KR101352372B1 - 실리콘 슬러지로부터 실리콘염화물의 제조방법 - Google Patents

실리콘 슬러지로부터 실리콘염화물의 제조방법 Download PDF

Info

Publication number
KR101352372B1
KR101352372B1 KR1020120037687A KR20120037687A KR101352372B1 KR 101352372 B1 KR101352372 B1 KR 101352372B1 KR 1020120037687 A KR1020120037687 A KR 1020120037687A KR 20120037687 A KR20120037687 A KR 20120037687A KR 101352372 B1 KR101352372 B1 KR 101352372B1
Authority
KR
South Korea
Prior art keywords
silicon
sludge
chloride
silicon carbide
producing
Prior art date
Application number
KR1020120037687A
Other languages
English (en)
Other versions
KR20130115432A (ko
Inventor
장희동
박균영
강태원
박회경
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR1020120037687A priority Critical patent/KR101352372B1/ko
Priority to US13/860,901 priority patent/US20130272945A1/en
Publication of KR20130115432A publication Critical patent/KR20130115432A/ko
Application granted granted Critical
Publication of KR101352372B1 publication Critical patent/KR101352372B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
    • C01B33/10715Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by reacting chlorine with silicon or a silicon-containing material
    • C01B33/10721Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by reacting chlorine with silicon or a silicon-containing material with the preferential formation of tetrachloride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Silicon Compounds (AREA)

Abstract

본 발명은 반도체 제조 과정에서 발생되는 폐실리콘 슬러지로부터 실리콘카바이드를 분리 및 회수하여 실리콘염화물을 제조하는 방법에 관한 것이다. 본 발명에 따른 실리콘 슬러지로부터 실리콘염화물의 제조방법을 통해 실리콘 슬러지에 포함되어 있는 유분, 철분, 실리콘을 거하고 실리콘카바이드를 선택적으로 분리 및 실리콘염화물을 제조할 수 있으며, 실리카, 실리콘 등의 제조에 원료물질로 재생이 가능한 고순도의 실리콘염화물을 제조할 수 있다.

Description

실리콘 슬러지로부터 실리콘염화물의 제조방법 {Method for producing silicon chloride from silicon sludge}
본 발명은 반도체 제조 과정에서 발생되는 폐실리콘 슬러지로부터 실리콘카바이드를 분리 및 회수하여 실리콘염화물을 제조하는 방법에 관한 것이다.
반도체 및 태양전지용 실리콘 웨이퍼를 만들기 위한 실리콘 잉곳의 절단공정에서는 와이어쏘(wire saw)를 일반적으로 사용하고 있으며, 이때 와이어는 직경 약 0.14 ㎛ 정도, 그리고 평균입경 20 ㎛의 실리콘카바이드(SiC) 등을 함유한 절단용슬러지를 사용하고 있다. 대부분의 국내 실리콘 웨이퍼 제조공정에서는 많은 양의 SiC와 실리콘 입자, 그리고 절삭유 등이 함유되어 있는 슬러지가 발생되고 있으며, 이 슬러지는 몇 년 전 까지만 해도 폐기물 처리업체에 의해 전량 매립 처리되어 왔다. 그러나 실리콘 웨이퍼 가공 공정의 비용 측면에서 연마재와 절삭유가 혼합되어 있는 가공슬러리가 차지하고 있는 비중이 약 68.1%를 차지하고 있어 이러한 실리콘 슬러지 중에 함유되어 있는 평균 입경 20 ㎛ 정도의 SiC와 절삭유를 분리/회수하여 실리콘 웨이퍼의 절단공정에서 재이용할 수 있는 기술이 개발되어 현재 적용 중에 있다. 그러나 이와 같이 발생되는 슬러지로부터 재이용할 수 있는 성분을 분리/회수하여 재활용하는 경우에 있어서도 최종적인 잔류물로 남아 배출되는 폐슬러지가 2010년 기준으로 연간 약 21,000톤 정도인 것으로 알려져 있으며 추후 태양광 실리콘 웨이퍼 산업의 급격한 성장과 함께 폐슬러지의 발생량 또한 크게 증가할 것으로 판단된다.
실리콘 웨이퍼 제조 시 발생되는 슬러지는 현재 지정폐기물로 분류되어 있어 단순 소각 처리할 수 없을 뿐만 아니라 슬러지 내 함유되어 있는 절삭유 성분으로 인하여 단순 매립 또한 불가능하다. 그러나 슬러지 내에 함유되어 있는 유용한 성분을 효과적으로 분리/회수할 경우 SiC는 고온 내화물 또는 실리카 복합체 등과 같은 세라믹의 원료로 사용할 수 있고 실리콘 분말은 고순도 실리콘 화합물의 합성원료로 사용이 가능하며 초고순도화 처리시 폴리실리콘의 제조에 사용될 수 있다. 실리콘 슬러지는 발생업체별로 다소 차이는 있지만 대부분 실리콘과 SiC 및 절삭유로 사용되는 유분이 혼합되어있다. 따라서 이들을 효율적으로 분리하고 제품화하기 위해서는 액상과 고상을 효율적으로 분리하여야만 한다. 실리콘 슬러지에는 절삭유와 연마재 이외에도 미량의 첨가제 및 금속성분이 포함되어있으며, 특히 액상성분인 유분의 경우 분리, 정제과정에서 열적 안정성이 떨어지는 부산물이 발생하기 용이하다. 따라서 실리콘 슬러지에서 유분을 정제하고 고형분을 세라믹원료로 활용하기 위해서는 에틸렌글리콜과 같은 유분을 효율적으로 제거하는 열처리 기술개발 및 첨가제와 금속과 같은 미량성분을 제어, 분리하는 기술개발이 필요하다. 유분과 금속 성분이 제거된 실리콘 슬러지에는 실리콘과 실리콘 카바이드 입자들이 남게 되는데 이 두 종류의 입자들을 효율적으로 분리할 경우 실리콘입자와 실리콘 카바이드 입자들이 얻어지는데 실리콘화합물, 구조용 세라믹 등의 다양한 소재의 원료물질로 사용이 가능하다.
KIGAM Bulletin, Vol 12, No 1, pp. 57-62 (2007. 11. 21.)
본 발명은 상기한 종래 기술이 갖는 제반 문제점을 해결하고자 발명된 것으로서, 반도체 제조 과정에서 발생되는 폐 실리콘 슬러지에 포함되어 있는 실리콘과 실리콘카바이드, 그리고 절삭유 및 소량의 철분 성분으로부터 실리콘카바이드를 분리 및 회수하여 실리콘염화물을 제조함으로써 실리카 및 실리콘의 생산에 재활용하도록 하는데 그 목적이 있다.
상기 목적을 달성하기 위하여 본 발명은 (a) 반도체 제조 과정에서 발생되는 실리콘 슬러지를 증류하여 유분을 제거하는 증류단계; (b) 증류단계를 마친 실리콘 슬러지를 증류수에 분산시켜 실리콘 슬러지 용액을 제조하는 단계; (c) 상기 실리콘 슬러지 용액을 초음파처리 하는 단계; (d) 초음파처리를 마친 실리콘 슬러지 용액을 원심분리하여 상분리하는 단계; (e) 상기 상분리된 실리콘 슬러지 용액에서 실리콘카바이드입자를 회수하는 회수단계; 및 (f) 상기 실리콘카바이드입자를 염소가스와 반응시키는 단계;를 포함하는 실리콘 슬러지로부터 실리콘염화물의 제조방법을 제공한다.
이하 본 발명을 상세히 설명한다.
상기 단계(a)에서 실리콘 슬러지의 증류는 100 내지 300℃에서 수행되며, 더욱 상세하게는 실리콘 슬러지의 증류가 150 내지 200℃에서 수행되는 것이 절삭유를 포함하여 실리콘 슬러지 내의 유분을 제거하는데 가장 좋다. 증류온도가 너무 낮으면 공정시간이 너무 오래 걸리고 증류 온도가 너무 높은 경우 오일이 일분 분해되어 변색되는 현상이 발생할 수도 있다.
증류를 마친 실리콘 슬러지는 용매를 이용하여 잔존하는 유분을 세척 및 제거하고 건조하여 분말상으로 만들 수 있다. 이때 사용되는 용매는 유분을 세척할 수 있는 유기용매라면 모두 가능하며, 더욱 구체적으로는 메탄올, 에탄올, 헥산, 디클로로메탄 등을 사용할 수 있으나 이에 한정되는 것은 아니다.
실리콘 슬러지를 건조하는 방법으로는 통상적으로 사용되는 건조방법이라면 모두 가능하며, 공정시간의 단축을 위해 80 내지 100℃의 드라이오븐에서 2 내지 3 시간 동안 건조해 주는 것이 가장 좋다.
증류와 세척 및 건조된 실리콘 슬러지분말은 유분이 제거되어 실리콘, 실리콘 카바이드 및 소량의 금속성분이 포함되어 있으며 이를 증류수에 분산시켜 콜로이드상의 실리콘 슬러지 용액으로 제조할 수 있다. 이때 실리콘 슬러지 용액 내의 실리콘 슬러지 농도는 2 내지 5 중량%로 포함되는 것이 이후에 초음파처리 단계에서 가장 높은 효율을 나타낼 수 있어서 좋다.
콜로이드상의 실리콘 슬러지 용액은 초음파 처리를 통해 실리콘-실리콘카바이드의 접착을 분리할 수 있다.
본 발명에 있어서 실리콘 슬러지 용액의 초음파처리는 용액에 직접 또는 간접적으로 초음파를 가할 수 있으며, 당업자라면 통상의 초음파처리 방법중 필요에 따라 선택하여 수행할 수 있다.
본 발명에 따른 실리콘 슬러지 용액의 초음파처리는 100 W 내지 500 W의 강도에서 10 내지 300분 동안 수행되는 것이 초음파의 강도가 너무 센 경우 실리콘 슬러지 용액의 온도가 급상승하여 용액이 증발이 일어나서 조업이 어려워지거나, 초음파의 강도가 너무 약할 경우 접착된 실리콘-실리콘카바이드의 분리가 되지 않는 현상이 발생하지 않아 실리콘-실리콘카바이드의 접착을 분리하는데 가장 좋은 효율을 가져올 수 있다. 본 발명에 따른 초음파 처리는 초음파의 강도를 일정한 강도의 초음파를 주입할 수도 있고, 시간에 따라 초음파의 강도에 변화를 주는 것도 본 발명의 범주에 속한다. 초음파 처리의 시간이 너무 짧으면 실리콘-실리콘카바이드 접착의 분리가 완전하게 이루어지지 않아 실리콘의 분리 및 회수 효율이 다소 낮아질 수 있고, 너무 오랜 시간 초음파 처리를 하게 되면 분리효율이 일정 값에서 증가하지 않고 에너지 소비만 증대하는 점이 발생할 수 있으며, 더욱 상세하게는 상기 초음파처리가 200 W 내지 400 W의 강도에서 20 내지 240분 동안 수행되는 것이 가장 좋다.
본 발명은 실리콘 슬러지로부터 실리콘염화물의 제조하는 데 있어서 초음파 처리과정을 통해 실리콘과 실리콘카바이드가 분리되며, 그로 인해 분리 및 회수공정에서 별다른 첨가물을 투입하지 않고도 실리콘과 실리콘카바이드의 분리가 효율적으로 이뤄짐을 발견하고 본 발명을 완성하게 되었다.
상기 초음파 처리에 의해 실리콘과 실리콘카바이드가 분리된 콜로이드상의 실리콘 슬러지 용액은 원심분리를 통해 실리콘 입자와 실리콘 카바이드입자들을 선택적으로 분리 및 회수할 수 있다.
상기 원심분리를 통해 입자의 무게가 상대적으로 큰 철분 및 실리콘카바이드는 하부로 가라앉게 되고 입자의 무게가 상대적으로 가벼운 실리콘 입자는 상부층에 존재하게 된다.
본 발명에 있어서 상기 원심분리는 300 내지 700 rpm에서 5 내지 100 분 동안 수행되는 것이 바람직하다. 원심분리의 속도가 너무 느리거나 원심분리를 수행하는 시간이 너무 짧으면 실리콘 슬러지 용액의 상분리가 제대로 일어나지 않을 수 있고, 원심분리의 속도가 너무 빠르거나 원심분리 시간이 너무 길 경우 대부분의 실리콘이 침강되어 실리콘카바이드의 선택적인 회수 효율이 낮아지게 되는 점이 발생할 수도 있다.
더욱 바람직하게는 상기 원심분리가 450 내지 550 rpm에서 5 내지 75 분 동안 수행되는 것이 실리콘 슬러지 용액으로부터 실리콘카바이드 입자들을 선택적으로 분리 및 회수하는 효율을 높일 수 있다.
본 발명은 상기와 같이 증류과정을 통해 실리콘 슬러지로부터 유분을 제거하고, 초음파처리를 통해 실리콘 슬러지 내의 실리콘-실리콘카바이드 접착을 분리하며, 원심분리를 통해 실리콘 슬러지로부터 실리콘카바이드를 선택적으로 분리 및 회수 할 수 있으며, 특정성분의 침출을 위해 첨가물을 투여하거나 철분을 제거하기 위해 자력선별기 등 별도의 장치를 요구하지 않으면서도 높은 효율로 실리콘카바이드를 회수할 수 있다.
원심분리 단계를 통해 선택적으로 수득된 실리콘카바이드 입자는 염소가스와 반응시키는 단계를 통하여 실리콘염화물로 제조된다.
실리콘카바이드와 염소가스의 반응은 500 내지 2000℃에서 30 내지 600분 동안 수행될 수 있으며, 실리콘 카바이드 내 실리콘의 염소화 전환율을 높이기 위해서는 800 내지 1500℃에서 50 내지 500분 동안 수행될 수 있다.
본 발명에 있어서 실리콘카바이드를 염소가스와 반응시킬 때 실리콘카바이드 입자를 반응기에 직접 투입할 수도 있고, 알루미나보트(boat)에 실리콘카바이드를 담아 반응기에 장입하여 투입할 수도 있으며, 실리콘카바이드 입자와 염소가스와의 접촉면적이 높을수록 반응 효율이 높아진다.
실리콘카바이드와 염소가스의 반응 시 염소가스의 투입량은 목적에 따라 선택하여 조절할 수 있으며, 실리콘카바이드 1g을 기준으로 10 내지 50ml/min의 유속으로 흘려주는 것이 염소가스의 과다사용방지 및 반응 효율에 있어서 가장 좋다. 상기 염소가스는 염소가스 단독적으로도 투입이 가능하며, 반응의 안정화를 위하여 질소가스와 혼합하여 사용하는 것도 무방하다. 염소가스와 질소가스를 혼합하여 사용하게 되는 경우 염소가스와 질소가스의 혼합비를 1:5 내지 1:9의 부피비로 혼합하여 사용할 수 있다.
상기 염소가스와의 반응이 완결되어 제조된 실리콘염화물은 반응 직후에는 가스상태로 존재하게 되며, 원심분리 후 수득된 실리콘카바이드입자와 함께 포함된 소량의 금속성분도 염화가스와 반응하여 염화물의 상태로 존재할 수 있다.
본 발명은 상기 실리콘카바이드입자를 염소가스와 반응시키는 단계 이후에 포집단계를 더 포함함으로써 미반응 실리콘카바이드 입자 및 금속염화물을 여과하여 고순도의 실리콘카바이드염화물을 수득할 수 있게 된다.
상기 포집단계는 100℃ 미만의 온도에서 수행될 때 실리콘염화물은 그체 상태로 존재하게 되고, 미반응 실리콘카바이드 입자 및 금속염화물은 고체상으로 존재하게 되어 이들의 혼합으로부터 실리콘염화물을 효율적으로 여과할 수 있어서 좋다. 실리콘염화물의 여과시 사용되는 필터는 기체상의 실리콘염화물을 여과할 수 있는 것으로 당업자라면 필요에 따라 선택하여 사용할 수 있으며, 본 발명의 일 실시예에 있어서는 필터 기공의 직경이 1 ㎛ 내지 10 ㎛ 인 것을 사용하는 것이 실리콘염화물 가스의 여과 효율이 좋다.
상기 포집단계를 마친 후 필터를 통과한 가스에는 본 발명에 따라 제조된 실리콘염화물 가스와 미반응 염화가스가 혼합되어 있을 수 있다.
본 발명은 고 순도의 실리콘염화물을 수득하기 위하여 미반응 염소가스를 흡수 및 제거하는 단계를 더 포함할 수 있다.
실리콘염화물 가스와 미반응 염화가스의 혼합가스는 포집단계 이후 가성소다가 충진되어 있는 흡수부를 통과하며 미반응 염소가스를 제거할 수 있다.
상기 가성소다가 충진되어 있는 흡수부를 통과하는 단계로 인해 반응에 참여하지 않은 염소가스는 가성소다에 흡수되고 본발명에 따라 제조된 실리콘염화물가스는 가성소다흡수부를 통과하여 고농도의 실리콘염화물을 수득할 수 있게 된다.
상기 반응 및 정제 후 기체 상태로 존재하는 실리콘염화물은 상온에서 기체의 형태로 존재하여 기체상태로 저장조에 포집할 수도 있고, 상온 이하의 온도로 냉각하여 액상의 형태로 포집할 수도 있다.
본 발명은 상기와 같이 증류과정을 통해 실리콘 슬러지로부터 유분을 제거하고, 초음파처리를 통해 실리콘 슬러지 내의 실리콘-실리콘카바이드 접착을 분리하며, 원심분리를 통해 실리콘 슬러지로부터 실리콘을 선택적으로 분리 및 제거 할 수 있고, 회수된 실리콘카바이드를 염소가스와의 반응을 통해 실리콘염화물로 제조할 수 있다. 또한, 염소가스와의 반응 후 포집단계를 포함함으로써 소량으로 포함되어 있던 금속 및 염소가스와 반응된 금속염화물을 여과할 수 있고, 미반응 염소가스를 흡수 및 제거하는 단계를 더 포함함으로 인해 실리콘카바이드 기체의 순도를 높일 수 있는 효과를 가진다.
본 발명에 따른 실리콘 슬러지로부터 실리콘염화물의 제조방법을 통해 실리콘 슬러지에 포함되어 있는 유분, 철분, 실리콘을 거하고 실리콘카바이드를 선택적으로 분리 및 실리콘염화물을 제조할 수 있으며, 실리카, 실리콘 등의 제조에 원료물질로 재생이 가능한 고순도의 실리콘염화물을 제조할 수 있다.
도 1은 실시예 1에 따른 실리콘카바이드 분리회수 공정 후 분리 및 회수된 실리콘카바이드 분말의 주사전자현미경(SEM) 사진이다.
도 2는 본 발명에 따른 실리콘 카바이드와 염소가스의 반응장치의 개략도이다.
도 3은 실시예 1에 따른 실리콘염화물의 제조가 끝난 후 알루미나보트 내의 실리콘카바이드 입자의 투과전자현미경(TEM) 사진이다.
도 4는 실시예1, 5, 6, 7, 비교예 1 및 비교예 2에 따른 실리콘카바이드 내 실리콘의 염소화 전환율을 그래프로 나타낸 것이다.
이하, 실시예에 의해 본 발명을 보다 상세히 설명하나, 이는 발명의 구성 및 효과를 이해시키기 위한 것일 뿐, 본 발명의 범위를 제한하고자 하는 것은 아니다.
실리콘 슬러지 용액의 초음파처리에 사용된 기기는 최대출력 400 W인 Digital Sonifier(S-450D, Branson Ultrasonic)와 최대출력 500 W인 초음파세척기(JAC-4020P, Kodo )를 사용하였다.
원심분리기는 VS-5500N (Vision Science)를 사용하였다.
분리 및 회수된 실리콘 입자들의 결정형, 입자형상 및 크기 분석을 위해 X-ray diffractormeter(XRD, RTP 300 RC, Rigaku), Scanning Electron Microscopy (SEM, JSM-6308LA, Jeol)를 각각 사용하였다.
[실시예 1] 실리콘 슬러지로부터 실리콘염화물의 제조
반도체 제조 과정에서 발생된 폐 실리콘 슬러지 200g을 플라스크에 넣고 180℃를 유지하며 2시간 가열 및 증류하여 유분을 제거하였다. 유분이 제거된 슬러지는 에탄올로 세척하여 잔존하는 유분을 제거한 후 80℃ 드라이오븐에서 2시간동안 건조하여 분말상으로 만들었다. 건조된 분말 3 g을 증류수 200 ㎖에 분산 시켜 실리콘 슬러지 용액으로 만든 후 최대출력 400 W인 Digital Sonifier(S-450D, Branson Ultrasonic)를 사용하여 초음파 발생 진자를 실리콘 슬러지 용액에 직접 접촉시켜 초음파의 강도를 320 W 로 하여 30분간 초음파 처리를 하였고, 원심분리기를 이용하여 500 rpm에서 60 분간 실리콘 슬러지 용액을 상분리 하였다. 원심 분리 후 실리콘 슬러지 용액 중 하등액을 회수하여 90℃의 드라이오븐에서 4 시간동안 건조 후 입자를 주사전자현미경(SEM)으로 분석하여 하기 도 1에 나타내었다. 실리콘 카바이드를 염소가스와 반응시켜 실리콘염화물을 제조하기 위한 반응장치의 개략도를 하기 도 2에 나타내었다. 수득된 실리콘카바이드 1 g을 알루미나보트(규격: 13×70×10 mm(W×D×H), 용량 : 5 ml)에 충진 및 관형 반응기에 장입 후 반응기의 온도를 1100℃로 가열 및 유지하여 한시간 동안 염소가스와 질소가스를 1:9의 부피비로 혼합한 혼합기체를 300ml/min의 유속으로 반응기 내부로 흘려주어 사염화실리콘(SiCl4) 가스를 생산하였다. 반응이 완료된 가스 중 포함되어 있을 실리콘카바이드 입자 및 금속염화물을 여과 및 제거하기 위해 직경 9cm의 원형필터(whatman No 2)로 통과시켜 실리콘염화물을 1차 정제하였다. 1차 정제시 온도는 80℃로 냉각하여 수행하였다. 필터를 통과한 가스 중에 반응에 의해 생성된 사염화실리콘(SiCl4)와 미 반응 염소가스들이 포함되어 있기 때문에 저장조에 포집시키기 전 염소가스를 흡수제거 하기 위해 1 M의 가성소다 200 ml가 들어 있는 실린더 형태의 유리병 흡수장치에 가스를 통과시켜 SiCl4 가스를 생산 및 정제하였다. 반응이 끝난 후 알루미나보트 내의 실리콘카바이드 입자를 투과전자현미경(TEM)으로 분석하여 하기 도 3에 나타내었고, 각 성분들의 함량을 주사전자현미경(SEM)-에너지분광분석(EDS)으로 분석하여 하기 표 1에 나타내었다. 도 1 및 3의 결과로 알 수 있듯이, 반응 후 얻어진 입자에서 Si가 빠져나간 자리에 기공이 형성됨을 확인 할 수 있었다. 이는 실리콘카바이드와 염소가스와의 반응에 의해 실리콘카바이드 내 Si가 기체상태의 SiCl4 로 전환되어 시료로부터 빠져나갔기 때문이다.
반응에 투입 된 실리콘카바이드 양과 반응 후 알루미나보트 내의 실리콘카바이드 양의 무게비를 통해 실리콘카바이드 내 실리콘의 염소화 전환율을 확인하였다. 실리콘카바이드 내 실리콘의 염소화 전환율은 하기 수학식 1의 방법으로 계산하여 염소화 전환율을 하기 도 4에 나타내었다.
[수학식 1]
Figure 112012028854161-pat00001
상기 수학식 1에서, X는 % 단위의 전환율, 는 반응관에 투입된 실리콘카바이드 의 질량, 은 반응 후 알루미나보트 내의 실리콘카바이드의 질량, 분모의 는 반응관에 투입된 시료가 순수한 SiC 라고 가정했을 때 시료 중 Si의 질량을 나타낸다.
[실시예 2] 실리콘 슬러지로부터 실리콘염화물의 제조
실리콘카바이드와 염소가스의 반응을 두시간동안 수행한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였고, 반응이 끝난 후 알루미나보트 내의 실리콘카바이드 입자들의 물성을 분석하여 하기 표 1에 나타내었다.
[실시예 3] 실리콘 슬러지로부터 실리콘염화물의 제조
실리콘카바이드와 염소가스의 반응을 네시간동안 수행한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였고, 반응이 끝난 후 알루미나보트 내의 실리콘카바이드 입자들의 물성을 분석하여 하기 표 1에 나타내었다.
[실시예 4] 실리콘 슬러지로부터 실리콘염화물의 제조
실리콘카바이드와 염소가스의 반응을 여덟시간동안 수행한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였고, 반응이 끝난 후 알루미나보트 내의 실리콘카바이드 입자들의 물성을 분석하여 하기 표 1에 나타내었다.
[실시예 5] 실리콘 슬러지로부터 실리콘염화물의 제조
실리콘카바이드와 염소가스의 반응온도를 1000℃로 수행한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였고, 실리콘카바이드 내 실리콘의 염소화 전환율을 확인하여 그 결과를 하기 도 4에 나타내었다.
[실시예 6] 실리콘 슬러지로부터 실리콘염화물의 제조
실리콘카바이드와 염소가스의 반응온도를 1200℃로 수행한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였고, 실리콘카바이드 내 실리콘의 염소화 전환율을 확인하여 그 결과를 하기 도 4에 나타내었다.
[실시예 7] 실리콘 슬러지로부터 실리콘염화물의 제조
실리콘카바이드 1g을 두 개의 알루미나보트(규격: 13×70×10 mm(W×D×H), 용량 : 5 ml)에 0.5g씩 나누어 충진 및 관형 반응기에 장입한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였고, 실리콘카바이드 내 실리콘의 염소화 전환율을 확인하여 그 결과를 하기 도 4에 나타내었다.
[비교예 1] 실리콘 슬러지로부터 실리콘염화물의 제조
실리콘 슬러지 용액의 초음파 처리를 전혀 수행하지 않고 증류 및 원심분리 단계만 수행한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였고, 실리콘카바이드 내 실리콘의 염소화 전환율을 확인하여 그 결과를 하기 도 4에 나타내었다.
[비교예 2] 실리콘 슬러지로부터 실리콘염화물의 제조
원심분리기를 이용하여 실리콘 슬러지 용액을 상분리하지 않고, 48 시간동안 상온에서 침강시킨 뒤 하등액을 회수하는 것을 제외하고는 상기 실시예 1과 동일하게 수행하였고, 실리콘카바이드 내 실리콘의 염소화 전환율을 확인하여 그 결과를 하기 도 4에 나타내었다.
[비교예 3] 실리콘 슬러지로부터 실리콘염화물의 제조
반응이 완료된 가스를 직경 9cm의 원형필터(whatman, 2)로 통과시키는 단계를 수행하지 않은 것을 제외하고는 상기 실시예 1과 동일하게 수행하였고, 반응이 끝난 후 알루미나보트 내의 실리콘카바이드 입자들의 물성을 분석하여 하기 표 1에 나타내었다.
Figure 112012028854161-pat00002
상기 표 1의 결과로 알 수 있듯이 본 발명에 따른 실리콘 슬러지로부터 실리콘염화물의 제조방법은 반응이 완료된 가스를 필터로 통과시켜 실리콘염화물(SiCl4 )을 1차 정제하는 단계를 통해 고 순도의 실리콘염화물을 제조할 수 있음을 보여주었다.

Claims (12)

  1. (a) 반도체 제조 과정에서 발생되는 실리콘 슬러지를 증류하여 유분을 제거하는 증류단계;
    (b) 증류단계를 마친 실리콘 슬러지를 증류수에 분산시켜 실리콘 슬러지 용액을 제조하는 단계;
    (c) 상기 실리콘 슬러지 용액을 초음파처리 하는 단계;
    (d) 초음파처리를 마친 실리콘 슬러지 용액을 원심분리하여 상분리하는 단계;
    (e) 상기 상분리된 실리콘 슬러지 용액에서 실리콘카바이드입자를 회수하는 회수단계; 및
    (f) 상기 실리콘카바이드입자를 염소가스와 반응시키는 단계;를 포함하며,
    상기 단계(f)의 반응 후 미반응 실리콘카바이드 입자를 여과하는 포집단계를 더 포함하는 실리콘 슬러지로부터 실리콘염화물의 제조방법.
  2. 제 1항에 있어서,
    상기 단계(a)에서 실리콘 슬러지의 증류는 100 내지 300℃에서 수행되는 것인 실리콘 슬러지로부터 실리콘염화물의 제조방법.
  3. 제 1항에 있어서,
    상기 단계(b)의 실리콘 슬러지 용액은 실리콘 슬러지를 2 내지 4 중량% 로 포함하는 것인 실리콘 슬러지로부터 실리콘염화물의 제조방법.
  4. 제 1항에 있어서,
    상기 단계(c)의 초음파처리는 100 W 내지 500 W 의 강도에서 10 내지 300분 동안 수행되는 것인 실리콘 슬러지로부터 실리콘염화물의 제조방법.
  5. 제 1항에 있어서,
    상기 단계(d)의 원심분리는 300 내지 700 rpm에서 5 내지 100 분 동안 수행되는 것인 실리콘 슬러지로부터 실리콘염화물의 제조방법.
  6. 제 1항에 있어서,
    상기 단계(f)에서 실리콘카바이드입자와 염소가스의 반응은 500 내지 2000℃에서 30 내지 600분동안 수행되는 것인 실리콘 슬러지로부터 실리콘염화물의 제조방법.
  7. 제 2항에 있어서,
    상기 실리콘 슬러지의 증류는 150 내지 200℃에서 수행되는 것인 실리콘 슬러지로부터 실리콘염화물의 제조방법.
  8. 제 4항에 있어서,
    상기 초음파처리는 200 W 내지 400 W 강도에서 20 내지 240분 동안 수행되는 것인 실리콘 슬러지로부터 실리콘염화물의 제조방법.
  9. 제 5항에 있어서,
    상기 원심분리는 450 내지 550 rpm에서 5 내지 75 분동안 수행되는 것인 실리콘 슬러지로부터 실리콘염화물의 제조방법.
  10. 제 5항에 있어서,
    상기 실리콘카바이드입자와 염소가스의 반응은 800 내지 1500℃에서 50 내지 500분동안 수행되는 것인 실리콘 슬러지로부터 실리콘염화물의 제조방법.
  11. 삭제
  12. 제 1항에 있어서,
    상기 포집단계 이후 미반응 염소가스를 흡수 및 제거하는 단계를 더 포함하는 실리콘 슬러지로부터 실리콘염화물의 제조방법.
KR1020120037687A 2012-04-12 2012-04-12 실리콘 슬러지로부터 실리콘염화물의 제조방법 KR101352372B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120037687A KR101352372B1 (ko) 2012-04-12 2012-04-12 실리콘 슬러지로부터 실리콘염화물의 제조방법
US13/860,901 US20130272945A1 (en) 2012-04-12 2013-04-11 Method for Producing Silicon Chloride from Silicon Sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120037687A KR101352372B1 (ko) 2012-04-12 2012-04-12 실리콘 슬러지로부터 실리콘염화물의 제조방법

Publications (2)

Publication Number Publication Date
KR20130115432A KR20130115432A (ko) 2013-10-22
KR101352372B1 true KR101352372B1 (ko) 2014-01-22

Family

ID=49325272

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120037687A KR101352372B1 (ko) 2012-04-12 2012-04-12 실리콘 슬러지로부터 실리콘염화물의 제조방법

Country Status (2)

Country Link
US (1) US20130272945A1 (ko)
KR (1) KR101352372B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105778098A (zh) * 2015-12-25 2016-07-20 内蒙古神舟硅业有限责任公司 一种用多晶硅生产中残液高沸物合成硅油的方法
KR102413806B1 (ko) * 2020-06-08 2022-06-29 주식회사 엠지이노베이션 폐기 실리콘 슬러지를 사용해 리튬이온배터리용 실리콘/비정질 산화 실리콘/탄소 복합 음극활물질을 제조하는 방법
CN112960875B (zh) * 2021-02-25 2022-08-05 广西博世科环保科技股份有限公司 一种高温热化学清洗重质油泥的处理方法及处理系统
CN113860310B (zh) * 2021-09-27 2022-07-26 连云港市沃鑫高新材料有限公司 一种超细碳化硅尾料中纳米级碳化硅的提取方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110082894A (ko) * 2010-01-12 2011-07-20 주식회사 이앤알이 폐 실리콘웨이퍼 슬러지의 재활용 방법 및 장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2982620A (en) * 1956-09-07 1961-05-02 Cabot Corp Process for producing silicon tetrachloride
US3173758A (en) * 1961-12-15 1965-03-16 Cabot Corp Production of silicon tetrachloride
US6409981B1 (en) * 1997-04-25 2002-06-25 Imperial Chemical Industries Plc Process for removing chlorine from gas stream
JP4160930B2 (ja) * 2004-05-19 2008-10-08 シャープ株式会社 ハロシランの製造方法、固形分の精製方法
JP2010526013A (ja) * 2007-04-25 2010-07-29 ノルスク・ヒドロ・アーエスアー 高純度シリコン金属のリサイクル方法
US20100061911A1 (en) * 2008-08-04 2010-03-11 Hariharan Alleppey V METHOD TO CONVERT SILICON POWDER TO HIGH PURITY POLYSILICON THROUGH INTERMEDIATE SiF4

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110082894A (ko) * 2010-01-12 2011-07-20 주식회사 이앤알이 폐 실리콘웨이퍼 슬러지의 재활용 방법 및 장치

Also Published As

Publication number Publication date
KR20130115432A (ko) 2013-10-22
US20130272945A1 (en) 2013-10-17

Similar Documents

Publication Publication Date Title
JP2011516290A (ja) 使用済みウェーハソーイングスラリーからの珪素及び炭化珪素の回収のための方法及び装置
KR101355816B1 (ko) 실리콘 슬러지로부터 실리콘의 분리 및 회수방법
TWI392647B (zh) 以粒子相轉移法回收切割矽泥中的矽與碳化矽粉
Hachichi et al. Silicon recovery from kerf slurry waste: a review of current status and perspective
CN104229801B (zh) 一种回收利用硅切割废砂浆及硅渣的方法及所用装置
KR101352372B1 (ko) 실리콘 슬러지로부터 실리콘염화물의 제조방법
CN104276574A (zh) 一种晶硅切割废液中高纯硅的提取方法
Hecini et al. Recovery of cutting fluids used in polycrystalline silicon ingot slicing
CN103052594B (zh) 制备高纯硅的方法
JP2011218503A (ja) シリコン含有廃液処理方法
KR100716064B1 (ko) 폐실리콘 금속을 이용한 테트라알콕시실란의 제조방법
Wang et al. Separation of silicon carbide and silicon powders in kerf loss slurry through phase transfer separation method with sodium dodecyl sulfate addition
CN106583031A (zh) 一种碳化硅回收砂提纯硅粉工艺
CN108285147A (zh) 从晶体硅砂浆切割废料中提取高纯硅粉的方法
JP5795728B2 (ja) 固体微粒子回収方法
JP5286095B2 (ja) シリコンスラッジ回収方法およびシリコン加工装置
CN110536865A (zh) 将硅屑回收利用为电子级多晶硅或冶金级硅的方法
CN106829953B (zh) 一种金刚石回收及再利用的方法及产品
TWI481569B (zh) The Total Resource Processing Technology of Waste Cutting Oil
TWI490173B (zh) Method for recovering waste silicon waste from cutting oil
JP4414364B2 (ja) シリコン含有材料の回収方法
CN108675305A (zh) 一种用碳化硅切割晶体硅废砂浆制备高纯硅的方法
JP5716167B2 (ja) シリコンリサイクルシステム及びその方法
Yang et al. Reclamation of Abrasive Slurry to Obtain SiC Ceramic Material
TWM469311U (zh) 碳化矽回收系統

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161227

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171219

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191231

Year of fee payment: 19