KR101413761B1 - Inductively coupled dual plasma reactor with multi laser scanning line - Google Patents

Inductively coupled dual plasma reactor with multi laser scanning line Download PDF

Info

Publication number
KR101413761B1
KR101413761B1 KR1020070139233A KR20070139233A KR101413761B1 KR 101413761 B1 KR101413761 B1 KR 101413761B1 KR 1020070139233 A KR1020070139233 A KR 1020070139233A KR 20070139233 A KR20070139233 A KR 20070139233A KR 101413761 B1 KR101413761 B1 KR 101413761B1
Authority
KR
South Korea
Prior art keywords
reactor
radio frequency
plasma
scanning line
laser scanning
Prior art date
Application number
KR1020070139233A
Other languages
Korean (ko)
Other versions
KR20090071040A (en
Inventor
위순임
Original Assignee
주식회사 뉴파워 프라즈마
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 뉴파워 프라즈마 filed Critical 주식회사 뉴파워 프라즈마
Priority to KR1020070139233A priority Critical patent/KR101413761B1/en
Publication of KR20090071040A publication Critical patent/KR20090071040A/en
Application granted granted Critical
Publication of KR101413761B1 publication Critical patent/KR101413761B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Abstract

본 발명의 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기는 제1 플라즈마 반응기를 구성하는 제1 반응기 몸체, 제2 플라즈마 반응기를 구성하는 제2 반응기 몸체, 상기 제1 반응기 몸체의 일면을 형성하는 제1 유전체 윈도우와 상기 제1 유전체 윈도우에 근접하여 설치되고 상기 반응기 몸체의 내부에 유도 결합 플라즈마를 유도하기 위한 제1 무선 주파수 안테나를 포함하는 제1 안테나 어셈블리, 상기 제2 반응기 몸체의 일면을 형성하는 제2 유전체 윈도우와 상기 제2 유전체 윈도우에 근접하여 설치되고 상기 반응기 몸체의 내부에 유도 결합 플라즈마를 유도하기 위한 제2 무선 주파수 안테나를 포함하는 제2 안테나 어셈블리, 상기 제1 및 제2 무선 주파수 안테나로 무선 주파수 전원을 공급하기 위한 메인 전원 공급원, 및 상기 반응기 몸체의 내부에 복수개의 레이저 주사선으로 이루어지는 멀티 레이저 스캐닝 라인을 구성하기 위한 레이저 공급원을 포함한다. 본 발명의 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기는 대면적의 피처리 기판의 크기에 적합하게 무선 주파수 안테나를 확장하되 마그네틱 코어 커버의 설치에 의해서 대면적의 플라즈마를 균일하게 발생할 수 있음으로 플라즈마 반응기의 대면적화가 용이하며 전류 균형 회로에 의한 균일한 전류 공급이 이루어짐으로서 고밀도의 플라즈마를 균일하게 발생할 수 있다. 그리고 제1 및 제2 안테나 어셈블리와 멀티 레이저 스캐닝 라인을 피처리 기판의 상부에 균일하고 넓게 주사할 수 있음으로서 대면적의 이중 피처리 기판을 처리하기 위한 대면적의 이중 플라즈마 반응기를 용이하게 구현할 수 있으며 여러 가지 공정 조건을 효율적으로 개선하여 공정 수율을 향상할 수 있다.An inductively coupled double plasma reactor having a multi-laser scanning line according to the present invention comprises a first reactor body constituting a first plasma reactor, a second reactor body constituting a second plasma reactor, a second reactor body constituting a first reactor body, 1 < / RTI > dielectric window and a first radio frequency antenna disposed proximate to the first dielectric window and for inducing an inductively coupled plasma into the reactor body, A second antenna assembly mounted in proximity to the second dielectric window and the second dielectric window and including a second radio frequency antenna for inducing inductively coupled plasma within the reactor body, A main power source for supplying radio frequency power to the reactor, It includes a laser source for forming the multi-laser scanning line formed of a plurality of laser scanning line in the interior of the body. The inductively coupled double plasma reactor having the multi laser scanning line of the present invention expands the radio frequency antenna to fit the size of the substrate to be processed in a large area but the plasma of the large area can be generated uniformly by installing the magnetic core cover It is easy to increase the area of the plasma reactor and uniform current is supplied by the current balancing circuit, so that high-density plasma can be uniformly generated. In addition, since the first and second antenna assemblies and the multi-laser scanning lines can be uniformly and widely scanned over the substrate to be processed, a large-area dual plasma reactor for processing a large- And the process yield can be improved by efficiently improving various process conditions.

플라즈마, 유도 결합, 전류 균형, 레이저 Plasma, inductively coupled, current balance, laser

Description

멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기{INDUCTIVELY COUPLED DUAL PLASMA REACTOR WITH MULTI LASER SCANNING LINE}TECHNICAL FIELD [0001] The present invention relates to an inductively coupled double plasma reactor having a multi-laser scanning line,

본 발명은 이중 기판 처리를 위한 이중 플라즈마 반응기에 관한 것으로, 구체적으로는 이중으로 설치된 안테나 어셈블리와 멀티 레이저 스캐닝 라인을 구비하여 대면적의 플라즈마를 보다 균일하게 발생하여 대면적의 피처리 대상에 대한 플라즈마 처리 효율을 높일 수 있는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기에 관한 것이다.[0001] The present invention relates to a dual plasma reactor for dual substrate processing, and more particularly to a dual plasma reactor having a double-mounted antenna assembly and a multi-laser scanning line to generate a plasma of a large area more uniformly, To an inductively coupled double plasma reactor having a multi-laser scanning line capable of enhancing processing efficiency.

플라즈마는 같은 수의 음이온(positive ions)과 전자(electrons)를 포함하는 고도로 이온화된 가스이다. 플라즈마 방전은 이온, 자유 라디컬, 원자, 분자를 포함하는 활성 가스를 발생하기 위한 가스 여기에 사용되고 있다. 활성 가스는 다양한 분야에서 널리 사용되고 있으며 대표적으로 반도체 제조 공정 예들 들어, 식각(etching), 증착(deposition), 세정(cleaning), 에싱(ashing) 등에 다양하게 사용된다.A plasma is a highly ionized gas containing the same number of positive ions and electrons. Plasma discharges are used in gas excitation to generate active gases including ions, free radicals, atoms, and molecules. The active gas is widely used in various fields and is typically used in a variety of semiconductor manufacturing processes such as etching, deposition, cleaning, and ashing.

플라즈마를 발생하기 위한 플라즈마 소스는 여러 가지가 있는데 무선 주파수(radio frequency)를 사용한 용량 결합 플라즈마(capacitive coupled plasma)와 유도 결합 플라즈마(inductive coupled plasma)가 그 대표적인 예이다. 용량 결합 플라즈마 소스는 정확한 용량 결합 조절과 이온 조절 능력이 높아서 타 플라즈마 소스에 비하여 공정 생산력이 높다는 장점을 갖는다. 반면, 무선 주파수 전원의 에너지가 거의 배타적으로 용량 결합을 통하여 플라즈마에 연결되기 때문에 플라즈마 이온 밀도는 용량 결합된 무선 주파수 전력의 증가 또는 감소에 의해서만 증가 또는 감소될 수 있다. 그러나 무선 주파수 전력의 증가는 이온 충격 에너지를 증가시킨다. 결과적으로 이온 충격에 의한 손상을 방지하기 위해서는 무선 주파수 전력의 한계성을 갖게 된다.Plasma sources for generating plasma are various, and examples thereof include capacitive coupled plasma and inductive coupled plasma using a radio frequency. Capacitively coupled plasma sources have the advantage that they have higher capacity for process control than other plasma sources because of their accurate capacitive coupling and ion control capability. On the other hand, because the energy of the radio frequency power source is almost exclusively coupled to the plasma through capacitive coupling, the plasma ion density can only be increased or decreased by increasing or decreasing the capacitively coupled radio frequency power. However, an increase in radio frequency power increases the ion impact energy. As a result, radio frequency power is limited in order to prevent damage due to ion bombardment.

한편, 유도 결합 플라즈마 소스는 무선 주파수 전원의 증가에 따라 이온 밀도를 쉽게 증가시킬 수 있으며 이에 따른 이온 충격은 상대적으로 낮아서 고밀도 플라즈마를 얻기에 적합한 것으로 알려져 있다. 그럼으로 유도 결합 플라즈마 소스는 고밀도의 플라즈마를 얻기 위하여 일반적으로 사용되고 있다. 유도 결합 플라즈마 소스는 대표적으로 무선 주파수 안테나(RF antenna)를 이용하는 방식과 변압기를 이용한 방식(변압기 결합 플라즈마(transformer coupled plasma)라고도 함)으로 기술 개발이 이루어지고 있다. 여기에 전자석이나 영구 자석을 추가하거나, 용량 결합 전극을 추가하여 플라즈마의 특성을 향상 시키고 재현성과 제어 능력을 높이기 위하여 기술 개발이 이루어지고 있다.On the other hand, it is known that an inductively coupled plasma source can easily increase the ion density according to the increase of a radio frequency power source, and accordingly, the ion impact is relatively low and is suitable for obtaining a high density plasma. Thus, inductively coupled plasma sources are commonly used to obtain high density plasma. Inductively coupled plasma sources are typically developed using a RF antenna or a transformer coupled plasma (also referred to as a transformer coupled plasma). Techniques are being developed to improve the characteristics of plasma by adding electromagnets or permanent magnets thereto or adding capacitive coupling electrodes, and to improve reproducibility and controllability.

무선 주파수 안테나는 나선형 타입 안테나(spiral type antenna) 또는 실린더 타입의 안테나(cylinder type antenna)가 일반적으로 사용된다. 무선 주파수 안테나는 플라즈마 반응기(plasma reactor)의 외부에 배치되며, 석영과 같은 유전 체 위도우(dielectric window)를 통하여 플라즈마 반응기의 내부로 유도 기전력을 전달한다. 무선 주파수 안테나를 이용한 유도 결합 플라즈마는 고밀도의 플라즈마를 비교적 손쉽게 얻을 수 있으나, 안테나의 구조적 특징에 따라서 플라즈마 균일도가 영향을 받는다. 그럼으로 무선 주파수 안테나의 구조를 개선하여 균일한 고밀도의 플라즈마를 얻기 위해 노력하고 있다.As a radio frequency antenna, a spiral type antenna or a cylinder type antenna is generally used. A radio frequency antenna is disposed outside a plasma reactor and delivers induced electromotive force into a plasma reactor through a dielectric window, such as quartz. Inductively coupled plasma using radio frequency antenna is relatively easy to obtain high density plasma, but plasma uniformity is affected by the structural characteristics of the antenna. Therefore, we are trying to obtain uniform high density plasma by improving the structure of radio frequency antenna.

그러나 대면적의 플라즈마를 얻기 위하여 안테나의 구조를 넓게 하거나 안테나에 공급되는 전력을 높이는 것은 한계성을 갖는다. 예를 들어, 정상파 효과(standing wave effect)에 의해 방사선상으로 비균일한 플라즈마가 발생되는 것으로 알려져 있다. 또한, 안테나에 높은 전력이 인가되는 경우 무선 주파수 안테나의 용량성 결합(capacitive coupling)이 증가하게 됨으로 유전체 윈도우를 두껍게 해야 하며, 이로 인하여 무선 주파수 안테나와 플라즈마 사이의 거리가 증가함으로 전력 전달 효율이 낮아지는 문제점이 발생된다.However, in order to obtain a large-area plasma, it is difficult to increase the structure of the antenna or increase the power supplied to the antenna. For example, it is known that a non-uniform plasma is generated in the form of a radiation due to a standing wave effect. In addition, when high power is applied to the antenna, the capacitive coupling of the radio frequency antenna increases, so that the dielectric window must be made thick. As a result, the distance between the radio frequency antenna and the plasma increases, Problems arise.

변압기를 이용한 유도 결합 플라즈마는 변기압기를 이용하여 플라즈마 반응기의 내부에 플라즈마를 유도하는데 이 유도 결합 플라즈마는 변압기의 이차 회로를 완성한다. 지금까지의 변압기 결합 플라즈마 기술들은 플라즈마 반응기에 외부 방전관을 두거나 환형 챔버(toroidal chamber)에 폐쇄형 코어(closed core)를 장착하는 타입 또는 플라즈마 반응기의 내부에 변압기 코어를 내장하는 방식으로 기술 개발이 이루어지고 있다.Inductively coupled plasma using a transformer induces a plasma inside a plasma reactor using a potentiometer. This inductively coupled plasma completes the secondary circuit of the transformer. Conventional transformer-coupled plasma technologies have been developed in such a manner that an external discharge tube is placed in a plasma reactor or a closed core is mounted in a toroidal chamber or a transformer core is embedded in a plasma reactor. ought.

이러한 변압기 결합 플라즈마는 플라즈마 반응기의 구조적 개선과 변압기의 결합 구조를 개선하여 플라즈마의 특성과 에너지 전달 특성을 향상시켜가고 있다. 특히, 대면적의 플라즈마를 얻기 위하여 변압기와 플라즈마 반응기의 결합 구조 개선하거나, 다수의 외부 방전관을 구비하거나, 또는 내장되는 변압기 코어의 개수를 증설하여 설치하고 있다. 그러나 단순히 외부 방전관의 개수를 증가하거나 내장되는 변압기 코어의 개수를 증가하는 것으로는 고밀도의 대면적 플라즈마를 균일하게 얻기가 쉽지 않다.This transformer coupled plasma improves plasma reactor characteristics and energy transfer characteristics by improving the structure of the plasma reactor and improving the coupling structure of the transformer. Particularly, in order to obtain a large-area plasma, the structure of the transformer and the plasma reactor is improved, or a plurality of external discharge tubes are provided or the number of embedded transformer cores is increased. However, simply increasing the number of external discharge tubes or increasing the number of embedded transformer cores makes it difficult to uniformly obtain a high-density large-area plasma.

한편, 피처리 기판의 대형화는 전체적인 생산 설비의 대형화를 야기하게 된다. 생산 설비의 대형화는 전체적인 설비 면적을 증가시켜 결과적으로 생산비를 증가시키는 요인이 된다. 그럼으로 가급적 설비 면적을 최소화 할 수 있는 플라즈마 반응기 및 플라즈마 처리 시스템이 요구되고 있다. 특히, 반도체 제조 공정에서는 단위 면적당 생산성이 최종 재품의 가격에 영향을 미치는 중요한 요인의 하나로 작용한다. 그럼으로 단위 면적당 생산성을 높이기 위한 방법으로 생산 설비의 구성들을 효과적으로 배치하는 기술들이 제공되고 있다. 예를 들어, 두 장의 피처리 기판을 병렬로 처리하는 플라즈마 반응기가 제공되고 있다. 그러나 대부분의 두 장의 피처리 기판을 병렬로 처리하는 플라즈마 반응기들은 두 개의 플라즈마 소스를 탑재하고 있어서 실질적으로 공정 설비의 최소화를 이루지 못하고 있는 실정이다.On the other hand, the enlargement of the substrate to be processed causes the enlargement of the overall production equipment. The enlargement of the production facilities increases the overall equipment area and consequently increases the production costs. Therefore, there is a demand for a plasma reactor and a plasma processing system capable of minimizing a facility area as much as possible. Particularly, in the semiconductor manufacturing process, productivity per unit area is one of the important factors affecting the final product price. Thus, techniques for efficiently arranging the configurations of production facilities as a method for increasing the productivity per unit area are provided. For example, there is provided a plasma reactor that processes two substrates to be processed in parallel. However, plasma reactors for treating most of two substrates to be processed in parallel have two plasma sources, so that the actual process facilities are not minimized.

만약, 플라즈마 반응기를 두 개 이상 수직 또는 수평으로 병렬 배열할 때 각 구성의 공통적인 부분을 공유하고 하나의 플라즈마 소스에 의해서 두 장의 피처리 기판을 병렬 처리할 수 있다면 설비 공간의 축소나 설비 구성의 최소화에 의한 여러 가지 이득을 얻을 수 있을 것이다.If two or more plasma reactors are vertically or horizontally arranged in parallel, it is possible to share a common part of each structure and to process two substrates to be processed in parallel by one plasma source. You will get several benefits from minimization.

최근 반도체 제조 산업에서는 반도체 소자의 초미세화, 반도체 회로를 제조하기 위한 실리콘 웨이퍼 기판이나 유리 기판 또는 플라스틱 기판과 같은 피처리 기판의 대형화 그리고 새로운 처리 대상 물질의 개발되고 있는 등과 같은 여러 요인으로 인하여 더욱 향상된 플라즈마 처리 기술이 요구되고 있다. 특히, 대면적의 피처리 기판에 대한 우수한 처리 능력을 갖는 향상된 플라즈마 소스 및 플라즈마 처리 기술이 요구되고 있다. 더욱이 레이저를 이용한 다양한 반도체 제조 장치가 제공되고 있다. 레이저를 이용하는 반도체 제조 공정은 피처리 기판에 대한 증착, 식각, 어닐닝, 세정 등과 같은 다양한 공정에 넓게 적용되고 있다. 이와 같은 레이저를 이용한 반도체 제조 공정의 경우에도 상술한 문제점이 존재한다.In recent years, the semiconductor manufacturing industry has been further improved due to various factors such as miniaturization of semiconductor devices, enlargement of substrates to be processed such as a silicon wafer substrate, a glass substrate or a plastic substrate for manufacturing a semiconductor circuit, A plasma processing technique is required. In particular, there is a demand for an improved plasma source and a plasma processing technique having excellent processing capability for a large-area substrate to be processed. Further, various semiconductor manufacturing apparatuses using lasers are being provided. A semiconductor manufacturing process using a laser is widely applied to various processes such as deposition, etching, annealing, cleaning, and the like on a substrate to be processed. The above-described problems also exist in the case of such a semiconductor manufacturing process using a laser.

본 발명의 목적은 대면적의 플라즈마 균일하게 발생 및 유지 할 수 있는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기를 제공하는데 있다.It is an object of the present invention to provide an inductively coupled double plasma reactor having a multi-laser scanning line capable of uniformly generating and holding large-area plasma.

본 발명의 다른 목적은 대면적화가 용이하며 고밀도의 플라즈마를 균일하게 발생할 수 있는 그리고 둘 이상의 대면적의 피처리 기판을 동시에 처리할 수 있어서 설비 면적당 기판 처리율이 높은 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기를 제공하는데 있다.It is another object of the present invention to provide an inductive coupling double-sided laser having a multi-laser scanning line having a high substrate throughput per unit area, which is capable of uniformly generating a high-density plasma, Plasma reactor.

상기한 기술적 과제를 달성하기 위한 본 발명의 일면은 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기에 관한 것이다. 본 발명의 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기는: 제1 플라즈마 반응기를 구성하는 제1 반응기 몸체; 제2 플라즈마 반응기를 구성하는 제2 반응기 몸체; 상기 제1 반응기 몸체의 일면을 형성하는 제1 유전체 윈도우와 상기 제1 유전체 윈도우에 근접하여 설치되고 상기 반응기 몸체의 내부에 유도 결합 플라즈마를 유도하기 위한 제1 무선 주파수 안테나를 포함하는 제1 안테나 어셈블리; 상기 제2 반응기 몸체의 일면을 형성하는 제2 유전체 윈도우와 상기 제2 유전체 윈도우에 근접하여 설치되고 상기 반응기 몸체의 내부에 유도 결합 플라즈마를 유도하기 위한 제2 무선 주파수 안테나를 포함하는 제2 안테나 어셈블리; 상기 제1 및 제2 무선 주파수 안테나로 무선 주파수 전원을 공급하기 위한 메인 전원 공급원; 및 상기 반응기 몸체의 내부에 복수개의 레이저 주사선으로 이루어지는 멀티 레이저 스캐닝 라인을 구성하기 위한 레이저 공급원을 포함한다.According to an aspect of the present invention, there is provided an inductively coupled double-plasma reactor having a multi-laser scanning line. An inductively coupled dual plasma reactor having a multi-laser scanning line of the present invention comprises: a first reactor body constituting a first plasma reactor; A second reactor body constituting a second plasma reactor; A first antenna assembly including a first dielectric window defining one side of the first reactor body and a first radio frequency antenna proximate to the first dielectric window and for inducing inductively coupled plasma into the reactor body, ; A second antenna assembly including a second dielectric window defining one side of the second reactor body and a second radio frequency antenna disposed proximate to the second dielectric window and for inducing inductively coupled plasma within the reactor body, ; A main power supply for supplying radio frequency power to the first and second radio frequency antennas; And a laser source for constructing a multi-laser scanning line including a plurality of laser scanning lines in the reactor body.

일 실시예에 있어서, 상기 제1 및 제2 유전체 윈도우는 상기 제1 및 제2 무선 주파수 안테나가 설치되는 각각의 트랜치 영역과 상기 제1 및 제2 반응기 몸체의 내부로 가스를 주입하기 위한 복수개의 가스 유입구 및 가스 분사홀을 각기 포함한다.In one embodiment, the first and second dielectric windows include respective trench regions in which the first and second radio frequency antennas are installed, and a plurality of trench regions for injecting gas into the first and second reactor bodies Gas inlet and gas injection hole, respectively.

일 실시예에 있어서, 상기 제1 및 제2 안테나 어셈블리는 자속 출입구가 상기 제1 및 제2 반응기 몸체의 내부를 향하도록 상기 제1 및 제2 무선 주파수 안테나를 따라 덮는 마그네틱 코어 커버를 각기 포함한다.In one embodiment, the first and second antenna assemblies each include a magnetic core cover that covers the first and second radio frequency antennas so that magnetic flux entrances are directed into the interior of the first and second reactor bodies .

일 실시예에 있어서, 상기 제1 및 제2 안테나 어셈블리는 복수개의 제1 및 제2 무선 주파수 안테나를 포함하고, 상기 메인 전원 공급원으로부터 제공되는 무선 주파수 전원을 상기 복수개의 제1 및 제2 무선 주파수 안테나로 분배하는 분배 회로를 포함한다.In one embodiment, the first and second antenna assemblies include a plurality of first and second radio frequency antennas, and the radio frequency power source provided from the main power source is coupled to the plurality of first and second radio frequency And a distribution circuit for distributing to the antenna.

일 실시예에 있어서, 상기 메인 전원 공급원과 상기 분배 회로 사이에 구성되어 임피던스 정합을 수행하는 임피던스 정합기를 포함한다.In one embodiment, an impedance matcher is provided between the main power source and the distribution circuit to perform impedance matching.

일 실시예에 있어서, 상기 분배 회로는 상기 복수개의 제1 및 제2 무선 주파수 안테나로 공급되는 전류의 균형을 조절하는 전류 균형 회로를 포함한다.In one embodiment, the distribution circuit includes a current balancing circuit that regulates the balance of current supplied to the plurality of first and second radio frequency antennas.

일 실시예에 있어서, 상기 전류 균형 회로는 상기 복수개의 제1 및 제2 무선 주파수 안테나를 병렬 구동하며 전류 균형을 이루는 복수개의 트랜스포머를 포함하고, 상기 복수개의 트랜스포머의 일차측은 직렬로 연결되며, 이차측은 상기 복수개의 제1 및 제2 무선 주파수 안테나에 대응되게 연결된다.In one embodiment, the current balancing circuit includes a plurality of transformers driving the plurality of first and second radio frequency antennas in parallel and balancing currents, the primary sides of the plurality of transformers being connected in series, Is connected to the plurality of first and second radio frequency antennas in a corresponding manner.

일 실시예에 있어서, 상기 복수개의 트랜스포머의 이차측들은 각기 접지된 중간탭을 포함하고 상기 이차측의 일단은 정전압을 타단은 부전압을 각각 출력하며, 상기 정전압은 상기 복수개의 제1 및 제2 무선 주파수 안테나의 일단으로 상기 부전압은 상기 복수개의 제1 및 제2 무선 주파수 안테나의 타단으로 제공된다.In one embodiment, the secondary sides of the plurality of transformers each include a grounded intermediate tap, one end of the secondary side outputs a positive voltage and the other end outputs a negative voltage, and the constant voltage is applied to the plurality of first and second The one end of the radio frequency antenna is provided as the other end of the plurality of first and second radio frequency antennas.

일 실시예에 있어서, 상기 전류 균형 회로는 전류 균형 조절 범위를 가변 할 수 있는 전압 레벨 조절 회로를 포함한다.In one embodiment, the current balancing circuit includes a voltage level regulating circuit capable of varying the current balance regulating range.

일 실시예에 있어서, 상기 전류 균형 회로는 누설 전류의 보상을 위한 보상 회로를 포함한다.In one embodiment, the current balancing circuit includes a compensation circuit for compensation of leakage current.

일 실시예에 있어서, 상기 전류 균형 회로는 과도 전압에 의한 손상을 방지 하기 위한 보호 회로를 포함한다.In one embodiment, the current balancing circuit includes a protection circuit for preventing damage by transient voltages.

일 실시예에 있어서, 상기 제1 및 제2 안테나 어셈블리를 통해서 상기 제1 및 제2 반응기 몸체의 내부로 가스를 공급하는 가스 공급부를 포함한다.In one embodiment, the gas supply unit supplies gas into the first and second reactor bodies through the first and second antenna assemblies.

일 실시예에 있어서, 상기 가스 공급부는 서로 독립된 가스 공급 경로를 갖는 적어도 두 개의 가스 공급 채널을 포함한다.In one embodiment, the gas supply part includes at least two gas supply channels having independent gas supply paths.

일 실시예에 있어서, 상기 제1 및 제2 반응기 몸체는 내부에 피처리 기판이 놓이는 지지대를 각기 구비하고, 상기 지지대는 바이어스 되거나 또는 바이어스 되지 않는 것 중 어느 하나이다.In one embodiment, each of the first and second reactor bodies has a support in which a substrate to be processed is placed, and the support is either biased or not biased.

일 실시예에 있어서, 상기 지지대는 단일 주파수 전원 또는 둘 이상의 서로 다른 주파수 전원에 의해 바이어스 된다.In one embodiment, the supports are biased by a single frequency power source or two or more different frequency power sources.

일 실시예에 있어서, 상기 지지대는 정전척을 포함한다.In one embodiment, the support comprises an electrostatic chuck.

일 실시예에 있어서, 상기 지지대는 히터를 포함한다.In one embodiment, the support includes a heater.

일 실시예에 있어서, 상기 지지대는 피처리 기판과 평행하게 선형 또는 회전 이동 가능한 구조를 갖고, 상기 지지대를 선형 또는 회전 이동하기 위한 구동 메커니즘을 포함한다.In one embodiment, the support has a linear or rotationally movable structure parallel to the substrate to be processed, and includes a drive mechanism for linearly or rotationally moving the support.

일 실시예에 있어서, 상기 제1 및 제2 반응기 몸체는 내부로 레이저 빔을 주사하기 위한 레이저 투과 윈도우를 포함하고, 상기 레이저 공급원은 상기 레이저 투과 윈도우를 통하여 상기 제1 및 제2 반응기 몸체의 내부로 레이저 빔이 주사되도록 하여 상기 멀티 레이저 스캐닝 라인을 형성시키기 위한 하나 이상의 레이저 소스를 포함한다.In one embodiment, the first and second reactor bodies include a laser-transmissive window for scanning a laser beam therein, and the laser source is coupled to the interior of the first and second reactor bodies through the laser- And a plurality of laser sources for scanning the laser beam to form the multi-laser scanning lines.

일 실시예에 있어서, 상기 레이저 투과 윈도우는 상기 제1 및 제2 반응기 몸체의 측벽으로 대향되게 구성된 두 개의 윈도우를 포함하고, 상기 레이저 공급원은 상기 하나 이상의 레이저 소스로부터 발생된 레이저 빔을 상기 두 개의 윈도우를 사이에 두고 반사시켜 상기 멀티 레이저 스캐닝 라인을 형성시키는 복수개의 반사경을 포함한다.In one embodiment, the laser-transmissive window comprises two windows that are configured to face the sidewalls of the first and second reactor bodies, wherein the laser source is configured to direct the laser beam generated from the one or more laser sources to the two And a plurality of reflectors for reflecting the windows therebetween to form the multi-laser scanning lines.

본 발명의 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기에 의하면, 대면적의 피처리 기판의 크기에 적합하게 무선 주파수 안테나를 확장하되 마그네틱 코어 커버의 설치에 의해서 대면적의 플라즈마를 균일하게 발생할 수 있음으로 플라즈마 반응기의 대면적화가 용이하며 전류 균형 회로에 의한 균일한 전류 공급이 이루어짐으로서 고밀도의 플라즈마를 균일하게 발생할 수 있다. 그리고 제1 및 제2 안테나 어셈블리와 멀티 레이저 스캐닝 라인을 피처리 기판의 상부에 균일하고 넓게 주사할 수 있음으로서 대면적의 피처리 기판을 이중으로 처리하기 위한 대면적의 이중 플라즈마 반응기를 용이하게 구현할 수 있으며 여러 가지 공정 조건을 효율적으로 개선하여 공정 수율을 향상할 수 있다.According to the inductively coupled double-plasma reactor having the multi-laser scanning line of the present invention, it is possible to expand a radio frequency antenna in conformity with the size of the substrate to be processed in a large area, The plasma reactor can be made large in area, and uniform current can be supplied by the current balancing circuit, so that high-density plasma can be uniformly generated. In addition, since the first and second antenna assemblies and the multi-laser scanning lines can be uniformly and widely scanned over the substrate to be processed, a large-area dual plasma reactor for dual processing a large area substrate can be easily realized And the process yield can be improved by efficiently improving various process conditions.

본 발명을 충분히 이해하기 위해서 본 발명의 바람직한 실시예를 첨부 도면을 참조하여 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상세히 설명하는 실시예로 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보 다 완전하게 설명하기 위해서 제공 되어지는 것이다. 따라서 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어 표현될 수 있다. 각 도면에서 동일한 부재는 동일한 참조부호로 도시한 경우가 있음을 유의하여야 한다. 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략된다.For a better understanding of the present invention, a preferred embodiment of the present invention will be described with reference to the accompanying drawings. The embodiments of the present invention may be modified into various forms, and the scope of the present invention should not be construed as being limited to the embodiments described in detail below. The present embodiments are provided to enable those skilled in the art to more fully understand the present invention. Therefore, the shapes and the like of the elements in the drawings can be exaggeratedly expressed to emphasize a clearer description. It should be noted that in the drawings, the same members are denoted by the same reference numerals. Detailed descriptions of well-known functions and constructions which may be unnecessarily obscured by the gist of the present invention are omitted.

도 1은 본 발명의 바람직한 실시예에 따른 유도 결합 이중 플라즈마 반응기를 보여주는 도면이다.1 is a view showing an inductively coupled double plasma reactor according to a preferred embodiment of the present invention.

도 1을 참조하여, 본 발명의 바람직한 실시예에 따른 이중 플라즈마 반응기(2)는 병렬로 구성되는 제1 및 제2 반응기 몸체(11, 16)를 구비한 제1 및 제2 플라즈마 반응기(10, 15), 제1 및 제2 반응기 몸체(11, 16)의 내부에 플라즈마 방전을 각기 유도하기 위한 제1 및 제2 안테나 어셈블리(30a, 30b) 및, 레이저 공급원(80)을 포함한다. 제1 및 제2 안테나 어셈블리(30a, 30b)의 사이에는 가스 공급부(20)가 구비된다. 제1 및 제2 반응기 몸체(11, 16)는 내부에 피처리 기판(13, 18)이 놓이는 지지대(12, 17)가 제1 및 제2 안테나 어셈블리(30a, 30b)에 대향하여 일 측으로 설치된다. 가스 공급부(20)는 제1 및 제2 안테나 어셈블리(30a, 30b)의 사이에 구성되어 가스 공원(미도시)으로부터 제공된 가스를 제1 및 제2 안테나 어셈블리(30a, 30b)의 복수개의 가스 주입구(36a, 36b)를 통하여 제1 및 제2 반응기 몸체(11, 16)의 내부로 공급한다. 메인 전원 공급원(40)으로부터 발생된 무선 주파수 전원은 임피던스 정합기(41)와 분배 회로(50)를 통하여 제1 및 제2 안테나 어셈블리(30a, 30b)에 구비된 복수개의 제1 및 제2 무선 주파수 안테나(31a, 31b)로 공급된다. 레이저 공급원(80)은 제1 및 제2 반응기 몸체(11, 16)의 내부에 복수개의 레이저 주사선(82)으로 이루어지는 멀티 레이저 스캐닝 라인을 구성하기 위한 레이저를 제공한다. 제1 및 제2 반응기 몸체(11, 16)의 내부에는 각기 제1 및 제2 안테나 어셈블리(30a, 30b)와 멀티 레이저 스캐닝 라인에 의한 플라즈마가 발생되어 피처리 기판(13, 18)에 대한 기판 처리가 이루어진다.1, a dual plasma reactor 2 according to a preferred embodiment of the present invention comprises first and second plasma reactors 10, 10 with first and second reactor bodies 11, 16 constructed in parallel, First and second antenna assemblies 30a and 30b and a laser source 80 for directing a plasma discharge inside the first and second reactor bodies 11 and 16, respectively. A gas supply unit 20 is provided between the first and second antenna assemblies 30a and 30b. The first and second reactor bodies 11 and 16 are supported so that the supports 12 and 17 on which the target substrates 13 and 18 are placed face each other in a direction opposite to the first and second antenna assemblies 30a and 30b do. The gas supply unit 20 is disposed between the first and second antenna assemblies 30a and 30b and supplies gas supplied from a gas park (not shown) to the plurality of gas inlet ports 30a and 30b of the first and second antenna assemblies 30a and 30b. (16a, 36b) into the interior of the first and second reactor bodies (11, 16). The radio frequency power source generated from the main power source 40 is supplied to the first and second antenna assemblies 30a and 30b via the impedance matcher 41 and the distribution circuit 50, Frequency antennas 31a and 31b. The laser source 80 provides a laser for constructing a multi-laser scanning line consisting of a plurality of laser scanning lines 82 inside the first and second reactor bodies 11 and 16. Plasma generated by the first and second antenna assemblies 30a and 30b and the multi laser scanning lines is generated inside the first and second reactor bodies 11 and 16 so that the substrates to be processed 13 and 18 Processing is performed.

제1 및 제2 플라즈마 반응기(10, 16)는 제1 및 제2 반응기 몸체(11, 16)와 그 내부에 피처리 기판(13, 18)이 놓이는 지지대(12, 17)가 구비된다. 제1 및 제2 반응기 몸체(11, 16)는 알루미늄, 스테인리스, 구리와 같은 금속 물질이나 코팅된 금속 예를 들어, 양극 처리된 알루미늄이나 니켈 도금된 알루미늄으로 제작될 수도 있다. 또는 내화 금속(refractory metal)로 제작될 수도 있다. 또 다른 대안으로 제1 및 제2 반응기 몸체(11, 16)를 전체적 또는 부분적으로 석영, 세라믹과 같은 전기적 절연 물질로 제작하는 것도 가능하다. 이와 같이 제1 및 제2 반응기 몸체(11, 16)는 의도된 플라즈마 프로세스가 수행되기에 적합한 어떠한 물질로도 제작될 수 있다. 제1 및 제2 반응기 몸체(11, 16)의 구조는 피처리 기판(13, 18)에 따라 그리고 플라즈마의 균일한 발생을 위하여 적합한 구조 예를 들어, 원형 구조나 사각형 구조 그리고 이외에도 어떠한 형태의 구조를 가질 수 있다.The first and second plasma reactors 10 and 16 are provided with first and second reactor bodies 11 and 16 and supports 12 and 17 on which the substrates 13 and 18 are placed. The first and second reactor bodies 11 and 16 may be made of a metal material such as aluminum, stainless steel, copper or a coated metal such as anodized aluminum or nickel plated aluminum. Or a refractory metal. Alternatively, the first and second reactor bodies 11 and 16 may be wholly or partly made of an electrically insulating material such as quartz or ceramic. As such, the first and second reactor bodies 11,16 may be made of any material suitable for the intended plasma process to be performed. The structure of the first and second reactor bodies 11 and 16 may be a structure suitable for the uniform generation of the plasma and according to the substrates 13 and 18, for example, a circular structure or a rectangular structure, Lt; / RTI >

피처리 기판(13, 18)은 예를 들어, 반도체 장치, 디스플레이 장치, 태양전지 등과 같은 다양한 장치들의 제조를 위한 웨이퍼 기판, 유리 기판, 플라스틱 기판 등과 같은 기판들이다. 제1 및 제2 플라즈마 반응기(10, 16)의 가스 출구(8, 9)는 진공 펌프(미도시)에 연결된다. 하나의 진공 펌프를 사용하여 공통 배기 구조를 갖도록 하거나 또는 각기 별개의 진공 펌프를 사용하여 독립적인 배기 구조를 갖도록 할 수 있다. 제1 및 제2 플라즈마 반응기(10, 16)는 대기압 이하의 저압 상태에서 피처리 기판(13, 18)에 대한 플라즈마 처리가 이루어진다. 그러나 본 발명의 제1 및 제2 플라즈마 반응기(10, 16)는 대기압에서 피처리 기판을 처리하는 대기압의 플라즈마 처리 시스템으로도 구현될 수 있다.The processed substrates 13 and 18 are substrates such as a wafer substrate, a glass substrate, a plastic substrate, and the like for manufacturing various devices such as, for example, semiconductor devices, display devices, solar cells and the like. The gas outlets 8, 9 of the first and second plasma reactors 10, 16 are connected to a vacuum pump (not shown). A single vacuum pump can be used to have a common exhaust structure or a separate vacuum pump can be used to have an independent exhaust structure. The first and second plasma reactors 10 and 16 are subjected to plasma processing on the substrates 13 and 18 under a low-pressure state at atmospheric pressure or lower. However, the first and second plasma reactors 10 and 16 of the present invention can also be implemented as an atmospheric plasma processing system for processing substrates to be processed at atmospheric pressure.

가스 공급부(20)는 제1 및 제2 안테나 어셈블리(30a, 30b)의 사이에 구성된다. 가스 공급부(20)는 가스 공급원(미도시)에 연결되는 가스 입구(미도시)와 하나 이상의 가스 분배판(22) 그리고 복수개의 가스 주입구(23)를 구비한다. 복수개의 가스 주입구(23)는 제1 및 제2 안테나 어셈블리(30a, 30b)의 복수개의 가스 유입구(36a, 36b)에 대응되어 각기 연결된다. 가스 입구를 통하여 입력된 반응 가스는 하나 이상의 가스 분배판(22)에 의해서 고르게 분배되어 복수개의 가스 주입구(23)를 통해서 제1 및 제2 반응기 몸체(11, 16)의 내부로 유입된다. 도면에는 구체적으로 도시하지 않았으나, 가스 공급부(20)는 서로 독립된 가스 공급 경로를 갖는 적어도 두 개의 가스 공급 채널을 구비할 수 있다.The gas supply unit 20 is configured between the first and second antenna assemblies 30a and 30b. The gas supply unit 20 includes a gas inlet (not shown) connected to a gas supply source (not shown), one or more gas distribution plates 22, and a plurality of gas injection ports 23. A plurality of gas inlet ports 23 are connected to the plurality of gas inlet ports 36a and 36b of the first and second antenna assemblies 30a and 30b, respectively. The reaction gas input through the gas inlet is evenly distributed by the at least one gas distribution plate 22 and flows into the first and second reactor bodies 11 and 16 through the plurality of gas injection openings 23. Although not specifically shown in the drawings, the gas supply unit 20 may include at least two gas supply channels having independent gas supply paths.

제1 및 제2 안테나 어셈블리(30a, 30b)는 제1 및 제2 반응기 몸체(11, 16)의 일면을 형성하는 제1 및 제2 유전체 윈도우(34a, 34b)와 제1 및 제2 유전체 윈도우(34a, 34b)에 근접하여 설치되고 제1 및 제2 반응기 몸체(11, 16)의 내부에 유도 결합 플라즈마를 유도하기 위한 제1 및 제2 무선 주파수 안테나(31)를 구비한다. 제1 및 제2 유전체 윈도우(34a, 34b)는 제1 및 제2 무선 주파수 안테나(31a, 31b)가 설치되는 트랜치 영역(35a, 35b), 제1 및 제2 반응기 몸체(11, 16)의 내부로 가 스를 주입하기 위한 복수개의 가스 유입구(36a, 36b) 및 가스 분사홀(32a, 32b)을 포함한다. 제1 및 제2 무선 주파수 안테나(31a, 31b)는 도 3에 도시된 바와 같이 평판 나선 구조를 갖거나 도 4에 도시된 바와 같이 평판 지그재그 구조를 가질 수 있다. 이외에도 플라즈마의 균일한 유도를 위하여 어떠한 형태의 구조를 가질 수 있다. 트랜치 영역(35a, 35b)은 제1 및 제2 무선 주파수 안테나(31a, 31b)의 형상에 따라 적절한 구조로 제1 및 제2 유전체 윈도우(34a, 34b)에 형성될 수 있다. 복수개의 가스 유입구(36a, 36b)와 가스 분사홀(32a, 32b)은 트랜치 영역(35a, 35b) 사이에 위치하도록 제1 및 제2 유전체 윈도우(34a, 34b)에 형성되며 균일한 가스 분배를 위하여 적절한 개수로 분산되어 구성된다.The first and second antenna assemblies 30a and 30b include first and second dielectric windows 34a and 34b and first and second dielectric windows 34a and 34b forming one side of the first and second reactor bodies 11 and 16, And a first and a second radio frequency antenna 31 installed in proximity to the first and second reactor bodies 11 and 16 to induce an inductively coupled plasma in the first and second reactor bodies 11 and 16, respectively. The first and second dielectric windows 34a and 34b are formed in the trench regions 35a and 35b in which the first and second radio frequency antennas 31a and 31b are installed and the trench regions 35a and 35b of the first and second reactor bodies 11 and 16 And a plurality of gas inlets 36a and 36b and gas injection holes 32a and 32b for injecting gas into the inside. The first and second radio frequency antennas 31a and 31b may have a flat spiral structure as shown in FIG. 3 or a flat zigzag structure as shown in FIG. In addition, it can have any type of structure for uniform induction of plasma. The trench regions 35a and 35b may be formed in the first and second dielectric windows 34a and 34b in a suitable structure according to the shapes of the first and second radio frequency antennas 31a and 31b. A plurality of gas inlets 36a and 36b and gas injection holes 32a and 32b are formed in the first and second dielectric windows 34a and 34b to be positioned between the trench regions 35a and 35b, So that they are distributed in an appropriate number.

도 2 및 도 3은 무선 주파수 안테나와 코어 커버의 여러 구조를 보여주는 도면이다.2 and 3 are views showing various structures of a radio frequency antenna and a core cover.

도 2 및 도 3을 참조하여, 제1 및 제2 무선 주파수 안테나(31a, 31b)로부터 유도되는 자기장의 손실을 나추고 에너지 전달 효율과 균일도를 높이기 위하여 마그네틱 코어 커버(33a, 33b)가 구비될 수 있다. 마그네틱 코어 커버(33a, 33b)는 자속 출입구가 제1 및 제2 반응기 몸체(11, 16)의 내부를 향하도록 하여 제1 및 제2 무선 주파수 안테나(31a, 31b)를 따라 덮도록 제1 및 제2 안테나 어셈블리(30a, 30b)에 설치된다. 마그네틱 코어 커버(33a, 33b)는 다수개의 조각들로 구성될 수 있으며, 각 조각의 접촉면에는 비자성 물질층을 포함하도록 함으로서 집속되는 자기장의 균일도를 높일 수 있다.Referring to FIGS. 2 and 3, the magnetic core covers 33a and 33b are provided to reduce the loss of the magnetic field induced from the first and second radio frequency antennas 31a and 31b and increase energy transfer efficiency and uniformity . The magnetic core covers 33a and 33b are disposed so as to cover the first and second radio frequency antennas 31a and 31b with the magnetic flux entrance facing the inside of the first and second reactor bodies 11 and 16, And are installed in the second antenna assemblies 30a and 30b. The magnetic core covers 33a and 33b can be composed of a plurality of pieces, and the non-magnetic material layer is included on the contact surfaces of the pieces, thereby increasing the uniformity of the magnetic field to be focused.

도 4 내지 도 6은 멀티 레이저 스캐닝 라인의 다양한 구성 방법을 설명하기 위한 도면이다.FIGS. 4 to 6 are views for explaining various methods of constructing the multi-laser scanning line.

도 4 내지 도 6을 참조하여, 제1 및 제2 반응기 몸체(11, 16)는 각기 내부로 레이저 빔을 주사하기 위한 레이저 투과 윈도우(86, 87)를 구비한다. 레이저 투과 윈도우(86, 87)는 제1 및 제2 반응기 몸체(11, 16)의 측벽으로 대향되게 각기 구성된 두 개의 윈도우(86, 87)로 구성될 수 있다. 두 개의 윈도우(86, 87)는 제1 및 제2 반응기 몸체(11, 16)의 서로 마주 대향되도록 각각 설치되며, 동일한 길이를 갖는 슬릿 구조로 구성될 수 있다. 레이저 공급원(80)은 하나 이상의 레이저 소스(84)를 포함한다. 레이저 소스(84)는 레이저 투과 윈도우(86, 87)를 통하여 제1 및 제2 반응기 몸체(11, 16)의 내부로 레이저 빔을 주사하여 제1 및 제2 반응기 몸체(11, 16)의 내부에 복수개의 레이저 주사선(82)을 형성시켜 멀티 레이저 스캐닝 라인 구성한다.Referring to Figs. 4 to 6, the first and second reactor bodies 11 and 16 have laser-permeable windows 86 and 87, respectively, for scanning a laser beam into the interior. The laser-transmissive windows 86 and 87 can be composed of two windows 86 and 87, respectively, which are configured to face the side walls of the first and second reactor bodies 11 and 16, respectively. The two windows 86 and 87 are respectively installed to face the first and second reactor bodies 11 and 16 so as to oppose each other, and can be configured as a slit structure having the same length. The laser source 80 includes one or more laser sources 84. The laser source 84 scans the laser beam into the interior of the first and second reactor bodies 11 and 16 through the laser transmission windows 86 and 87 to form the interior of the first and second reactor bodies 11 and 16 A plurality of laser scanning lines 82 are formed on the substrate 100 to form a multi-laser scanning line.

예를 들어, 도 4에 도시된 바와 같이, 일 측의 레이저 투과 윈도우(86)에 근접해서 복수개의 레이저 소스(84)가 배열되고, 그에 대응하여 타측의 레이저 투과 윈도우(87)에 근접해서는 복수개의 레이저 종결부(85)가 구성될 수 있다. 또는 도 5에 도시된 바와 같이, 몇 개의 레이저 소스(84)를 간격을 두고 구성하고 그 사이에 복수개의 반사경(83)을 설치하여 레이저 소스(84)로부터 발생된 레이저 빔을 두 개의 레이저 투과 윈도우(86, 87)를 사이에 두고 왕복하며 반사되도록 하여 복수개의 레이저 주사선(82)을 형성시킬 수 있다. 또는 도 6에 도시된 바와 같이, 단지 하나의 레이저 소스(84)만을 구성하고 복수개의 반사경(83)을 구성할 수도 있다. 이와 같이 하나 이상의 레이저 소스(84)와 복수개의 반사경(83)과 하나 이상의 레 이저 종결부(85)를 사용하여 멀티 레이저 스캐닝 라인을 제1 및 제2 반응기 몸체(11, 16)의 내부에 구성할 수 있다. 그리고 보다 구체적인 구성과 설명은 생략되었으나, 레이저 빔을 제1 및 제2 반응기 몸체(11, 16)의 내부로 주사시키기 위하여 적절한 구조의 광학계가 사용될 수 있음을 당 업계의 통상적인 기술자들은 잘 알 수 있을 것이다.For example, as shown in FIG. 4, a plurality of laser sources 84 are arranged close to the laser-transmissive window 86 on one side, and a plurality (not shown) of laser- A plurality of laser termination portions 85 may be formed. Alternatively, as shown in FIG. 5, a plurality of laser sources 84 may be spaced apart, and a plurality of reflectors 83 may be provided therebetween, so that the laser beam generated from the laser source 84 may be split into two laser- A plurality of laser scanning lines 82 can be formed by reflecting the laser beam 85 by reciprocatingly passing the laser beams 86 and 87 therebetween. Alternatively, as shown in Fig. 6, only one laser source 84 may be constituted and a plurality of reflectors 83 may be constituted. In this way, a multi-laser scanning line is constructed inside the first and second reactor bodies 11, 16 using one or more laser sources 84, a plurality of reflectors 83, and one or more laser terminators 85 can do. Although a more specific construction and description are omitted, it is well known to those skilled in the art that an optical system of a suitable structure can be used to scan the laser beam into the first and second reactor bodies 11 and 16 There will be.

다시, 도 1을 참조하여, 제1 및 제2 반응기 몸체(11, 16)의 내부에는 피처리 기판(13, 18)을 지지하기 위한 지지대(12, 17)가 구비된다. 지지대(12, 17)는 바이어스 전원 공급원(42, 43, 45, 46)에 연결되어 바이어스 된다. 예를 들어, 서로 다른 무선 주파수 전원을 공급하는 두 개의 바이어스 전원 공급원(42, 43, 45, 46)이 임피던스 정합기(44, 47)를 통하여 지지대(12, 17)에 전기적으로 연결되어 바이어스 된다. 지지대(12, 17)의 이중 바이어스 구조는 제1 및 제2 반응기 몸체(11, 16)의 내부에 플라즈마 발생을 용이하게 하고, 플라즈마 이온 에너지 조절을 더욱 개선시켜 공정 수율을 향상 시킬 수 있다. 또는 단일 바이어스 구조로 변형 실시할 수도 있다. 또는 지지대(12, 17)는 바이어스 전원의 공급 없이 제로 퍼텐셜(zero potential)을 갖는 구조로 변형 실시될 수도 있다. 그리고 기판 지지대(12, 17)는 정전척을 포함할 수 있다. 또는 기판 지지대(12, 17)는 히터를 포함할 수 있다.1, support bases 12 and 17 for supporting the target substrates 13 and 18 are provided in the first and second reactor bodies 11 and 16, respectively. The supports 12, 17 are connected to bias power sources 42, 43, 45, 46 and biased. For example, two bias power sources 42, 43, 45 and 46 supplying different radio frequency powers are electrically connected to the supports 12 and 17 via the impedance matchers 44 and 47 and biased . The dual biasing structure of the supports 12, 17 can facilitate plasma generation within the first and second reactor bodies 11, 16 and improve process yield by further improving plasma ion energy control. Or a single bias structure. Or the supports 12 and 17 may be deformed into a structure having a zero potential without supplying a bias power. And the substrate supports 12, 17 may comprise an electrostatic chuck. Or the substrate supports 12, 17 may comprise a heater.

지지대(12, 17)는 고정형으로 구성될 수 있다. 또는 지지대(12, 17)는 피처리 기판(13, 18)과 평행하게 선형 또는 회전 이동 가능한 구조를 갖고, 지지대(12, 17)를 선형 또는 회전 이동하기 위한 구동 메커니즘(4, 5)을 포함한다. 지지 대(12, 17)의 이러한 이동 구조는 피처리 기판(13, 18)의 처리 효율을 높이기 위한 것이다. 제1 및 제2 반응기 몸체(11, 16)의 상부에 구성된 가스 출구(8, 9)로 배출되는 가스의 균일한 배기를 위하여 제1 및 제2 반응기 몸체(11, 16)의 내측 상부에는 배기 배플(6, 7)이 구성될 수 있다.The supports 12 and 17 may be of a fixed type. Or the supports 12 and 17 have linear or rotationally movable structures parallel to the substrates 13 and 18 and include drive mechanisms 4 and 5 for linearly or rotationally moving the supports 12 and 17 do. Such a moving structure of the supports 12 and 17 is intended to increase the processing efficiency of the substrates 13 and 18. In order to uniformly exhaust the gas discharged to the gas outlets 8 and 9 constituted on the upper portions of the first and second reactor bodies 11 and 16, the upper part of the inside of the first and second reactor bodies 11 and 16, Baffles 6 and 7 may be constructed.

한편, 제1 및 제2 안테나 어셈블리(30a, 30b)의 제1 및 제2 무선 주파수 안테나(31a, 31b)는 메인 전원 공급원(40)으로부터 발생된 무선 주파수 전원을 임피던스 정합기(41)와 분배 회로(50)를 통하여 공급받아 구동되어 제1 및 제2 반응기 몸체(11, 16)의 내부에 용량 결합된 플라즈마를 유도한다. 메인 전원 공급원(40)은 별도의 임피던스 정합기 없이 출력 전원의 제어가 가능한 무선 주파수 발생기를 사용하여 구성될 수도 있다.The first and second radio frequency antennas 31a and 31b of the first and second antenna assemblies 30a and 30b receive the radio frequency power generated from the main power supply 40 by the impedance matcher 41 Circuit 50 to drive the capacitively coupled plasma into the first and second reactor bodies 11 and 16. The main power source 40 may be configured using a radio frequency generator capable of controlling the output power without a separate impedance matcher.

제1 및 제2 안테나 어셈블리(30a, 30b)에 구비되는 제1 및 제2 무선 주파수 안테나(31a, 31b)는 보다 균일한 플라즈마 방전을 유도하기 위하여 각기 복수개로 구성될 수 있다. 메인 전원 공급원(40)으로부터 발생된 무선 주파수 전원은 임피던스 정합기(41)를 통하여 복수개의 제1 및 제2 무선 주파수 안테나(31a, 31b)로 제공된다. 이를 위하여 적절한 회로 구성을 갖는 분배 회로(50)가 구비될 수 있다. 분배 회로(50)는 메인 전원 공급원(40)으로부터 제공되는 무선 주파수 전원을 복수개의 제1 및 제2 무선 주파수 안테나(31a, 31b)로 분배하여 공급함으로서 복수개의 제1 및 제2 무선 주파수 안테나(31a, 31b)가 병렬 구동되게 한다. 바람직하게, 분배 회로(50)는 전류 균형 회로로 구성될 수 있다. 전류 균형 회로는 복수개의 제1 및 제2 무선 주파수 안테나(31a, 31b)로 공급되는 전류가 자동적으로 상호 균형을 이루게 한다. 그럼으로 대면적의 플라즈마를 보다 균일하게 발생 및 유지할 수 있다.The first and second radio frequency antennas 31a and 31b included in the first and second antenna assemblies 30a and 30b may be configured to generate more uniform plasma discharge. A radio frequency power source generated from the main power source 40 is provided to a plurality of first and second radio frequency antennas 31a and 31b through an impedance matcher 41. [ To this end, a distribution circuit 50 having an appropriate circuit configuration may be provided. The distribution circuit 50 distributes the radio frequency power supplied from the main power supply source 40 to the plurality of first and second radio frequency antennas 31a and 31b to supply the plurality of first and second radio frequency antennas 31a, and 31b are driven in parallel. Preferably, the distribution circuit 50 may comprise a current balancing circuit. The current balance circuit automatically balances the currents supplied to the first and second radio frequency antennas 31a and 31b. Thus, a large-area plasma can be generated and maintained more uniformly.

도 7은 분배 회로의 일 예를 보여주는 도면이다.7 is a view showing an example of a distribution circuit.

도 7을 참조하여, 분배 회로(50)는 복수개의 제1 및 제2 무선 주파수 안테나 (31a, 31b)를 병렬 구동하며 전류 균형을 이루는 복수개의 트랜스포머(52)를 포함한다. 복수개의 트랜스포머(52)의 일차측은 무선 주파수가 입력되는 전원 입력단과 접지 사이에 직렬로 연결되며, 이차측의 일단은 복수개의 제1 및 제2 무선 주파수 안테나(31a, 31b)에 대응되게 연결되고 타단은 공통으로 접지된다. 복수개의 트랜스포머(52)는 전원 입력단과 접지 사이의 전압을 균등하게 분할하고 분할된 다수의 분할된 전압을 복수개의 제1 및 제2 무선 주파수 안테나(31a, 31b)의 일단으로 출력한다. 복수개의 제1 및 제2 무선 주파수 안테나(31a, 31b)의 타단은 공통으로 접지된다.Referring to FIG. 7, the distribution circuit 50 includes a plurality of transformers 52 for driving a plurality of first and second radio frequency antennas 31a and 31b in parallel and balancing currents. The primary side of the plurality of transformers 52 is connected in series between a power input terminal to which a radio frequency is input and the ground, and one end of the secondary side is connected to a plurality of first and second radio frequency antennas 31a and 31b And the other end is commonly grounded. The plurality of transformers 52 divides the voltage between the power input terminal and the ground equally and outputs the divided divided voltages to one end of the plurality of first and second radio frequency antennas 31a and 31b. The other ends of the plurality of first and second radio frequency antennas 31a and 31b are commonly grounded.

복수개의 트랜스포머(52)의 일차측으로 흐르는 전류는 동일함으로 복수개의 제1 및 제2 무선 주파수 안테나(31a, 31b)로 공급되는 전력도 동일하게 된다. 복수개의 제1 및 제2 무선 주파수 안테나(31a, 31b) 중에서 어느 하나의 임피던스가 변화되어 전류량의 변화가 발생되면 복수개의 트랜스포머(52)가 전체적으로 상호 작용하여 전류 균형을 이루게 된다. 그럼으로 복수개의 제1 및 제2 무선 주파수 안테나(31a, 31b)로 공급되는 전류는 상호 균일하게 지속적인 자동 조절이 이루어진다. 복수개의 트랜스포머(52)는 각기 일차측과 이차측의 권선비율이 기본적으로 1:1로 설정되어 있으나 이는 변경이 가능하다.Since the currents flowing to the primary side of the plurality of transformers 52 are the same, the power supplied to the plurality of first and second radio frequency antennas 31a and 31b is also the same. When the impedance of any one of the plurality of first and second radio frequency antennas 31a and 31b is changed and a change in the amount of current is generated, a plurality of transformers 52 interact with each other to balance the current. Thus, the currents supplied to the plurality of first and second radio frequency antennas 31a and 31b are uniformly and continuously automatically adjusted. In the plurality of transformers 52, the winding ratio of the primary side and the secondary side is basically set to 1: 1, but this can be changed.

이상과 같은 전류 균형 회로로 구성되는 분배 회로(50)는, 도면에는 구체적인 도시를 생략하였으나, 복수개의 트랜스포머(52)에 과도전압이 발생되는 것을 방지하기 위한 보호 회로를 포함할 수 있다. 보호 회로는 복수개의 트랜스포머(52) 중 어느 하나가 전기적으로 오픈 상태로 되어 해당 트랜스포머에 과도전압이 증가되는 것을 방지한다. 이러한 기능의 보호 회로는 바람직하게는 복수개의 트랜스포머(52)의 각각의 일차측 양단에 배리스터(Varistor)를 연결하여 구현할 수 있으며, 또는 제너다이오드(Zener Diode)와 같은 정전압 다이오드를 사용하여 구현할 수 있다. 그리고 분배 회로(50)에는 각각의 트랜스포머(52) 마다 누설 전류의 보상을 위한 보상 커패시터(51)와 같은 보상 회로가 부가될 수 있다.Although not shown in the drawings, the distribution circuit 50 configured by the current balance circuit as described above may include a protection circuit for preventing an excessive voltage from being generated in the plurality of transformers 52. [ The protection circuit prevents any one of the plurality of transformers 52 from being electrically opened to increase the transient voltage to the corresponding transformer. The protection circuit of this function may be realized by connecting a varistor to both ends of each of the plurality of transformers 52 or by using a constant voltage diode such as a Zener diode . A compensation circuit such as a compensation capacitor 51 for compensating the leakage current may be added to each of the transformers 52 in the distribution circuit 50.

도 8 내지 도 13은 분배 회로의 다양한 변형들을 보여주는 도면이다.8 to 13 are diagrams showing various modifications of the distribution circuit.

도 8을 참조하여, 일 변형의 분배 회로(50)는 복수개의 트랜스포머(52)의 이차측들이 각기 접지된 중간탭을 포함하여 이차측의 일단은 정전압을 타단은 부전압을 각각 출력한다. 정전압은 복수개의 제1 및 제2 무선 주파수 안테나(31a, 31b)의 일단으로 부전압은 제1 및 제2 무선 주파수 안테나(31a, 31b)의 타단으로 제공된다.Referring to Fig. 8, the one-way distribution circuit 50 includes intermediate taps where the secondary sides of the plurality of transformers 52 are grounded, respectively, so that one end of the secondary side outputs a positive voltage and the other end thereof a negative voltage. The constant voltage is provided to one end of the plurality of first and second radio frequency antennas 31a and 31b, and the negative voltage is provided to the other end of the first and second radio frequency antennas 31a and 31b.

도 9를 참조하여, 또 다른 변형의 분배 회로(50a, 50b)는 분리된 제1 및 제2 전류 균형 회로(50a, 50b)로 구성될 수도 있다. 제1 및 제2 전류 균형 회로(50a, 50b) 임피던스 정합기(41)에 병렬로 연결된다. 제1 전류 균형 회로(50a)는 복수개의 제1 무선 주파수 안테나(31a)에 그리고 제2 전류 균형 회로(50b)는 복수개의 제2 무선 주파수 안테나(31b)에 각기 대응되어 구성된다.Referring to Fig. 9, another modified distribution circuit 50a, 50b may be composed of separate first and second current balancing circuits 50a, 50b. The first and second current balancing circuits (50a, 50b) are connected in parallel to the impedance matcher (41). The first current balancing circuit 50a corresponds to the first radio frequency antenna 31a and the second current balancing circuit 50b corresponds to the plurality of second radio frequency antennas 31b.

도 10 및 도 11을 참조하여, 다른 변형의 분배 회로(50)는 전류 균형 조절 범위를 가변 할 수 있는 전압 레벨 조절 회로(60)를 구비할 수 있다. 전압 레벨 조절 회로(60)는 멀티 탭을 구비한 코일(61)과 멀티 탭 중 어느 하나를 접지로 연결하는 멀티 탭 스위칭 회로(62)를 포함한다. 전압 레벨 조절 회로(60)는 멀티 탭 스위칭 회로(62)의 스위칭 위치에 따라 가변된 전압 레벨을 전류 균형 회로(50)로 인가하게 되며, 분배 회로(50)는 전압 레벨 조절 회로(60)에 의해서 결정되는 전압 레벨에 의해 전류 균형 조절 범위가 가변된다. 그리고 도 12 및 도 13에 도시된 바와 같이, 제1 및 제2 분배 회로(50a, 50b)로 구성된 경우에도 역시 동일하게 각기 전압 레벨 조절 회로(60a, 60b)가 구비될 수 있다.10 and 11, the distribution circuit 50 of another modification may include a voltage level regulating circuit 60 capable of varying the current balance regulating range. The voltage level regulating circuit 60 includes a multi-tap switching circuit 62 for grounding the coil 61 and the multi-tap. The voltage level adjustment circuit 60 applies a variable voltage level to the current balance circuit 50 in accordance with the switching position of the multi-tap switching circuit 62, and the distribution circuit 50 is connected to the voltage level adjustment circuit 60 The current balance adjustment range is varied by the voltage level determined by the voltage level. As shown in FIGS. 12 and 13, the voltage level adjusting circuits 60a and 60b may be provided in the same manner as the first and second distributing circuits 50a and 50b.

이상과 같은 본 발명의 이중 플라즈마 반응기(2)는 도 1에 도시된 바와 같이 제1 및 제2 플라즈마 반응기(10, 15)가 수직 병렬 구조로 실시된 예를 예시하였으나 수평 병렬 구조로 실시될 수도 있다.As shown in FIG. 1, the dual plasma reactor 2 of the present invention exemplifies the first and second plasma reactors 10 and 15 in a vertically parallel structure, have.

이상에서 설명된 본 발명의 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기의 실시예는 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 잘 알 수 있을 것이다. 그럼으로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되 어야 한다.The embodiments of the inductively coupled double-plasma reactor having the multi-laser scanning line of the present invention described above are merely illustrative, and those skilled in the art will appreciate that various modifications and equivalent implementations It will be appreciated that embodiments are possible. Accordingly, it is to be understood that the present invention is not limited to the above-described embodiments. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims. It is also to be understood that the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

본 발명의 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기는 반도체 집적 회로의 제조, 평판 디스플레이 제조, 태양전지의 제조와 같은 다양한 박막 형성을 위한 플라즈마 처리 공정에서 피처리 기판을 이중으로 처리하는 경우에 매우 유용하게 이용될 수 있다. 본 발명의 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기는 대면적의 피처리 기판의 크기에 적합하게 무선 주파수 안테나를 확장하되 마그네틱 코어 커버의 설치에 의해서 대면적의 플라즈마를 균일하게 발생할 수 있음으로 플라즈마 반응기의 대면적화가 용이하며 전류 균형 회로에 의한 균일한 전류 공급이 이루어짐으로서 고밀도의 플라즈마를 균일하게 발생할 수 있다. 그리고 제1 및 제2 안테나 어셈블리와 멀티 레이저 스캐닝 라인을 피처리 기판의 상부에 균일하고 넓게 주사할 수 있음으로서 대면적의 이중 피처리 기판을 처리하기 위한 대면적의 이중 플라즈마 반응기를 용이하게 구현할 수 있으며 여러 가지 공정 조건을 효율적으로 개선하여 공정 수율을 향상할 수 있다.INDUSTRIAL APPLICABILITY The inductively coupled double-plasma reactor having the multi-laser scanning line of the present invention is applicable to a dual processing of a substrate to be processed in a plasma processing process for forming various thin films such as the manufacture of a semiconductor integrated circuit, the manufacture of a flat panel display, Can be very usefully used. The inductively coupled double plasma reactor having the multi laser scanning line of the present invention expands the radio frequency antenna to fit the size of the substrate to be processed in a large area but the plasma of the large area can be generated uniformly by installing the magnetic core cover It is easy to increase the area of the plasma reactor and uniform current is supplied by the current balancing circuit, so that high-density plasma can be uniformly generated. In addition, since the first and second antenna assemblies and the multi-laser scanning lines can be uniformly and widely scanned over the substrate to be processed, a large-area dual plasma reactor for processing a large- And the process yield can be improved by efficiently improving various process conditions.

도 1은 본 발명의 바람직한 실시예에 따른 유도 결합 이중 플라즈마 반응기를 보여주는 도면이다.1 is a view showing an inductively coupled double plasma reactor according to a preferred embodiment of the present invention.

도 2 및 도 3은 무선 주파수 안테나와 코어 커버의 여러 구조를 보여주는 도면이다.2 and 3 are views showing various structures of a radio frequency antenna and a core cover.

도 4 내지 도 6은 멀티 레이저 스캐닝 라인의 다양한 구성 방법을 설명하기 위한 도면이다.FIGS. 4 to 6 are views for explaining various methods of constructing the multi-laser scanning line.

도 7은 분배 회로의 일 예를 보여주는 도면이다.7 is a view showing an example of a distribution circuit.

도 8 내지 도 13은 분배 회로의 다양한 변형들을 보여주는 도면이다.8 to 13 are diagrams showing various modifications of the distribution circuit.

*도면의 주요 부분에 대한 부호의 설명*Description of the Related Art [0002]

6, 7: 배기 배플 8, 9: 가스 출구6, 7: exhaust baffle 8, 9: gas outlet

10, 15: 제1, 제2 플라즈마 반응기 11, 16: 제1, 제2 반응기 몸체10, 15: first and second plasma reactors 11, 16: first and second reactor bodies

12, 17: 지지대 13, 18: 피처리 기판12, 17: support stand 13, 18:

20: 가스 공급부 22: 가스 분배판20: gas supply part 22: gas distribution plate

23: 가스 주입구 30a, 30b: 제1, 제2 안테나 어셈블리23: gas inlet 30a, 30b: first and second antenna assemblies

31a, 31b: 제1, 제2 무선 주파수 안테나31a and 31b: first and second radio frequency antennas

32a, 32b: 가스 분사홀 33a, 33b: 마그네틱 코어 커버32a, 32b: gas injection holes 33a, 33b: magnetic core cover

34a, 34: 제1, 제2 유전체 윈도우 35a, 35b: 트랜치 영역34a, 34: first and second dielectric windows 35a, 35b:

36a, 36b: 가스 유입구 40: 메인 전원 공급원36a, 36b: gas inlet 40: main power source

41: 임피던스 정합기 42, 43: 바이어스 전원 공급원41: Impedance matching device 42, 43: bias power source

44: 임피던스 정합기 50: 분배 회로44: Impedance matcher 50: Distribution circuit

51: 보상 커패시터 52: 트랜스포머51: compensation capacitor 52: transformer

53: 중간탭 60: 전압 레벨 조절 회로53: Middle tap 60: Voltage level adjustment circuit

61: 코일 62: 멀티 탭 스위칭 회로61: coil 62: multi-tap switching circuit

80: 레이저 공급원 82: 멀티 레이저 스캐닝 라인80: laser source 82: multi laser scanning line

83: 반사경 85: 레이저 종결부83: reflector 85: laser terminator

Claims (20)

제1 플라즈마 반응기를 구성하는 제1 반응기 몸체;A first reactor body constituting a first plasma reactor; 제2 플라즈마 반응기를 구성하는 제2 반응기 몸체;A second reactor body constituting a second plasma reactor; 상기 제1 반응기 몸체의 일면을 형성하는 제1 유전체 윈도우와 상기 제1 유전체 윈도우에 설치되고 상기 반응기 몸체의 내부에 유도 결합 플라즈마를 유도하기 위한 제1 무선 주파수 안테나를 포함하는 제1 안테나 어셈블리;A first antenna assembly including a first dielectric window defining one side of the first reactor body and a first radio frequency antenna disposed on the first dielectric window and for inducing inductively coupled plasma into the reactor body; 상기 제2 반응기 몸체의 일면을 형성하는 제2 유전체 윈도우와 상기 제2 유전체 윈도우에 설치되고 상기 반응기 몸체의 내부에 유도 결합 플라즈마를 유도하기 위한 제2 무선 주파수 안테나를 포함하는 제2 안테나 어셈블리;A second antenna assembly including a second dielectric window forming one side of the second reactor body and a second radio frequency antenna installed in the second dielectric window and for inducing inductively coupled plasma in the reactor body; 상기 제1 및 제2 무선 주파수 안테나로 무선 주파수 전원을 공급하기 위한 메인 전원 공급원; 및A main power supply for supplying radio frequency power to the first and second radio frequency antennas; And 상기 제1 및 제2 반응기 몸체의 내부에 복수개의 레이저 주사선으로 이루어지는 멀티 레이저 스캐닝 라인을 구성하기 위한 레이저 공급원을 포함하는 멀티 레이저 스캐닝 라인을 가지고,And a multi-laser scanning line including a laser source for constituting a multi-laser scanning line including a plurality of laser scanning lines in the first and second reactor bodies, 상기 제1 및 제2 유전체 윈도우는 상기 제1 및 제2 무선 주파수 안테나가 설치되는 각각의 트랜치 영역과 상기 제1 및 제2 반응기 몸체의 내부로 가스를 주입하기 위한 복수개의 가스 유입구 및 가스 분사홀을 각기 포함하는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기.The first and second dielectric windows may include respective trench regions in which the first and second radio frequency antennas are installed, a plurality of gas inlets for injecting gas into the first and second reactor bodies, Each having a multi-laser scanning line. 삭제delete 제1항에 있어서,The method according to claim 1, 상기 제1 및 제2 안테나 어셈블리는 자속 출입구가 상기 제1 및 제2 반응기 몸체의 내부를 향하도록 상기 제1 및 제2 무선 주파수 안테나를 따라 덮는 마그네틱 코어 커버를 각기 포함하는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기.The first and second antenna assemblies each having a multi-laser scanning line including a magnetic core cover covering the first and second radio frequency antennas such that the magnetic flux entrance faces the inside of the first and second reactor bodies Inductively Coupled Double Plasma Reactor. 제1항에 있어서,The method according to claim 1, 상기 제1 및 제2 안테나 어셈블리는 복수개의 제1 및 제2 무선 주파수 안테나를 포함하고,Wherein the first and second antenna assemblies include a plurality of first and second radio frequency antennas, 상기 메인 전원 공급원으로부터 제공되는 무선 주파수 전원을 상기 복수개의 제1 및 제2 무선 주파수 안테나로 분배하는 분배 회로를 포함하는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기.And a distribution circuit for distributing radio frequency power from the main power source to the plurality of first and second radio frequency antennas. 제4항에 있어서,5. The method of claim 4, 상기 메인 전원 공급원과 상기 분배 회로 사이에 구성되어 임피던스 정합을 수행하는 임피던스 정합기를 포함하는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기.And an impedance matching unit configured between the main power source and the distribution circuit to perform impedance matching. 제4항에 있어서,5. The method of claim 4, 상기 분배 회로는 상기 복수개의 제1 및 제2 무선 주파수 안테나로 공급되는 전류의 균형을 조절하는 전류 균형 회로를 포함하는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기.Wherein the distribution circuit comprises a current balancing circuit for regulating a balance of current supplied to the plurality of first and second radio frequency antennas. 제6항에 있어서,The method according to claim 6, 상기 전류 균형 회로는 상기 복수개의 제1 및 제2 무선 주파수 안테나를 병렬 구동하며 전류 균형을 이루는 복수개의 트랜스포머를 포함하고,Wherein the current balancing circuit includes a plurality of transformers driving the plurality of first and second radio frequency antennas in parallel and balancing current, 상기 복수개의 트랜스포머의 일차측은 직렬로 연결되며, 이차측은 상기 복수개의 제1 및 제2 무선 주파수 안테나에 대응되게 연결되는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기.Wherein the primary side of the plurality of transformers is connected in series and the secondary side has a multi laser scanning line connected corresponding to the plurality of first and second radio frequency antennas. 제7항에 있어서,8. The method of claim 7, 상기 복수개의 트랜스포머의 이차측들은 각기 접지된 중간탭을 포함하고 상기 이차측의 일단은 정전압을 타단은 부전압을 각각 출력하며,Wherein the secondary sides of the plurality of transformers include respective grounded intermediate taps, one end of the secondary side outputs a positive voltage and the other end outputs a negative voltage, 상기 정전압은 상기 복수개의 제1 및 제2 무선 주파수 안테나의 일단으로 상기 부전압은 상기 복수개의 제1 및 제2 무선 주파수 안테나의 타단으로 제공되는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기.Wherein the constant voltage has one end of the plurality of first and second radio frequency antennas and the negative voltage has a multi-laser scanning line provided at the other end of the plurality of first and second radio frequency antennas. 제6항에 있어서,The method according to claim 6, 상기 전류 균형 회로는 전류 균형 조절 범위를 가변 할 수 있는 전압 레벨 조절 회로를 포함하는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기.Wherein the current balancing circuit comprises a voltage level regulating circuit capable of varying the current balance regulation range. 제6항에 있어서,The method according to claim 6, 상기 전류 균형 회로는 누설 전류의 보상을 위한 보상 회로를 포함하는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기.Wherein the current balancing circuit comprises a compensation circuit for compensation of leakage current. 제6항에 있어서,The method according to claim 6, 상기 전류 균형 회로는 과도 전압에 의한 손상을 방지하기 위한 보호 회로를 포함하는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기.Wherein the current balancing circuit comprises a protection circuit for preventing damage by transient voltages. 제1항에 있어서,The method according to claim 1, 상기 제1 및 제2 안테나 어셈블리를 통해서 상기 제1 및 제2 반응기 몸체의 내부로 가스를 공급하는 가스 공급부를 포함하는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기.And a gas supply unit for supplying gas into the first and second reactor bodies through the first and second antenna assemblies. 제12항에 있어서,13. The method of claim 12, 상기 가스 공급부는 서로 독립된 가스 공급 경로를 갖는 적어도 두 개의 가스 공급 채널을 포함하는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈 마 반응기.Wherein the gas supply comprises at least two gas supply channels having independent gas supply paths. 제1항에 있어서,The method according to claim 1, 상기 제1 및 제2 반응기 몸체는 내부에 피처리 기판이 놓이는 지지대를 각기 구비하고, 상기 지지대는 바이어스 되거나 또는 바이어스 되지 않는 것 중 어느 하나인 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기.Wherein the first and second reactor bodies each have a support on which a substrate to be processed is placed, and the support has a multi-laser scanning line that is either biased or not biased. 제14항에 있어서,15. The method of claim 14, 상기 지지대는 단일 주파수 전원 또는 둘 이상의 서로 다른 주파수 전원에 의해 바이어스 되는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기.Wherein the support has a multi-laser scanning line biased by a single frequency power source or two or more different frequency power sources. 제14항에 있어서,15. The method of claim 14, 상기 지지대는 정전척을 포함하는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기.Wherein the support has a multi-laser scanning line including an electrostatic chuck. 제14항에 있어서,15. The method of claim 14, 상기 지지대는 히터를 포함하는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기.Wherein the support has a multi-laser scanning line including a heater. 제14항에 있어서,15. The method of claim 14, 상기 지지대는 피처리 기판과 평행하게 선형 또는 회전 이동 가능한 구조를 갖고, 상기 지지대를 선형 또는 회전 이동하기 위한 구동 메커니즘을 포함하는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기.Wherein the support has a structure that is linear or rotationally movable in parallel with the substrate to be processed, and has a multi-laser scanning line including a drive mechanism for linearly or rotationally moving the support. 제1항에 있어서,The method according to claim 1, 상기 제1 및 제2 반응기 몸체는 내부로 레이저 빔을 주사하기 위한 레이저 투과 윈도우를 포함하고,Said first and second reactor bodies including a laser-transmissive window for scanning a laser beam therein, 상기 레이저 공급원은 상기 레이저 투과 윈도우를 통하여 상기 제1 및 제2 반응기 몸체의 내부로 레이저 빔이 주사되도록 하여 상기 멀티 레이저 스캐닝 라인을 형성시키기 위한 하나 이상의 레이저 소스를 포함하는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기.The laser source includes a multi-laser scanning line having at least one laser source for scanning the laser beam into the first and second reactor bodies through the laser transmission window to form the multi-laser scanning line. Coupled double plasma reactor. 제19항에 있어서,20. The method of claim 19, 상기 레이저 투과 윈도우는 상기 제1 및 제2 반응기 몸체의 측벽으로 대향되게 구성된 두 개의 윈도우를 포함하고,Wherein the laser-transmissive window comprises two windows configured to face sidewalls of the first and second reactor bodies, 상기 레이저 공급원은 상기 하나 이상의 레이저 소스로부터 발생된 레이저 빔을 상기 두 개의 윈도우를 사이에 두고 반사시켜 상기 멀티 레이저 스캐닝 라인을 형성시키는 복수개의 반사경을 포함하는 멀티 레이저 스캐닝 라인을 갖는 유도 결합 이중 플라즈마 반응기.Wherein the laser source comprises an inductively coupled dual plasma reactor having a multi-laser scanning line including a plurality of mirrors for reflecting the laser beam generated from the at least one laser source through the two windows to form the multi- .
KR1020070139233A 2007-12-27 2007-12-27 Inductively coupled dual plasma reactor with multi laser scanning line KR101413761B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070139233A KR101413761B1 (en) 2007-12-27 2007-12-27 Inductively coupled dual plasma reactor with multi laser scanning line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070139233A KR101413761B1 (en) 2007-12-27 2007-12-27 Inductively coupled dual plasma reactor with multi laser scanning line

Publications (2)

Publication Number Publication Date
KR20090071040A KR20090071040A (en) 2009-07-01
KR101413761B1 true KR101413761B1 (en) 2014-07-01

Family

ID=41322500

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070139233A KR101413761B1 (en) 2007-12-27 2007-12-27 Inductively coupled dual plasma reactor with multi laser scanning line

Country Status (1)

Country Link
KR (1) KR101413761B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050001935A (en) * 2003-06-28 2005-01-07 엘지.필립스 엘시디 주식회사 Plasma enhanced chemical vapor deposition apparatus
KR100642543B1 (en) * 2005-01-26 2006-11-10 주식회사 뉴파워 프라즈마 System and method for driving multi-lamp
KR20070112988A (en) * 2006-05-24 2007-11-28 주식회사 뉴파워 프라즈마 Plasma reactor with multi-arrayed discharging chamber and plasma processing system using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050001935A (en) * 2003-06-28 2005-01-07 엘지.필립스 엘시디 주식회사 Plasma enhanced chemical vapor deposition apparatus
KR100642543B1 (en) * 2005-01-26 2006-11-10 주식회사 뉴파워 프라즈마 System and method for driving multi-lamp
KR20070112988A (en) * 2006-05-24 2007-11-28 주식회사 뉴파워 프라즈마 Plasma reactor with multi-arrayed discharging chamber and plasma processing system using the same

Also Published As

Publication number Publication date
KR20090071040A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
KR101497413B1 (en) Capacitively coupled plasma reactor and plasma processing method using the same and semiconductor device manufactured thereby
KR100979189B1 (en) Consecutive substrate processing system
KR101463934B1 (en) Compound plasma reactor
EP1727186A1 (en) Plasma chamber with discharge inducing bridge
KR20080024693A (en) Large area inductive coupled plasma reactor
KR101496847B1 (en) Inductively coupled plasma reactor
KR101468730B1 (en) Inductively coupled plasma reactor having multi rf antenna
KR100806522B1 (en) Inductively coupled plasma reactor
KR101434145B1 (en) Inductively coupled plasma reactor with multi laser scanning line
KR101429263B1 (en) Capacitively coupled plasma reactor and plasma processing method using the same and semiconductor device manufactured thereby
KR101236206B1 (en) Inductively coupled plasma reactor for generating high density uniform plasma
KR100963848B1 (en) Capacitively coupled plasma reactor with multi laser scanning line
KR101413761B1 (en) Inductively coupled dual plasma reactor with multi laser scanning line
KR100980281B1 (en) Dual plasma reactor for processing dual substrates with multi-core plasma generator
KR101384583B1 (en) Inductively coupled plasma reactor having multi rf antenna
KR101446553B1 (en) Multi inductively coupled dual plasma reactor with multi laser scanning line
KR101424487B1 (en) Inductively coupled plasma reactor having multi rf antenna
KR100983556B1 (en) Plasma reactor having multi-core plasma generator
KR20100026529A (en) Capacitively coupled plasma reactor and plasma processing method using the same and semiconductor device manufactured thereby
KR101555844B1 (en) Multi loop core dual plasma reactor with multi laser scanning line
KR100979188B1 (en) Physical vapor deposition plasma reactor with multi source target assembly
KR20090069346A (en) Multi loop core plasma reactor with multi laser scanning line
KR20090072853A (en) Inductively coupled dual plasma reactor with multi laser scanning line
KR20090069796A (en) Multi inductively coupled plasma reactor with multi laser scanning line
KR101533710B1 (en) Dual plasma reactor having multi-frequency drive capacitively coupled electrode assembly

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170619

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190621

Year of fee payment: 6