KR101384141B1 - 기판 이송 장치 - Google Patents

기판 이송 장치 Download PDF

Info

Publication number
KR101384141B1
KR101384141B1 KR1020087002818A KR20087002818A KR101384141B1 KR 101384141 B1 KR101384141 B1 KR 101384141B1 KR 1020087002818 A KR1020087002818 A KR 1020087002818A KR 20087002818 A KR20087002818 A KR 20087002818A KR 101384141 B1 KR101384141 B1 KR 101384141B1
Authority
KR
South Korea
Prior art keywords
arm
motor
drive section
drive
segmented
Prior art date
Application number
KR1020087002818A
Other languages
English (en)
Other versions
KR20080032145A (ko
Inventor
율리시스 길크리스트
크리스토퍼 호프마이스터
Original Assignee
브룩스 오토메이션 인코퍼레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 브룩스 오토메이션 인코퍼레이티드 filed Critical 브룩스 오토메이션 인코퍼레이티드
Publication of KR20080032145A publication Critical patent/KR20080032145A/ko
Application granted granted Critical
Publication of KR101384141B1 publication Critical patent/KR101384141B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible
    • B25J18/04Arms extensible rotatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/08Programme-controlled manipulators characterised by modular constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/104Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0084Programme-controlled manipulators comprising a plurality of manipulators
    • B25J9/0087Dual arms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/14Arm movement, spatial
    • Y10S901/15Jointed arm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/19Drive system for arm
    • Y10S901/23Electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/27Arm part
    • Y10S901/28Joint
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20305Robotic arm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20305Robotic arm
    • Y10T74/20317Robotic arm including electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20305Robotic arm
    • Y10T74/20329Joint between elements

Abstract

프레임, 구동 섹션, 및 분절된 아암을 구비한 기판 이송 장치가 제공된다. 구동 섹션은 구동 섹션 내에의 배치를 위하여 각각 미리 정해진 상이한 특성을 갖는 다수의 다양한 호환가능한 모터 모듈들로부터 선택될 수 있는 적어도 하나의 모터 모듈을 구비한다. 분절된 아암은 분절된 관절부들을 구비한다. 아암은 분절을 위하여 구동 섹션에 연결된다. 아암은 각각 미리 정해진 형태 특성을 갖는 다수의 상이한 아암 형태들로부터 선택될 수 있는 선택가능한 형태를 갖는다. 아암 형태의 선택은, 구동 섹션 내의 배치를 위한 적어도 하나의 모터 모듈의 선택에 의하여 이루어진다.

Description

기판 이송 장치{Substrate transport apparatus}
본 발명은 기판 이송 장치에 관한 것이고, 보다 구체적으로는 형태변경가능(configurable)하고 호환가능한(interchangeable) 기판 이송 장치에 관한 것이다.
전자공학 및 전자 기기(electronic device)에 있어서의 진보는 주로 다음과 같은 두 가지 갈래의 소비자 욕구에 의하여 촉진되어 왔다: 보다 정교하고 작은 전자공학/전자 기기;를 보다 저렴한 가격으로. 전자공학에 있어서 추구되는 바를 제공하기 위하여, 전자공학의 제조분야(설비, 도구, 또는 공정)에 있어서 적합한 진보가 요구된다. 전자 기기의 제조에 있어서 도입되고 지속적으로 팽창된 자동화의 이용은 주요한 소비자의 욕구에 거의 직접적으로 대응하는 이중의 장점을 달성해왔다. 전자공학의 자동화된 제조는 정밀도와 제조비용의 절감 사이에서 제공되었다. 자동화된 제조의 향상된 정밀도는 전자 부품들의 소형화를 증대 및 향상시키는 능력으로 이어진다. 또한, 비-자동화된 제조 시스템에 비하여 높은 일회성 비용(one time cost)을 가지기 때문에, 자동화된 제조 시스템은 실질적으로 연속적인 방식으로 작동될 수 있고 궁극적으로는 그에 의하여 생산되는 기기들의 제조비용이 낮게 된다. 나아가, 대응되는 비-자동화된 제조 수단에 비하여 자동화된 제조용 기기들 의 정밀도/정확도가 향상되는데, 이것은 제조 반품(manufacturing rejects) 및 제조 결함이 상용적으로 현저히 저감되는 결과를 낳고, 이로써 제조된 기기들의 제조 비용이 더 낮게 되는 것으로 이어진다. 자동화 이용에 적합한 전자 기기들의 제조에 있어서의 일 영역은, 다양한 처리 스테이션(processing station)들 간에 편평한 패널들(예를 들어, 웨이퍼들(wafers), 레티클들(reticles), 펠리클들(pelicles), 평판 디스플레이 장치들(flat panel displays))을 취급(handling) 및 이송하는 이송 장치 또는 이송 기기(로봇으로도 호칭됨)이다. 청정실(clean room) 환경 내에서의 이용을 위한 종래 로봇의 일 예가 1988년 11월 29일자로 등록된 미국 특허 제4,787,813호에 개시되어 있다. 거기에 개시된 종래의 로봇은 지지 조립체(support assembly)를 구비한 구동 시스템(drive system)을 구비한다. 그 로봇의 제1 아암(first arm)은 지지 조립체에 의하여 회전가능하게 지지되고, 그 지지 조립체에 의하여 상승 및 하강된다. 지지 조립체를 회전시키기 위한 구동 구조는 베이스부(base)에 장착된다. 제2 아암(second arm) 및 단부 조작기(end effector)를 회전시키기 위한 구동 구조는 지지 조립체의 상측 단부에 장착된다. 2003년 10월 21일에 등록된 미국 특허 제6,634,851호에는, 베이스부 및 척추부(backbone)를 구비한 종래의 작업대상물(workpiece) 취급 로봇의 다른 일 예가 개시되어 있다. 이 종래 로봇의 베이스부는 선형 구동 시스템(linear drive system) 및 선형 구동 시스템 상의 기둥(mast)을 구비한다. 어깨부 구동 시스템(shoulder drive system)은 그 기둥과 기둥에 장착된 인접 아암 링크(proximal arm link)를 회전시킨다. 팔꿈치 구동부(elbow drive)는 상기 인접 링크에 대해 상대적인 말단 링크(distal link)를 회전시키기 위하여 인접 링크(proximal link)에 장착된다. 그 종래의 로봇은 종속화된 단부 조작기를 구비한다. 이해되는 바와 같이, 앞서 언급된 종래의 로봇은, 로봇 단부 조작기를 독립적으로 구동하기 위한 독립적인 구동축(drive axis) 또는 구동 시스템이 결여되어 있기 때문에, 제한된 움직임 자유도(freedom of movement)를 갖는다. 또한 이 종래의 로봇은 단부 조작기가 독립적으로 움직임가능한 로봇 형태를 제공하도록 용이하게 형태변경될 수도 없다. 앞서 언급된 종래의 로봇들은 일반적인 종래 로봇들을 예시하는 것이다. 각 로봇은 특정의 구성으로 특정적으로 형태화된다. 또한, 일단 로봇 형태가 설정되면, 그 형태는 주요한 측면에 있어서 실질적으로 고정되고 비-가변적(non-variable)으로 된다. 실제에 있어서, 종래의 로봇들은 실질적으로 분해되어 새로이 제작되지 않고서는 재-형태화(reconfigure)될 수 없다. 이것은 종래 로봇들의 호환성(≒교체가능성; interchangeability)과 상호운용성(interoperability)을 제한하고, 제조설비(FAB)의 운영자로 하여금 전체적으로는 유사하지만 호환가능하지는 않은 로봇들을 많이 가지게 되는 결과를 낳는다. 예를 들어, 제조설비 운영자는 종래의 3축, 4축, 및 5축 로봇들(각각 3축, 4축, 및 5 축 로봇이 적합한 대응되는 처리 스테이션 또는 도구(tool)를 위한 것)을 가질 수 있다. 형태 면에서는 전체적으로 유사하지만(예를 들어, 종래의 로봇들은 모두 스카라 형태(scara type)임)이지만, 그럼에도 불구하고 그 종래의 3축, 4축, 및 5축은 호환가능하지 않고, 종래의 로봇을 재-형태화(reconfiguring)하는 것(예를 들어, 3축의 종래 로봇을 5축 로봇으로 형태화하거나 또는 그 역으로 형태화하는 것)은 그 종래의 로봇을 완전히 분해하여 다시 제조 하는 것과 같은 것이었다. 따라서, 만일 종래의 로봇(예를 들어, 3축 로봇)이 예를 들어 유지관리를 위하여 라인(line; 제조라인)으로부터 이탈되면, 상이한 형태를 갖는 여분의 종래 로봇이 그 이탈된 로봇(offline robot)과 교체될 수 없었고, 또한 그 여분의 종래 로봇이 이탈된 로봇과 교체가능(swappable)하게 되도록 재-형태화될 수도 없었다. 따라서, 종래 로봇의 경우에는, 그 이탈된 로봇이 복귀될 때까지 그 이탈된 로봇에 의하여 작업이 이루어지는 처리 스테이션에서의 생산이 중단된 채로 유지되거나, 또는 그 제조설비의 운용자가 동일한 형태를 갖는 다른 로봇을 보유한다. 이것은 매우 바람직스럽지 못하다.
앞선 사례에서 알 수 있는 바와 같이, 종래 로봇들의 다른 문제점은, 로봇 움직임의 명확도(definition)(예를 들어, 로봇 상의 요망되는 지점/위치의 실제 위치와 로봇 콘트롤러(robot controller)에 의하여 명령된 동일 지점의 예측 위치 간의 차이)가 상당히 제한된다는 것이다. 이와 같이 제한된 움직임 명확도는 많은 요인들에 의하여 발생할 수 있는데, 그것을 초래하는 하나의 큰 요인은 명확화되지 않은 로봇 움직임(undefined robot motions)(로봇 콘트롤러에 의하여 감지 및 기록되지 않는 로봇 움직임)이다. 명확화되지 않은 로봇 움직임의 일 원인은, 동적 부하에 기인하는 로봇(즉, 로봇의 구조 또는 구동 시스템) 및 로봇을 지지하는 기초부(foundation)의 비견고성(flexibility)이다. 아래에서 설명되는 바와 같이, 본 발명의 예시적인 실시예들은 종래 작업대상물 제조 시스템의 이와 같은 문제와 다른 문제점들을 해결한다.
예시적인 일 실시예에 따라서 기판 이송 장치가 제공된다. 그 기판 이송 장치는 프레임, 구동 섹션, 및 분절된 아암을 포함한다. 구동 섹션은 프레임에 연결된다. 구동 섹션은 각각 미리 정해진 상이한 특성을 갖는 다수의 상이한 호환가능한 모터 모듈들로부터 구동 섹션 내에의 배치를 위하여 선택될 수 있는 적어도 하나의 모터 모듈을 구비한다. 분절된 아암은 분절된 관절부들을 구비한다. 그 아암은 분절을 위하여 구동 섹션에 연결된다. 그 아암은 각각 미리 정해진 형태 특성을 갖는 다수의 상이한 아암 형태들로부터 선택될 수 있는 선택가능한 형태를 갖는다. 아암 형태의 선택은 구동 섹션 내의 배치를 위한 적어도 하나의 모터 모듈의 선택에 의하여 이루어진다.
예시적인 다른 실시예에 따라서 기판 이송 장치가 제공된다. 그 기판 이송 장치는 프레임, 구동 섹션, 및 분절된 아암을 포함한다. 구동 섹션은 프레임에 연결된다. 분절된 아암은 그 아암의 분절을 위하여 구동 섹션에 연결된다. 그 아암은, 상측 아암 길이(upper arm length), 팔뚝부 링크, 및 적어도 하나의 단부 조작기 링크를 구비한다. 팔뚝부 링크는 상측 아암 링크에 피봇가능하게 결합되고, 단부 조작기는 팔뚝부 링크에 피봇가능하게 결합된다. 구동 섹션은 제1 구동 섹션 부분 및 제1 구동 섹션 부분에 연결된 모터 모듈을 구비한다. 상기 모터 모듈은 팔뚝부를 상측 아암에 대하여 또는 단부 조작기를 팔뚝부에 대하여 독립적으로 피봇시키기 위한 적어도 하나의 모터를 구비한다. 모터 모듈은 제1 구동 섹션 부분에의 연결을 위하여, 각각 미리 결정된 상이한 특성을 갖는 상이한 호환가능한 모터 모듈들로부터 선택될 수 있다.
본 발명의 앞선 사항들과 다른 특징들은 첨부된 도면들을 참조로 하여 하기의 상세한 설명에서 설명된다.
도 1 은 본 발명의 일 실시예에 따른 특징들을 포함하는 기판 처리 장치, 및 기판 이송 컨테이너(substrate transport container; C)들의 개략적인 사시도이고;
도 2 는 도 1 에 도시된 처리 장치의 기판 이송 장치의 사시도이고;
도 2a 는 도 2 의 기판 이송 장치의 다른 사시도로서, 일부 섹션들이 명확성을 위하여 제거된 상태로 도시된 것이고;
도 3 은 기판 이송 장치의 평면도이고;
도 3a 는 기판 이송 장치의 부분확대 평면도이고;
도 4a 내지 도 4b 는 각각 이송 장치의 구동 시스템의 일부분들을 도시하는 기판 이송 장치의 분해 사시도들이고;
도 5a 내지 도 5b 는 각각, 내부에 배치된 이송 장치 구동 시스템의 선형 구동 운반기(linear drive carriage)를 구비한 이송 장치 지지 구조물(transport apparatus support structure)의 사시도, 및 구동 운반기가 제거된 이송 장치 지지 구조물의 다른 사시도이고;
도 5c 는 도 5a 의 지지 구조물의 입면적 단면도이고;
도 5d 는 도 5a 의 선형 구동 운반기의 일부분과 지지 구조물의 부분확대 단면도이고;
도 6a 는 지지 구조물의 장착 시스템(mounting system)을 도시하는 것으로 서, 도 5a 의 지지 구조물의 평면도이고;
도 6b 는 도 5a 의 지지 구조물의 부분확대 사시도이고;
도 7 은 도 2 의 기판 이송 장치의 구동 시스템의 일부분과 상측 아암(upper arm)을 도시하는 사시도이고;
도 7a 는 도 7 에 도시된 상측 아암의 단면도이고;
도 7b 내지 도 7c 는 각각, 도 7 의 상측 아암의 상측 사시도, 및 도 7 의 상측 아암의 저면 사시도이고;
도 8 은 도 7 에 도시된 구동 시스템의 일부분과 상측 아암 섹션(upper arm section)의 평면도이고;
도 9 는 도 2 에 도시된 기판 이송 장치의 구동 시스템 모듈의 사시도이고;
도 10 은 도 2 의 기판 이송 장치의 팔뚝부(forearm)의 사시도이고;
도 10a 는 도 10 의 팔뚝부의 평면도이고;
도 11 은 도 10 의 팔뚝부의 단면도이고;
도 11a 는 팔뚝부의 팔꿈치 관절부(elbow joint)에서의 샤프트 시스템(shaft system)의 부분 단면도이고;
도 11b 는 팔뚝부의 손목 관절부(wrist joint)에서의 샤프트 시스템의 부분 단면도이다.
도 1 을 참조하면, 본 발명의 특징들을 포함하는 기판 처리 장치(10)의 사시도가 도시되어 있다. 본 발명이 도면들에 도시된 실시예를 참조로 하여 설명될 것 이지만, 본 발명은 많은 대안적인 형태의 실시예들로 구현될 수 있다는 것이 이해되어야 할 것이다. 또한, 임의의 적합한 크기, 형상, 또는 형태의 요소들 또는 소재들이 이용될 수 있다.
도 1 에 도시된 실시예에서, 장치(10)는 일반 기판 일괄 처리 도구 형태(general substrate batch processing tool configuration)를 갖는 것으로 예시적으로서 도시되어 있다. 아래에서 상세히 설명되는 바와 같이 본 발명의 특징물들은 개별적인 기판 처리를 위한 도구, 축적기(stocker), 분류기(sorter), 도량 도구(metrology tool), 또는 임의의 다른 요망되는 도구를 포함하는 임의의 기판 처리 도구 형태에도 동등하게 적용될 수 있기 때문에, 대안적인 실시예에서 기판 처리 장치는 임의의 다른 적합한 형태(configuration)를 가질 수 있다. 그 장치(10)는, 200 mm 또는 300 mm 의 반도체 웨이퍼, (예를 들어, 고밀도의 상호연결부를 구비한) 반도체 패키징 기판(semiconductor packaging substrate), 반도체 제조 공정용 이미지 판(semiconductor manufacturing process imaging plate)(예를 들어, 마스크(mask) 또는 레티클(reticle)), 및 평판 디스플레이 장치용 기판과 같은, 임의의 요망되는 형태의 평판 패널 또는 기판을 취급 및 처리할 수 있다. 일반적으로, 장치(10)는 전방 섹션(front section; 12) 및 후방 섹션(rear section; 14)을 포함할 수 있다. 전방 섹션(12)(여기에서, '전방'이라는 용어는 예시적인 기준 프레임(frame of reference)을 식별하기 위하여 편의적으로 이용되며, 대안적인 실시예에서는 그 장치의 전방이 그 장치의 임의의 요망되는 측부에 수립될 수 있다.) (아래에서 상세히 설명되는 바와 같이) 전방 섹션(12)은, 제조설비로부터의 기판들 을 장치(10) 내부 내로 도입시키는 것을 가능하게 하는 인터페이스부(interface)를 제공하는 시스템을 구비한다. 또한 일반적으로 전방 섹션(12)은, 하우징(housing; 16) 및 그 하우징 내에 배치된 자동화 구성부품들(automation components)을 구비하는데, 그 자동화 구성부품들은 외부로 향하는 전방 섹션 인터페이스부와 후방 섹션(14) 간에서 기판들을 취급한다. 후방 섹션(14)은 전방 섹션의 하우징(16)에 연결된다. 그 장치의 후방 섹션(14)은 제어된 분위기(atmosphere)(예를 들어, 진공, 불활성 가스)를 가질 수 있고, 일반적으로는 기판들의 처리를 위한 처리 시스템을 포함한다. 예를 들어, 후방 섹션은 기판 이송 기기를 구비한 중앙 이송 챔버, 및 장치 내의 기판들에 요망되는 제조 공정(예를 들어, 에칭, 소재 증착, 세정, 베이킹(baking), 검사, 등)을 수행하기 위한 주변 처리 모듈(peripheral processing module)들을 포함할 수 있다. 앞서 언급된 바와 같이, 대안적인 실시예에서는 장치의 후방 섹션들이 분류기 축적기, 또는 다른 요망되는 처리 또는 취급 도구로서 기판을 처리하도록 형태화될 수 있다. 제조설비 내에서 기판들은, 컨테이너(L) 내에 있는 채로 처리 장치(10)로 이송될 수 있다. 컨테이너(L)들은 전방 섹션 인터페이스부 상에 또는 그에 인접하여 위치될 수 있다. 기판들은 전방 섹션 내의 자동화 구성부품들의 이용에 의하여 컨테이너로부터 빼내어져서 그 인터페이스부를 통하여 전방 섹션(12) 내로 넣어진다. 그 후 기판들은 로드-락(load lock; 14L)을 거쳐서 하나 이상의 처리 모듈에서의 처리를 위하여 분위기가 제어되는 후방 섹션으로 이송될 수 있다. 그 후 처리된 기판들은 제거를 위하여, 실질적으로 역방식으로, 전방 섹션(12), 그리고 그 후 이송 컨테이너(F)들로 복귀될 수 있다.
환경적 전방 단부 모듈(environmental front end module; EFEM)로도 호칭되는 전방 섹션(12)은 보호되는 환경 또는 소형-환경(mini-environment)을 한정하는 케이싱 또는 외피를 구비할 수 있는데, 거기에서는 제조설비 내에서 기판들을 이송하는데에 이용되는 이송 컨테이너(T)들과 후방 처리 섹션(14) 내의 제어되는 분위기로의 도입을 제공하는 로드-락(14L)들 사이에서의 오염 잠재성을 최소로하는 상태로 기판들이 접근(access) 및 핸들링될 수 있다. 로드 포트(load port) 또는 로드 포트 모듈(24)들(예시를 위하여 도 1 에는 두 개가 도시되어 있으나, 그보다 많거나 또는 적은 갯수가 이용될 수 있음)은 전방 섹션과 제조설비 사이의 인터페이스부를 제공하는 전방 섹션의 하나 이상의 측부들 상에 배치된다. 로드 포트 모듈들은 환경적 전방 단부 모듈 내부와 외부 사이에 밀폐가능한 인터페이스부를 형성하는 밀폐가능 포트(30O)들을 구비할 수 있다. 도 1 에 도시된 바와 같이, 로드 포트 모듈들은 기판 이송 컨테이너(C)를 위한 지지 영역(support area)을 구비할 수 있다. 또한 부수적인 보유 영역(holding area)이 지지 영역 아래에 제공될 수 있는데, 거기에서는 이송 컨테이너들이 일시적으로 버퍼링될 수 있다. 이송 컨테이너 지지 영역은, 거기에 지지되는 이송 컨테이너(C)의 최종 위치 또는 도킹 위치로의 자동화된 이동을 가능하게 할 수 있다.
앞서 언급된 바와 같이, 장치(10)의 전방 섹션은, 그 장치에 인터페이스된 이송 컨테이너(C)들과 그 장치의 전방 섹션 또는 후방 섹션에 있는 다양한 처리 스테이션들 간에 작업대상물들을 전달하기 위하여 자동화 구성부품들(automation components)을 구비한다. 이제 도 2 를 참조하면, 장치(10)는 전방 섹션(12) 내에 작업대상물 또는 기판의 이송 장치(20)를 구비할 수 있는데, 그 이송 장치는 전방 섹션 및 후방 섹션(12, 14) 내의 임의의 요망되는 스테이션들과 컨테이너(C)들 내의 기판들을 집기/배치시키기(pick/place)에 충분한 뻗음범위(reach)를 구비한다. 예를 들어, 그 이송 장치(20)는 밀폐가능한 개구(30O)를 통하여 뻗어서 컨테이너(들)(T) 내측에 있는 기판들에 대해 집기/배치시키기를 수행할 수 있다. 또한 이송 장치(20)는 로드-락(14L)들 내측의 기판들에 대하여 집기/배치시키기를 수행하기 위하여 뻗을 수도 있다. 따라서, 이송 장치(20)는 컨테이너(들)로부터 기판들을 집을 수 있고, 또한 그 기판들을 로드-락(14L) 내에의 배치를 위하여 이송시킬 수 도 있으며, 그 역도 가능하다. 일반적으로 이송 장치(20)는 지지 구조물 또는 베이스부(22), 가동성 아암(movable arm; 24), 및 구동 시스템(26)을 구비한다. 구동 시스템(26)은 지지 구조물(22)에 연결되고, 가동성 아암(24)은 구동 시스템(26)에 작동가능하게 연결되어, 그 구동 시스템은 그 아암을 이동시킬 수 있게 된다. 지지 구조물(26)은 이송 장치(20)를 장치(10)의 전방 섹션(12)에 부착시킨다. 장치(10)의 전방 섹션(12)은 그 전방 섹션에 대하여 측방향으로 (도 1 에서 화살표(X)로 표시된 방향으로) 횡단할 수 있는 운반기(carriage)를 구비한 횡단기(traverser; 미도시)를 포함할 수 있다. 이 경우, 지지 구조물(22)은 횡단기의 횡방향 운반기에 부착될 수 있다. 대안적으로, 전방 섹션은 횡단기를 구비하지 않을 수 있는데, 이 경우에는 지지 구조물이 전방 섹션의 구조물에 부착될 수 있다. 이송 장치 지지 구조물은 견고한 등뼈 부하 견딤 부재(rigid spine load bearing member)를 구비할 수 있다. 지지 구조물은 전방 섹션에의 장착을 위한 측부 장착 용 구성물(side mounting arrangement)을 구비할 수 있다. 그 지지 구조물의 측부 장착부(side mount)는 아래에서 상세히 설명되는 바와 같이 지지 구조물의 견고한 등뼈 부재의 측부에 의존할 수 있다. 측부 장착부는 이송 장치가 호환가능하게 되는 것을 가능하게 하는 운동성 결합부(kinematic coupling)를 정의(define)한다. 가동성 아암(24)은 기판(들)을 보유하기 위한 단부 조작기(들) 및 분절적인 링크들을 구비한다. 구동 시스템(26)은 아암의 단부 조작기(들)을 (도 1 의 R, θ, 및 Z 화살표에 의하여 표시된 바와 같이) R, θ, 및 Z 의 방향으로 이동시키기 위하여 가동성 아암에 결합된 독립적 구동부들을 구비한다. 그 구동 시스템의 Z 구동 섹션(Z drive section)은 아래에 상세히 설명되는 바와 같이 등뼈 부재에 일체화될 수 있다. 그 구동 섹션은, 구동 시스템의 구동 형태를 선택하기 위하여 다양한 호환가능한 다수의 구동 모듈들 중에서 선택될 수 있는 제거가능한 구동 모듈을 구비할 수도 있다. 아래에서도 설명되는 바와 같이, 그 제거가능한 모듈은 다른 호환가능한 모듈로 교체될 수 있는바, 이로써 그 구동 시스템의 독립적인 구동 축들의 갯수가 변경될 수 있고, 따라서 구동 시스템이 재-형태화될 수 있다. 또한 이것은 가동성 아암이 재-형태화되는 것을 가능하게 한다. 가동성 아암은 소형탑(turret) 상에 장착될 수 있다. 그 소형탑 및 분절된 아암 링크들 중의 하나는 아래에서 설명되는 바와 같이 단일체의 부재로서 통합적으로 형성될 수 있다. 선택가능한 구동 모듈은 그 소형탑을 구비한 아암 링크의 아암 부분(arm portion)에 제거가능하게 장착될 수 있다.
도 2a 는 기판 이송 장치(20)의 다른 사시도로서, 여기에서는 그 장치의 일 부분이 명확성을 위하여 제거된 채로 도시되어 있다. 도 3 은 상기 장치(20)의 평면도이고, 도 4a 내지 도 4b 는 각각 아암(26)이 지지 구조물(22)로부터 분해된 상태에 있는 장치의 분해 사시도와, 그 구동 시스템의 일부분과 아암 링크들이 분해된 방식으로 도시된 다른 분해 사시도이다. 이 예시적인 실시예에서, 분절화된 아암(26)은 상측 아암(28), 팔뚝부(30), 및 단부 조작기들(32A, 32B)을 구비한 스카라 형태(scara type)인 것으로 예시되었다. 대안적인 실시예에서는, 그 분절화된 아암이 임의의 적합한 형태의 것일 수 있고, 보다 많거나 또는 적은 단부 조작기들을 구비할 수 있다. 도 2 내지 도 2a 에 도시된 바와 같이, 상측 아암(26)은 어깨축(shoulder axis; T1)을 중심으로 지지 구조물(22)에 대하여 상대적으로 회전할 수 있도록, (아래에서 보다 상세히 설명되는 바와 같이) 피봇가능하게 장착된다(pivotally mounted). 지지 구조물(22)에 대한 상측 아암(28)의 피봇 장착(pivot mount)은 어깨 관절부(27)를 형성한다. 팔뚝부(30)는 상측 아암(28)에 피봇가능하게 장착된다. 팔뚝부(30)와 상측 아암(28) 간의 피봇 조인트(pivot joint; 29)는 대응하는 회전축(T2)을 구비한 팔꿈치 관절부로 불리기도 한다. 단부 조작기들(32A, 32B)은 회전축(W)을 구비한 손목 관절부(31)에서 팔뚝부(30)에 피봇가능하게 장착된다(도 2 참조). 앞서 언급된 바와 같이, 이 예시적인 실시예에서, 구동 시스템(26)은 Z 구동 섹션(34), 어깨축 또는 T1축 구동 섹션(36), 및 하나 이상의 다른 회전축들을 중심으로 하나 이상의 아암 링크들을 구동하기 위한 구동 섹션(38)을 구비할 수 있는바, 그에 대하여는 아래에서 설명한다. 예시적인 실시예 에서, Z 구동 섹션(34) 및 T1 구동 섹션은 지지 구조물(22)에 장착된다. 구동 섹션(38)은 아암(24)에 장착된다.
여전히 도 2 를 참조하면, 지지 구조물(22)은 지지 구조물을 둘러싸는 환경적 케이싱(environmental casing; 22C)을 구비한 것으로 도시되어 있다. 지지 구조물(22)은 도 5b 에 가장 잘 도시되어 있다. 일반적으로 지지 구조물(22)은 등뼈 부재(42) 및 단부 플레이트(44, 46)를 포함한다. 등뼈 부재(42)는 실질적으로 지지 구조물(22)의 전체 길이에 걸쳐서 연장된다. 단부 플레이트들(44, 46)은 도시된 바와 같이 등뼈 부재(42)의 대향하는 단부들에 연결된다. 이 실시예에서, 지지 구조물(22)은 모노코크(monocoque) 또는 반-모노코크(semi-monocogue)의 구조로 되어 있다(즉, 등뼈 부재(42)에 의하여 형성되는 외피 또는 벽들이 부하(load)를 견디고, 그 지지 구조물에 부여되는 부하를 지탱한다). 도 5b 에 도시된 바와 같이, 등뼈 부재(42)는 종장형인, 전체적인 채널 형상(elongated, general channel shape)을 가진다. 등뼈 부재는 후측부(backside; 42S) 및 대향하는 플랜지 벽들(42W)을 구비하여 채널 형상을 형성하고, 후측부로부터 튀어나온 것으로 도시된 등뼈 부재 내에 내부 공간을 한정한다. 이 실시예에서, 등뼈 부재(42)는 일체형의 구조(즉, 단일체의 부재)를 가진다. 등뼈 부재는 스테인레스 스틸 또는 알루미늄 합금과 같은 임의의 적합한 금속으로부터 단조, 주조, 또는 임의의 다른 적합한 방식으로 형성된다. 대안적인 실시예에서, 등뼈 부재는 플라스틱, 세라믹, 또는 복합소재를 포함하는 임의의 다른 적합한 소재로 만들어질 수 있다. 등뼈 부재는 등 뼈 부재(42)와 같이 유사한 내부 공간을 한정하는 공간 프레임 구조물(space frame construction)에 비하여 매우 견고하다. 이제 도 5c 를 참조하면, 지지 구조물(22)의 단면이 도시되어 있다. 도 5c 에 도시된 바와 같이, 단부 플레이트들(44, 46)은 일반적인 토끼 관절 형태(general rabbit joint configuration)를 이용하여 등뼈 부재(42)의 대향하는 단부들에 결합된다.
단부 플레이트들(44, 46)은, 분절화된 아암의 소형탑 및 구동 시스템의 일부분을 포괄하기에 충분한 크기를 갖는 지지 구조물의 내부 공간을 한정하는데에 일조한다. 단부 플레이트들 중 적어도 하나(46)는, 예를 들어 구동 시스템(26)을 위한 전원 및 통신 신호를 지원하는 전자 패키지(electronics package; E)와 같은 구성부품을 위한 장착용 플랫폼(mounting platform)을 제공할 수 있다. 그러나 등뼈 부재(42)는, 이송 장치(20)의 실질적으로 모든 정적 부하 및 동적 부하가 궁극적으로는 등뼈 부재에 전달되고 등뼈 부재에 의하여 지탱되기 때문에, 주된 부하 견딤 부재로서 기능한다. 더우기, 아래에서 상세히 설명되는 바와 같이, 그로부터의 구동 시스템(26) 및 아암(24) 지지부들은 견고한 등뼈 부재에 직접적으로 기초를 둔다. 주요 구동축들(도 1 에 도시된 어깨축(T1) 및 Z 구동축인데, 이들은 기판 이송 평면의 자세(attitude)를 정의하고, 또한 이들을 따라서 단부 조작기(들)(32A, 32B)의 R,θ 움직임이 수행된다)을 수립하는 구동 시스템 섹션들은 등뼈 부재에 통합된다. 따라서, 지지 구조물(22)의 견고한 등뼈 부재(42)는, 횡단기에 이송 장치(20)가 장착되는 경우에는 횡단기의 움직임에 의하여, 또는 아암 및 구동 시스템 의 움직임에 의하여 부여되는 정적 및 동적 부하의 작용 중에 상기 주요 구동축들을 서로에 대해 상대적으로 견고히 고정시킨다.
도 5b 에 잘 도시된 바와 같이, 구동 시스템 Z-구동 섹션을 위한 선형 레일(26R)들은 등뼈 부재(42)와 일체화된다. 선형 레일(26R)들은 구동 시스템 Z-운반기(50)의 플래튼(platen; 26P)들을 위한 안내 레일들이다(도 5a 참조). 따라서, 레일(26R)들은 운반기가 따라 움직이는 Z-축의 방위를 함께 정의한다. 이 실시예에서, 선형 레일(26R)들은 등뼈 부재(42)의 후측부(42S) 상에 배치되지만, 대안적인 실시에에서는 그 레일들이 등뼈 부재의 임의의 다른 위치에 배치될 수 있다. 또한 이 실시예에서는 레일(26R)들이 등뼈 부재(42)에 체결된다. 그 레일들은 임의의 적합한 기계적 체결구(fastener)들에 의하여 등뼈 부재에 체결되거나, 납땜, 용접, 또는 임의의 다른 적합한 금속결합이나 화학결합에 의하여 부착될 수 있다. 이 실시예에서, 등뼈 부재의 후측부(42S)는 안착용 표면(seating surface; 42M)들을 구비할 수 있는데(지지 구조물(22)의 단면도가 도시된 도 5L 을 참조), 선형 레일(26R)들이 등뼈 부재(42)에 장착될 때에 거기에 안착된다. 안착용 표면(42M)들은 예를 들어 기계가공 또는 다른 적합한 형성 공정(forming process)에 의하여, 아래에서 설명되는 바와 같이 등뼈 부재에 의하여 한정되는 Z 축(도 5c 참조)에 평행하고 또한 서로에 대해 실질적으로 평행하도록(예를 들어, 좌측의 안착용 표면과 우측의 안착용 표면이 실질적으로 평행하거나, 또는 필요하다면 실질적으로 동일 평면 상에 있도록), 형성될 수 있다. 대안적인 실시예에서, 상기 미끄럼이동 레일(slide rail)들은 일체형 구조의 등뼈 부재 상에 일체적으로 형성될 수 있다.
계속해서 도 5b 내지 도 5c 를 참조하고 또한 지지 구조물(22)과 구동 시스템(26)의 확대된 부분단면도를 도시하는 도 5d 를 참조하면, 등뼈 부재(42)는 칼라(collar; 48)를 구비한다. 이 실시예에서, 칼라(48)는 일체형 구조물의 등뼈 부재(42)와 일체적으로 형성된다. 칼라(48)는 도시된 바와 같이 등뼈 부재의 후측부(42S) 상에 배치된다. 칼라(48)는 도 5b 에 도시된 바와 같이 두 개의 선형 레일(26R)들 사이의 실질적으로 중앙에 배치될 수 있다. 대안적인 실시예에서, 칼라는 등뼈 부재 상에서 요망되는 임의의 다른 위치에 배치될 수 있다. 또한 칼라는 적합하게 견고한 부착물로 등뼈 부재에 기계적으로 부착될 수 있다. 도 5b 내지 도 5d 에 도시된 바와 같이, 칼라(48)는 구동 시스템(26)의 Z-구동 섹션을 위한 베이스부 지지부를 제공하고 유지시킨다. 따라서, 그 구동 시스템의 3-구동 섹션(3-drive section)은 일체형 칼라(48)에 의하여 등뼈 부재(42S) 내로 일체화된다. 앞서 언급되고 또한 도 5c 내지 도 5d 에 도시된 바와 같이, 이 실시에에서는 구동 시스템(26)이 Z-구동 섹션(34)을 구비하는데, Z-구동 섹션은 일반적으로 볼-스크류(ball screw; 52)를 구동하는 모터(54)를 포함하는 선형 구동부이다. 대안적인 실시예에서, 그 구동 시스템은 Z 축 구동부를 제공하는 임의의 다른 요망되는 형태의 선형 구동부를 구비할 수 있다. 모터(54)는, 브러쉬없는(brushless) 직류 모터, 교류 모터, 또는 스테퍼 모터(stepper motor)와 같은, 임의의 적합한 모터일 수 있다. 볼-스크류(52)는 그 모터의 출력 샤프트(output shaft)에 결합되거나, 또는 모터 내로 연장된 샤프트 연장부(shaft extension; 52E)를 구비할 수 있는데, 거기에는 도 5d 에 도시된 바와 같이 모터 회전자(motor rotor; 54R)가 장착된다. 또한 Z-구동 모터(54)는, 요망되는 모터 제어를 도구 콘트롤러(400)로 용이하게 하기 위하여, 모터 샤프트 또는 샤프트 연장부에 장착된 적합한 인코더(encoder; 54E)를 구비할 수 있다.
도 5d 에 도시된 바와 같이, 칼라(48)는 중심축(center axis; ZS)을 갖는 보어(bore; 48B)를 구비한다. 볼-스크류(52)는 적합한 베어링(53)에 의하여 보어(46B) 내에 반경방향으로 유지된다. 따라서 볼-스크류(52)는 칼라 내의 보어(48D)와 동심적(concentric)으로 되고, 볼-스크류의 중심축 또는 모터(54)에 의하여 회전될 때에 스크류에 의하여 제공되는 움직임의 Z 축은, 칼라(48) 내의 보어(48B)의 중심축(ZS)와 실질적으로 일치하게 된다. 따라서 보어 중심축(ZS)은 Z-구동 섹션(34)의 움직임의 Z-축을 형성한다. 또한, 선형 레일(26R)들이 실질적으로 볼-스크류(52)의 중심축인 축(ZS)에 실질적으로 평행하게 수립되고(전술된 바와 같이 축(ZS)에 대한 안착용 표면(42M)들의 평행성ㄴ(parallelity)으로부터 올라옴), 또한 레일(26R)들 및 볼 스크류(52) 둘 다가 공통의 견고한 등뼈 부재(42)에 보유되기 때문에, 이것은 Z-운반기(50)를 Z-축으로 구동하는 볼-스크류(52)와 레일(26R)들(그리고, 이에 따라서 그 레일들에 놓이는 Z-운반기(50)) 사이에 초기적으로 수립되는 평행 조건이 언제나 견고하게 유지되는 것을 보장한다. 이송 장치(20) 작동 중 지지 구조물(22)과 구동 시스템(25)에 가해지는 정적 부하 및 동적 부하는 볼-스크류 및 레일들 간의 정렬에 어떠한 변화를 야기하지 않을 것이고, 따라서 (아래에서 설명되는 바와 같이 운반기(50)에 의하여 한정되는) 회전의 어깨 축(T1)과 Z-축 간의 정렬에도 변화가 없을 것이다. 따라서, 앞서 언급된 바와 같이, 기판 이송 평면의 자세를 형성하는 구동 시스템의 움직임의 주요축들(T1, Z)은 실질적으로 견고한 방위(orientation)로 유지된다. 볼-스크류(52)는 도 5d 에 도시된 바와 같이 적합한 지지-링(support ring; 51)에 의하여 칼라(48)에 수직으로 잠금(lock)된다. 도시된 실시예에서, 칼라(48)는 모터(54)를 위한 하우징을 형성하기 위하여 연장될 수 있다. 모터 고정자(motor stator; 54S)는 칼라의 보어(48B) 내에 장착될 수 있다. 대안적인 실시예에서, Z-구동 모터는 별도의 하우징 내에 있을 수 있고, 그 하우징은 등뼈 부재에 의하여 지지되는 것일 수 있는데, 이로써 등뼈 부재의 칼라를 보유하는 볼-스크류에 대한 모터의 위치는 실질적으로 견고하게 유지된다. 도 5c 에 도시된 바와 같이, 볼-스크류(52)의 상측 단부는 단부 플레이트(44)에 의하여 보유된다. 적합한 베어링이 볼-스크류의 단부를 단부 플레이트(44)에 연결시킨다. 이 실시예에서는 단부 플레이트(44)가, 베어링을 지지하고 볼-스크류의 단부를 보유하는 보어 또는 요부(recess)를 구비한다. 단부 플레이트에 있는 보어는 축(ZS)을 따라서 정렬된 볼-스크류와 동심을 이루도록 형성될 수 있다. 대안적인 실시예에서는, 그 요부, 또는 단부 플레이트 상에 볼-스크류의 단부를 유지시키기 위한 임의의 다른 보유 장착부(retention mount)는, 볼-스크류와 동심을 이루도록 가변적으로 조정될 수 있다.
도 5c 에 도시된 바와 같이, 등뼈 부재의 후측부(42S)는 처리 장치(10)의 전방 섹션(12)에 (예를 들어, 횡단기 또는 전방 섹션의 구조물에 직접적으로) 이송 장치(20)를 장착시키기 위하여 이용되는 장착 시스템(60)을 구비한다. 등뼈 부재의 측부 상의 장착 시스템(60)은 이송 장치(20)를 횡단기/전방 섹션 구조물에 연결시키는 유일한 장착부로서 기능한다. 따라서, 이해되는 바와 같이, 구동 시스템 구성부품들로부터 장착 시스템(60)에 이르기까지 매우 견고한 구조를 가지기 때문에, 이송 장치의 작동 중에 구동축, 그리고 이에 따라서 이송 장치의 기판 이송 평면의 정렬 유지가 더 향상된다. 장착 시스템(60)은, 지지 구조물(22), 그리고 그에 따라서 장치(20)를 전방 섹션(12)의 기준 프레임(reference frame)에 대해 요망되는 배치 및 요망되는 방위로 위치시킴에 있어서 결정적인 운동성 결합부를 포함할 수 있다. 이해되는 바와 같이, 장착 시스템(60)의 위치결정적 특징물들은, 이송 장치의 Z 축 및 T1 축 (도 1 참조) 에 대해 요망되는 관계를 가지도록 설치될 수 있다 (아래에서 알 수 있는 바와 같이, T1 축을 위치시키는 것은 T1 축을 수립하는 구동 섹션(38)과 장착 시스템(60) 사이에 개재되는 예를 들어 등뼈 부재(42)와 같은 구조물(structure)의 높은 견고성과 함께 조합되어 ZS/Z1 축에 관련되거나 또는 그에 기초될 수 있는데, 이것은 장치(20)가 장착되는 때에 T1 축이 전방 섹션의 기준 프레임에 대해 요망되는 위치에 있는 것을 확실히 하기 위하여, ZS/Z1 축에 대한 결정적 특징물들(deterministic features)을 설정하는 것을 허용할 수 있다).
기판 이송 평면 또는 구동 시스템(26)의 요망되는 축들(예를 들어, Z-축, T1 축)에 대하여 장착 시스템(60)의 결정적 특징물들을 설정하는 것에 대한 적합한 예 는 2005년 6월 15일자로 출원된 미국 특허 출원 제11/154,787호에 개시되어 있는바, 그 내용의 전체는 여기에 참조로서 포함된다. 따라서, 장치(20)와 유사한 다른 이송 장치 상의 장착 시스템(60)의 위치결정적 특징물들은, 그러한 장치 각각의 구동축에 요망되는 알려진 관계로서 반복적으로 수립될 수 있고, 이로써 상이한 장치들 간에 현저한 편차(variance)가 실질적으로 없게 된다. 이 실시예에서, 장착 시스템(60)은 상측 지지 선반(62) 및 하측 장착 지지대(64)를 구비한다. 도 6a 는 지지 구조물의 평면도이고, 지지 선반(62) 및 하측 지지대(64)의 상측부를 도시한다. 도 6b 는 지지 구조물(22)의 부분확대 사시도인데, 여기에는 하측 지지대(64)가 부분적으로 보인다. 장착 시스템의 상측 지지대(62) 및 하측 지지대(64)의 형태는 단지 예시적인 것일 뿐이고, 대안적인 실시예에서는 그 지지 구조물 장착 시스템의 지지대들이 임의의 요망되는 형태를 가질 수 있다. 이 실시예에서, 상측 지지 선반(upper support shelf; 62) 및 하측 지지대(lower support; 64)는 일반적으로 일체형 구조의 등뼈 부재(42)와 일체적으로 형성될 수 있는 플랜지(flange)이다. 상측 지지 선반(62) 및 하측 지지대(64)는 등뼈 부재(42)의 후측부(42S)로부터 외향으로 외팔보처럼 형성된다. 도 5d 에 도시된 바와 같이, 상측 지지 선반(62) 및 하측 지지대는 서로로부터 수직으로 이격되어 있다. 상측 지지 선반과 하측 지지대 간의 이격된 수직 거리는, 가동성 아암(24) 조립체 및 구동 섹션(26)의 CG 가 가동성 아암(24)과 운반기(55)의 Z 위치와 무관하게 상측 지지대와 하측 지지대 사이에 배치되도록 설정될 수 있다. 도 5c 에 도시된 바와 같이, 이 실시예에서는 상측 지지 선반이 안착용 표면(62S)을 구비한다. 안착용 표면(62S)은 지 지 선반 플랜지의 요부(62R) 내에 배치될 수 있다. 요부(62R)는 전방 섹션 구조물의 짝맞는 지지대(미도시)의 짝맞춤 섹션(conjugal section; 미도시)을 수용하는 치수를 가질 수 있다. 또한 상측 지지 선반은 (적합한 체결구에 의하여 제공될 수 있는) 핀(62P)과 같은 위치결정 특징물을 구비할 수 있다. 핀(62P)은, 장치(20)의 위치를 X 방향 또는 Y 방향 또는 그 둘 다의 방향으로 한정하거나 또는 잠금시키기 위하여, 전방 섹션(12)의 짝맞는 지지대(미도시)에 있는 구멍 또는 슬롯(slot)(미도시)과 인터페이스(interface)할 수 있다. 하측 지지대(64)는 도 5c 및 도 6a 에 도시된 바와 같이 수직 접촉 표면(64S)을 구비할 수 있다. 접촉 표면(64S)은 전방 섹션 구조물 상의 짝맞는 표면(미도시)에 맞닿아 장치(20)를 Y 방향으로 구속할 수 있다. 또한 하측 지지대는 (예를 들어, 적합한 체결구들에 의하여 형성된) 위치결정 핀(64P1, 64P2)을 구비할 수 있다. 위치선정 핀들(64P1, 64P2)은, 도 6a 에 도시된 바와 같이 하측 지지대의 대향하는 단부에 배치되거나, 또는 다른 임의의 요망되는 위치에 배치될 수 있다. 그 핀들(64P1, 64P2)은, 전방 섹션(12)의 짝맞는 구조물(미도시)에 있고 맞물리는 수용 구멍들에 의하여, 그 장치를 Z 방향으로 잠금(lock)시키는 기능을 할 수 있다. 이해되는 바와 같이, 위치선정 핀들(64P1, 64P2) 및 짝맞는 구조물 간의 인터페이스는 과도한 구속을 생성시키지 않도록 구성된다. 따라서, 위치선정 핀들(62, 64P1, 64P2)이 협력하여 (3개의 지점을 제공하여), 전방 섹션 기준 평면에 대한 장치(20)의 장착용 평면(mounting plane)을 한정한다.
도 5c 내지 도 5d 를 다시 참조하면, 구동 시스템(26)의 Z-구동 섹션(34)은 운반기(50)를 구비하고, 운반기(50)는 프레임(frame), 샤시(chassis), 또는 케이싱(casing)(70)을 구비한다. 플래튼(26P)은(도 5b 참조) 운반기 케이싱(70)에 연결되어 운반기가 전술된 바와 같이 장치의 Z축을 따르는 레일(26R)들을 따라서 미끄럼이동하는 것을 가능하게 한다. 도 5c 에 도시된 바와 같이, 운반기 케이싱(70)은 볼-스크류 미끄럼이동부(56)에 연결될 수 있다. 이해되는 바와 같이, 모터(54)에 의한 볼-스크류(52)의 회전으로 인하여, (케이싱(70)에 의하여 회전방향으로 고정되도록 유지되는) 볼-스크류 미끄럼이동부(56)가 장치의 Z-축을 따르는 볼-스크류를 따라 축방향으로 이동하게 된다. 따라서, 운반기 케이싱(70)은 Z-축을 따라서 볼-스크류 미끄럼 이동부(56)의 운동력(impetus)을 받게 된다. 앞서 언급된 바와 같이, 이 실시예에서는, (T1 축 또는 어깨축을 중심으로 한 회전을 구동하는) 구동 섹션(drive section; 34)이 운반기(50)에 장착된다. 구동 섹션(34)은 모터(72) 및 샤프트 조립체(shaft assembly; 74)를 포함할 수 있다. 이 실시예에 있어서의 모터(T2)는 운반기 케이싱(70) 내측에 하우징되거나 또는 다른 방법으로 배치된다. 대안적인 실시예에서는, T1 축 회전에 있어서의 모터 동력원(motor power)이 다른 임의의 요망되는 방식으로 Z-축 운반기에 장착될 수 있다. 모터(72)는 브러쉬가 없는 직류 모터, 교류 모터, 또는 스테퍼 모터와 같은 임의의 적합한 모터일 수 있다. 이 실시에에서, 모터 고정자(72S)는 케이싱(70)에 고정적으로 연결된다. 모터 회전자(72R)는 샤프트 조립체(74)의 샤프트(76)에 고정적으로 장착된다. 샤프트 조립체(74)는 일반적으로, 샤프트(76), 베어링(들)(78), 슬 립-링(slip ring; 80), 및 인코더(82)를 포함한다. 이 실시예에서, 샤프트 조립체(74)도 도 5d 에 도시된 바와 같이 운반기 케이싱(70) 내측에 배치된다. 대안적인 실시예에서, 샤프트 조립체는 임의의 다른 적합한 장착 구성을 가질 수 있다. 샤프트(76)는 베어링(78)에 의하여 케이싱(70) 내에 회전가능하게 보유되고, 따라서 그 샤프트 축의 정렬은 도시된 바와 같이 수립된다. 케이싱(70)은 베어링(78)을 억지끼움(force fit)으로 수용하는 보어(bore; 7OB)를 구비한다. 이해되는 바와 같이, 케이싱(70)의 자세는, 보어 중심선이 프레임 구조물(22)의 ZS 축(또는 장치의 Z-축)에 평행 또는 일치되도록, 예를 들어 케이싱과 플래튼(26P) 사이에 가변적인 쐐기(shim)를 이용하는 등, 적합한 조정 기기에 의하여 제어될 수 있다. 장치(20)에 유사한 다른 이송 장치의 정렬에 있어서의 반복가능성을 제공하기 위하여, 앞서 언급된 미국 특허 출원 제11/154,787호에 설명된 바와 같이 운반기 보어 중심선의 정렬을 설정하기 위한 고정물(fixture)이 이용될 수 있다. 따라서, 케이싱(70) 내에 베어링(78)에 의하여 장착된 샤프트(74)는 보어 중심선과 정렬되고, 장치의 Z-축과 실질적으로 평행하게 된다. 샤프트(76)의 회전축은 어깨부의 회전축(T1) 이고, 전술된 바와 같이 회전축(T1)은 z-축(아암의 선형 위치의 축)에 일치하도록 수립된다. 나아가, 장치(20), 또는 그 장치가 횡단기 상에 있는 경우에는 횡단기(미도시)의 움직임 중에 생성되는 정적 부하 조건 및 동적 부하 상태는, 이 축들의 정렬이 공통의 견고한 부재; 지지 구조물의 등뼈 부재(42)에 의하여 설정되기 때문에, T1 축과 Z-축 간에 뚜렷한 비정렬(misalignment)을 야기하지 않을 것이 라는 것이 여기에서 다시 한번 이해될 것이다(T1 축은 등뼈 부재에 직접적으로 의존하고, Z-축은 전술된 바와 같이 등뼈 부재에 의하여 한정됨). 이것은, 장치 단부 조작기들(32A, 32B)(도 2 참조)의 모든 움직임(Z, θ, R)이 언제나 예상가능하게 반복가능하게 됨을 보장한다. 인코더(82)는 샤프트(76) 상에 장착될 수 있고, 요망되는 바에 따라 모터(72)를 제어하기 위하여 콘트롤러(40D)(도 1 참조)에 통신가능하게 연결된다. 샤프트(76)는 중공(hollow)의 것일 수 있다. 슬립-링(80)은 샤프트(76)에 장착될 수 있다. 슬립-링은 아암(24) 상의 기기들에 전력과 통신을 제공하기 위하여 케이싱(70)에 있는 적합한 전력 및 신호 결합부(power and signal coupling)에 연결된다. 도 5d 에 도시된 바와 같이, 샤프트 조립체(74)는 공압 공급선(84)을 구비할 수도 있다. 공압 공급선(84)은 샤프트(76)의 내부를 통하여 공급 포트(feed port)로 연장될 수 있다. 케이싱(70)은 공압 공급부(pneumatic feed)를 향하고 샤프트 조립체 상에 있는 공급 포트에 짝맞춰진 적합한 공압 결합부(pneumatic coupling)를 구비할 수 있고, 샤프트(76)의 연속적인 회전을 허용할 수 있다(또한, 이로써 어깨 관절부 축(T1)을 중심으로 한 아암의 연속적인 회전도 가능하게 된다).
이제 다시 도 4a 및 도 4b 를 참조하면, 아암 조립체(arm assembly; 24)가 운반기(50)에 장착되어 있다. 특히, 아암 조립체(24)의 상측 아암(28)은, 운반기(50)에 장착된 샤프트(76)의 단부(76E)에 장착되어 있다(도 5d 참조). 도 7 은 아암 조립체(24)의 상측 아암(28)의 사시도이다. 도 7a 는 상측 아암(28)의 단면 도이고, 도 7b 및 도 7c 는 각각 상측 아암(28)의 평면 사시도 및 저면 사시도이다. 도시된 바와 같이 이 실시예에서는, 상측 아암이 하측 섹션(lower section) 또는 소형탑(84)과, 상측 섹션(86)을 구비한다. 소형탑(84)은 전체적으로 실린더형이고 중공인 형상을 갖는다. 상측 섹션(86)은 도시된 바와 같이 소형탑(84)에 의존한다. 상측 아암(28)은 단일체의 부재이고 (또는, 일체형 구조인 것으로도 일컬어질 수 있음), 소형탑(84) 및 상측 섹션(86)은 상기 단일체 구조의 상측 아암(28)에서 일체적으로 형성된다. 상측 아암(28)은 주조, 단조, 또는 임의의 다른 적합한 형성 공정에 의하여 형성될 수 있다. 상측 아암은 알루미늄 합금, 스테인레스 스틸과 같은 금속, 또는 플라스틱, 세라믹, 또는 복합물과 같은 비금속 소재로 만들어질 수 있다. 대안적인 실시예에서, 상측 아암의 소형탑 및 상측 섹션은 임의의 다른 적합한 형상을 가질 수 있다. 도 7b 에 도시된 바와 같이, 상측 섹션(upper section)은 상측부(86T)에 접근로(access way) 또는 개구(86A)를 구비한다. 접근로(86A)는 임의의 적합한 형상을 가질 수 있고, 아래에서 설명되는 바와 같이 상측 아암(28) 내의 구성부품들에 작업자가 용이하게 접근할 수 있는 크기를 갖는다. 또한 소형탑(84)은, 소형탑(84) 내부의 구성부품들에의 접근을 위하여 형성된 접근로(들)(84A)를 구비할 수 있다. 이 실시예에서, 소형탑(84)에 있는 접근로(84A)는, 상측 섹션(86)이 소형탑으로부터 돌출되는 방향에 대해 전체적으로 반대인 소형탑의 측부에 배치된 것으로 도시되어 있다. 대안적인 실시예에서는, 그 소형탑의 접근로(들)이 소형탑 내부에 있는 구성부품들에의 접근에 적합한 임의의 요망되는 측부(들)에 배치될 수 있다. 도 7b 에 도시된 바와 같이, 소형탑(84)은 요망되는 바에 따라 소형탑의 경량화 또는 접근성을 위하여 다른 개구(들)(84H)을 구비할 수 있다. 외측 커버(28C)들(도 4a 참조)이 소형탑(84)에 가깝게 장착될 수 있다. 소형탑(84)의 바닥 단부(84L)는 상측 아암을 운반기(50) 내의 T1 회전 샤프트(76)의 단부(73E)에 연결시키기 위한 장착용 허브 또는 결합부(84H)를 구비할 수 있다. 도 7a 및 도 7c 에 도시된 바와 같이, 소형탑(84)의 장착용 결합부(84A)는 샤프트(76)의 단부(76E)(도 5d 참조)에 전체적으로 일치하도록 구성된 장착용 표면들을 구비한다. 샤프트(76)에 장착된 때에, 소형탑(84)은 상측 단부 플레이트(44)에 있는 개구(44D)(도 5c 및 도 6a 참조)를 통하여, 지지 구조물(22)에 의하여 한정된 공간(22S)(도 5a 참조) 내로 연장된다. 소형탑 결합부(84H)는, 전단방향의 부하 및 축방향의 부하를 소형탑을 가로질러 샤프트 결합부로 전달할 수 있는 적합한 체결구들에 의하여, 샤프트(76)의 단부(76E)에 부착된다. 도 4b 에서 상측 아암(28)은 장착된 위치에 있는 것으로 도시되어 있다. 상측 아암 섹션(86)은 단부 플레이트(44) 위로 배치된다. 이해되는 바와 같이, 상측 아암(28)은 샤프트(76)에 의하여 축(T1)(도 2 참조)을 중심으로 연속적으로 회전될 수 있다. 일체형 소형탑(84) 및 상측 아암 섹션(86)과 함께, 일체형 구조물인 상측 아암(28)은 결합부 연결(coupling connection)을 제거하는바, 이것은 가동성 아암(26)의 조립을 단순화시킨다. 또한 샤프트(76)에 비하여 더 큰 비틀림 면적(torsional area)을 갖는 소형탑(84)은, T1 구동 섹션 모터(74)가 지지 구조물 내에 낮게 (즉, Z-운반기 내측에) 장착되는 것을 가능하게 하는바, 이것은 장치(66)를 낮게 하고 또한 장치 장착 부 상의 전복 모멘트(overturning moment)를 저감시키면서도, 구동 샤프트(76)를 짧게 유지시켜서 샤프트의 휨(flexing)을 저감시키고 또한 아암의 움직임 정확도를 향상시키기 위한 것이다.
도 4b 에 도시된 바와 같이, 구동 시스템(26)은 아암(24)에 제거가능하게 부착될 수 있는 구동 모듈(38)을 구비한다. 구동 모듈(38)은 아래에 설명되는 바와 같이, 상이한 구동 특성을 갖는 다수의 실질적인 구동 모듈(38A)들(도 4b 에는 개략적으로 도시됨)과 호환될 수 있다. 구동 모듈(38)은 도 9 에 잘 도시되어 있다. 일반적으로, 구동 모듈(38)은 케이싱(90) 및 모터 클러스터(motor cluster; 92)를 구비한다. 모터 클러스터(92)는 케이싱(90) 내에 배치된다. 케이싱(90)은 구동 모듈(38)을 상측 아암(28)의 섹션(86)에 장착시킨다(상측 아암 섹션(86)의 평면도인 도 8 도 참조). 예시적인 실시예에서, 모터 클러스터(92)는 세 개(3)의 모터 조립체들(94A, 94B, 94C)을 포함한다. 대안적인 실시예에서, 모터 클러스터는 그보다 많거나 또는 적은 모터 조립체들을 구비할 수 있다. 구동 시스템의 다른 호환가능한 모듈(38)들은 조립체들(94A, 94B, 94C)과 유사한 두 개(2) 또는 하나(1)의 모터 조립체들을 구비한 모터 클러스터(92A)를 구비할 수 있다. 이 실시예에서 각 모터 조립체(94A, 94B, 94C)는 실질적으로 유사하다. 따라서, 모터 조립체들(94A, 94B, 94C)은 그 자체가 호환가능하다. 모터 조립체들(94A, 94B, 94C)은 실질적으로 유사한 바, 모터 조립체들은, 모터 조립체(94A)를 특정적으로 참조하여 아래에서 보다 상세히 설명될 것이다. 모터 조립체(94A)는 모터(96A) 및 샤프트(98A)를 구비한다. 모터(96A)는 브러쉬 없는 직류 모터, 교류 모터, 스테퍼 모 터, 또는 임의의 다른 적합한 형태의 모터일 수 있다. 모터 조립체(94A)는 케이싱(90)으로부터 일 유니트로서 제거될 수 있다. 대안적인 실시예에서, 그 모터와 샤프트는 모듈 케이싱으로부터 개별적으로 제거가능한 것일 수 있다. 모터 조립체들(94A, 94B, 94C)은 도시된 바와 같이 모듈 케이싱(90) 내에 위치된다. 이 실시예에서, 케이싱(90)은 모터 조립체(94A, 94B, 94C) 각각을 위한 하우징들(housings; 9OA, 9OB, 9OC)을 구비할 수 있다. 일 예로서, 케이싱(90)은 T2 모터 조립체(94A)(즉, 도 2 에 도시된 T2/팔꿈치 축을 중심으로 한 독립적인 회전을 구동하기 위한 모터 조립체(94A))를 위한 모터 조립체 하우징(90A), W1 모터 조립체(94B)(즉, 도 2 에 도시된 W1/손목 축을 중심으로 한 독립적인 회전을 구동하기 위한 모터 조립체(94B))를 위한 하우징(90B), 및 제2의 W1 모터 조립체(94C)(즉, W1/손목 축을 중심으로 한 제2의 단부 조작기의 독립적인 회전을 구동하기 위한 모터 조립체(94C))를 위한 하우징(90C)을 구비할 수 있다. 대안적인 실시예에서, 그 모듈 케이싱은 모터 클러스터의 모터 조립체들을 위한 공통의 하우징을 형성하도록 형상화되거나 또는 임의의 다른 요망되는 구성을 가질 수 있다. 이해되는 바와 같이, (적은 수의 회전축들을 중심으로 한 독립적인 회전을 독립적으로 구동시키기 위한) 적은 수의 모터 조립체들을 구비하고 또한 모듈(38A)에 유사한 다른 호환가능한 모듈들에 있어서는, 하우징들(90A 내지 90C)에 유사한 하나 이상의 하우징이 그 내부에 배치된 모터 조립체를 구비하지 않을 수 있다. 예를 들어, 구동 모 듈(38A)에 제2의 W1 모터 조립체가 구비되지 않은 경우에는, 제2의 W1 모터 조립체를 수용하기 위한 모터 조립체 하우징(하우징(90C)과 유사)이 비게 될 것이다. 모터 클러스터가 세 개를 초과하는 조립체들을 구비하는 대안적인 실시예에 있어서는(여기에서 예시를 위한 목적으로서만 설명된다), 그 모듈 케이싱에 보다 많은 모터 조립체 하우징들이 제공될 수 있다. 다른 대안적인 실시예에서는, 그 모듈 케이싱이 그 구동 모듈에 제공될 모터 조립체들의 갯수에 특정화된 하우징들을 구비할 수 있다. 따라서, 예를 들어 세 개의 모터 조립체들의 경우에는 세 개의 대응되는 하우징들이 있을 것이고, 두 개의 모터 조립체들의 경우에는 두 개의 대응되는 하우징들이 있을 것이며, 다른 경우에도 이와 같이 될 것이다. 이 경우, 모둘 케이싱, 그리고 모듈은 여전히 호환가능할 것인바; 상이한 호환가능한 모듈들 각각의 모듈 케이싱은 그 모듈을 상측 아암(28)에 장착시키기 위한 장착용 특징물들과, 전체적으로 유사한 구성을 갖는다.
도 4b 에서 이해되는 바와 같이, 가동성 아암 조립체(24)의 형태는 요망되는 갯수의 모터 조립체들을 갖는 모터 클러스터(92, 92A)를 구비한 모듈(38, 39A)을 선택함에 의하여 선택되어, 아암에 요망되는 갯수의 독립적인 회전축이 제공된다. 일 예로서, 가동성 아암(26)은 (축들(T1, Z)에 부가하여) 세 개(3)의 독립적인 회전축들(예를 들어, 축(T2)을 중심으로 한 팔뚝부 링크(30)의 독립적인 회전을 위한 축, 손목축(W1)을 중심으로 한 단부 조작기들(32A, 32B)의 독립적인 회전을 위한 축들)을 갖는 것으로 도시되어 있다. 따라서, 아암 조립체(26)에 세 개(3)의 독립적 인 회전축들을 제공하기 위하여, 설치를 위하여 구동 모듈(38)이 선택된다. 가동성 아암(26)에 두 개 또는 하나의 독립적인 회전축을 제공할 필요가 있다면, 대응되는 갯수의 모터 조립체들을 갖는 모터 클러스터(92A)를 구비한 호환가능한 구동 모듈(38A)이 상측 아암(28)에의 설치를 위하여 선택될 수 있다.
앞서 언급된 바와 같이, 도면들에 도시된 모듈 케이싱(90)의 형태는 예시적인 것일 뿐이고, 대안적인 실시예에서는 그 모듈 케이싱이 다른 요망되는 임의의 형태를 가질 수 있다. 케이싱(90)은 모듈(38, 38A)을 상측 아암(28)에 부착시키기 위한 장착용 플랜지(들)(90F)을 구비할 수 있다. 이 실시예에서, 그 장착용 플랜지(들)은 외향으로 돌출되고, 상측 아암의 소형탑(84) 내측에 배치된 동형의 짝맞는 표면(conformal mating surface; 86S)들(도 7a 참조)과 중첩되는 안착용 표면(90S)들(도 9 참조)을 한정한다. 도 7a 및 도 9 로부터 알 수 있고 또한 도 7 에서 부분적으로 도시된 바와 같이, 상측 아암에 장착된 때에 구동 모듈(38)은 상측 아암의 소형탑(84) 내에 배치된다. 대안적인 실시예에서, 그 모듈 케이싱은 다른 임의의 요망되는 형태의 장착용 특징물(mounting features)을 가질 수 있다. 상측 아암(28)에 장착된 때에, 모터 클러스터 샤프트들(98A-98C)의 샤프트 단부들은 상측 아암 섹션(86) 내에 위치된다. 도 9 에 도시된 바와 같이, 이 실시예에서는 모듈 케이싱 하우징들(90A-90C)이 장착용 플랜지(90F)에 대해 수직으로 엇갈려 있다. 하우징들(90A-90C)의 수직방향으로의 엇갈린 배치는, 대응하는 샤프트들(98A-98C)의 단부들 상에 있는 치가 형성된 풀리들(toothed pulleys; 110A-110C)(도 8 참조)이 적당한 수직의 간격으로 위치되게 하여, 각 풀리가 대응하는 전동기(transmission; 112, 114, 116)에 연결되는 것을 가능하게 한다. 따라서, 앞서 언급된 바와 같이, 모듈(38, 38A)의 실질적으로 동일한 모터 조립체들(94A, 94B, 94C)이 완전히 호환가능하고 또한 서로에 대해 교체될 수 있으며, 그 각각이 어떠한 차이점과 변경없이 하우징들(9OA, 9OB, 9OC) 중의 임의의 것에 배치될 수 있다. 이 실시예에서, 대응하는 하우징들(9OA, 9OB, 9OC)의 상측 위로의 샤프트 풀리(shaft pulley; 110A, 110B, 110C)의 각 대응하는 단부의 상향돌출(standoff)은 동일하다. 도 9 에 도시된 바와 같이, 이 실시예에서는 T2 모터 조립체(94A)를 위한 하우징(90)이 가장 높게 배치되고, (단부 조작기(32A)를 구동하는) W2 모터 조립체(94B)를 위한 하우징(90B)이 중간에 배치되며, (단부 조작기(32B)를 구동하는) 제2의 W1 모터 조립체(94C)를 위한 하우징(90C)이 최하측에 배치된다.
이제 도 8 을 참조하면, 상측 아암(28)의 평면도가 도시되어 있다. 도 8 에 도시된 바와 같이, 동축 샤프트 조립체(coaxial shaft assembly; 40)가 상측 아암(28)의 외측 단부에 장착된다. 전술된 바와 같이, 팔뚝부(30)는 동축 샤프트 조립체(40)에 의하여 상측 아암(28)에 피봇가능하게 장착된다. 동축 샤프트 조립체는 팔꿈치부 회전축(T2)을 한정한다. 도 10 내지 도 10a 는 각각 팔뚝부(30)의 사시도 및 평면도이다. 도 11 및 도 11a 을 참조하면, 거기에는 각각 팔뚝부(30)의 단면도와 동축 샤프트 조립체(40)의 단면도가 도시되어 있다. 도 11a 에 도시된 바와 같이, 이 실시예의 동축 샤프트 조립체(40)는 세 개의 동심 샤프트들(concentric shafts; 124, 126, 128)을 포함한다. 샤프트들(124, 126, 128)은 적합한 베어링(B)에 의하여, 일반적으로 포개진(nested) 구성으로 서로에 대해 각각 반경방향으로 지지된다. 외측 샤프트(124)는 베어링(BB)에 의하여 상측 아암 내에 반경방향으로 보유된다. W-축 샤프트 조립체(40)의 샤프트들(124, 126, 128)은 공통의 회전축(T2)을 중심으로 회전할 수 있다. 대안적인 실시예에서, 동축 샤프트 조립체는 보다 많거나 또는 적은 동축의 샤프트들을 구비할 수 있다. 도 11a 에 도시된 바와 같이, 외측 샤프트(124)는 팔뚝부(30)에 고정되고, 이로써 팔뚝부와 샤프트(124)는 일 유니트로서 축(T2)을 중심으로 회전하게 된다. 또한 외측 샤프트는, 그에 고정되고 전동기(112)(이 실시예에서는 무한 루프 전동기가 이용되지만, 다른 임의의 적합한 전동기가 이용될 수도 있다)를 위한 아이들러 풀리(idler pulley; 112P)를 구비한다. 아이들러 풀리(112P) 및 샤프트(124)는 일 유니트로서 회전된다. 중간 샤프트(126)는 그에 고정된 아이들러 풀리(114P)를 구비한다. 이 실시예에서 중간 샤프트(126)는 일체형 풀리(114P)와 단일체의 부재인 것으로 도시되었으나, 대안적인 실시예에서는 그 아이들러 풀리가 임의의 적합한 방식으로 그 샤프트에 고정될 수 있다. 아이들러 풀리(114P)는 전동기(114)의 일부분인데, 이 실시예에서는 전동기(114) 또한 무한 루프(endless loop)이다. 중간 샤프트(126)는 그것의 상측 단부에서 중간 전달 풀리(intermediate transfer pulley; 120P)에 고정적으로 결합된다. 따라서, 샤프트(126), 그에 고정된 아이들러 풀리(114P), 및 전달 풀리(120P)는 일 유니트로서 회전한다. 아이들러 풀리와 전달 풀리 간의 감축비율(reduction ratio)은 대략 2:1 일 수 있고, 임의의 다른 요망되는 감축비 율이 이용될 수도 있다.
내측 샤프트(128)는 거기에 고정되고 전동기(116)를 위한 아이들러 풀리(116P)를 구비한다. 또한 샤프트(128)는 일체형 아이들러 풀리(116P)와 단일체의 부재일 수도 있다. 샤프트(128)는 도시된 바와 같이 그 상측 단부에 고정된 전달 풀리(122P)를 구비한다. 따라서, 샤프트(128) 및 그에 고정된 풀리들(116P, 122P)은 일 유니트로서 회전한다. 도 8 에 도시된 바와 같이, 모터 클러스터 내에 있는 모터 조립체들의 구동 풀리들(11OA, 11OB, 11OC) 각각은 전동기 벨트들(transmission belts; 112, 114, 116)에 의하여 샤프트 조립체(40)의 대응하는 풀리들(112P, 114P, 116P)에 연결된다. 구동 풀리(110A)는 벨트(112)에 의하여 풀리(112P)에 연결되고, 구동 풀리(110B)는 벨트(114)에 의하여 풀리(114P)에 연결되며, 구동 풀리(110C)는 벨트(116)에 의하여 풀리(116P)에 연결된다. 벨트 인장기들(150A, 150B, 150C)은 상측 아암(28)에 장착되어, 아래에 설명되는 바와 같이 전동기 벨트들 상에 요망되는 장력을 제공 및 유지한다. 따라서, (모터 조립체(94A) 상의) 구동 풀리(110A)는 축(T2)을 중심으로 팔뚝부(30)를 회전시키고, (모터 조립체(94B) 상의) 구동 풀리(110B)는 축(T2)을 중심으로 전달 풀리(120P)를 회전시키며, (모터 조립체(94C) 상의) 구동 풀리(110L)는 축(T2)을 중심으로 전달 풀리(122P)를 회전시킨다. 도시된 실시예에서, 구동부 대 아이들러 풀리의 직경의 비율은 대략 1:4 일 수 있으나, 임의의 다른 적합한 비율도 이용될 수 있다.
여전히 도 10 내지 도 10a 그리고 도 11 을 참조하면, 전달 풀리들(120P, 122P)은 각각 전동기들(120, 122)에 의하여 대응되는 아이들러 풀리들(120I, 122I) 및 동축 샤프트 조립체(140)로 연결된다. 도 11 에 잘 도시된 바와 같이, 동축 샤프트 조립체(140)는 적합한 베어링에 의하여 팔뚝부(30)에 보유된다. 동축 샤프트 조립체(140)의 단면도가 도 11b 에 도시되어 있다. 동축 샤프트 조립체(140)는 동심의 외측 및 내측 샤프트들(142, 144)구비하는데, 이들은 회전축(W1)을 중심으로 회전할 수 있도록 회전가능하게 지지된다. 샤프트들(142, 144)에는 슬립-링들 및 공압 공급부(pneumatic feed)가 제공될 수 있는바, 이로써 그 샤프트들이 연속적으로 회전할 수 있게 된다. 외측 샤프트(142)는 그에 고정되고 전동기(122)를 위한 아이들러 풀리(122I)를 구비하는바, 이로써 그 샤프트와 아이들러 풀리가 일 유니트로서 회전한다. 하측 단부 조작기(32B)는, 단부 조작기(32B)와 샤프트(142)도 일 유니트로서 회전하도록, 외측 샤프트(142)에 고정된다. 내측 샤프트(144)는 그에 고정되고 전동기(120)를 위한 아이들러 풀리(120I)를 구비하는바, 이로써 그 샤프트와 아이들러 풀리가 일 유니트로서 회전한다. 상측 단부 조작기(32A)는, 샤프트(144)와 함께 일 유니트로서 회전하도록 내측 샤프트(144)에 고정된다. 도 10 및 도 11 에 도시된 바와 같이 이 실시예에서는, 전달 풀리(120P)를 아이들러 풀리(120I)에 연결시키는 전동기(120) 및 전달 풀리(122P)를 아이들러 풀리(122I)에 연결시키는 전동기(122)가 무한 루프이다. 대안적인 실시예에서는 임의의 적합한 전동기들이 이용될 수 있다. 전달 풀리들(120P, 122P)과 아이들러 풀리들(120I, 122I) 간의 감축비율은 대략 1:2 일 수 있지만, 임의의 다른 요망되는 감축비율이 이용될 수 있다. 도 10a 에 도시된 바와 같이, 인장기들(120T, 122T)은 팔뚝부에 장착되고, 전동기 벨트(120, 122)에 대하여 편향되어 요망되는 벨트 장력을 생성시킨다. 이제 도 3a 를 참조하면, 여기에는 가동성 아암(24)과 거기에 배치된 구동 시스템 섹션의 평면도가 도시되어 있다.
도 3a 에는, 전동기(112)를 거쳐서 회전축(T2)을 구동하기 위하여 그리고 전동기(114, 116) 및 보조 전동기(secondary transmission 122, 120)를 거쳐서 두 개의 단부 조작기들(32A, 32B)의 독립적인 회전축(W1)을 구동하기 위하여 개별적으로 연결된, 구동 모듈(38)의 모터 조립체들(94A, 94B, 94C )이 도시되어 있다. 이해되는 바와 같이, 예를 들어 (회전축(T2) 및 단일의 회전축(W1)을 위한) 조립체들(94A, 94C)에 유사한 모터 조립체들을 구비하되 조립체(94B)에 유사한 모터 조립체는 없는(즉 제2의 독립적인 회전축(W1)은 없는) 등, 더 적은 갯수의 모터 조립체들을 구비한 구동 모듈(38A)이 구동 시스템 내에 장착된 경우는, 대응하게 더 적은 갯수의 전동기가 아암 내에 배치될 것이다. 예를 들어, 구동 모듈이 조립체(94B)에 유사한 모터 조립체를 구비하지 않는다면, 전동기들(114, 120)이 아암 내에 설치되지 않을 것이다. 따라서, 단부 조작기(32A)에 유사한 하나의 단부 조작기가 축(W1)을 중심으로 독립적으로 회전할 수 없게 되거나, 또는 아암으로부터 제거될 수 있다. 따라서, 아암의 형태는, 구동 시스템 내에 설치되는 구동 모듈(38, 38A)을 선택함에 의하여 선택될 수 있다.
도 3a, 8, 및 10 을 참조하면, 전술된 바와 같이, 각 전동기(112, 114, 116, 120, 122)는 대응하는 벨트 인장기(150A, 150B, 150C, 120T, 122T)에 의하여 인장된다. 이 실시예에서, 인장기들(150A, 150B, 150C, 120T, 122T)은 실질적으로 유사하고, 따라서 이들에 관하여는 도 10a 에 잘 도시된 인장기(122T)를 특정적으로 참고하여 아래에서 설명된다. 대안적인 실시예에서는 임의의 적합한 인장기 형태가 이용될 수 있다. 인장기(122T)는 일반적으로 움직임가능한 베이스부(162) 상에 피봇가능하게 장착된 롤러(roller; 160)를 포함한다. 이 실시예에서, 베이스부(162)는 일 단부에서 핀으로 결합된 피봇가능한 링크(link)이지만, 임의의 적합한 움직임가능한 베이스부가 제공될 수 있다. 또한 움직임가능한 베이스부(162)는 위치 잠금부(position lock)를 구비할 수 있는바, 도시된 실시예에는 베이스부의 일 측부에 대하여 체결구를 회전시킴에 의하여 베이스부를 잠금(lock)시키는 마찰 잠금부(friction lock; 162L)가 제공되며, 이로써 인장기(122T)가 대응하는 전동기(122)와 맞물리는 위치에 있게 되어 그 전동기에 장력을 적당히 인가한다. 움직임가능한 베이스부(162)는 스프링에 의하여 또는 공압식으로(미도시) 탄성적으로 편향되어, 인장용 롤러(tensioning roller; 160)를 전동기(122)를 향해 강제시킨다. 도시된 실시예에서, 인장기(122T)는 적합한 힘 변환기(force transducer; 164)를 포함할 수 있다. 힘 변환기(164)는, 인장용 롤러(160)에 의하여 전동기 벨트(122)에 대해 생성되는 힘에 대응하는 신호를 발생시키는 임의의 적합한 형태의 것일 수 있는바, 예를 들면 압전 힘 변환기(piezo-electric force transducer), 스트레인 게이지(strain gage), 전기광학 힘 변환기(electro-optical force transducer) 등이 있다. 도 10a 에 개략적으로 도시된 힘 변환기(164)는 사용되는 변환기의 형태에 적합하게 인장기 상의 요망되는 임의의 위치에 장착될 수 있다. 변환기(164)는 적합한 통신 링크(미도시)에 의하여 콘트롤러(400)(도 1 참조)에 연결되는바, 그 통신 링크는 무선 또는 유선의 것일 수 있다. 콘트롤러(400)는 프로그램 모듈들(401, 404)을 구비하는데, 그들 중의 적어도 하나는 힘 변환기로부터의 신호를 기록하고 그 신호로부터 인장기 롤러(160)에 의해 전동기(122)에 인가되는 인장력을 판정하는 적합한 프로그램을 갖는다. 나아가 그 콘트롤러 내의 프로그램은 인장기(122T)에 의하여 전동기에 인가되는 힘이 전동기 상에 요망되는 인장력을 제공하는 때를 판정할 수도 있다. 그러면 콘트롤러 프로그램은, 예를 들어 음향 기기로부터 청각적인 음조를 방출하거나 또는 사용자 인터페이스부 상의 표시등을 활성화시키는 등, 적합한 사용자 인터페이스부 상의 표시부(indication)를 작동시키는 명령을 보내서 전동기 상에 요망되는 인장력이 얻어졌다는 것을 표시할 수 있다. 그 후 인장기(122T)의 움직임가능한 베이스부는 그 위치에 잠금될 수 있다. 이 시스템은 구동 시스템(26)을 설정할 때에 있어서의 어림짐작을 제거하며, 전동기들의 과도한 인장을 방지할 수 있다. 또한 콘트롤러(400)는, 전동기들의 작동 상태를 모니터링하기 위하여 인장기의 힘 변환기들로부터의 신호를 주기적으로 추출하도록 프로그램될 수 있다. 콘트롤러는 전동기 인장력을 위한 작동 범위로 프로그램되고, 전동기의 인장력이 그 범위의 밖에 있는 때에는 적합한 표시를 발생시키도록 프로그램될 수 있다. 따라서 구동 시스템의 건전성(health)을 모니터링하는 시스템도 제공된다.
특정의 실시예들이 설명되었으나, 본 기술분야에서 통상의 지식을 가진 자는 명시되지 않은 다양한 대안예들, 변형예들, 변화예들, 향상예들, 및 실질적인 동등예들을 도출할 수 있을 것이다. 다라서, 첨부된 청구항들(보정된다면, 보정된 청구항들)은 그러한 대안예들, 변형예들, 변화예들, 향상예들, 및 실질적인 동등예들 모두를 포괄할 것으로 의도된다.
본 발명은 기판 이송 장치에 이용될 수 있다.

Claims (20)

  1. 프레임;
    상기 프레임에 연결된 구동 섹션(drive section);
    다수의 상이한 호환가능한 모터 모듈들로서, 상기 모터 모듈들 각각은 적어도 하나의 모터를 포함하도록 구성되고 또한 구동 섹션 내에 장착될 수 있으며, 적어도 하나의 선택된 모터 모듈이 상기 다수의 상이한 호환가능한 모터 모듈들로부터 상기 구동 섹션 내에의 배치를 위하여 선택되고, 상기 상이한 모터 모듈들 각각은 상기 구동 섹션 내에서의 배치에 대해 독립적인 미리 정해진 상이한 특성을 가지며, 상기 모터 모듈들 각각은 하나의 유니트로서 상기 구동 섹션에 설치되고 상기 구동 섹션으로부터 제거되는 단일체의 모듈(unitary module)인, 모터 모듈들; 및
    분절적인 관절부(articulating joint)들을 구비한 분절된 아암(articulated arm)으로서, 상기 아암은 분절적인 관절부들 중의 적어도 하나의 분절(articulation)을 위하여 구동 섹션에 연결되고, 상기 아암은 제1 아암 형태(first arm configuration)와 제2 아암 형태(second arm configuration) 중에서 선택될 수 있는 선택가능한 아암 형태를 가지며, 상기 제1 아암 형태 및 제2 아암 형태 각각은 독립적으로 움직여질 수 있는 아암의 다수의 분절적인 관절부들에 의한 미리 정해진 상이한 형태를 가지며, 아암 형태의 선택은 상기 구동 섹션 내의 배치를 위한 적어도 하나의 선택된 모터 모듈의 선택에 의하여 이루어지고, 상기 적어도 하나의 선택된 모터 모듈은, 상기 구동 섹션 내에서의 상기 적어도 하나의 선택된 모터 모듈의 설치 시에, 상기 적어도 하나의 선택된 모터 모듈의 미리 정해진 구동 특성에 따라서 독립적으로 움직여질 수 있는 각각의 분절적인 관절부를 결정하는, 아암;을 포함하는, 기판 이송 장치.
  2. 제 1 항에 있어서,
    상기 분절된 아암은, 움직임가능하게 함께 결합되어 분절적인 관절부들을 한정하는 다수의 견고한 아암 링크(arm link)들을 포함하는, 기판 이송 장치.
  3. 제 1 항에 있어서,
    상기 분절적인 관절부들은 피봇 조인트(pivot joint)들인, 기판 이송 장치.
  4. 제 1 항에 있어서,
    상기 미리 정해진 형태 특성은 독립적으로 움직여질 수 있는 다수의 분절적인 관절부들인, 기판 이송 장치.
  5. 제 1 항에 있어서,
    상기 분절된 아암은 스카라 아암(scara arm)이고, 선택될 수 있는 형태는, 하나의 독립적으로 회전될 수 있는 단부 조작기(end effector)를 구비한 아암과 두 개의 독립적으로 회전될 수 있는 단부 조작기들을 구비한 아암 간에 선택될 수 있는, 기판 이송 장치.
  6. 제 1 항에 있어서,
    상기 미리 정해진 형태 특성은 분절된 아암의 다수의 독립적인 움직임 축(movement axis)인, 기판 이송 장치.
  7. 제 1 항에 있어서,
    상기 적어도 하나의 선택된 모터 모듈은 분절된 아암에 일 유니트(unit)로서 제거가능하게 부착될 수 있는, 기판 이송 장치.
  8. 제 1 항에 있어서,
    상기 분절된 아암은, 제1 회전축을 중심으로 하여 프레임에 대해 회전가능한 상측 아암, 분절적인 관절부들 중의 하나에서 상측 아암에 결합된 팔뚝부(forearm), 및 분절적인 관절부들 중의 다른 하나에서 팔뚝부에 결합된 적어도 하나의 단부 조작기를 구비하고, 상기 적어도 하나의 선택된 모터 모듈은 상측 아암에 의하여 보유되는, 기판 이송 장치.
  9. 제 8 항에 있어서,
    상기 적어도 하나의 모터 모듈은, 상측 아암 상에 제1 회전축에 인접하여 배치된, 기판 이송 장치.
  10. 제 1 항에 있어서,
    상기 적어도 하나의 선택된 모터 모듈은 다수의 구동 모터들을 구비하고, 상기 미리 정해진 특성은 상기 적어도 하나의 선택된 모터 모듈 내에 있는 다수의 구동 모터들인, 기판 이송 장치.
  11. 제 10 항에 있어서,
    상기 적어도 하나의 선택된 모터 모듈은 케이싱(casing)을 포함하고, 상기 적어도 하나의 선택된 모터 모듈의 다수의 구동 모터들은 케이싱 내에 배치되는, 기판 이송 장치.
  12. 제 1 항에 있어서,
    상기 적어도 하나의 선택된 모터 모듈은, 각각 독립적인 회전축을 한정하는 다수의 일체형 모터(integral motor)들을 구비하고, 그 모터들 중의 적어도 하나는, 그 적어도 하나의 모터 및 적어도 다른 모터의 회전축들이 서로에 대해 수평으로 이격되도록 모터들 중의 적어도 다른 하나로부터 이격된, 기판 이송 장치.
  13. 제 1 항에 있어서,
    상기 적어도 하나의 선택된 모터 모듈은 다수의 독립적인 구동축들을 구비하고, 미리 정해진 특성은 다수의 독립적인 구동축들인, 기판 이송 장치.
  14. 제 1 항에 있어서,
    상기 적어도 하나의 선택된 모터 모듈은, 하나, 두 개, 또는 세 개의 독립적인 구동축들을 갖는 상이한 호환가능한 모터 모듈들로부터 선택될 수 있는, 기판 이송 장치.
  15. 제 1 항에 있어서,
    상기 구동 섹션은 독립적인 구동축을 한정하는 구동 섹션 부분(drive section portion)을 구비하고, 그 독립적인 구동축과 관련하여, 분절된 아암은 구동 섹션에 의하여 일 유니트로서 움직여질 수 있으며, 상기 적어도 하나의 선택된 모터 모듈은 그 구동 섹션 부분으로부터 수직으로 분리된, 기판 이송 장치.
  16. 제 15 항에 있어서,
    상기 적어도 하나의 선택된 모터 모듈은 다른 독립적인 구동축을 한정하고, 다른 독립적인 구동축은 구동 섹션 부분에 의하여 한정되는 독립적인 구동축으로부터 수평적으로 이격된, 기판 이송 장치.
  17. 프레임;
    상기 프레임에 연결된 구동 섹션; 및
    분절(articulation)을 위하여 상기 구동 섹션에 연결된 분절된 아암으로서, 상기 분절된 아암은 상측 아암 링크(upper arm link), 상기 상측 아암 링크에 피봇가능하게 결합된 팔뚝부 링크(forearm link), 및 상기 팔뚝부 링크에 피봇가능하게 결합된 적어도 하나의 단부 조작기 링크(end effector link)를 구비하며, 상기 분절된 아암은 독립적인 움직임이 가능한 미리 정해진 다수의 분절적인 관절부들에 의한 제1 아암 형태와 독립적인 움직임이 가능한 미리 정해진 다수의 상이한 분절적인 관절부들에 의한 제2 아암 형태로부터 선택될 수 있는 선택가능한 아암 형태를 갖는, 분절된 아암;을 포함하고,
    상기 구동 섹션(drive section)은 제1 구동 섹션 부분(first drive section portion) 및 다수의 상이한 호환가능한 모터 모듈들을 구비하며, 상기 모터 모듈들 각각은 적어도 하나의 모터를 포함하도록 구성되고 또한 구동 섹션 내에 장착될 수 있으며, 적어도 하나의 선택된 모터 모듈은 상기 팔뚝부를 상기 상측 아암에 대하여 또는 상기 적어도 하나의 단부 조작기를 상기 팔뚝부에 대하여 독립적으로 피봇시키기 위한 상기 제1 구동 섹션 부분에의 연결을 위하여 선택되고, 상기 적어도 하나의 선택된 모터 모듈은 제1 구동 섹션 부분에의 연결을 위하여 상기 다수의 상이한 호환가능한 모터 모듈들로부터 선택될 수 있으며, 상기 상이한 모터 모듈들 각각은 상기 구동 섹션 내에서의 배치에 대해 독립적인 미리 정해진 상이한 구동 특성을 가지며, 상기 상이한 호환가능한 모터 모듈들 각각은 하나의 유니트로서 상기 제1 구동 섹션 부분에 설치되고 상기 제1 구동 섹션 부분으로부터 제거되는 단일체의 모듈(unitary module)인, 기판 이송 장치.
  18. 제 17 항에 있어서,
    상기 상측 아암 링크는 상기 프레임에 대해 피봇(pivot)될 수 있는, 기판 이송 장치.
  19. 제 17 항에 있어서,
    상기 적어도 하나의 모터 모듈은 상기 상측 아암 링크에 제거가능하게 부착된, 기판 이송 장치.
  20. 제 17 항에 있어서,
    상기 미리 정해진 특성은 상기 적어도 하나의 선택된 모듈에 의하여 보유되는 다수의 구동 모터들인, 기판 이송 장치.
KR1020087002818A 2005-07-11 2006-07-07 기판 이송 장치 KR101384141B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/178,830 US8573919B2 (en) 2005-07-11 2005-07-11 Substrate transport apparatus
US11/178,830 2005-07-11
PCT/US2006/026730 WO2007008797A1 (en) 2005-07-11 2006-07-07 Substrate transport apparatus

Publications (2)

Publication Number Publication Date
KR20080032145A KR20080032145A (ko) 2008-04-14
KR101384141B1 true KR101384141B1 (ko) 2014-04-10

Family

ID=37637484

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087002818A KR101384141B1 (ko) 2005-07-11 2006-07-07 기판 이송 장치

Country Status (7)

Country Link
US (4) US8573919B2 (ko)
EP (1) EP1907173B1 (ko)
JP (2) JP5209473B2 (ko)
KR (1) KR101384141B1 (ko)
CN (1) CN101258001B (ko)
TW (1) TWI371423B (ko)
WO (1) WO2007008797A1 (ko)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10349452A1 (de) * 2003-10-23 2005-05-25 Bosch Rexroth Ag Roboter vom Scara-Typ
US7946800B2 (en) * 2007-04-06 2011-05-24 Brooks Automation, Inc. Substrate transport apparatus with multiple independently movable articulated arms
US8752449B2 (en) 2007-05-08 2014-06-17 Brooks Automation, Inc. Substrate transport apparatus with multiple movable arms utilizing a mechanical switch mechanism
JP5543336B2 (ja) * 2007-05-18 2014-07-09 ブルックス オートメーション インコーポレイテッド 高速スワップロボット付コンパクト基板搬送システム
KR101496654B1 (ko) 2007-06-27 2015-02-27 브룩스 오토메이션 인코퍼레이티드 리프트 능력 및 감소된 코깅 특성들을 가지는 전동기 고정자
CN101790673B (zh) 2007-06-27 2013-08-28 布鲁克斯自动化公司 用于自轴承电机的位置反馈
CN102007366B (zh) 2007-06-27 2014-06-18 布鲁克斯自动化公司 多维位置传感器
US9752615B2 (en) 2007-06-27 2017-09-05 Brooks Automation, Inc. Reduced-complexity self-bearing brushless DC motor
US8283813B2 (en) 2007-06-27 2012-10-09 Brooks Automation, Inc. Robot drive with magnetic spindle bearings
KR102617936B1 (ko) 2007-07-17 2023-12-27 브룩스 오토메이션 인코퍼레이티드 기판 운송 장치
JP5339874B2 (ja) * 2008-12-02 2013-11-13 タツモ株式会社 ロボット装置及びその制御方法
US8777547B2 (en) * 2009-01-11 2014-07-15 Applied Materials, Inc. Systems, apparatus and methods for transporting substrates
JP5332932B2 (ja) * 2009-06-17 2013-11-06 シンフォニアテクノロジー株式会社 ダブルハンドロボットの減速機構
EP2520398A4 (en) * 2009-12-28 2014-10-29 Ulvac Inc DRIVE DEVICE AND CONVEYOR
JP5771018B2 (ja) * 2011-02-04 2015-08-26 株式会社ダイヘン ワーク搬送装置
KR102436038B1 (ko) 2011-03-11 2022-08-24 브룩스 오토메이션 인코퍼레이티드 기판 처리 툴
US20120237329A1 (en) * 2011-03-18 2012-09-20 Galle Lin Thin Wafer Gripper Using High Pressure Air
KR101829397B1 (ko) * 2011-09-16 2018-02-19 퍼시몬 테크놀로지스 코포레이션 낮은 가변성을 가진 로봇
JP5364769B2 (ja) * 2011-09-26 2013-12-11 株式会社安川電機 搬送ロボットおよび基板処理装置
US9076830B2 (en) * 2011-11-03 2015-07-07 Applied Materials, Inc. Robot systems and apparatus adapted to transport dual substrates in electronic device manufacturing with wrist drive motors mounted to upper arm
CN103208447A (zh) * 2012-01-13 2013-07-17 诺发系统公司 双臂真空机械手
JP5729319B2 (ja) * 2012-02-01 2015-06-03 株式会社安川電機 ロボット
TWI470723B (zh) * 2012-11-20 2015-01-21 Hiwin Tech Corp Wafer handling robot
JP5423910B1 (ja) * 2013-01-17 2014-02-19 株式会社安川電機 ロボット
US9447849B1 (en) 2013-04-19 2016-09-20 Redwood Robotics, Inc. Robot manipulator with modular torque controlled links
JP5750472B2 (ja) * 2013-05-22 2015-07-22 株式会社安川電機 基板搬送ロボット、基板搬送システムおよび基板の配置状態の検出方法
TWI684229B (zh) * 2013-07-08 2020-02-01 美商布魯克斯自動機械公司 具有即時基板定心的處理裝置
US10348172B2 (en) 2013-11-13 2019-07-09 Brooks Automation, Inc. Sealed switched reluctance motor
KR102224756B1 (ko) 2013-11-13 2021-03-08 브룩스 오토메이션 인코퍼레이티드 씰링된 로봇 드라이브
KR20220000416A (ko) 2013-11-13 2022-01-03 브룩스 오토메이션 인코퍼레이티드 브러쉬리스 전기 기계 제어 방법 및 장치
TWI695447B (zh) 2013-11-13 2020-06-01 布魯克斯自動機械公司 運送設備
US9308644B2 (en) * 2013-12-05 2016-04-12 Hiwin Technologies Corp. Robotic arm for processing machine
US11587813B2 (en) 2013-12-17 2023-02-21 Brooks Automation Us, Llc Substrate transport apparatus
TWI657524B (zh) * 2013-12-17 2019-04-21 美商布魯克斯自動機械公司 基板搬運設備
US10134621B2 (en) 2013-12-17 2018-11-20 Brooks Automation, Inc. Substrate transport apparatus
DE102013021674A1 (de) * 2013-12-18 2015-06-18 Astrium Gmbh Vorrichtung zum Bearbeiten einer Struktur sowie Raumflugkörper
WO2015116674A1 (en) * 2014-01-28 2015-08-06 Brooks Automation, Inc. Substrate transport apparatus
CN107000202B (zh) * 2014-12-26 2020-03-17 川崎重工业株式会社 多关节机器人及其模块
US10170946B2 (en) * 2015-02-02 2019-01-01 Persimmon Technologies Corporation Motor having non-circular stator
CN107949906B (zh) 2015-07-13 2022-08-19 博鲁可斯自动化美国有限责任公司 基底传输设备
JP6901828B2 (ja) * 2016-02-26 2021-07-14 川崎重工業株式会社 基板搬送ロボットおよび基板搬送装置
US10774207B2 (en) 2016-07-18 2020-09-15 Solvay Specialty Polymers Italy S.P.A. Fluoroelastomer composition
JP6499620B2 (ja) * 2016-08-05 2019-04-10 ファナック株式会社 回転軸モジュールおよび多関節ロボット
KR20180109532A (ko) * 2017-03-28 2018-10-08 주식회사 만도 액추에이터
US10903107B2 (en) * 2017-07-11 2021-01-26 Brooks Automation, Inc. Semiconductor process transport apparatus comprising an adapter pendant
US11020852B2 (en) * 2017-10-05 2021-06-01 Brooks Automation, Inc. Substrate transport apparatus with independent accessory feedthrough
CN107877504A (zh) * 2017-11-22 2018-04-06 深圳市越疆科技有限公司 模块式减速装置和平面多关节机器人
CN108356793A (zh) * 2017-11-22 2018-08-03 深圳市越疆科技有限公司 偏心减速装置和平面多关节机器人
US10814478B2 (en) * 2017-12-15 2020-10-27 National Cheng Kung University Joint module and multi-joint modular robot arm
US10943805B2 (en) 2018-05-18 2021-03-09 Applied Materials, Inc. Multi-blade robot apparatus, electronic device manufacturing apparatus, and methods adapted to transport multiple substrates in electronic device manufacturing
US10391640B1 (en) * 2018-09-11 2019-08-27 Kawasaki Jukogyo Kabushiki Kaisha Robot
US10751888B2 (en) 2018-10-04 2020-08-25 Advanced Intelligent Systems Inc. Manipulator apparatus for operating on articles
JP2023518164A (ja) * 2020-03-02 2023-04-28 パーシモン テクノロジーズ コーポレイション コンパクトなトラバースロボット
RU203719U1 (ru) * 2020-11-16 2021-04-16 Общество с ограниченной ответственностью «НКС» Звено манипулятора

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787813A (en) * 1987-08-26 1988-11-29 Watkins-Johnson Company Industrial robot for use in clean room environment
US5993142A (en) * 1997-07-10 1999-11-30 Genmark Automation, Inc. Robot having multiple degrees of freedom in an isolated environment
KR20010074695A (ko) * 1998-07-11 2001-08-09 세미툴 인코포레이티드 마이크로일렉트릭 제품 취급용 로봇

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2623143A1 (de) * 1976-05-22 1977-12-01 Mauser Werke Oberndorf Koerper eines baukastensystems
SU763082A1 (ru) 1977-07-01 1980-09-15 Предприятие П/Я Р-6930 Манипул тор модульного типа
US4600355A (en) * 1984-08-29 1986-07-15 Cybot, Inc. Modular robotics system with basic interchangeable parts
US4780047A (en) * 1985-04-05 1988-10-25 Martin Marietta Energy Systems, Inc. Advanced servo manipulator
US4728252A (en) * 1986-08-22 1988-03-01 Lam Research Corporation Wafer transport mechanism
US5024116A (en) * 1989-06-08 1991-06-18 Kraft Brett W Modular rotary actuator
US5209699A (en) * 1991-02-26 1993-05-11 Koyo Seiko Co., Ltd Magnetic drive device
DE69206872T2 (de) * 1991-05-08 1996-07-25 Koyo Seiko Co Magnetische Antriebsvorrichtung
JPH0531686A (ja) 1991-07-24 1993-02-09 Nissan Motor Co Ltd ユニツト型ロボツト
US5355743A (en) 1991-12-19 1994-10-18 The University Of Texas At Austin Robot and robot actuator module therefor
US5910854A (en) 1993-02-26 1999-06-08 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices
US5765444A (en) * 1995-07-10 1998-06-16 Kensington Laboratories, Inc. Dual end effector, multiple link robot arm system with corner reacharound and extended reach capabilities
JPH09272086A (ja) 1996-04-08 1997-10-21 Tokai Rubber Ind Ltd 多関節ロボット
US6749391B2 (en) * 1996-07-15 2004-06-15 Semitool, Inc. Microelectronic workpiece transfer devices and methods of using such devices in the processing of microelectronic workpieces
US6318951B1 (en) * 1999-07-09 2001-11-20 Semitool, Inc. Robots for microelectronic workpiece handling
JPH10249757A (ja) 1997-03-18 1998-09-22 Komatsu Ltd 搬送用ロボット
US5944476A (en) * 1997-03-26 1999-08-31 Kensington Laboratories, Inc. Unitary specimen prealigner and continuously rotatable multiple link robot arm mechanism
US6126381A (en) * 1997-04-01 2000-10-03 Kensington Laboratories, Inc. Unitary specimen prealigner and continuously rotatable four link robot arm mechanism
GB9713765D0 (en) * 1997-07-01 1997-09-03 Engineering Services Inc Reconfigurable mudular drive system
US6450755B1 (en) * 1998-07-10 2002-09-17 Equipe Technologies Dual arm substrate handling robot with a batch loader
JP2000076693A (ja) 1998-09-03 2000-03-14 Toshiba Corp 光ディスク装置
US6485250B2 (en) 1998-12-30 2002-11-26 Brooks Automation Inc. Substrate transport apparatus with multiple arms on a common axis of rotation
KR20010101564A (ko) * 1999-01-15 2001-11-14 더글라스 제이. 맥큐천 작업물 취급 로봇
JP2000323554A (ja) 1999-05-14 2000-11-24 Tokyo Electron Ltd 処理装置
DE19939646C2 (de) 1999-08-16 2003-05-22 Amtec Automatisierungs Mes Und Modulares System von Positionierantrieben für Roboter mit einem Gehäuse
WO2001062448A1 (fr) * 2000-02-25 2001-08-30 Bandai Co., Ltd. Ensemble elements destine a un robot
US6326755B1 (en) * 2000-04-12 2001-12-04 Asyst Technologies, Inc. System for parallel processing of workpieces
US6601468B2 (en) * 2000-10-24 2003-08-05 Innovative Robotic Solutions Drive system for multiple axis robot arm
JP2002172583A (ja) 2000-12-08 2002-06-18 Mitsubishi Heavy Ind Ltd ロボットアーム機構
JP2002184834A (ja) * 2000-12-15 2002-06-28 Yaskawa Electric Corp 基板搬送用ロボット
JP5134182B2 (ja) 2001-07-13 2013-01-30 ブルックス オートメーション インコーポレイテッド 独立多エンドエフェクタを備えた基板移送装置
US6719517B2 (en) * 2001-12-04 2004-04-13 Brooks Automation Substrate processing apparatus with independently configurable integral load locks
US6831436B2 (en) * 2002-04-22 2004-12-14 Jose Raul Gonzalez Modular hybrid multi-axis robot
US7891935B2 (en) 2002-05-09 2011-02-22 Brooks Automation, Inc. Dual arm robot
US7578649B2 (en) * 2002-05-29 2009-08-25 Brooks Automation, Inc. Dual arm substrate transport apparatus
US20080219806A1 (en) * 2007-03-05 2008-09-11 Van Der Meulen Peter Semiconductor manufacturing process modules
EP2520398A4 (en) * 2009-12-28 2014-10-29 Ulvac Inc DRIVE DEVICE AND CONVEYOR
US9076829B2 (en) * 2011-08-08 2015-07-07 Applied Materials, Inc. Robot systems, apparatus, and methods adapted to transport substrates in electronic device manufacturing
JP2013158849A (ja) * 2012-02-01 2013-08-19 Yaskawa Electric Corp ロボット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787813A (en) * 1987-08-26 1988-11-29 Watkins-Johnson Company Industrial robot for use in clean room environment
US5993142A (en) * 1997-07-10 1999-11-30 Genmark Automation, Inc. Robot having multiple degrees of freedom in an isolated environment
KR20010074695A (ko) * 1998-07-11 2001-08-09 세미툴 인코포레이티드 마이크로일렉트릭 제품 취급용 로봇

Also Published As

Publication number Publication date
WO2007008797A1 (en) 2007-01-18
JP2013059857A (ja) 2013-04-04
US8573919B2 (en) 2013-11-05
US20070020081A1 (en) 2007-01-25
CN101258001A (zh) 2008-09-03
US20140126987A1 (en) 2014-05-08
TWI371423B (en) 2012-09-01
US20220410373A1 (en) 2022-12-29
EP1907173A4 (en) 2010-07-07
EP1907173B1 (en) 2012-10-03
EP1907173A1 (en) 2008-04-09
JP5363637B2 (ja) 2013-12-11
JP5209473B2 (ja) 2013-06-12
KR20080032145A (ko) 2008-04-14
TW200740683A (en) 2007-11-01
US11426865B2 (en) 2022-08-30
CN101258001B (zh) 2011-06-08
US20180370024A1 (en) 2018-12-27
US10065307B2 (en) 2018-09-04
JP2009500865A (ja) 2009-01-08

Similar Documents

Publication Publication Date Title
KR101384141B1 (ko) 기판 이송 장치
JP6766227B2 (ja) 双腕ロボット
US10406679B2 (en) Unequal link SCARA arm
KR102096074B1 (ko) 기판 프로세싱 장치
CN103733324B (zh) 经调适于电子装置制造中运输基板的机械手系统、设备与方法
KR101028065B1 (ko) 기판 처리 장치
KR102323370B1 (ko) 전자 디바이스 제조에서 기판들을 운송하기 위한 로봇 장치, 구동 조립체들, 및 방법들
US20070104559A1 (en) End-effectors for handling microelectronic workpieces
CN111373522A (zh) 具有转动关节编码器的晶片搬运机械手
US20050183533A1 (en) Robot-guidance assembly for providing a precision motion of an object
TWI704038B (zh) 用於在進行電子設備製造時輸送基板的機械手組件、基板處理裝置及方法
JP2010099755A (ja) 生産装置
CN102110633A (zh) 具有z向运动和铰接臂的线性运动真空机械手
TWI814757B (zh) 平面式多關節機械手臂系統
JP2011025358A (ja) 生産システム
TWI839899B (zh) 基板處理裝置
TW202004945A (zh) 基板輸送裝置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 6