KR101317541B1 - Two-stage compression refrigerating device - Google Patents

Two-stage compression refrigerating device Download PDF

Info

Publication number
KR101317541B1
KR101317541B1 KR1020110094959A KR20110094959A KR101317541B1 KR 101317541 B1 KR101317541 B1 KR 101317541B1 KR 1020110094959 A KR1020110094959 A KR 1020110094959A KR 20110094959 A KR20110094959 A KR 20110094959A KR 101317541 B1 KR101317541 B1 KR 101317541B1
Authority
KR
South Korea
Prior art keywords
stage
pressure
stage compressor
compressor
detecting means
Prior art date
Application number
KR1020110094959A
Other languages
Korean (ko)
Other versions
KR20120031138A (en
Inventor
노보루 쯔보이
Original Assignee
가부시키가이샤 고베 세이코쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 고베 세이코쇼 filed Critical 가부시키가이샤 고베 세이코쇼
Publication of KR20120031138A publication Critical patent/KR20120031138A/en
Application granted granted Critical
Publication of KR101317541B1 publication Critical patent/KR101317541B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/047Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

본 발명의 과제는 냉매 흡입 압력이 낮아도 높은 효율을 유지할 수 있는 냉동 장치를 제공하는 것이다.
2단 압축식 냉동 장치(1)에 있어서, 제1단 압축기(2)와 제2단 압축기(3) 사이에 제1단 오일 분리기(8)를 설치하여 제1단 압축기(2)에 오일을 환류시키고, 제2단 압축기(3)의 토출측에 제2단 오일 분리기(9)를 설치하여 제2단 압축기(3)에 오일을 환류시키고, 냉동 부하에 따라서 제1단 압축기(2)의 회전수를 제어하고, 흡입 압력(Ps)과 토출 압력(Pd)의 곱의 평방근으로부터 이론 중간 압력(Pmth)을 산출하고, 이론 중간 압력(Pmth)과 흡입 압력(Ps)의 차가, 미리 정한 하한 차압(ΔPmin)보다도 큰 경우에는, 중간 압력(Pm)을 이론 중간 압력(Pmth)에 일치시키도록, 제2단 압축기(3)의 회전수를 제어하고, 이론 중간 압력(Pmth)과 흡입 압력(Ps)의 차가, 하한 차압(ΔPmin) 이하인 경우에는, 중간 압력(Pm)을 흡입 압력(Ps)에 하한 차압(ΔPmin)을 더한 값에 일치시키도록, 제2단 압축기(3)의 회전수를 제어한다.
An object of the present invention is to provide a refrigeration apparatus that can maintain high efficiency even when the refrigerant suction pressure is low.
In the two stage compressed refrigeration unit (1), the first stage oil separator (8) is installed between the first stage compressor (2) and the second stage compressor (3) to supply oil to the first stage compressor (2). To reflux, install a second stage oil separator (9) on the discharge side of the second stage compressor (3) to reflux the oil in the second stage compressor (3), and rotate the first stage compressor (2) according to the refrigeration load. The number is controlled, the theoretical intermediate pressure Pmth is calculated from the square root of the product of the suction pressure Ps and the discharge pressure Pd, and the difference between the theoretical intermediate pressure Pmth and the suction pressure Ps is a predetermined lower limit differential pressure. When larger than (ΔPmin), the rotation speed of the second stage compressor 3 is controlled so that the intermediate pressure Pm matches the theoretical intermediate pressure Pmth, and the theoretical intermediate pressure Pmth and the suction pressure Ps are controlled. When the difference of) is less than or equal to the lower limit differential pressure ΔPmin, the second pressure of the compressor 3 is adjusted so that the intermediate pressure Pm matches the suction pressure Ps plus the lower limit differential pressure ΔPmin. Can controls.

Figure R1020110094959
Figure R1020110094959

Description

2단 압축 냉동 장치 {TWO-STAGE COMPRESSION REFRIGERATING DEVICE}Two Stage Compression Refrigeration Unit {TWO-STAGE COMPRESSION REFRIGERATING DEVICE}

본 발명은 2단 압축 냉동 장치에 관한 것이다.The present invention relates to a two stage compression refrigeration apparatus.

냉동 장치에 대해, 높은 성적계수(COP)를 실현하는 동시에, 증발기에 있어서의 냉매의 증발 온도를 넓은 범위에 대응할 수 있는 것이 요망되고 있다. 2단 압축 냉동 장치에 있어서 높은 성적계수를 달성하기 위해서는, 1단째의 압축기와 2단째의 압축기의 부하의 분담을 최적화할 필요가 있다.For a refrigeration apparatus, it is desired to realize a high coefficient of performance (COP) and to cope with a wide range of evaporation temperatures of the refrigerant in the evaporator. In order to achieve a high coefficient of performance in the two-stage compression refrigeration apparatus, it is necessary to optimize the load sharing between the compressor of the first stage and the compressor of the second stage.

예를 들어, 특허 문헌 1에는 1단째의 압축기의 토출 압력(2단째의 압축기의 흡입 압력)인 중간 압력(Pm)을, 1단째의 압축기의 흡입 압력(Ps)과 2단째의 압축기의 토출 압력(Pd)의 곱의 평방근√(PsㆍPd)에 일치시키도록, 압축기의 행정 체적을 변화시킴으로써, 냉동 장치의 효율 저하를 방지하는 기술이 기재되어 있다.For example, Patent Document 1 describes an intermediate pressure Pm which is the discharge pressure of the first stage compressor (the suction pressure of the second stage compressor), and the suction pressure Ps of the first stage compressor and the discharge pressure of the second stage compressor. The technique which prevents the fall of the efficiency of a refrigeration apparatus by changing the stroke volume of a compressor so that it may correspond to the square root (√) Ps of the product of (Pd) is described.

냉동 장치용 압축기로서는, 냉각 및 윤활을 위해 오일을 공급하고, 토출측에 오일 분리기를 설치하는 타입의 것이 널리 사용되고 있다. 통상, 2단 압축 냉동 장치에서는, 2단째의 압축 장치의 토출 유로에 오일 분리기가 배치되어, 그 토출 압력에 의해 분리기가 분리한 오일을 1단째 및 2단째의 압축기에 환류시킨다.As a compressor for a refrigerating device, a type of supplying oil for cooling and lubrication and providing an oil separator on the discharge side is widely used. Usually, in a two stage compression refrigeration apparatus, an oil separator is arranged in the discharge flow path of the 2nd stage compression apparatus, and the oil isolate | separated by the discharge pressure is refluxed by the 1st stage and the 2nd stage compressor.

일본 특허 출원 공개 제2007-138919호 공보Japanese Patent Application Publication No. 2007-138919

종래의 2단 압축 냉동 장치에 있어서, 흡입 압력(Ps)과 토출 압력(Pd)의 차가 커지면, 그 압력차로 인해, 1단째의 압축기의 저압 공간에 도입된 오일에 용해된 냉매가 플래쉬(순간적으로 증발)되는 양이 많아진다. 그러면, 증발기를 통과하여 압축기가 흡입할 수 있는 냉매의 양이 감소하여, 냉동 장치의 효율이 저하되어 버린다는 문제가 발생한다.In the conventional two-stage compression refrigeration apparatus, when the difference between the suction pressure Ps and the discharge pressure Pd becomes large, the refrigerant dissolved in the oil introduced into the low pressure space of the first stage compressor flashes (momentarily) due to the pressure difference. Evaporation) increases. This causes a problem that the amount of refrigerant that can be sucked by the compressor through the evaporator is reduced and the efficiency of the refrigeration apparatus is lowered.

상기 문제점을 감안하여, 본 발명은 냉매 흡입 압력이 낮아도 높은 효율을 유지할 수 있는 냉동 장치를 제공하는 것을 과제로 한다.In view of the above problems, an object of the present invention is to provide a refrigeration apparatus that can maintain high efficiency even when a refrigerant suction pressure is low.

상기 과제를 해결하기 위해, 본 발명에 의한 냉동 장치는 냉매 순환 유로에, 회전수 제어 가능한 제1단 압축기, 제1단 오일 분리기, 상기 제1단 압축기로부터 독립하여 회전수 제어 가능한 제2단 압축기, 제2단 오일 분리기, 응축기, 팽창 밸브 및 증발기를 개재 설치하여 이루어지고, 상기 제1단 오일 분리기가 분리한 오일을 상기 제1단 압축기에 환류시키는 제1단 오일 유로와, 상기 제2단 오일 분리기가 분리한 오일을 상기 제2단 압축기에 환류시키는 제2단 오일 유로와, 상기 제1단 압축기의 흡입 압력을 검출하는 흡입 압력 검출 수단과, 상기 제1단 압축기의 토출 압력을 검출하는 중간 압력 검출 수단과, 상기 제2단 압축기의 토출 압력을 검출하는 토출 압력 검출 수단과, 냉동 부하에 따라서 상기 제1단 압축기의 회전수를 제어하는 제1단 제어 수단과, 상기 흡입 압력 검출 수단의 검출값과 상기 토출 압력 검출 수단의 검출값의 곱의 평방근으로부터 이론 중간 압력을 산출하고, 상기 이론 중간 압력과 상기 흡입 압력 검출 수단의 검출값의 차가, 미리 정한 하한 차압보다도 큰 경우에는 상기 중간 압력 검출 수단의 검출값을, 상기 이론 중간 압력에 일치시키도록, 상기 제2단 압축기의 회전수를 제어하고, 상기 이론 중간 압력과 상기 흡입 압력 검출 수단의 검출값의 차가, 상기 하한 차압 이하인 경우에는, 상기 중간 압력 검출 수단의 검출값을, 상기 흡입 압력 검출 수단의 검출값에 상기 하한 차압을 더한 값에 일치시키도록, 상기 제2단 압축기의 회전수를 제어하는 제2단 제어 수단을 갖는 것으로 한다.In order to solve the above problems, the refrigerating device according to the present invention, the first stage compressor capable of controlling the rotational speed, the first stage oil separator, the second stage compressor independent of the first stage compressor in the refrigerant circulation flow path And a first stage oil flow path provided through a second stage oil separator, a condenser, an expansion valve, and an evaporator, for returning the oil separated by the first stage oil separator to the first stage compressor, and the second stage. A second stage oil passage for returning the oil separated by the oil separator to the second stage compressor, suction pressure detecting means for detecting the suction pressure of the first stage compressor, and a discharge pressure of the first stage compressor. Intermediate pressure detecting means, discharge pressure detecting means for detecting the discharge pressure of the second stage compressor, first stage control means for controlling the rotational speed of the first stage compressor in accordance with a refrigeration load, The theoretical intermediate pressure is calculated from the square root of the product of the detected value of the air suction pressure detecting means and the detected value of the discharge pressure detecting means, and the difference between the theoretical intermediate pressure and the detected value of the suction pressure detecting means is less than the predetermined lower limit differential pressure. If large, the rotation speed of the second stage compressor is controlled to match the detected value of the intermediate pressure detecting means with the theoretical intermediate pressure, and the difference between the theoretical intermediate pressure and the detected value of the suction pressure detecting means is 2nd which controls the rotation speed of a said 2nd stage compressor so that the detection value of the said intermediate pressure detection means may match the detection value of the said suction pressure detection means to the value which added the said lower limit differential pressure, when it is below the said lower limit differential pressure. However, it is assumed to have a control means.

또한, 본 발명의 냉동 장치는 상기 증발기의 증발 온도를 검출하는 증발 온도 검출 수단을 구비하고, 상기 제1단 제어 수단은 상기 증발 온도 검출 수단의 검출값에 따라서, 상기 제1단 압축기의 회전수를 제어해도 좋다.In addition, the refrigerating device of the present invention is provided with evaporation temperature detecting means for detecting the evaporation temperature of the evaporator, the first stage control means, the rotation speed of the first stage compressor in accordance with the detection value of the evaporation temperature detection means May be controlled.

또한, 본 발명의 냉동 장치에 있어서, 상기 제1단 압축기 및 상기 제2단 압축기는 각각 스크류 압축기로 이루어져도 좋다.In the refrigerating device of the present invention, the first stage compressor and the second stage compressor may each be a screw compressor.

본 발명에 따르면, 각 단의 압축기의 토출측에 각각 오일 분리기를 설치하였으므로, 각각의 압축기에 자신의 토출 압력의 오일이 공급된다. 이에 의해, 오일의 공급 압력이 지나치게 높아지지 않고, 오일에 용해된 냉매가 플래쉬되어 압축기의 용량을 실질적으로 저하시키는 일이 없다(특히, 증발기를 통과하여 제1단 압축기가 흡입할 수 있는 냉매의 양이 감소하는 일이 없음). 또한, 제2단 제어 수단은 이론 중간 압력이 작아졌을 때에도, 실제의 중간 압력과 흡입 압력의 차를 일정한 값 이상으로 유지하므로, 제1단 압축기에 오일을 공급하기 위해 필요한 압력차를 확보할 수 있어, 오일 끊김에 의한 트러블을 방지할 수 있다.According to the present invention, since oil separators are provided on the discharge side of the compressors in each stage, oil at its discharge pressure is supplied to each compressor. As a result, the supply pressure of the oil is not excessively increased, and the refrigerant dissolved in the oil is not flashed to substantially reduce the capacity of the compressor (in particular, the refrigerant that can be sucked by the first stage compressor through the evaporator can be sucked in). The amount never decreases). In addition, since the second stage control means maintains the difference between the actual intermediate pressure and the suction pressure more than a certain value even when the theoretical intermediate pressure decreases, it is possible to secure the pressure difference required to supply oil to the first stage compressor. Therefore, trouble due to oil breakage can be prevented.

도 1은 본 발명의 일 실시 형태의 냉동 장치의 구성도.
도 2는 도 1의 냉동 장치에 있어서의 증발 온도와 각 처의 냉매 압력의 관계를 나타내는 도면.
BRIEF DESCRIPTION OF THE DRAWINGS The block diagram of the refrigeration apparatus of one Embodiment of this invention.
FIG. 2 is a diagram illustrating a relationship between an evaporation temperature and a refrigerant pressure at each location in the refrigerating device of FIG. 1. FIG.

이하, 본 발명의 실시 형태에 대해 도면을 참조하면서 설명한다. 도 1에 본 발명의 일 실시 형태인 냉동 장치(1)의 구성을 도시한다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. The structure of the refrigeration apparatus 1 which is one Embodiment of this invention is shown in FIG.

냉동 장치(1)는 제1단 압축기(2), 제2단 압축기(3), 응축기(4), 팽창 밸브(5) 및 증발기(6)를 개재 설치하여 이루어지고, 냉매를 봉입한 냉매 순환 유로(7)를 갖는다. 제1단 압축기(2) 및 제2단 압축기(3)는 각각 독립하여 회전수 제어 가능한 인버터 구동의 유랭식(油冷式) 스크류 압축기이다.The refrigerating device 1 is provided through a first stage compressor 2, a second stage compressor 3, a condenser 4, an expansion valve 5, and an evaporator 6, and a refrigerant circulation in which a refrigerant is enclosed. It has a flow path 7. The 1st stage compressor 2 and the 2nd stage compressor 3 are the oil-cooled-type screw compressors of the inverter drive which can respectively independently control the rotation speed.

냉동 장치(1)는 제1단 압축기(2)와 제2단 압축기(3) 사이의 냉매 순환 유로(7)에, 제1단 압축기(2)가 토출한 냉매로부터 냉각 오일을 분리하는 제1단 오일 분리기(8)가 더 설치되고, 제2단 압축기(3)와 응축기(4) 사이의 냉매 순환 유로(7)에, 제2단 압축기(3)가 토출한 냉매로부터 냉각 오일을 분리하는 제2단 오일 분리기(9)가 설치되어 있다. 그리고, 냉동 장치(1)는 제1단 오일 분리기(8)가 분리한 냉각 오일을 제1단 압축기(2)의 흡입 및 저압부에 환류시키는 제1단 오일 유로(10)와, 제2단 오일 분리기(9)가 분리한 냉각 오일을 제2단 압축기(3)의 흡입 및 저압부에 환류시키는 제2단 오일 유로(11)를 더 구비한다.The refrigerating device 1 is a first to separate the cooling oil from the refrigerant discharged by the first stage compressor 2 in the refrigerant circulation flow path 7 between the first stage compressor 2 and the second stage compressor 3. A stage oil separator (8) is further provided to separate cooling oil from the refrigerant discharged by the second stage compressor (3) in the refrigerant circulation flow path (7) between the second stage compressor (3) and the condenser (4). The second stage oil separator 9 is provided. The refrigeration apparatus 1 includes a first stage oil passage 10 for refluxing the cooling oil separated by the first stage oil separator 8 to the suction and low pressure portions of the first stage compressor 2, and the second stage. A second stage oil passage 11 for refluxing the cooling oil separated by the oil separator 9 to the suction and low pressure portions of the second stage compressor 3 is further provided.

또한, 냉동 장치(1)는 제1단 압축기(2)의 흡입 압력(Ps)을 검출하는 흡입 압력 검출기(12)와, 제1단 압축기(2)와 제2단 압축기(3) 사이의 냉매 순환 유로(7)의 압력, 즉 제1단 압축기(2)의 토출 압력이며 제2단 압축기(3)의 흡입 압력이기도 한 중간 압력(Pm)을 검출하는 중간 압력 검출기(13)와, 제2단 압축기(3)의 토출 압력(Pd)을 검출하는 토출 압력 검출기(14)와, 증발기(6)에 있어서의 냉매의 증발 온도(Te)를 검출하는 증발 온도 검출기(15)를 구비한다.In addition, the refrigerating device 1 includes a suction pressure detector 12 that detects the suction pressure Ps of the first stage compressor 2, and a refrigerant between the first stage compressor 2 and the second stage compressor 3. An intermediate pressure detector 13 which detects the pressure of the circulation passage 7, that is, the discharge pressure of the first stage compressor 2 and the suction pressure of the second stage compressor 3; However, the discharge pressure detector 14 which detects the discharge pressure Pd of the compressor 3 and the evaporation temperature detector 15 which detects the evaporation temperature Te of the refrigerant | coolant in the evaporator 6 are provided.

냉동 장치(1)에서는, 제1단 압축기(2)에는 중간 압력(Pm)과 흡입 압력(Ps)의 차압에 의해 제1단 오일 분리기(10)로부터 냉각 오일이 공급되고, 제2단 압축기(3)에는 토출 압력(Pd)과 중간 압력(Pm)의 차압에 의해 제2단 오일 분리기(11)로부터 냉각 오일이 공급된다.In the refrigerating device 1, cooling oil is supplied to the first stage compressor 2 from the first stage oil separator 10 by the differential pressure between the intermediate pressure Pm and the suction pressure Ps, and the second stage compressor ( 3) Cooling oil is supplied from the 2nd stage oil separator 11 by the differential pressure of discharge pressure Pd and the intermediate pressure Pm.

또한, 냉동 장치(1)는 증발 온도 검출기(15)의 검출값(Te)에 기초하여, 제1단 압축기(2) 회전수를 제어하는 제1단 제어 장치(16)와, 흡입 압력 검출기(12), 중간 압력 검출기(13) 및 토출 압력 검출기(14)의 검출값(Ps, Pm, Pd)에 기초하여, 제2단 압축기(3)의 회전수를 제어하는 제어 장치(17)를 갖는다. 제어 장치(16)와 제어 장치(17)는 단일의 컴퓨터에 의해 실현되는 서로 독립된 프로그램 또는 제어 루틴이라도 좋다.In addition, the refrigerating device 1 includes a first stage control device 16 for controlling the rotation speed of the first stage compressor 2 and a suction pressure detector based on the detected value Te of the evaporation temperature detector 15. 12) the control device 17 which controls the rotation speed of the 2nd stage compressor 3 based on the detection value Ps, Pm, Pd of the intermediate | middle pressure detector 13 and the discharge pressure detector 14 is provided. . The control device 16 and the control device 17 may be independent programs or control routines realized by a single computer.

제1단 제어 장치(16)는 냉동 부하, 즉 증발 온도 검출기(15)의 검출값(Te)을 설정 온도(Ts)로 유지하도록, 제1단 압축기(2)의 회전수를, 예를 들어 공지의 PID 제어에 의해 조절한다.The first stage control device 16 controls the rotation speed of the first stage compressor 2, for example, to maintain the refrigeration load, that is, the detected value Te of the evaporation temperature detector 15 at the set temperature Ts. Adjust by well-known PID control.

제2단 제어 장치(17)는 흡입 압력 검출기(12) 및 토출 압력 검출기(14)의 검출값에 기초하여, 중간 압력(Pm)의 목표값(Pms)을 정하고, 중간 압력(Pm)을 목표값(Pms)에 일치시키도록, 공지의 PID 제어 등에 의해 제2단 압축기(2)의 회전수를 제어한다.The second stage control device 17 determines the target value Pms of the intermediate pressure Pm based on the detection values of the suction pressure detector 12 and the discharge pressure detector 14, and targets the intermediate pressure Pm. In order to match the value Pms, the rotation speed of the second stage compressor 2 is controlled by known PID control or the like.

이 목표값(Pms)은 다음과 같이 정해진다. 우선, 제2단 제어 장치(17)는 흡입 압력 검출기(12)가 검출한 흡입 압력(Ps)과, 토출 압력 검출기(14)가 검출한 토출 압력(Pd)의 곱의 평방근인 이론 중간 압력(Pmth)={√(PsㆍPd)}을 산출한다. 그리고, 제2단 제어 장치(17)는 이론 중간 압력(Pmth)과 흡입 압력(Ps)의 차(ΔP)를 구하여, 미리 설정한 하한 차압(ΔPmin)과 비교한다. 그리고, 제2단 제어 장치(17)는 차압(ΔP)이 하한 차압(ΔPmin)보다 크면, 목표값(Pms)을 이론 중간 압력(Pmth)으로 설정하고, 차압(ΔP)이 하한 차압(ΔPmin) 이하이면, 목표값(Pms)을 흡입 압력 검출기(12)가 검출한 흡입 압력(Ps)에 하한 차압(ΔPmin)을 더한 값(Ps+ΔPmin)으로 설정한다.This target value Pms is determined as follows. First, the second stage control device 17 is a theoretical intermediate pressure (S) which is the square root of the product of the suction pressure Ps detected by the suction pressure detector 12 and the discharge pressure Pd detected by the discharge pressure detector 14. Pmth) = {√ (Ps · Pd)}. Then, the second stage control device 17 obtains the difference ΔP between the theoretical intermediate pressure Pmth and the suction pressure Ps, and compares it with the preset lower limit differential pressure ΔPmin. When the differential pressure ΔP is greater than the lower limit differential pressure ΔPmin, the second stage control device 17 sets the target value Pms to the theoretical intermediate pressure Pmth, and the differential pressure ΔP is the lower limit differential pressure ΔPmin. If it is below, the target value Pms is set to the value (Ps + (DELTA) Pmin) which added the lower limit differential pressure (DELTA) Pmin to the suction pressure Ps which the suction pressure detector 12 detected.

하한 차압(ΔPmin)은 제1단 압축기(2)에 필요로 하는 냉각 오일의 유량을 확보하기 위해 필요로 하는 압력이고, 제1단 오일 유로(10)의 배관 저항에 의해 결정된다. 이 하한 차압(ΔPmin)은, 통상, 제1단 압축기(2)의 정격 운전 조건에 있어서 결정된 값에, 안전율을 곱한 고정값(예를 들어, 0.2㎫)이지만, 제1단 압축기(2)의 회전수에 따라서 변화되는 값으로 해도 좋다.Lower limit differential pressure (DELTA) Pmin is a pressure required in order to ensure the flow volume of the cooling oil required for the 1st stage compressor 2, and is determined by the piping resistance of the 1st stage oil flow path 10. As shown in FIG. This lower limit differential pressure (DELTA) Pmin is a fixed value (for example, 0.2 Mpa) which multiplied the safety factor and the value determined in the rated operation conditions of the 1st stage compressor 2 normally, It is good also as a value changed according to rotation speed.

도 2에 흡입 압력(Ps), 중간 압력(Pm) 및 토출 압력(Pd)의 관계를 나타낸다. 흡입 압력(Ps)은 증발기(6)에 있어서의 냉매의 증발 온도에 의해 정해진다. 또한, 토출 압력(Pd)은 응축기(4)에 있어서의 냉매의 응축 온도에 의해 정해진다. 응축기(4)에 공급되는 냉각수의 온도가 일정하고, 응축기의 용량이 충분히 크면, 응축 온도가 대략 일정해지므로, 본 실시 형태에 있어서, 토출 압력(Pd)은 대략 일정하다고 생각해도 좋다.2 shows the relationship between the suction pressure Ps, the intermediate pressure Pm, and the discharge pressure Pd. The suction pressure Ps is determined by the evaporation temperature of the refrigerant in the evaporator 6. The discharge pressure Pd is determined by the condensation temperature of the refrigerant in the condenser 4. If the temperature of the cooling water supplied to the condenser 4 is constant and the capacity of the condenser is sufficiently large, the condensation temperature becomes substantially constant. Therefore, in this embodiment, the discharge pressure Pd may be considered to be substantially constant.

도시한 바와 같이, 증발기(6)에 있어서의 냉매의 증발 온도가 ―50℃보다 낮아지면, 이론 중간 압력(Pmth)과 흡입 압력(Ps)의 차압(ΔP)이, 하한 차압(ΔPmin)(0.2㎫) 이하로 된다. 이때, 제2단 제어 장치(17)는 중간 압력(Pm)의 목표값(Pms)을, 흡입 압력(Ps)보다도 하한 차압(ΔPmin)만큼 높은 압력(Ps+ΔPmin)으로 설정한다. 이에 의해, 제1단 압축기(2)에 냉각 오일을 충분히 공급할 수 있도록 함으로써, 제1단 압축기(2)의 트러블을 방지한다. 또한, 동시에, 제2단 압축기로의 냉각 오일의 공급 압력(Pd-Pm)이 지나치게 높아지는 것도 방지되고, 제2단 압축기에 있어서 냉각 오일에 용해된 냉매가 플래쉬되어, 능력 저하를 초래하는 것이 방지된다.As shown, when the evaporation temperature of the refrigerant in the evaporator 6 is lower than −50 ° C., the differential pressure ΔP between the theoretical intermediate pressure Pmth and the suction pressure Ps is the lower limit differential pressure ΔPmin (0.2). MPa) or less. At this time, the second stage control device 17 sets the target value Pms of the intermediate pressure Pm to a pressure Ps + ΔPmin that is higher by the lower limit pressure ΔPmin than the suction pressure Ps. This makes it possible to sufficiently supply the cooling oil to the first stage compressor 2, thereby preventing trouble of the first stage compressor 2. At the same time, an excessive increase in the supply pressure Pd-Pm of the cooling oil to the second stage compressor is also prevented, and the refrigerant dissolved in the cooling oil in the second stage compressor is prevented from causing a decrease in capacity. do.

이상의 설명에서는, 증발기(6)에 있어서의 냉매의 증발 온도(Te)의 설정값(Ts)을 변경하지 않으면, 중간 압력(Pm)의 목표값(Pms)을 결정하는 연산식이 변화되지 않는 것처럼 생각될지도 모른다. 그러나, 예를 들어, 증발기(6)가 냉동 창고에 배치되어 있는 경우에는 짐의 반출입을 위해 도어를 개방한 채 방치하면, 고내 온도, 즉 실제의 증발 온도(Te)가 급격하게 상승하므로, 이론 중간 압력(Pmth)과 흡입 압력(Ps)의 차압(ΔP)이, 하한 차압(ΔPmin)보다도 커질 수 있다.In the above description, it is assumed that the calculation formula for determining the target value Pms of the intermediate pressure Pm does not change unless the set value Ts of the evaporation temperature Te of the refrigerant in the evaporator 6 is changed. It may be. However, for example, in the case where the evaporator 6 is arranged in the freezing warehouse, when the door is left open for carrying in and out of the load, the internal temperature, that is, the actual evaporation temperature Te rises rapidly, The differential pressure ΔP between the intermediate pressure Pmth and the suction pressure Ps may be larger than the lower limit differential pressure ΔPmin.

따라서, 증발 온도(Te)의 설정값(Ts)이 일정해도, 목표값(Pms)의 연산식을 변화시키는 것은 냉동 장치(1)의 효율을 높이기 위해 유효한 수단이다. 또한, 캐스케이드 제어 등에 의해, 증발기(6)에 있어서의 냉매의 증발 온도(Te)의 설정값(Ts)을 변화시키는 것이 바람직한 경우도 생각된다.Therefore, even if the set value Ts of the evaporation temperature Te is constant, changing the expression of the target value Pms is an effective means for increasing the efficiency of the refrigerating device 1. In addition, it is also considered that it is preferable to change the set value Ts of the evaporation temperature Te of the refrigerant in the evaporator 6 by cascade control or the like.

또한, 상술한 실시 형태에서는, 제1단 압축기(2)의 기계적 압축비와 제2단 압축기(3)의 기계적 압축비가 동등하므로, 이론 중간 압력(Pmth)={√(PsㆍPd)}으로 하였지만, 제1단 압축기(2)의 기계적 압축비와 제2단 압축기(3)의 기계적 압축비의 비가 상수(k)로 나타내어지는 경우, 이론 중간 압력(Pmth)={√(PsㆍPd/k)}으로 된다. 즉, 본 발명에 있어서, 이론 중간 압력(Pmth)은 흡입 압력(Ps)과 토출 압력(Pd)의 곱의 평방근에 상수 √k를 곱한 값이다.In addition, in the above embodiment, since the mechanical compression ratio of the first stage compressor 2 and the mechanical compression ratio of the second stage compressor 3 are equal, the theoretical intermediate pressure Pmth = {√ (Ps · Pd)} is set. When the ratio of the mechanical compression ratio of the first stage compressor 2 and the mechanical compression ratio of the second stage compressor 3 is represented by a constant k, the theoretical intermediate pressure Pmth = {√ (Ps · Pd / k)} Becomes That is, in the present invention, the theoretical intermediate pressure Pmth is a value obtained by multiplying the square root of the product of the suction pressure Ps and the discharge pressure Pd by a constant √k.

1 : 냉동 장치
2 : 제1단 압축기
3 : 제2단 압축기
4 : 응축기
5 : 팽창 밸브
6 : 증발기
7 : 냉매 순환 유로
8 : 제1단 오일 분리기
9 : 제2단 오일 분리기
10 : 제1단 오일 유로
11 : 제2단 오일 유로
12 : 흡입 압력 검출기(흡입 압력 검출 수단)
13 : 중간 압력 검출기(중간 압력 검출 수단)
14 : 토출 압력 검출기(토출 압력 검출 수단)
15 : 증발 온도 검출기(증발 온도 검출 수단)
16 : 제1단 제어 장치(제1단 제어 수단)
17 : 제2단 제어 장치(제2단 제어 수단)
1: refrigeration unit
2: first stage compressor
3: 2nd stage compressor
4: condenser
5: expansion valve
6: evaporator
7: refrigerant circulation flow path
8: first stage oil separator
9: 2nd stage oil separator
10: first stage oil passage
11: second stage oil passage
12: suction pressure detector (suction pressure detection means)
13: middle pressure detector (medium pressure detecting means)
14 discharge pressure detector (discharge pressure detecting means)
15: evaporation temperature detector (evaporation temperature detection means)
16: first stage control device (first stage control means)
17: second stage control device (second stage control means)

Claims (3)

냉매 순환 유로에, 회전수 제어 가능한 제1단 압축기, 제1단 오일 분리기, 상기 제1단 압축기로부터 독립하여 회전수 제어 가능한 제2단 압축기, 제2단 오일 분리기, 응축기, 팽창 밸브 및 증발기를 개재 설치하여 이루어지고,
상기 제1단 오일 분리기가 분리한 오일을 상기 제1단 압축기에 환류시키는 제1단 오일 유로와,
상기 제2단 오일 분리기가 분리한 오일을 상기 제2단 압축기에 환류시키는 제2단 오일 유로와,
상기 제1단 압축기의 흡입 압력을 검출하는 흡입 압력 검출 수단과,
상기 제1단 압축기의 토출 압력을 검출하는 중간 압력 검출 수단과,
상기 제2단 압축기의 토출 압력을 검출하는 토출 압력 검출 수단과,
냉동 부하에 따라서 상기 제1단 압축기의 회전수를 제어하는 제1단 제어 수단과,
상기 흡입 압력 검출 수단의 검출값과 상기 토출 압력 검출 수단의 검출값의 곱의 평방근으로부터 이론 중간 압력을 산출하고,
상기 이론 중간 압력과 상기 흡입 압력 검출 수단의 검출값의 차가, 미리 정한 하한 차압보다도 큰 경우에는, 상기 중간 압력 검출 수단의 검출값을, 상기 이론 중간 압력에 일치시키도록, 상기 제2단 압축기의 회전수를 제어하고,
상기 이론 중간 압력과 상기 흡입 압력 검출 수단의 검출값의 차가, 상기 하한 차압 이하인 경우에는, 상기 중간 압력 검출 수단의 검출값을, 상기 흡입 압력 검출 수단의 검출값에 상기 하한 차압을 더한 값에 일치시키도록, 상기 제2단 압축기의 회전수를 제어하는 제2단 제어 수단을 갖는 것을 특징으로 하는, 냉동 장치.
The first stage compressor, the first stage oil separator, and the second stage compressor, the second stage oil separator, the condenser, the expansion valve, and the evaporator, which can be controlled independently of the first stage compressor, are provided in the refrigerant circulation passage. Intervention is made,
A first stage oil passage for refluxing the oil separated by the first stage oil separator to the first stage compressor,
A second stage oil passage for returning the oil separated by the second stage oil separator to the second stage compressor;
Suction pressure detecting means for detecting suction pressure of the first stage compressor;
Intermediate pressure detecting means for detecting a discharge pressure of the first stage compressor;
Discharge pressure detecting means for detecting a discharge pressure of the second stage compressor;
First stage control means for controlling the rotational speed of the first stage compressor in accordance with a refrigeration load;
The theoretical intermediate pressure is calculated from the square root of the product of the detected value of the suction pressure detecting means and the detected value of the discharge pressure detecting means,
When the difference between the theoretical intermediate pressure and the detected value of the suction pressure detecting means is greater than a predetermined lower limit differential pressure, the second intermediate compressor is configured to match the detected value of the intermediate pressure detecting means with the theoretical intermediate pressure. To control the speed,
When the difference between the theoretical intermediate pressure and the detected value of the suction pressure detecting means is equal to or less than the lower limit differential pressure, the detected value of the intermediate pressure detecting means is equal to the value obtained by adding the lower limit differential pressure to the detected value of the suction pressure detecting means. And a second stage control means for controlling the rotational speed of the second stage compressor.
제1항에 있어서, 상기 증발기의 증발 온도를 검출하는 증발 온도 검출 수단을 구비하고,
상기 제1단 제어 수단은 상기 증발 온도 검출 수단의 검출값에 따라서, 상기 제1단 압축기의 회전수를 제어하는 것을 특징으로 하는, 냉동 장치.
The method according to claim 1, further comprising evaporation temperature detection means for detecting an evaporation temperature of the evaporator,
And the first stage control means controls the rotation speed of the first stage compressor in accordance with the detected value of the evaporation temperature detection means.
제1항 또는 제2항에 있어서, 상기 제1단 압축기 및 상기 제2단 압축기는 각각 스크류 압축기로 이루어지는 것을 특징으로 하는, 냉동 장치.The refrigeration apparatus according to claim 1 or 2, wherein the first stage compressor and the second stage compressor each comprise a screw compressor.
KR1020110094959A 2010-09-22 2011-09-21 Two-stage compression refrigerating device KR101317541B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010212013A JP5372880B2 (en) 2010-09-22 2010-09-22 Two-stage compression refrigeration system
JPJP-P-2010-212013 2010-09-22

Publications (2)

Publication Number Publication Date
KR20120031138A KR20120031138A (en) 2012-03-30
KR101317541B1 true KR101317541B1 (en) 2013-10-15

Family

ID=45983231

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110094959A KR101317541B1 (en) 2010-09-22 2011-09-21 Two-stage compression refrigerating device

Country Status (3)

Country Link
JP (1) JP5372880B2 (en)
KR (1) KR101317541B1 (en)
CN (1) CN102435018B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013203268A1 (en) * 2013-02-27 2014-08-28 Bitzer Kühlmaschinenbau Gmbh Refrigerant compressor
JP6317888B2 (en) * 2013-04-18 2018-04-25 株式会社Nttファシリティーズ Vapor compression refrigeration system
JP6104775B2 (en) 2013-09-24 2017-03-29 株式会社東芝 Thin film transistor and manufacturing method thereof
JP6545448B2 (en) * 2014-11-05 2019-07-17 三菱重工サーマルシステムズ株式会社 Two-stage compression type refrigeration cycle apparatus, control apparatus and control method therefor
CN106705519B (en) * 2015-11-12 2019-04-19 新特能源股份有限公司 Multistage refrigerating plant and its control method
JP6771988B2 (en) * 2016-08-05 2020-10-21 三菱重工サーマルシステムズ株式会社 Heat pump device and its control method
GB2577862A (en) * 2018-09-17 2020-04-15 Arctic Circle Ltd Compound heat transfer system
CN115200177A (en) * 2022-05-27 2022-10-18 宁波奥克斯电气股份有限公司 Air supplementing enthalpy increasing control method and device and air conditioner
CN117267971A (en) * 2022-10-31 2023-12-22 付朝乾 Two-stage compression three-stage cascade type cold and hot double-supply heat pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0175476B1 (en) 1984-09-20 1989-03-01 York International Corporation Capacity control systems for inverter-driven centrifugal compressor based water chillers
JP2003021089A (en) 2001-07-03 2003-01-24 Kobe Steel Ltd Two-stage compression refrigerating machine, and its operating method
JP2007138919A (en) * 2005-10-17 2007-06-07 Kobe Steel Ltd Two-stage screw compressor and two-stage compression refrigerator using this compressor
KR100964779B1 (en) * 2005-11-30 2010-06-21 다이킨 고교 가부시키가이샤 Freezing device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237258A (en) * 1988-07-25 1990-02-07 Mitsubishi Electric Corp Two-stage compression type refrigerating plant
JP2002327690A (en) * 2001-04-27 2002-11-15 Daikin Ind Ltd Two-stage compressor
JP3897751B2 (en) * 2003-11-14 2007-03-28 株式会社神戸製鋼所 Refrigeration equipment
JP2006343017A (en) * 2005-06-08 2006-12-21 Sanyo Electric Co Ltd Freezer
JP4898546B2 (en) * 2007-05-10 2012-03-14 日立アプライアンス株式会社 Refrigeration equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0175476B1 (en) 1984-09-20 1989-03-01 York International Corporation Capacity control systems for inverter-driven centrifugal compressor based water chillers
JP2003021089A (en) 2001-07-03 2003-01-24 Kobe Steel Ltd Two-stage compression refrigerating machine, and its operating method
JP2007138919A (en) * 2005-10-17 2007-06-07 Kobe Steel Ltd Two-stage screw compressor and two-stage compression refrigerator using this compressor
KR100964779B1 (en) * 2005-11-30 2010-06-21 다이킨 고교 가부시키가이샤 Freezing device

Also Published As

Publication number Publication date
KR20120031138A (en) 2012-03-30
JP5372880B2 (en) 2013-12-18
JP2012067954A (en) 2012-04-05
CN102435018B (en) 2014-07-09
CN102435018A (en) 2012-05-02

Similar Documents

Publication Publication Date Title
KR101317541B1 (en) Two-stage compression refrigerating device
US8813511B2 (en) Control system for operating condenser fans
EP2413068A2 (en) Refrigerator and driving method thereof
KR100748519B1 (en) Second-refrigerant pump driving type air conditioner
TWI522585B (en) Refrigeration unit and freezer unit
JP5669642B2 (en) Refrigeration equipment
JP2008267787A (en) Refrigerating device
JP2009109065A (en) Refrigeration system
JP2012072920A (en) Refrigeration apparatus
JP5484890B2 (en) Refrigeration equipment
US8276400B2 (en) Refrigeration apparatus
JP4475660B2 (en) Refrigeration equipment
JP6179842B2 (en) Refrigeration apparatus and additional refrigerant amount adjusting apparatus for refrigeration apparatus
JP6080031B2 (en) Refrigeration equipment
JP4767133B2 (en) Refrigeration cycle equipment
JP5735441B2 (en) Refrigeration equipment
KR20140048620A (en) Turbo chiller
JP4898546B2 (en) Refrigeration equipment
JP2013155972A (en) Refrigeration device
KR20090036509A (en) Refrigerating device and operation method of refrigerating device
US20220034567A1 (en) A method for controlling a vapour compression system at a reduced suction pressure
JP6112388B2 (en) Refrigeration equipment
KR102462872B1 (en) Air conditioner and Control method of the same
JP2012233640A (en) Air conditioner
JP6052066B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160901

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170919

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180918

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190917

Year of fee payment: 7