블록)(91)가 마련되어 있고, 이것에 의해 플라즈마를 생성했을 때에 있어서의 이상 방전을 방지한다.
플라즈마 처리 장치의 각 구성부는 제어부(전체 제어 장치)(95)에 접속되어 제어되는 구성으로 되어 있다. 또한, 제어부(95)에는 공정 관리자가 플라즈마 처리 장치를 관리하기 위해 커맨드의 입력 조작 등을 실행하는 키보드나, 플라즈마 처리 장치의 가동 상황을 가시화해서 표시하는 디스플레이 등으로 이루어지는 사용자 인터페이스(96)가 접속되어 있다.
또, 제어부(95)에는 플라즈마 처리 장치에서 실행되는 각종 처리를 제어부(95)의 제어로 실현하기 위한 제어 프로그램이나, 처리 조건에 따라 플라즈마 처리 장치의 각 구성부에 처리를 실행시키기 위한 프로그램 즉 레시피가 저장된 기억부(97)가 접속되어 있다. 레시피는 하드 디스크나 반도체 메모리에 기억되어 있어도 좋고, CDROM, DVD 등의 휴대 가능한 컴퓨터에 의해 판독 가능한 기억 매체에 수용된 상태에서 기억부(97)의 소정 위치에 세트하도록 되어 있어도 좋다.
그리고, 필요에 따라, 사용자 인터페이스(96)로부터의 지시 등으로 임의의 레시피를 기억부(97)로부터 호출해서 제어부(95)에 실행시킴으로써, 제어부(95)의 제어 하에서, 플라즈마 처리 장치에서의 원하는 처리가 실행된다.
다음에, 이와 같이 구성되는 플라즈마 에칭 장치에 의해 실시되는, 본 발명의 1실시형태에 관한 레지스트 패턴의 트리밍 방법에 대해, 도 3 ~ 5의 공정 단면도 및 도 6의 원리도를 참조하여 설명한다.
레지스트 패턴의 트리밍은 에칭 대상막의 위의 포토리도그래피에 의해 형성된 레지스트 패턴을 플라즈마 에칭하여 패턴의 치수를 더욱 감소시키는 처리이지만, 패턴 치수가 미세하게 되면 트리밍에 의해 가늘어진 패턴에 패턴 붕괴가 발생할 우려가 있기 때문에, 본 실시형태에서는 레지스트 패턴을 개질하고, 강화하는 공정을 실시한 후, 본 공정인 트리밍 공정을 실시한다.
이 때의 웨이퍼 W로서는 예를 들면, 도 3에 나타내는 바와 같은 소정의 막(101)상에, 포토리도그래피 공정에 의해 패턴화한 레지스트 패턴(102)이 형성된 것을 이용한다.
최초의 레지스트 패턴 개질·강화 공정시에는 우선, 게이트밸브(86)를 열림 상태로 하고, 반입출구(85)를 거쳐서 상기 구조를 갖는 웨이퍼 W를 챔버(10)내에 반입하고, 서셉터(16)상에 탑재한다. 그리고, 처리 가스 공급원(66)으로부터 개질을 위한 처리 가스를 소정의 유량으로 가스 확산실(40)에 공급하고, 가스 통류 구멍(41) 및 가스 토출 구멍(37)을 거쳐서 챔버(10)내에 공급하면서, 배기 장치(84)에 의해 챔버(10)내를 배기하고, 그 중의 압력을 예를 들면 10∼800mTorr(1.33∼106.4Pa)의 범위내의 설정값으로 한다. 또한, 서셉터 온도는 0∼80℃ 정도로 한다.
이 상태에서 처리 가스 공급원(66)으로부터 레지스트 패턴 개질을 위한 처리 가스를 계속 챔버(10)내에 도입한다. 레지스트 패턴 개질을 위한 처리 가스로서, 예를 들면, CF4로 대표되는 플로로카본 가스를 바람직하게 이용할 수 있다. 또한 Ar과 같은 불활성 가스 등, 다른 가스를 포함하고 있어도 좋다.
이와 같이 챔버(10)내에 개질을 위한 처리 가스를 도입한 상태에서, 제 1 고주파 전원(48)으로부터 플라즈마 생성용의 고주파 전력을 소정의 파워로 상부 전극(34)에 인가하는 동시에, 제 2 고주파 전원(90)으로부터 이온 인입용의 고주파를 소정의 파워로 하부 전극인 서셉터(16)에 인가한다. 그리고, 가변 직류 전원(50)으로부터 소정의 직류 전압을 상부 전극(34)에 인가한다. 또한, 정전 척(18)을 위한 직류 전원(22)으로부터 직류 전압을 정전 척(18)의 전극(20)에 인가하여, 웨이퍼 W를 서셉터(16)에 고정시킨다.
상부 전극(34)의 전극판(36)에 형성된 가스 토출 구멍(37)으로부터 토출된 처리 가스는 고주파 전력에 의해 생긴 상부 전극(34)과 하부 전극인 서셉터(16)간의 글로 방전중에서 플라즈마화된다. 본 실시형태에서는 이와 같이 해서 플라즈마가 형성될 때에, 상부 전극(34)에 가변 직류 전원(50)으로부터 소정의 값의 부의 직류 전압이 인가되고, 그 때에 생긴 전자가 레지스트 패턴(102)에 주입되는 것에 의해 그 주입된 부분이 개질하고, 레지스트 패턴(102)에 개질층(102a)이 형성되며, 레지스트 패턴(102)이 강화된다(도 4).
이 때의 메커니즘에 대해, 도 6의 원리도에 의거해서 설명한다. 플라즈마가 형성될 때에는 상부 전극(34) 근방에 전자가 생성된다. 상부 전극(34)에 가변 직류 전원(50)으로부터 부의 직류 전압을 인가하면, 인가한 직류 전압값과 플라즈마 전위의 전위차에 의해, 전자는 처리공간의 연직 방향 아래쪽으로 가속되고, 전자는 웨이퍼 W상에 존재하는 레지스트 패턴(102)에 조사된다. 이것에 의해, 레지스트 패턴(102)의 전자가 조사된 부분이 개질 되고, 개질층(102a)이 형성된다. 이 개질층(102a)은 전자조사에 의해서, 에칭 내성이 낮은 기(基)의 소실, 이중 결합의 개열(開列)에 의한 재구조화나 가교반응 등이 생기는 것에 의해 개질된 것으로써, 이와 같이 개질되는 것에 의해 레지스트 패턴(102)이 강화되고, 플라즈마 내성이 높은 것으로 된다.
레지스트 패턴을 구성하는 포토 레지스트가 ArF 레지스트인 경우, 그 화학 구조는 식 1의 구조식으로 나타낼 수 있다.
(구조식 1)
Figure 112009054136552-pat00001
이와 같은 ArF 레지스트로 이루어지는 레지스트 패턴에 전자가 조사되는 것에 의해 생기는 반응으로서, 단계적으로 이하의 4개의 반응을 들 수 있다.
제 1 단계로서는 식 1에 있어서 R2로 나타내어지는 락톤기의 O가 이탈해서 식 2로 나타내어지는 구조식이 되는 반응(반응1)이다.
(구조식 2)
Figure 112009054136552-pat00002
제 2 단계로서는 락톤기 자체가 이탈해서 식 3으로 나타내어지는 구조식이 되는 반응(반응2)이다.
(구조식 3)
Figure 112009054136552-pat00003
제 3 단계로서는 락톤기 이외에, 식 1에 있어서 R1로 나타내어지는 아다만틸(adamantyl)기가 이탈해서 식 4로 나타내어지는 구조식이 되는 반응(반응3)이다.
(구조식 4)
Figure 112009054136552-pat00004
제 4 단계로서는 C=O부의 개열에 의해, 재구조화나 가교반응이 촉진하는 반응(반응4)이며, 이것에 의해 예를 들면 식 5로 나타내어지는 구조식과 같은 구조가 되고, 그래파이트의 구조에 근접해 간다. 그 결과, 레지스트 패턴이 강화되고 플라즈마 내성(에칭 내성)이 향상한다.
(구조식 5)
Figure 112009054136552-pat00005
개질층(102a)의 개질 정도나 개질층(102a)의 깊이는 가변 직류 전원(50)으로부터의 인가 전압값· 전류값 및 처리 시간 등에 의해서 제어할 수 있고, 따라서, 컨트롤러(51)에 의해 이들을 제어하는 것이 바람직하다.
개질층(102a)의 형성에는 가변 직류 전원(50)으로부터 상부 전극(34)에 인가되는 전압값이 중요하다. 전압값의 절대값이 높아지면 높아질수록 개질층(102a)의 깊이가 증가하고, 효과가 높아진다. 레지스트 패턴의 두께(높이)가 150㎚정도이면, -1500V 정도로 전체를 개질할 수 있으므로, 인가 전압은 -1500V 정도까지로 충분하다. 또한, 약간의 직류인가로 개질 효과가 있으므로, 전압의 하한값은 특히 존재하지 않는다. 따라서, 인가하는 직류 전압은 0∼-1500V(0을 포함하지 않음)의 범위가 바람직하다. 레지스트막이 두꺼워지고 패턴이 넓어지면, 그것에 따라 전체를 개질하는데 필요한 전압값의 절대값이 상승하므로, 특히 전압값의 상한은 존재하지 않지만, 장치의 사정 등에 따라 -400V∼-2000V 정도가 사실상의 사용 범위로 된다.
개질층(102a)의 두께는 다음의 트리밍 공정에 있어서 소실하지 않을 정도인 것이 바람직하고, 그와 같은 관점에서 도 4와 5에 있어서의 L0, L1로 나타내어지는 (L0-L1)/2 이상인 것이 바람직하다. 트리밍 중에 개질층이 소실하면 패턴 붕괴 방지 효과를 충분히 얻는 것이 곤란하다.
이와 같이 해서 레지스트 패턴 개질·강화 공정이 종료한 후, 웨이퍼 W를 챔버(10)내에 유지한 채, 처리 가스 공급원(66)의 가스를 트리밍을 위한 처리 가스, 예를 들면 N2나 O2, 그리고 또는 플로로카본 가스로 전환해서 트리밍 공정을 실행한다. 트리밍 공정에서는 레지스트 패턴 개질·강화 공정에 있어서의 패턴 폭 L0이 이보다도 좁은 L1이 되도록 레지스트 패턴(102)을 에칭한다(도 5). 이것에 의해, 레지스트 패턴(102)을 포토리도그래피 공정 후보다도 미세하게 하는 것이 가능하게 된다. 이 트리밍 공정에서는 레지스트 패턴(102)만의 에칭을 실행해도 좋고, 레지스트 패턴(102)의 에칭과 동시에, 하지의 막(101)을 트리밍한 후의 패턴 폭으로 에칭해도 좋다.
이 트리밍 공정에서는 특히 조건은 한정되는 것은 아니며, 통상 실행되는 조건으로 설정된다. 또한, 가변 직류 전원(50)으로부터의 직류 전압의 인가의 유무는 불문한다.
본 실시형태에서는 이와 같이 최초로 레지스트 패턴(102)에 개질 처리를 실시하여 개질층(102a)을 형성하여 레지스트 패턴(102)을 강화하고, 그 후 트리밍을 실행하므로, 패턴 붕괴의 발생을 억제할 수 있고, 또한, 개질층(102a)에 의해 내플라즈마성이 향상하므로, 종방향의 에칭량을 감소시킬 수 있다. 또한, 레지스트 패 턴 개질·강화 공정과 트리밍 공정을 동일한 챔버내에서 실행하므로 극히 효율적이다.
다음에, 실제로 레지스트 패턴 개질·강화 공정을 실행한 실험 결과에 대해 설명한다.
여기서는 도 1에 나타낸 장치를 이용하고, 제 1 고주파 전원(48)의 주파수를 60㎒로 하고, 제 2 고주파 전원(90)의 주파수를 13㎒로 하고, 처리 가스로서 CF4를 이용하여 실험을 실행하였다. 샘플로서는 300㎜ 실리콘 웨이퍼의 전면을 ArF 레지스트로 덮은 ArF 레지스프 블랭킷 샘플을 이용하였다.
실험은 챔버(10)내 압력: 100mTorr(13.3Pa), 제 1 고주파 전원(48) (HF)의 파워: 1000W, 제 2 고주파 전원(90)(LF)의 파워: 30W, CF4 가스 유량: 100sccm(mL/min), 처리 시간: 60sec를 기본 조건으로 하고, 직류 전압을 인가하지 않는 조건(No.1), -1500V의 직류 전압을 상부 전극에 인가한 조건(No.2), -1500V의 직류 전압을 상부 전극에 인가하고, 어느 하나의 조건을 상기 기본 조건으로부터 변화시킨 조건(No.3∼5)으로 실시하였다. No.3은 HF의 파워를 200W로 저하시킨 것, No.4는 LF의 파워를 250W로 상승시킨 것, No.5는 챔버(10)내 압력을 10mTorr(1.33Pa)로 저하시킨 것이다. 이 때의 조건을 표 1에 정리하여 나타낸다.
압력
[mTorr]
HF[W] LF[W] 직류전압
[V]
처리가스
No. 1 100 1000 30 0 CF4
No. 2 100 1000 30 -1500 CF4
No. 3 100 200 30 -1500 CF4
No. 4 100 1000 250 -1500 CF4
No. 5 10 1000 30 -1500 CF4
또한, 이들 조건에 있어서의 직류 전류(DCI), LF의 플라즈마 전위(LF Vpp), HF의 자기 바이어스 전위(HF Vdc), HF의 플라즈마 전위(HF Vpp)를 표 2에 정리해서 나타낸다.
DCI
[A]
LF Vpp
[V]
HF Vdc
[V]
HF Vpp
[V]
No. 1 0 70 -80 3656
No. 2 1.49 6 -1495 4961
No. 3 1.31 13 -1495 1008
No. 4 1.90 95 -1495 5211
No. 5 0.80 62 -1495 8296
이들 조건으로 처리한 ArF 레지스트층의 막두께 방향 단면의 주사형 현미경(SEM) 사진을 처리전(이니셜 샘플)의 것과 함께 도 7에 나타낸다. 이들 사진에 나타내는 바와 같이, 직류 전압을 인가하지 않는 No.1에서는 이니셜과 마찬가지로, ArF 레지스트층은 단층이며, 개질층이 형성되어 있지 않지만, 직류 전압을 인가한 No.2∼5는 모두 ArF 레지스트층이 2층으로 되어 있고, 표면측에 개질층이 형성되어 있는 것이 확인되었다. 표면의 개질층과 바닥부의 미개질층의 비는 기본 조건의 No.2에서 1.2이며, HF, LF의 파워를 변화시킨 No.3, 4에서 각각 0.8 및 1.1이었지만, 챔버(10)내 압력을 1/10로 저하시킨 No.5에서는 2.4로 되고, 개질층의 비율이 크게 증가하였다.
다음에, 상기 No.1∼5 및 이니셜 샘플에 대해, 투과법에 의해 푸리에 변환 적외 분광 분석Fourier transform infra-red spectrometry (FTIR))을 실행하였다. 그 때의 각 샘플의 분광 스펙트럼을 도 8에 나타낸다. ArF 레지스트의 기본 구조는 도 9에 나타내는 바와 같은 것이며, 도 8의 분광 스펙트럼은 주쇄(主鎖; main chain) 접속의 에스테르의 C=O(도 9에 있어서 A로 나타냄), 락톤기의 C=O(도 9에 있어서 B로 나타냄), 주쇄 접속 및 락톤기나 아다만틸기 등의 각 부의 CH3, CH(도 9에 있어서 C로 나타냄), 각 부의 C-O 등의 피크가 보인다. 도 19, 11, 12는 도 8의 스펙트럼의 각 피크 부분을 확대해서 나타내는 것이며, 10는 도 9의 C로 나타내는 각 부의 CH3, CH의 피크를 나타내고, 11는 도 9의 A로 나타내는 주쇄 접속의 에스테르의 C=O 및 B로 나타내는 락톤기의 C=O의 피크를 나타내며, 12는 각 부의 C-O 등을 나타낸다. 또, 도 8에서는 각 샘플의 스펙트럼을 나누어서 나타내고 있지만, 도 10 ~ 12에서는 각 샘플의 스펙트럼을 중첩해서 나타내고 있다.
도 8 및 도 10 ~ 12에 나타내는 바와 같이, 락톤기의 C=O, 주쇄 접속의 에스테르의 C=O, 각 부의 CH3, C-H, C-O 등이 직류 전압인가에 의해 감소하고 있는 것을 알 수 있다. 특히, C=O 피크의 감소가 현저하다. 또한, 투과법에 의한 FTIR은 벌크의 상태도 반영하고 있기 때문에, 표면 뿐만 아니라, 벌크 레벨로 레지스트막이 변화되고 있는 것이 확인되었다.
다음에, 상기 No.1∼5 및 이니셜의 샘플을 두께 방향 비스듬히 절단해서 비행 시간형 2차 이온 질량 분석(TOF-SIMS)을 실행하였다. 도 13 ~ 18에 절단 방향의 SIMS 프로파일을 나타낸다. 이들 프로파일에 나타내는 바와 같이, 이니셜에 있어서 ArF 레지스트의 아다만틸기 및 아크릴+에스테르부가 직류 전압 인가에 의해 형성된 개질층에 있어서 감소하고, 주쇄의 골격이 붕괴된 C10H15나 단체의 에스테르가 증가하고 있는 것을 알 수 있다. 이것으로부터, 주쇄 골격의 재구조화가 촉진되고 있는 것을 알 수 있다.
다음에, 상기 No.1∼5 및 이니셜의 샘플에 대해 라만(Raman) 분광 분석을 실행하였다. 그 때의 라만 분광 스펙트럼을 도 19에 나타낸다. 이 도면에 나타내는 바와 같이, 직류 전압을 인가하는 것에 의해 라만 분광 스펙트럼의 백그라운드가 크게 변화하고 있고, 직류 전압 인가에 의해 레지스트의 구조가 크게 변화하고 있는 것을 알 수 있다. 그러나, 라만 시프트가 1350, 1600 부근에서 피크가 나타나는 다이아몬드 라이크 카본(diamond like carbon (DLC))은 보이지 않고, 레지스트의 구조는 크게 변화하고 있지만, 가교반응에 의한 현저한 DLC화까지는 진행하고 있지 않은 것이 확인되었다.
이상의 결과로부터, 평행 평판형의 플라즈마 에칭 장치의 상부 전극에 부의 직류 전압을 인가하는 것에 의해, ArF 레지스트의 재구조화가 촉진되고, 더욱 강한 구조의 개질층이 형성되는 것이 확인되었다.
또, 본 발명은 상기 실시형태에 한정되는 일 없이 각종 변형 가능하다. 예를 들면, 상기 실시형태에서는 레지스트 패턴을 구성하는 레지스트로서 ArF 레지스트를 이용한 경우를 예로 들어 설명했지만, 이것에 한정되는 것은 아니고, 다른 레지스트를 적용하는 것도 가능하다. 또한, 상기 실시형태에서는 레지스트 패턴을 개질한 후, 동일한 장치(챔버)에서 트리밍 공정을 실행한 예를 나타냈지만, 다른 장치에서 실행해도 좋다.
또한, 본 발명이 적용되는 장치에 대해서도 도 1의 것에 한정되는 것은 아니고, 이하에 나타내는 바와 같은 것을 이용할 수 있다. 예를 들면, 도 20에 나타내는 바와 같이, 하부 전극인 서셉터(16)에 제 1 고주파 전원(48′)으로부터 플라즈마 생성용의 예를 들면 60㎒의 고주파 전력을 인가하는 동시에, 제 2 고주파 전원(90′)으로부터 이온 인입용의 예를 들면 13㎒의 고주파 전력을 인가하는 하부 2주파 인가 타입의 플라즈마 에칭 장치를 적용하는 것도 가능하다. 그리고, 도시와 같이 상부 전극(34)에 가변 직류 전원(50)을 접속해서 소정의 직류 전압을 인가하는 것에 의해, 상기 실시형태와 마찬가지의 효과를 얻을 수 있다.
다음에 또한, 도 21에 나타내는 바와 같이, 하부 전극인 서셉터(16)에 고주파 전원(170)을 접속하고, 이 고주파 전원(170)으로부터 플라즈마 형성용의 고주파 전력을 인가하는 타입의 에칭 장치에 있어서, 가변 직류 전원(150)을 상부 전극(134)에 인가하도록 해도 좋다.
도 1은 본 발명의 실시에 이용되는 플라즈마 에칭 장치의 1예를 나타내는 개략 단면도.
도 2는 도 1의 플라즈마 에칭 장치에 있어서 제 1 고주파 전원에 접속된 정합기의 구조를 나타내는 도면.
도 3 ~ 5는 본 발명의 1실시형태에 관한 트리밍 방법의 공정을 설명하기 위한 공정 단면.
도 6는 레지스트 패턴 개질·강화 공정의 원리를 설명하기 위한 모식도.
도 7는 No. 1∼5의 샘플에 대해, 이니셜의 ArF 레지스트층의 상태와 비교해서 나타내는 막두께 방향 단면의 주사형 현미경 사진.
도 8은 투과법에 의해 푸리에 변환 적외 분광 분석(FTIR)을 실행했을 때의 각 샘플의 분광 스펙트럼을 나타내는 도면.
도 9은 ArF 레지스트의 기본 구조와 구조변화를 설명하기 위한 도면.
도 10 ~ 12은 도 6의 분광 스펙트럼에 있어서의 각 피크 부분을 확대해서 나타내는 도면.
도 13 ~ 18는 No.1∼5 및 이니셜의 샘플에 대해 절단 방향의 SIMS 프로파일을 나타내는 도면.
도 19은 No.1∼5 및 이니셜의 샘플에 대해 라만 분광 분석을 실행했을 때의 라만 분광 스펙트럼을 나타내는 도면.
도 20은 본 발명의 실시에 적용이 가능한 다른 타입의 플라즈마 에칭 장치의 예를 나타내는 개략도.
도 21는 본 발명의 실시에 적용이 가능한 또 다른 타입의 플라즈마 에칭 장치의 예를 나타내는 단면도.

Claims (15)

  1. 피처리 기판이 수용되고 내부가 진공배기 가능한 처리용기와, 상기 처리용기내에 배치되고 기판의 탑재대로서 기능하는 하부 전극과, 상기 하부 전극에 대향하도록 상기 처리용기내에 배치된 상부 전극과, 상기 처리용기내에 처리 가스를 공급하는 처리 가스 공급 유닛과, 상기 상부 전극 또는 하부 전극의 적어도 한쪽에 고주파 전력을 인가하여 플라즈마를 생성하는 고주파 전력 인가 유닛과, 상기 상부 전극에 부의 직류 전압을 인가하는 직류 전원을 구비하는 플라즈마 처리 장치를 이용하고,
    상기 하부 전극에 표면에 레지스트 패턴이 형성된 피처리 기판을 탑재한 상태에서, 상기 처리용기내에 상기 처리 가스 공급 유닛으로부터 개질용 처리 가스를 공급하고, 상기 고주파 전력 인가 유닛으로부터 고주파 전력을 인가해서 개질용 처리 가스의 플라즈마를 생성하고, 또한 상기 상부 전극에 상기 직류 전원으로부터 부의 직류 전압을 인가하는 것에 의해 상기 레지스트 패턴을 개질하는 공정과,
    개질된 레지스트 패턴을 플라즈마 에칭하여 트리밍하는 공정을 갖고,
    상기 레지스트 패턴을 개질하는 공정에 의해 그 표면에 개질층이 형성되고, 상기 개질층의 두께는 상기 트리밍하는 공정에 의해 에칭되는 에칭량보다 두꺼운 것을 특징으로 하는 플라즈마 처리 방법.
  2. 제 1 항에 있어서,
    상기 트리밍하는 공정은 상기 플라즈마 처리 장치내에서 상기 레지스트 패턴 을 개질하는 공정에 계속해서 실행되는 것을 특징으로 하는 플라즈마 처리 방법.
  3. 제 2 항에 있어서,
    상기 트리밍하는 공정은 상기 레지스트 패턴을 개질하는 공정 후, 상기 피처리 기판을 상기 하부 전극에 탑재한 채의 상태에서, 상기 처리용기내에 상기 처리 가스 공급 유닛으로부터 트리밍용 처리 가스를 공급하고, 상기 고주파 전력 인가 유닛으로부터 고주파 전력을 인가해서 트리밍용 처리 가스의 플라즈마를 생성하고, 그 플라즈마에 의해 상기 레지스트 패턴을 에칭하는 것을 특징으로 하는 플라즈마 처리 방법.
  4. 제 1 항에 있어서,
    상기 개질용 처리 가스는 플로로카본 가스를 포함하는 것을 특징으로 하는 플라즈마 처리 방법.
  5. 제 4 항에 있어서,
    상기 플로로카본 가스는 CF4 가스인 것을 특징으로 하는 플라즈마 처리 방 법.
  6. 제 1 항에 있어서,
    상기 레지스트 패턴은 ArF 레지스트로 구성되어 있는 것을 특징으로 하는 플라즈마 처리 방법.
  7. 제 1 항 내지 제 6 항 중의 어느 한 항에 있어서,
    상기 레지스트 패턴을 개질하는 공정은 상기 직류 전원으로부터의 직류 전압값을 0∼-1500V(0을 포함하지 않음)의 범위내로 해서 실행하는 것을 특징으로 하는 플라즈마 처리 방법.
  8. 피처리 기판이 수용되고 내부가 진공배기 가능한 처리용기와, 상기 처리용기내에 배치되고 기판의 탑재대로서 기능하는 하부 전극과, 상기 하부 전극에 대향하도록 상기 처리용기내에 배치된 상부 전극과, 상기 처리용기내에 처리 가스를 공급하는 처리 가스 공급 유닛과, 상기 상부 전극 또는 하부 전극의 적어도 한쪽에 고주파 전력을 인가해서 플라즈마를 생성하는 고주파 전력 인가 유닛과, 상기 상부 전극에 부의 직류 전압을 인가하는 직류 전원을 구비하는 플라즈마 처리 장치를 이용하여, 피처리 기판상에 형성된 레지스트 패턴을 플라즈마 에칭해서 트리밍하기에 앞서 상기 레지스트 패턴을 개질하는 레지스트 패턴의 개질 방법으로서,
    상기 하부 전극에 피처리 기판을 탑재한 상태에서, 상기 처리용기내에 상기 처리 가스 공급 유닛으로부터 개질용 처리 가스를 공급하고, 상기 고주파 전력 인가 유닛으로부터 고주파 전력을 인가해서 개질용 처리 가스의 플라즈마를 생성하고, 또한 상기 상부 전극에 상기 직류 전원으로부터 부의 직류 전압을 인가하는 것에 의해 상기 레지스트 패턴을 개질하고,
    상기 레지스트 패턴을 개질할 때에 그 표면에 개질층이 형성되고, 상기 개질층의 두께는 그 후의 트리밍에 의해 에칭되는 에칭량보다 두꺼운 것을 특징으로 하는 레지스트 패턴의 개질 방법.
  9. 제 8 항에 있어서,
    상기 개질용 처리 가스는 플로로카본 가스를 포함하는 것을 특징으로 하는 레지스트 패턴의 개질 방법.
  10. 제 9 항에 있어서,
    상기 플로로카본 가스는 CF4 가스인 것을 특징으로 하는 레지스트 패턴의 개질 방법.
  11. 제 8 항에 있어서,
    상기 레지스트 패턴은 ArF 레지스트로 구성되어 있는 것을 특징으로 하는 레지스트 패턴의 개질 방법.
  12. 제 8 항 내지 제 11 항 중의 어느 한 항에 있어서,
    상기 직류 전원으로부터의 직류 전압값은 0∼-1500V(0을 포함하지 않음)의 범위내인 것을 특징으로 하는 레지스트 패턴의 개질 방법.
  13. 컴퓨터상에서 동작하고, 플라즈마 처리 장치를 제어하기 위한 프로그램이 기억된 기억 매체로서, 상기 프로그램은 실행시에, 청구항 8 기재의 레지스트 패턴 개질 방법이 실행되도록 컴퓨터로 플라즈마 처리 장치를 제어하는 것을 특징으로 하는 기억 매체.
  14. 삭제
  15. 삭제
KR1020090082583A 2008-09-04 2009-09-02 플라즈마 처리 방법 및 레지스트 패턴의 개질 방법 KR101439562B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008226949A JP5128421B2 (ja) 2008-09-04 2008-09-04 プラズマ処理方法およびレジストパターンの改質方法
JPJP-P-2008-226949 2008-09-04

Publications (2)

Publication Number Publication Date
KR20100028486A KR20100028486A (ko) 2010-03-12
KR101439562B1 true KR101439562B1 (ko) 2014-09-11

Family

ID=41726090

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090082583A KR101439562B1 (ko) 2008-09-04 2009-09-02 플라즈마 처리 방법 및 레지스트 패턴의 개질 방법

Country Status (5)

Country Link
US (1) US8394720B2 (ko)
JP (1) JP5128421B2 (ko)
KR (1) KR101439562B1 (ko)
CN (1) CN101667543A (ko)
TW (1) TWI476544B (ko)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4827081B2 (ja) * 2005-12-28 2011-11-30 東京エレクトロン株式会社 プラズマエッチング方法およびコンピュータ読み取り可能な記憶媒体
JP5171683B2 (ja) * 2009-02-18 2013-03-27 東京エレクトロン株式会社 プラズマ処理方法
JP5357710B2 (ja) * 2009-11-16 2013-12-04 東京エレクトロン株式会社 基板処理方法,基板処理装置,プログラムを記録した記録媒体
US8338086B2 (en) * 2010-03-31 2012-12-25 Tokyo Electron Limited Method of slimming radiation-sensitive material lines in lithographic applications
WO2012057967A2 (en) 2010-10-27 2012-05-03 Applied Materials, Inc. Methods and apparatus for controlling photoresist line width roughness
JP5934523B2 (ja) * 2012-03-02 2016-06-15 東京エレクトロン株式会社 半導体装置の製造方法及びコンピュータ記録媒体
JP6386394B2 (ja) * 2015-02-18 2018-09-05 東芝メモリ株式会社 複合プロセス装置
KR102630893B1 (ko) 2015-11-25 2024-01-31 롬엔드하스전자재료코리아유한회사 감광성 수지 조성물 및 이로부터 제조된 경화막
US10203604B2 (en) 2015-11-30 2019-02-12 Applied Materials, Inc. Method and apparatus for post exposure processing of photoresist wafers
US10090162B2 (en) 2016-01-18 2018-10-02 Hitachi High-Technologies Corporation Plasma processing method and plasma processing device
US10269566B2 (en) * 2016-04-29 2019-04-23 Lam Research Corporation Etching substrates using ale and selective deposition
US10566212B2 (en) 2016-12-19 2020-02-18 Lam Research Corporation Designer atomic layer etching
US10832909B2 (en) 2017-04-24 2020-11-10 Lam Research Corporation Atomic layer etch, reactive precursors and energetic sources for patterning applications
JP6688763B2 (ja) * 2017-05-30 2020-04-28 東京エレクトロン株式会社 プラズマ処理方法
KR102433947B1 (ko) * 2017-09-29 2022-08-18 도쿄엘렉트론가부시키가이샤 유체로 기판을 코팅하기 위한 방법 및 시스템
US10643858B2 (en) 2017-10-11 2020-05-05 Samsung Electronics Co., Ltd. Method of etching substrate
JP6965205B2 (ja) * 2018-04-27 2021-11-10 東京エレクトロン株式会社 エッチング装置、及びエッチング方法
JP7203531B2 (ja) * 2018-08-08 2023-01-13 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
US11276579B2 (en) * 2018-11-14 2022-03-15 Hitachi High-Tech Corporation Substrate processing method and plasma processing apparatus
KR20220025043A (ko) * 2019-06-27 2022-03-03 램 리써치 코포레이션 기판들 상에 탄소 층들을 형성할 수 있는 프로세싱 툴
JP7340396B2 (ja) * 2019-09-24 2023-09-07 株式会社Screenホールディングス 基板処理方法および基板処理装置
CN111430212B (zh) * 2020-04-15 2022-08-23 Tcl华星光电技术有限公司 一种蚀刻设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249431A (ja) 2002-02-25 2003-09-05 Hitachi Ltd アッシング装置
JP2005072518A (ja) 2003-08-28 2005-03-17 Hitachi Ltd 半導体装置の製造方法およびその装置
JP2005535936A (ja) 2002-08-14 2005-11-24 ラム リサーチ コーポレーション エッチングプロセスにおいてフォトレジストを硬化させるための方法および組成

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762130B2 (en) 2002-05-31 2004-07-13 Texas Instruments Incorporated Method of photolithographically forming extremely narrow transistor gate elements
WO2004003988A1 (ja) * 2002-06-27 2004-01-08 Tokyo Electron Limited プラズマ処理方法
JP5036143B2 (ja) * 2004-06-21 2012-09-26 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理方法、ならびにコンピュータ読み取り可能な記憶媒体
JP4827081B2 (ja) * 2005-12-28 2011-11-30 東京エレクトロン株式会社 プラズマエッチング方法およびコンピュータ読み取り可能な記憶媒体
US20070227666A1 (en) * 2006-03-30 2007-10-04 Tokyo Electron Limited Plasma processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249431A (ja) 2002-02-25 2003-09-05 Hitachi Ltd アッシング装置
JP2005535936A (ja) 2002-08-14 2005-11-24 ラム リサーチ コーポレーション エッチングプロセスにおいてフォトレジストを硬化させるための方法および組成
JP2005072518A (ja) 2003-08-28 2005-03-17 Hitachi Ltd 半導体装置の製造方法およびその装置

Also Published As

Publication number Publication date
JP5128421B2 (ja) 2013-01-23
KR20100028486A (ko) 2010-03-12
TWI476544B (zh) 2015-03-11
CN101667543A (zh) 2010-03-10
US8394720B2 (en) 2013-03-12
US20100055911A1 (en) 2010-03-04
JP2010062363A (ja) 2010-03-18
TW201027281A (en) 2010-07-16

Similar Documents

Publication Publication Date Title
KR101439562B1 (ko) 플라즈마 처리 방법 및 레지스트 패턴의 개질 방법
KR101813954B1 (ko) 플라즈마 처리 방법 및 플라즈마 처리 장치
KR101808380B1 (ko) 레지스트 마스크의 처리 방법 및 반도체 디바이스의 제조 방법
JP5642001B2 (ja) プラズマエッチング方法
US8404595B2 (en) Plasma processing method
KR101772701B1 (ko) 플라즈마 에칭 방법, 플라즈마 에칭 장치 및 컴퓨터 기억 매체
US8609547B2 (en) Plasma etching method and computer-readable storage medium
KR20150128582A (ko) 에칭 방법
US20220051904A1 (en) Etching method
JP6017928B2 (ja) プラズマエッチング方法及びプラズマエッチング装置
JP2007234770A (ja) プラズマエッチング方法およびコンピュータ読み取り可能な記憶媒体
US20090029557A1 (en) Plasma etching method, plasma etching apparatus and storage medium
KR20100004891A (ko) 플라즈마 에칭 방법, 제어 프로그램 및 컴퓨터 기억 매체
KR102469451B1 (ko) 마이크로전자 공작물의 제조를 위해 실리콘 질화물층을 영역 선택 에칭하는 방법
KR20160088819A (ko) 에칭 방법
US20200168468A1 (en) Etching method and substrate processing apparatus
US10607835B2 (en) Etching method
JP7202489B2 (ja) プラズマ処理方法
JP2008243939A (ja) プラズマエッチング方法
CN112437973A (zh) 等离子处理方法
JP2004335523A (ja) エッチング方法及びrie装置

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170822

Year of fee payment: 4