JP6112388B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP6112388B2
JP6112388B2 JP2012252077A JP2012252077A JP6112388B2 JP 6112388 B2 JP6112388 B2 JP 6112388B2 JP 2012252077 A JP2012252077 A JP 2012252077A JP 2012252077 A JP2012252077 A JP 2012252077A JP 6112388 B2 JP6112388 B2 JP 6112388B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
adjustment tank
pressure side
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012252077A
Other languages
Japanese (ja)
Other versions
JP2014102008A (en
Inventor
三原 一彦
一彦 三原
雄一 伊澤
雄一 伊澤
豊明 木屋
豊明 木屋
裕輔 倉田
裕輔 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012252077A priority Critical patent/JP6112388B2/en
Priority to CN201310581020.8A priority patent/CN103822419B/en
Publication of JP2014102008A publication Critical patent/JP2014102008A/en
Application granted granted Critical
Publication of JP6112388B2 publication Critical patent/JP6112388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、圧縮手段と、ガスクーラと、絞り手段と、蒸発器とから冷媒回路が構成され、高圧側が超臨界圧力となる冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus in which a refrigerant circuit is configured by a compression unit, a gas cooler, a throttling unit, and an evaporator, and a high pressure side is a supercritical pressure.

従来よりこの種冷凍装置は、圧縮手段、ガスクーラ、絞り手段等から冷凍サイクルが構成され、圧縮手段で圧縮された冷媒がガスクーラにて放熱し、絞り手段にて減圧された後、蒸発器にて冷媒を蒸発させて、このときの冷媒の蒸発により周囲の空気を冷却するものとされていた。近年、この種冷凍装置では、自然環境問題などからフロン系冷媒が使用できなくなってきている。このため、フロン冷媒の代替品として自然冷媒である二酸化炭素を使用するものが開発されている。当該二酸化炭素冷媒は、高低圧差の激しい冷媒で、臨界圧力に対する温度が低く、圧縮により冷媒サイクルの高圧側が超臨界状態となることが知られている(例えば、特許文献1参照)。   Conventionally, this type of refrigeration apparatus has a refrigeration cycle composed of a compression means, a gas cooler, a throttle means, etc., and the refrigerant compressed by the compression means dissipates heat in the gas cooler and is depressurized by the throttle means, and then in an evaporator. The refrigerant was evaporated, and ambient air was cooled by evaporation of the refrigerant at this time. In recent years, chlorofluorocarbon refrigerants cannot be used in this type of refrigeration system due to natural environmental problems. For this reason, the thing using the carbon dioxide which is a natural refrigerant | coolant is developed as a substitute of a fluorocarbon refrigerant | coolant. The carbon dioxide refrigerant is a refrigerant having a high and low pressure difference, and is known to have a low temperature with respect to the critical pressure and to be in a supercritical state on the high pressure side of the refrigerant cycle by compression (for example, see Patent Document 1).

特公平7−18602号公報Japanese Patent Publication No. 7-18602 特開2011−133204号公報JP 2011-133204 A

上述したようなフロン冷媒は、凝縮器から出た後、レシーバータンク内に入り、そこに一旦貯留されて気液が分離される。分離された液冷媒はレシーバータンクに貯留され、外気温度等に応じて冷媒量の調整に用いられる。一方、高圧側が超臨界圧力となるような冷媒、例えば二酸化炭素を用いた場合は、外気温度が降下すると、飽和サイクルが行われるため、冷媒はガス液混合状態となる。一方、外気温度が上昇し、例えば+25℃〜30℃以上となると、冷媒は液化せず、超臨界サイクル運転が行われる。そのため、レシーバータンクによる循環冷媒量の調整を行うことができず、冷媒回路中の過剰なガス冷媒によって、高圧側圧力が異常上昇する問題がある。   The chlorofluorocarbon refrigerant described above enters the receiver tank after exiting the condenser, and is temporarily stored therein to separate the gas and liquid. The separated liquid refrigerant is stored in the receiver tank, and is used for adjusting the refrigerant amount according to the outside air temperature and the like. On the other hand, when a refrigerant such as carbon dioxide that has a supercritical pressure on the high pressure side is used, when the outside air temperature falls, a saturation cycle is performed, so that the refrigerant is in a gas-liquid mixed state. On the other hand, when the outside air temperature rises to, for example, + 25 ° C. to 30 ° C. or higher, the refrigerant is not liquefied and supercritical cycle operation is performed. Therefore, the amount of circulating refrigerant cannot be adjusted by the receiver tank, and there is a problem that the high-pressure side pressure abnormally increases due to excessive gas refrigerant in the refrigerant circuit.

そこで、高圧側圧力の異常上昇を回避すべく高圧遮断装置が設けられているが、この高圧遮断装置は、冷媒回路の高圧側圧力が所定の高圧遮断設定値に達した場合に圧縮手段を強制的に停止させてシステムを保護するものであるが、圧縮手段が停止すれば蒸発器による冷却も停止してしまう。   Therefore, a high-pressure shut-off device is provided to avoid an abnormal increase in the high-pressure side pressure. This high-pressure shut-off device forces the compression means when the high-pressure side pressure of the refrigerant circuit reaches a predetermined high-pressure shut-off setting value. However, if the compression means is stopped, the cooling by the evaporator is also stopped.

そこで、冷媒回路の高圧側に冷媒量調整タンクを接続し、高圧側圧力が上昇し、所定の回収閾値を超えた場合には冷媒回路の高圧側から冷媒を回収し、低下して所定の放出閾値を下回ったことで冷媒回路の中間圧領域に冷媒を放出することで、高圧側圧力が異常上昇してしまうことを防止するようにした冷凍装置も開発されている(例えば、特許文献2参照)。この特許文献2では、店舗に設置された複数台のショーケース(ショーケースユニット)に冷凍機ユニットから冷媒を供給する冷凍装置の冷凍機ユニットに冷媒量調整タンクを内蔵し、この冷媒量調整タンクを冷媒回路の高圧側と中間圧領域に接続して循環冷媒量を調整していた。   Therefore, a refrigerant amount adjustment tank is connected to the high pressure side of the refrigerant circuit, and when the high pressure side pressure rises and exceeds a predetermined recovery threshold, the refrigerant is recovered from the high pressure side of the refrigerant circuit, and decreases to a predetermined release. There has also been developed a refrigeration apparatus that prevents the high-pressure side pressure from rising abnormally by releasing the refrigerant into the intermediate pressure region of the refrigerant circuit when it falls below the threshold (see, for example, Patent Document 2). ). In Patent Document 2, a refrigerant amount adjustment tank is built in a refrigerator unit of a refrigeration apparatus that supplies refrigerant from a refrigerator unit to a plurality of showcases (showcase units) installed in a store. Was connected to the high pressure side and the intermediate pressure region of the refrigerant circuit to adjust the amount of circulating refrigerant.

しかしながら、冷媒回路の高圧側の圧力はショーケース側の膨張弁(絞り手段)の開閉の影響で大きく変動する。これはショーケースの接続台数が多くなる冷凍装置(冷凍機ユニットの馬力を大きくするために複数台の圧縮機(圧縮手段)が設けられる)ほど大きくなる。   However, the pressure on the high pressure side of the refrigerant circuit varies greatly due to the influence of opening and closing of the expansion valve (throttle means) on the showcase side. This becomes larger as the number of showcases connected increases in the refrigeration apparatus (a plurality of compressors (compression means) are provided to increase the horsepower of the refrigerator unit).

また、季節による気温の変化や運転状態によって冷凍機ユニットと各ショーケースとを結ぶ配管のうちの液管の出口の温度や圧力が変化するため、この液管内の冷媒量が大きく変化する。更に、この冷凍機ユニットと各ショーケースとを結ぶ配管の長さ(施工配管長)は店舗の規模によって異なって来るため、適正な冷媒充填量を規定することも難しい。   Further, since the temperature and pressure at the outlet of the liquid pipe among the pipes connecting the refrigerator unit and each showcase change depending on the change in temperature and operating conditions depending on the season, the amount of refrigerant in the liquid pipe changes greatly. Furthermore, since the length of the pipe connecting this refrigerator unit and each showcase (construction pipe length) varies depending on the scale of the store, it is difficult to define an appropriate refrigerant charging amount.

このような理由から、高圧側圧力が回収閾値を超えたことで冷媒量調整タンクに冷媒を回収し、放出閾値を下回ったことで放出する制御では、冷媒量調整タンクへの冷媒の回収と冷媒量調整タンクからの冷媒の放出が急激に行われるため、高圧側圧力が収束できなくなると共に、回収と放出による循環冷媒量の変動に伴って冷凍能力が変動し、安定した冷却性能が得られなくなる問題が生じていた。   For this reason, in the control that recovers the refrigerant in the refrigerant amount adjustment tank when the high-pressure side pressure exceeds the recovery threshold and releases it when the pressure falls below the release threshold, the refrigerant is collected into the refrigerant amount adjustment tank and the refrigerant Since the refrigerant is suddenly released from the volume adjustment tank, the high-pressure side pressure cannot converge, and the refrigeration capacity fluctuates due to fluctuations in the circulating refrigerant amount due to recovery and discharge, and stable cooling performance cannot be obtained. There was a problem.

本発明は、従来の技術的課題を解決するために成されたものであり、高圧側が臨界圧力となるものであって、冷媒回路内の循環冷媒量を適切に維持して安定した冷却性能を実現することができる冷凍装置を提供するものである。   The present invention has been made in order to solve the conventional technical problems. The high pressure side is a critical pressure, and the cooling refrigerant amount in the refrigerant circuit is appropriately maintained to achieve stable cooling performance. A refrigeration apparatus that can be realized is provided.

請求項1の発明の冷凍装置は、圧縮手段と、ガスクーラと、絞り手段と、蒸発器とから冷媒回路が構成され、高圧側が超臨界圧力となる冷凍装置において、前記冷媒回路に接続された冷媒量調整タンクと、前記冷媒量調整タンクと前記冷媒回路の高圧側とを連通する第1の連通回路と、前記冷媒量調整タンクの下部と前記冷媒回路の中間圧領域、又は、低圧側とを連通する第2の連通回路と、前記冷媒量調整タンクの上部と前記冷媒回路の中間圧領域とを連通する第3の連通回路と、前記第1の連通回路に設けられた絞り機能を有する第1の弁装置と、前記第2の連通回路に設けられた第2の弁装置と、前記第3の連通回路に設けられた第3の弁装置と、前記冷媒回路の高圧側の循環冷媒を前記冷媒量調整タンクに回収し、該冷媒量調整タンクに回収した冷媒を前記冷媒回路の中間圧領域、又は、低圧側に放出する制御手段と、を備え、前記制御手段は、外気温度と前記蒸発器における冷媒の蒸発温度に基づいて前記冷媒回路の高圧側圧力の目標値を決定し、前記冷媒回路の高圧側圧力が前記高圧側圧力の目標値より高い場合は、前記第3の弁装置を開放するとともに前記第1の弁装置の弁開度により前記冷媒量調整タンクへの冷媒回収速度を変更し、前記冷媒回路の高圧側圧力が前記高圧側圧力の目標値より低い場合は、前記第1の弁装置をわずかに開いた状態で、前記第2の弁装置の開放時間により前記冷媒量調整タンクから冷媒を徐々に放出することを特徴とする。 The refrigeration apparatus of the invention of claim 1 is a refrigerant connected to the refrigerant circuit in a refrigeration apparatus in which a refrigerant circuit is constituted by a compression means, a gas cooler, a throttling means, and an evaporator, and the high pressure side is at a supercritical pressure. An amount adjustment tank, a first communication circuit communicating the refrigerant amount adjustment tank and the high pressure side of the refrigerant circuit, a lower portion of the refrigerant amount adjustment tank, an intermediate pressure region of the refrigerant circuit, or a low pressure side. A second communication circuit that communicates, a third communication circuit that communicates an upper portion of the refrigerant amount adjustment tank and an intermediate pressure region of the refrigerant circuit, and a throttling function provided in the first communication circuit. 1, a second valve device provided in the second communication circuit, a third valve device provided in the third communication circuit, and circulating refrigerant on the high-pressure side of the refrigerant circuit. Collected in the refrigerant quantity adjustment tank, the refrigerant quantity adjustment tank Intermediate pressure region of the refrigerant circuit collected refrigerant, or, and a control means for releasing the low pressure side, wherein the control means of the refrigerant circuit based on the evaporation temperature of the refrigerant in the outdoor air temperature and the evaporator When the target value of the high pressure side pressure is determined and the high pressure side pressure of the refrigerant circuit is higher than the target value of the high pressure side pressure, the third valve device is opened and the valve opening of the first valve device is opened. To change the refrigerant recovery rate to the refrigerant amount adjustment tank, and when the high-pressure side pressure of the refrigerant circuit is lower than the target value of the high-pressure side pressure, with the first valve device slightly opened, The refrigerant is gradually released from the refrigerant quantity adjustment tank according to the opening time of the second valve device .

請求項2の発明の冷凍装置は、前記発明において、前記制御手段は、前記冷媒回路の高圧側圧力の上昇に伴い、前記第1の弁装置の弁開度を徐々に開くように制御することを特徴とするAccording to a second aspect of the present invention, in the refrigeration apparatus according to the present invention, the control means controls the valve opening of the first valve device to gradually open as the high-pressure side pressure of the refrigerant circuit increases. It is characterized by .

請求項3の発明の冷凍装置は、前記発明において、前記制御手段は、前記冷媒回路の高圧側圧力が低下するに伴い、前記第2の弁装置を所定時間だけ開動作させて冷媒量調整タンクから冷媒を徐々に放出することを特徴とする。 According to a third aspect of the present invention, in the refrigeration apparatus according to the present invention, the control means opens the second valve device for a predetermined time as the high-pressure side pressure of the refrigerant circuit decreases, thereby adjusting the refrigerant amount adjustment tank. The refrigerant is gradually discharged from the tank .

請求項4の発明の冷凍装置は、前記発明において、前記冷媒として二酸化炭素を使用したことを特徴とするA refrigeration apparatus according to a fourth aspect of the invention is characterized in that, in the invention, carbon dioxide is used as the refrigerant .

高圧側が超臨界圧力となる冷凍装置では、外気温度が所定の温度域を越えていくと、冷媒回路内において液化しない超臨界サイクル運転となるため、従来の如きレシーバータンクによる液量調整を行うことができないが、本発明によれば、冷媒回路に冷媒量調整タンクが接続されていることで、冷媒回路内の余剰となった冷媒を高圧側から冷媒量調整タンクに回収し、また、冷媒量調整タンクから冷媒回路の中間圧領域、又は、低圧側に冷媒を放出して冷媒回路内の循環冷媒量を適切に維持することが可能となる。これにより、冷媒回路内の高圧側が異常高圧となる不都合を解消することができ、高圧異常による圧縮手段の過負荷運転を防止することが可能となる。
特に、請求項1の発明では制御手段が冷媒量調整タンクに冷媒を回収しながら放出し、高圧側圧力の目標値に基づいて回収と放出の度合いを調整することで循環冷媒量を制御するので、冷媒量調整タンクへの冷媒の回収と冷媒量調整タンクからの冷媒の放出に伴う循環冷媒量の急激な変動を防止することが可能となる。
また、制御手段が、外気温度と蒸発器における冷媒の蒸発温度に基づいて冷媒回路の高圧側圧力の目標値を決定することで、外気温度により飽和サイクルと超臨界サイクルに変化する冷媒の状態を考慮し、且つ、蒸発温度に基づいて好適な高圧側圧力を実現でき、高効率な運転が可能となる。
制御装置が、冷媒回路の高圧側圧力が高圧側圧力の目標値より高い場合は、第3の弁装置を開放するとともに第1の弁装置の弁開度により冷媒量調整タンクへの冷媒回収速度を変更することにより、第3の弁装置を開放することで、冷媒量調整タンク内の圧力をタンク外に逃がすことができるようになる。これにより、冷媒量調整タンク内の圧力が低下して当該冷媒量調整タンク内の冷媒が液化して溜まるため、円滑に冷媒回路内の冷媒を冷媒量調整タンクに回収することができるようになる。このとき、冷媒量調整タンクの上部と冷媒回路の中間圧領域とを連通させるので、冷媒回路の低圧側領域と連通させる場合と異なり、低圧側圧力が上昇されることによる冷却効率の低下を回避することが可能となる。
また、制御手段が、第1の弁装置の弁開度により冷媒量調整タンクへの冷媒回収速度を変更することにより、冷媒量調整タンクへの冷媒回収の放出の度合いを第1の弁装置の弁開度で的確に制御することができるようになる。そして、冷媒回路の高圧側圧力が低下するに伴い、冷媒量調整タンクから冷媒を徐々に放出するようにすれば、同様に冷媒量調整タンクからの冷媒の放出に伴う循環冷媒量の急激な変動も防止することが可能となる。
制御装置が、冷媒回路の高圧側圧力が高圧側圧力の目標値より低い場合は、第1の弁装置をわずかに開いた状態で、第2の弁装置の開放時間により冷媒量調整タンクから冷媒を徐々に放出することにより、冷媒量調整タンクへの冷媒回収と冷媒量調整タンクからの冷媒の放出の度合いを第1の弁装置の弁開度と第2の弁装置の開放時間で的確に制御することができる。
これにより、高圧側圧力に基づいて冷媒回収と放出の度合いを制御でき、的確に高圧保護及び過負荷運転の防止することができる。これにより、冷凍装置の冷却性能を確保することができ、COPの適正化を図ることが可能となる。
In a refrigeration system with supercritical pressure on the high pressure side, if the outside air temperature exceeds a predetermined temperature range, supercritical cycle operation that does not liquefy in the refrigerant circuit is performed, so the liquid volume is adjusted by a conventional receiver tank. However, according to the present invention, the refrigerant amount adjustment tank is connected to the refrigerant circuit, so that excess refrigerant in the refrigerant circuit is recovered from the high pressure side to the refrigerant amount adjustment tank, and the refrigerant amount It is possible to appropriately maintain the circulating refrigerant amount in the refrigerant circuit by discharging the refrigerant from the adjustment tank to the intermediate pressure region of the refrigerant circuit or to the low pressure side. Thereby, it is possible to eliminate the disadvantage that the high pressure side in the refrigerant circuit becomes abnormally high pressure, and it is possible to prevent the overload operation of the compression means due to the high pressure abnormality.
In particular, in the first aspect of the invention, the control means releases the refrigerant while collecting the refrigerant in the refrigerant quantity adjustment tank, and controls the circulating refrigerant quantity by adjusting the degree of collection and release based on the target value of the high pressure side pressure. Thus, it is possible to prevent sudden fluctuations in the circulating refrigerant amount accompanying the recovery of the refrigerant to the refrigerant quantity adjustment tank and the release of the refrigerant from the refrigerant quantity adjustment tank.
Further, the control means determines the target value of the high-pressure side pressure of the refrigerant circuit based on the outside air temperature and the evaporation temperature of the refrigerant in the evaporator. In consideration of this, it is possible to achieve a suitable high-pressure side pressure based on the evaporation temperature, and high-efficiency operation is possible.
When the high pressure side pressure of the refrigerant circuit is higher than the target value of the high pressure side pressure, the control device opens the third valve device and sets the refrigerant recovery rate to the refrigerant amount adjustment tank by the valve opening degree of the first valve device. By changing the above, by opening the third valve device, the pressure in the refrigerant quantity adjustment tank can be released to the outside of the tank. As a result, the pressure in the refrigerant quantity adjustment tank decreases and the refrigerant in the refrigerant quantity adjustment tank liquefies and accumulates, so that the refrigerant in the refrigerant circuit can be smoothly collected in the refrigerant quantity adjustment tank. . At this time, since the upper part of the refrigerant amount adjustment tank and the intermediate pressure region of the refrigerant circuit are communicated with each other, unlike the case where the refrigerant circuit is communicated with the low pressure side region of the refrigerant circuit, a decrease in cooling efficiency due to an increase in the low pressure side pressure is avoided. It becomes possible to do.
Further, the control means changes the refrigerant recovery rate to the refrigerant amount adjustment tank according to the valve opening degree of the first valve device, thereby setting the degree of discharge of the refrigerant recovery to the refrigerant amount adjustment tank of the first valve device. It becomes possible to accurately control the valve opening. If the refrigerant is gradually released from the refrigerant amount adjustment tank as the high-pressure side pressure of the refrigerant circuit decreases, the rapid fluctuation of the circulating refrigerant amount accompanying the release of the refrigerant from the refrigerant amount adjustment tank is similarly achieved. Can also be prevented.
When the high pressure side pressure of the refrigerant circuit is lower than the target value of the high pressure side pressure, the control device makes the refrigerant from the refrigerant amount adjustment tank according to the opening time of the second valve device with the first valve device opened slightly. Is gradually released, and the degree of refrigerant recovery to the refrigerant quantity adjustment tank and the release of refrigerant from the refrigerant quantity adjustment tank are accurately determined by the valve opening degree of the first valve device and the opening time of the second valve device. Can be controlled.
Thereby, the degree of refrigerant recovery and release can be controlled based on the high-pressure side pressure, and high-pressure protection and overload operation can be prevented accurately. Thereby, the cooling performance of the refrigeration apparatus can be ensured, and the COP can be optimized.

また、請求項2の発明では、制御手段は、冷媒回路の高圧側圧力の上昇に伴い、第1の弁装置の弁開度を徐々に開くように制御することで、高圧側圧力が上昇するのに伴って冷媒回収速度を上昇させることで、過剰な冷媒回収を未然に防止することができるようになり、同様に冷媒量調整タンクへの冷媒の回収に伴う循環冷媒量の急激な変動を防止することが可能となる。 In the invention of claim 2 , the control means increases the high-pressure side pressure by controlling the valve opening of the first valve device to gradually open as the high-pressure side pressure of the refrigerant circuit increases. Accordingly, by increasing the refrigerant recovery rate, it becomes possible to prevent excessive refrigerant recovery in advance, and similarly, the rapid fluctuation of the circulating refrigerant amount accompanying the recovery of the refrigerant to the refrigerant amount adjustment tank can be prevented. It becomes possible to prevent.

更に、請求項3の発明では、制御手段が、冷媒回路の高圧側圧力が低下するに伴い、第2の弁装置を所定時間だけ開動作させて冷媒量調整タンクから冷媒を徐々に放出することで、同様に冷媒量調整タンクからの冷媒の放出に伴う循環冷媒量の急激な変動も防止することが可能となる。 Furthermore, in the invention of claim 3, the control means opens the second valve device for a predetermined time and gradually releases the refrigerant from the refrigerant amount adjustment tank as the high-pressure side pressure of the refrigerant circuit decreases. Thus, similarly, it is possible to prevent sudden fluctuations in the circulating refrigerant amount accompanying the release of the refrigerant from the refrigerant quantity adjusting tank.

これらにより、本出願の発明によれば高圧側が臨界圧力となる冷凍装置の冷媒回路内の循環冷媒量を適切に維持管理し、安定した冷却性能を実現することができるようになるものである。   Thus, according to the invention of the present application, it is possible to appropriately maintain and manage the circulating refrigerant amount in the refrigerant circuit of the refrigeration apparatus in which the high pressure side becomes the critical pressure, and to realize stable cooling performance.

そして、請求項の発明の如く冷媒として二酸化炭素を使用した超臨界冷媒回路(超臨界冷凍サイクル)において、上記各発明は、特に有効である。 In the supercritical refrigerant circuit (supercritical refrigeration cycle) using carbon dioxide as the refrigerant as in the invention of claim 4 , the above inventions are particularly effective.

本実施例における冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the freezing apparatus in a present Example. 図1の冷凍装置の制御装置のブロック図である。It is a block diagram of the control apparatus of the freezing apparatus of FIG. 外気温度と蒸発温度とから決定される目標高圧THPの傾向を示す図である。It is a figure which shows the tendency of the target high pressure THP determined from external temperature and evaporation temperature. 図2の制御装置による冷媒量調整タンクへの冷媒の回収と冷媒量調整タンクからの冷媒の放出制御を説明する図である。It is a figure explaining the collection | recovery of refrigerant | coolant to the refrigerant | coolant amount adjustment tank by the control apparatus of FIG. 2, and discharge | release control of the refrigerant | coolant from a refrigerant | coolant amount adjustment tank.

以下、本発明の実施形態を図面を参照して説明する。図1は本発明の実施形態にかかる冷凍装置Rの冷媒回路図である。本実施例における冷凍装置Rは、冷凍機ユニット3と複数台のショーケースユニット5とから構成され、これら冷凍機ユニット3と各ショーケースユニット5とが、冷媒配管7(液管)及び冷媒配管9により連結されて所定の冷媒回路1を構成する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus R according to an embodiment of the present invention. The refrigeration apparatus R in the present embodiment is composed of a refrigeration unit 3 and a plurality of showcase units 5, and the refrigeration unit 3 and each showcase unit 5 include a refrigerant pipe 7 (liquid pipe) and a refrigerant pipe. 9 are connected to form a predetermined refrigerant circuit 1.

この冷凍サイクルは、高圧側の冷媒圧力(高圧圧力)がその臨界圧力以上(超臨界)となる二酸化炭素を冷媒として用いる。この二酸化炭素冷媒は、地球環境に優しく、可燃性及び毒性等を考慮した自然冷媒である。また、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)等、既存のオイルが使用される。   In this refrigeration cycle, carbon dioxide whose refrigerant pressure (high pressure) on the high pressure side is equal to or higher than its critical pressure (supercritical) is used as the refrigerant. This carbon dioxide refrigerant is a natural refrigerant that is friendly to the global environment and takes into consideration flammability and toxicity. As the lubricating oil, existing oils such as mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil, and PAG (polyalkyl glycol) are used.

実施例の冷凍機ユニット3は、並列に配置された圧縮手段としての2台の圧縮機11を備える。本実施例において、圧縮機11は、内部中間圧型多段圧縮式ロータリ圧縮機であり、鋼板から成る円筒状の密閉容器12と、この密閉容器12の内部に配置収納された電動要素(図示せず)及びこの電動要素により駆動される第1の回転圧縮要素(低段側の第1の圧縮要素)18及び第2の回転圧縮要素(高段側の第2の圧縮要素)20から成る回転圧縮機構部にて構成されている。   The refrigerator unit 3 of an Example is provided with the two compressors 11 as a compression means arrange | positioned in parallel. In this embodiment, the compressor 11 is an internal intermediate pressure type multistage compression rotary compressor, and includes a cylindrical sealed container 12 made of a steel plate, and an electric element (not shown) arranged and housed in the sealed container 12. ) And a first rotary compression element (low-stage side first compression element) 18 and a second rotary compression element (high-stage side second compression element) 20 driven by the electric element. It consists of a mechanism part.

第1の回転圧縮要素18は、冷媒配管9を介して冷媒回路1の低圧側から圧縮機11に吸い込まれる低圧冷媒を圧縮して中間圧まで昇圧して吐出し、第2の回転圧縮要素20は、第1の回転圧縮要素18で圧縮されて吐出された中間圧の冷媒を更に吸い込み、圧縮して高圧まで昇圧し、冷媒回路1の高圧側に吐出する。圧縮機11は、周波数可変型の圧縮機であり、前記電動要素の運転周波数を変更することで、第1の回転圧縮要素18及び第2の回転圧縮要素20の回転数を制御可能とする。   The first rotary compression element 18 compresses the low-pressure refrigerant sucked into the compressor 11 from the low-pressure side of the refrigerant circuit 1 through the refrigerant pipe 9, boosts it to an intermediate pressure, and discharges it. Further sucks in the intermediate pressure refrigerant compressed and discharged by the first rotary compression element 18, compresses it to a high pressure, and discharges it to the high pressure side of the refrigerant circuit 1. The compressor 11 is a variable frequency compressor, and the rotational speed of the first rotary compression element 18 and the second rotary compression element 20 can be controlled by changing the operating frequency of the electric element.

圧縮機11の密閉容器12の側面には、第1の回転圧縮要素18に連通する低段側吸込口22及び低段側吐出口24と、第2の回転圧縮要素20に連通する高段側吸込口26及び高段側吐出口28が形成されている。各圧縮機11の低段側吸込口22には、それぞれ冷媒導入管30が接続され、それぞれの上流側で合流し冷媒配管9に接続される。   On the side surface of the hermetic container 12 of the compressor 11, a low-stage suction port 22 and a low-stage discharge port 24 that communicate with the first rotary compression element 18, and a high-stage side that communicates with the second rotary compression element 20. A suction port 26 and a high-stage discharge port 28 are formed. Refrigerant introduction pipes 30 are connected to the low-stage side suction ports 22 of the respective compressors 11, and merge at the respective upstream sides and connected to the refrigerant pipe 9.

低段側吸込口22により第1の回転圧縮要素18の低圧部に吸い込まれた低圧(LP:通常運転状態で2.6MPa程度)の冷媒ガスは、当該第1の回転圧縮要素18により中間圧(MP:通常運転状態で5.5MPa程)に昇圧されて密閉容器12内に吐出される。これにより、密閉容器12内は中間圧(MP)となる。   Low-pressure (LP: about 2.6 MPa in a normal operation state) refrigerant gas sucked into the low-pressure portion of the first rotary compression element 18 by the low-stage suction port 22 is intermediate pressure by the first rotary compression element 18. The pressure is increased to (MP: about 5.5 MPa in a normal operation state) and discharged into the sealed container 12. Thereby, the inside of the airtight container 12 becomes an intermediate pressure (MP).

そして、密閉容器12内の中間圧の冷媒ガスが吐出される各圧縮機11の低段側吐出口24には、それぞれ中間圧吐出配管36が接続され、それぞれの下流側で合流し、インタークーラ38の一端に接続される。このインタークーラ38は、第1の回転圧縮要素18から吐出された中間圧の冷媒を空冷するものであり、当該インタークーラ38の他端には、中間圧吸入管40が接続され、この中間圧吸入管40は2つに分岐した後に各圧縮機11の高段側吸込口26に接続される。   Then, intermediate pressure discharge pipes 36 are connected to the low-stage discharge ports 24 of the compressors 11 from which the refrigerant gas of intermediate pressure in the hermetic container 12 is discharged. 38 is connected to one end of 38. The intercooler 38 cools the intermediate pressure refrigerant discharged from the first rotary compression element 18 by air, and an intermediate pressure suction pipe 40 is connected to the other end of the intercooler 38. The suction pipe 40 is branched into two and then connected to the high-stage suction port 26 of each compressor 11.

高段側吸込口26により第2の回転圧縮要素20の中圧部に吸い込まれた中圧(MP)の冷媒ガスは、当該第2の回転圧縮要素20により2段目の圧縮が行われて高温高圧(HP:通常運転状態で9MPa程の超臨界圧力)の冷媒ガスとなる。そして、各圧縮機11の第2の回転圧縮要素20の高圧室側に設けられた高段側吐出口28には、それぞれ高圧吐出配管42が接続され、それぞれの下流側で合流し、オイルセパレータ44、ガスクーラ46、詳細は後述するスプリットサイクルを構成する中間熱交換器80を介して、冷媒配管7に接続される。   The medium pressure (MP) refrigerant gas sucked into the intermediate pressure portion of the second rotary compression element 20 by the high-stage suction port 26 is compressed in the second stage by the second rotary compression element 20. It becomes a refrigerant gas of high temperature and pressure (HP: supercritical pressure of about 9 MPa in a normal operation state). The high-stage discharge port 28 provided on the high-pressure chamber side of the second rotary compression element 20 of each compressor 11 is connected to a high-pressure discharge pipe 42, and merges at each downstream side, and an oil separator 44, the gas cooler 46, and details are connected to the refrigerant pipe 7 via an intermediate heat exchanger 80 constituting a split cycle, which will be described later.

ガスクーラ46は、圧縮機11から吐出された高圧の吐出冷媒を冷却するものであり、ガスクーラ46の近傍には当該ガスクーラ46を空冷するガスクーラ用送風機47が配設されている。本実施例では、ガスクーラ46は上述したインタークーラ38及び詳細は後述するオイルクーラ74と並設されており、これらは同一の風路45に配設されている。当該風路45には、当該冷凍機ユニット3が配設される外気温度を検出する外気温度センサ(外気温度検出手段)56が設けられている。また、高段側吐出口28、28には、第2の回転圧縮要素20から吐出された冷媒の吐出圧力(高圧側圧力HP)を検出する高圧圧力センサ(高圧圧力検出手段)48と、吐出冷媒温度を検出する吐出温度センサ(吐出温度検出手段)50等が設けられている。   The gas cooler 46 cools the high-pressure discharged refrigerant discharged from the compressor 11, and a gas cooler blower 47 for air-cooling the gas cooler 46 is disposed in the vicinity of the gas cooler 46. In this embodiment, the gas cooler 46 is juxtaposed with the above-described intercooler 38 and an oil cooler 74 described later in detail, and these are arranged in the same air passage 45. The air passage 45 is provided with an outside air temperature sensor (outside air temperature detecting means) 56 for detecting the outside air temperature where the refrigerator unit 3 is disposed. Further, a high-pressure sensor (high-pressure detector) 48 for detecting the discharge pressure (high-pressure pressure HP) of the refrigerant discharged from the second rotary compression element 20 and a discharge are provided at the high-stage discharge ports 28 and 28. A discharge temperature sensor (discharge temperature detecting means) 50 for detecting the refrigerant temperature is provided.

一方、各ショーケースユニット5は、それぞれ店舗内等に設置され、冷媒配管7及び9にそれぞれ並列に接続されている。各ショーケースユニット5は、冷媒配管7と冷媒配管9とを連結するケース側冷媒配管60を有しており、各ケース側冷媒配管60には、絞り手段としての主絞り手段62(主膨張弁)と蒸発器63が順次接続されている。各蒸発器63には、それぞれ当該蒸発器63に送風する図示しない冷気循環用送風機が隣接されている。そして、冷媒配管9は、上述したように冷媒導入管30を介して各圧縮機11の第1の回転圧縮要素18に連通する低段側吸込口22に接続されている。これにより、本実施例における冷凍装置Rの冷媒回路1が構成される。   On the other hand, each showcase unit 5 is installed in a store or the like, and is connected in parallel to the refrigerant pipes 7 and 9, respectively. Each showcase unit 5 has a case-side refrigerant pipe 60 that connects the refrigerant pipe 7 and the refrigerant pipe 9, and each case-side refrigerant pipe 60 has a main throttle means 62 (main expansion valve) as a throttle means. And the evaporator 63 are sequentially connected. Each evaporator 63 is adjacent to an unillustrated cool air circulation blower that blows air to the evaporator 63. The refrigerant pipe 9 is connected to the low-stage suction port 22 that communicates with the first rotary compression element 18 of each compressor 11 via the refrigerant introduction pipe 30 as described above. Thereby, the refrigerant circuit 1 of the refrigeration apparatus R in the present embodiment is configured.

冷凍装置Rは、汎用のマイクロコンピュータにより構成される制御装置(制御手段)Cを電動箱B内に備えている。当該制御装置Cは、図2に示すように入力側に各種センサが接続されていると共に、出力側には、各種弁装置、圧縮機11の前記電動要素11M(コンプレッサモータ。一つで代表する)、ガスクーラ用送風機47のファンモータ47M等が接続されている。尚、当該制御装置Cは実際には冷凍機ユニット3側の制御装置とショーケースユニット5側の制御装置(図示せず)、後述する増設冷媒量調整装置111側の制御装置(これも図示せず)及び集中制御装置等により構成されるが、ここでは簡略化して制御装置Cで示すものとし、その詳細については各制御に応じて後述する。   The refrigeration apparatus R includes a control device (control means) C configured by a general-purpose microcomputer in the electric box B. The control device C has various sensors connected to the input side as shown in FIG. 2, and various valve devices and the electric element 11M (compressor motor) of the compressor 11 on the output side. ) The fan motor 47M of the gas cooler blower 47 is connected. The control device C is actually a control device on the refrigerator unit 3 side, a control device on the showcase unit 5 side (not shown), and a control device on the additional refrigerant amount adjusting device 111 side (to be described later). 1) and a centralized control device, etc., but here it is simplified and shown by the control device C, and details thereof will be described later according to each control.

(A)循環冷媒量の調整制御
次に、本実施例における冷凍装置Rの冷媒回路1の循環冷媒量の調整制御について説明する。冷媒回路1の超臨界圧力となる高圧側、本実施例では冷凍機ユニット3の中間熱交換器80の下流側には、第1の連通回路101を介して冷媒量調整タンク100が接続されている。この冷媒量調整タンク100は圧縮機11やガスクーラ46等と共に冷凍機ユニット3に内蔵されているもので、所定の容積を有するものであり、当該タンク100上部に第1の連通回路101が接続されている。この第1の連通回路101には、絞り機能を有する第1の弁装置として電動膨張弁102が介設されている。
(A) Adjustment control of circulating refrigerant amount Next, the adjustment control of the circulating refrigerant amount of the refrigerant circuit 1 of the refrigeration apparatus R in the present embodiment will be described. A refrigerant quantity adjustment tank 100 is connected via a first communication circuit 101 to the high pressure side that is the supercritical pressure of the refrigerant circuit 1, that is, downstream of the intermediate heat exchanger 80 of the refrigerator unit 3 in this embodiment. Yes. The refrigerant amount adjustment tank 100 is built in the refrigerator unit 3 together with the compressor 11 and the gas cooler 46 and has a predetermined volume, and a first communication circuit 101 is connected to the upper part of the tank 100. ing. The first communication circuit 101 is provided with an electric expansion valve 102 as a first valve device having a throttling function.

尚、絞り機能を有する弁装置は、これに限定されるものではなく、第1の連通回路101に絞り手段として、例えば抵抗値の異なる複数のキャピラリーチューブと電磁弁(弁装置)等により構成しても良い。   The valve device having the throttle function is not limited to this, and the first communication circuit 101 includes, for example, a plurality of capillary tubes having different resistance values and solenoid valves (valve devices) as throttle means. May be.

そして、この冷媒量調整タンク100には、当該タンク100内上部と、冷媒回路1の中間圧領域とを連通する第3の連通回路103が接続されている。本実施例では、第3の連通回路103の他端は、中間圧領域の一例として冷媒回路1のインタークーラ38の出口側の中間圧吸入管40に連通させる。この第3の連通回路103には、第3の弁装置としての電磁弁104が介設されている。   The refrigerant amount adjustment tank 100 is connected to a third communication circuit 103 that communicates the upper part of the tank 100 with the intermediate pressure region of the refrigerant circuit 1. In the present embodiment, the other end of the third communication circuit 103 is connected to an intermediate pressure suction pipe 40 on the outlet side of the intercooler 38 of the refrigerant circuit 1 as an example of the intermediate pressure region. The third communication circuit 103 is provided with an electromagnetic valve 104 as a third valve device.

また、この冷媒量調整タンク100には、当該タンク100内下部と、冷媒回路1の中間圧領域とを連通する第2の連通回路105が接続されている。本実施例では、第2の連通回路105の他端は、中間圧領域の一例として前記中間圧吸入管40に連通した後述する中間熱交換器80の第1の流路80Aの入口に連通させる。この第2の連通回路105には、第2の弁装置としての電磁弁106と減圧手段としてのキャピラリチューブ107が介設されている。   In addition, a second communication circuit 105 that connects the lower portion of the tank 100 and the intermediate pressure region of the refrigerant circuit 1 is connected to the refrigerant amount adjustment tank 100. In the present embodiment, the other end of the second communication circuit 105 is communicated with an inlet of a first flow path 80A of an intermediate heat exchanger 80 (described later) communicated with the intermediate pressure suction pipe 40 as an example of an intermediate pressure region. . The second communication circuit 105 is provided with an electromagnetic valve 106 as a second valve device and a capillary tube 107 as a pressure reducing means.

(A−0)増設冷媒量調整装置
更に、実施例の冷凍装置Rには増設冷媒量調整装置111が接続される。この増設冷媒量調整装置111は、冷凍装置Rの規模に応じて冷媒量調整タンク100に対して増設冷媒量調整タンク116(これも本発明における冷媒量調整タンク)を増設するために、冷凍機ユニット3にオプション的に取り付けられるものであり、冷凍機ユニット3の外部に設けられ(増設)、冷媒回路1に着脱可能に接続される。この場合、増設冷媒量調整装置111は、図示しない外装ケース内部に所定の容量を有した増設冷媒量調整タンク116を備えると共に、増設冷媒量調整タンク116の上部に絞り機能を有する第1の増設弁装置(これも本発明における第1の弁装置)としての電動膨張弁117を介して連通する第1のサービス口(サービスバルブ)118と、増設冷媒量調整タンク116の上部に第3の増設弁装置(これも本発明における第3の弁装置)としての電磁弁119を介して連通する第3のサービス口(サービスバルブ)121と、増設冷媒量調整タンク116の下部に第2の増設弁装置(これも本発明における第2の弁装置)としての電磁弁122と減圧手段としてのキャピラリチューブ123を介して連通する第2のサービス口(サービスバルブ)124を備え、これらサービス口118、121、124は増設冷媒量調整装置111より外部に露出している。
(A-0) Additional refrigerant amount adjusting device Further, an additional refrigerant amount adjusting device 111 is connected to the refrigeration apparatus R of the embodiment. The additional refrigerant amount adjusting device 111 is a refrigerator in order to add an additional refrigerant amount adjusting tank 116 (also a refrigerant amount adjusting tank in the present invention) to the refrigerant amount adjusting tank 100 according to the scale of the refrigeration apparatus R. The unit 3 is optionally attached, provided outside the refrigerator unit 3 (addition), and detachably connected to the refrigerant circuit 1. In this case, the additional refrigerant amount adjusting device 111 includes an additional refrigerant amount adjusting tank 116 having a predetermined capacity inside an exterior case (not shown), and a first extension having a throttling function above the additional refrigerant amount adjusting tank 116. A third service port (service valve) 118 that communicates via an electric expansion valve 117 as a valve device (also a first valve device in the present invention) and a third extension on the upper part of the additional refrigerant amount adjustment tank 116 A third service port (service valve) 121 that communicates via a solenoid valve 119 as a valve device (also a third valve device in the present invention), and a second additional valve at the lower part of the additional refrigerant amount adjustment tank 116 A second service port (service) that communicates with an electromagnetic valve 122 as a device (also a second valve device in the present invention) and a capillary tube 123 as a pressure reducing means Comprising a lube) 124, these service port 118,121,124 is exposed to the outside from the extension refrigerant amount adjusting device 111.

一方、冷媒回路1の超臨界圧力となる高圧側、本実施例では冷凍機ユニット3の中間熱交換器80の下流側には、高圧サービス口(サービスバルブ)112が連通して取り付けられており、中間圧領域となる中間圧吸入管40に連通された第3の連通回路103には、中圧サービス口(サービスバルブ)113が連通して予め取り付けられている。また、冷媒回路1の低圧側である冷媒配管9には、低圧サービス口(サービスバルブ)114が連通して予め取り付けられており、これらサービス口112〜114も冷凍機ユニット3より外部に露出している。   On the other hand, a high-pressure service port (service valve) 112 is connected in communication with the high-pressure side, which is the supercritical pressure of the refrigerant circuit 1, in the present embodiment, on the downstream side of the intermediate heat exchanger 80 of the refrigerator unit 3. An intermediate pressure service port (service valve) 113 is preliminarily attached to the third communication circuit 103 communicated with the intermediate pressure suction pipe 40 serving as an intermediate pressure region. In addition, a low-pressure service port (service valve) 114 is connected in advance to the refrigerant pipe 9 on the low-pressure side of the refrigerant circuit 1, and these service ports 112 to 114 are also exposed to the outside from the refrigerator unit 3. ing.

そして、この増設冷媒量調整装置111を冷媒回路1に接続する際には、第1の増設連通回路(これも本発明における第1の連通回路)を構成する第1の増設連通配管126により第1のサービス口118を高圧サービス口112に着脱可能に接続して連通させ、第3の増設連通回路(これも本発明における第3の連通回路)を構成する第3の増設連通配管127により第3のサービス口121を中圧サービス口113に着脱可能に接続して連通させ、第2の増設連通回路(これも本発明における第2の連通回路)を構成する第2の増設連通配管128により第2のサービス口124を低圧サービス口114に着脱可能に接続して連通させる。   When the additional refrigerant amount adjusting device 111 is connected to the refrigerant circuit 1, the first additional communication pipe 126 constituting the first additional communication circuit (also the first communication circuit in the present invention) is used for the first expansion communication pipe 126. The first service port 118 is detachably connected to the high-pressure service port 112 so as to communicate therewith, and the third additional communication pipe 127 constituting the third additional communication circuit (also the third communication circuit in the present invention) The third service port 121 is detachably connected to and communicated with the medium-pressure service port 113, and is connected by a second additional communication pipe 128 constituting a second additional communication circuit (also the second communication circuit in the present invention). The second service port 124 is detachably connected to and communicated with the low-pressure service port 114.

これにより、増設冷媒量調整タンク116の上部は第1の増設連通配管126を介して冷媒回路1の高圧側に連通され、電動膨張弁117は第1の増設連通回路内に設けられたかたちとなり、増設冷媒量調整タンク116の上部はまた第3の増設連通配管127を介して冷媒回路1の中間圧領域に連通され、電磁弁119は第3の増設連通回路内に設けられたかたちとなる。また、増設冷媒量調整タンク116の下部は第2の増設連通配管128を介して冷媒回路1の低圧側に連通され、電磁弁122は第2の増設連通回路内に設けられたかたちとなる。また、電動膨張弁117と第1のサービス口118の間には増設高圧圧力センサ(ユニット出口側圧力検出手段)120が取り付けられ、第1のサービス口118が高圧サービス口112に接続された状態で、ユニット出口側圧力センサ58と同様の高圧側の圧力を検出する。   As a result, the upper part of the additional refrigerant amount adjustment tank 116 is communicated with the high pressure side of the refrigerant circuit 1 via the first additional communication pipe 126, and the electric expansion valve 117 is provided in the first additional communication circuit. The upper part of the additional refrigerant amount adjusting tank 116 is also communicated with the intermediate pressure region of the refrigerant circuit 1 via the third additional communication pipe 127, and the electromagnetic valve 119 is provided in the third additional communication circuit. . Further, the lower part of the additional refrigerant amount adjustment tank 116 is communicated with the low pressure side of the refrigerant circuit 1 via the second additional communication pipe 128, and the electromagnetic valve 122 is provided in the second additional communication circuit. Further, an additional high pressure sensor (unit outlet side pressure detecting means) 120 is attached between the electric expansion valve 117 and the first service port 118, and the first service port 118 is connected to the high pressure service port 112. Thus, the high pressure side pressure similar to that of the unit outlet side pressure sensor 58 is detected.

他方、前記制御装置Cは、図2に示すように入力側にユニット出口側圧力センサ(ユニット出口側圧力検出手段)58と、増設高圧圧力センサ(ユニット出口側圧力検出手段)120、外気温度センサ56、前記高圧圧力センサ48等が接続されている。このユニット出口側圧力センサ58は、冷媒量調整タンク100の第1の連通回路101に接続され、ショーケースユニット5に向かう冷媒配管7の冷媒の圧力を検出するものである。制御装置Cの出力側には、電動膨張弁(第1の弁装置)102、電磁弁(第3の弁装置)104、電磁弁(第2の弁装置)106と、前記圧縮機11の電動要素11M、ガスクーラ46用の送風機47のファンモータ47M、主絞り手段62が接続されている。   On the other hand, as shown in FIG. 2, the control device C includes a unit outlet side pressure sensor (unit outlet side pressure detecting means) 58, an additional high pressure sensor (unit outlet side pressure detecting means) 120, an outside air temperature sensor on the input side. 56, the high pressure sensor 48 and the like are connected. The unit outlet side pressure sensor 58 is connected to the first communication circuit 101 of the refrigerant quantity adjustment tank 100 and detects the pressure of the refrigerant in the refrigerant pipe 7 toward the showcase unit 5. On the output side of the control device C, an electric expansion valve (first valve device) 102, a solenoid valve (third valve device) 104, a solenoid valve (second valve device) 106, and the motor of the compressor 11 are provided. The element 11M, the fan motor 47M of the blower 47 for the gas cooler 46, and the main throttle means 62 are connected.

更に、制御装置Cの出力側には、冷媒回路1に接続された増設冷媒量調整装置111の電動膨張弁(第1の増設弁装置)117、電磁弁(第3の増設弁装置)119、電磁弁(第2の増設弁装置)122が接続されている。また、制御装置Cは外気温度センサ56の検出温度と、蒸発器63における冷媒の蒸発温度に基づき、ガスクーラ用送風機47のファンモータ47Mの回転数制御を行う。前述した如く制御装置Cは増設冷媒量調整装置111側の制御装置(図示せず)も含む概念として以下の説明を行うが、実際には増設冷媒量調整装置111が冷凍機ユニット3に増設された状態で、冷凍機ユニット3の制御装置Cから外気温度センサ56の検出温度と低圧圧力センサ32の検出圧力を前記増設冷媒量調整装置111側の制御装置が受け取る。そして、受け取ったデータと増設高圧圧力センサ120の検出圧力に基づき、増設冷媒量調整装置111側の制御装置が電動膨張弁117、電磁弁119及び122を制御することにより、後述する冷媒量調整タンク100と同様の冷媒の回収と放出を実行する。それによって、増設冷媒量調整タンク116内に冷媒を回収し、増設冷媒量調整タンク116から冷媒を放出することにより、冷凍装置R内を循環する冷媒量を調整する。   Further, on the output side of the control device C, an electric expansion valve (first extension valve device) 117 of an additional refrigerant amount adjusting device 111 connected to the refrigerant circuit 1, an electromagnetic valve (third extension valve device) 119, A solenoid valve (second extension valve device) 122 is connected. Further, the control device C controls the rotational speed of the fan motor 47M of the gas cooler blower 47 based on the temperature detected by the outside air temperature sensor 56 and the evaporation temperature of the refrigerant in the evaporator 63. As described above, the control device C will be described below as a concept including a control device (not shown) on the additional refrigerant amount adjusting device 111 side. However, the additional refrigerant amount adjusting device 111 is actually added to the refrigerator unit 3. In this state, the control device on the side of the additional refrigerant amount adjusting device 111 receives the detected temperature of the outside air temperature sensor 56 and the detected pressure of the low pressure sensor 32 from the control device C of the refrigerator unit 3. Then, based on the received data and the detected pressure of the additional high pressure sensor 120, the control device on the additional refrigerant amount adjusting device 111 side controls the electric expansion valve 117 and the electromagnetic valves 119 and 122, so that a refrigerant amount adjusting tank, which will be described later. The same refrigerant recovery and discharge as 100 is executed. As a result, the refrigerant is collected in the additional refrigerant amount adjustment tank 116, and the refrigerant is discharged from the additional refrigerant amount adjustment tank 116, thereby adjusting the refrigerant amount circulating in the refrigeration apparatus R.

(A−1)目標高圧THP
次に、後述する如く制御装置Cは、高圧圧力センサ48により検出される高圧側圧力HPと、この高圧側圧力の目標値(目標高圧:THP)に基づいて前述した冷媒量調整タンク100及び増設冷媒量調整タンク116への冷媒の回収とそれらからの放出を制御するが、この場合、制御装置Cは目標高圧THPは外気温度TA及び蒸発器63における冷媒の蒸発温度TEから決定する。
(A-1) Target high pressure THP
Next, as will be described later, the control device C adds the above-described refrigerant amount adjustment tank 100 and expansion based on the high-pressure side pressure HP detected by the high-pressure sensor 48 and the target value (target high-pressure: THP) of the high-pressure side pressure. The recovery of the refrigerant to the refrigerant quantity adjustment tank 116 and the release from them are controlled. In this case, the control device C determines the target high pressure THP from the outside air temperature TA and the refrigerant evaporation temperature TE in the evaporator 63.

本実施例の如く冷媒回路1の高圧側が超臨界圧力以上となる冷凍装置Rでは、外気温度TAがある温度、例えば、+30℃以下である場合、飽和サイクルが行われ、+30℃より高い温度では、超臨界サイクルが行われる。超臨界サイクルが行われるとき、冷媒は液化しないため、そのときの冷媒回路1内の冷媒量で温度と圧力とは一意に決定されない。そのため、外気温度TAによって、目標高圧THPが異なる。   In the refrigeration apparatus R in which the high pressure side of the refrigerant circuit 1 is equal to or higher than the supercritical pressure as in this embodiment, when the outside air temperature TA is a certain temperature, for example, + 30 ° C. or less, a saturation cycle is performed, and at a temperature higher than + 30 ° C. A supercritical cycle is performed. Since the refrigerant is not liquefied when the supercritical cycle is performed, the temperature and pressure are not uniquely determined by the amount of refrigerant in the refrigerant circuit 1 at that time. Therefore, the target high pressure THP differs depending on the outside air temperature TA.

本実施例では、一例として、外気温度センサ56により検出される外気温度TAが下限温度(例えば0℃)以下である場合、目標高圧THPは、所定の下限値THPLで一定とする。また、外気温度TAが30℃より高い所定温度(上限温度)以上で目標高圧THPは、所定の上限値THPHで一定とする。そして、外気温度TAが下限温度より高く上限温度より低い場合には、以下の如く目標高圧THPを求める。   In the present embodiment, as an example, when the outside air temperature TA detected by the outside air temperature sensor 56 is equal to or lower than a lower limit temperature (for example, 0 ° C.), the target high pressure THP is constant at a predetermined lower limit value THPL. The target high pressure THP is constant at a predetermined upper limit value THPH when the outside air temperature TA is higher than a predetermined temperature (upper limit temperature) higher than 30 ° C. When the outside air temperature TA is higher than the lower limit temperature and lower than the upper limit temperature, the target high pressure THP is obtained as follows.

外気温度TAが所定の基準温度、例えば+30℃より低い程、高圧側圧力の目標高圧THPを低くする方向で決定し、高いほど目標高圧THPを高くする方向で決定する。また、上述した如く当該低圧圧力センサ32に検出された圧力により、換算して取得された蒸発器63における冷媒の蒸発温度TEが所定の基準温度より高い程、高圧側圧力の目標高圧THPを高くする方向で決定し、低いほど目標高圧THPを低くする方向で決定する。図3は外気温度TAと、蒸発温度TEとから決定される目標高圧THPの傾向を示す図である。   As the outside air temperature TA is lower than a predetermined reference temperature, for example, + 30 ° C., the target high pressure THP is determined to decrease, and as the outside air temperature TA increases, the target high pressure THP is determined to increase. Further, as described above, the higher the refrigerant evaporation temperature TE in the evaporator 63 obtained by conversion, the higher the target high pressure THP of the high-pressure side pressure becomes, due to the pressure detected by the low-pressure sensor 32. The lower the target pressure, the lower the target high pressure THP. FIG. 3 is a diagram showing a tendency of the target high pressure THP determined from the outside air temperature TA and the evaporation temperature TE.

尚、本実施例では、制御装置Cは目標高圧THPを外気温度TAと、蒸発温度TEとから演算式を用いて算出しているが、これに限定されるものではなく、予め外気温度TA及び蒸発温度TEとから取得されたデータテーブルに基づき、目標高圧THPを取得しても良い。   In the present embodiment, the control device C calculates the target high pressure THP from the outside air temperature TA and the evaporation temperature TE using an arithmetic expression. However, the present invention is not limited to this. The target high pressure THP may be acquired based on the data table acquired from the evaporation temperature TE.

(A−2)冷媒回収/冷媒放出制御
以下、制御装置Cによる冷媒回路1から冷媒量調整タンク100及び増設冷媒量調整タンク116への冷媒の回収とそれらから冷媒回路1への冷媒の放出の制御について説明する。尚、制御装置Cはユニット出口側圧力センサ58が検出する高圧側圧力HPが所定の高圧保護値(例えば、12MPa)を超えた場合、圧縮機11の運転を停止する高圧遮断動作を実行するものとする。これを前提として以下の冷媒回収と放出に関する制御を説明する。
(A-2) Refrigerant recovery / refrigerant release control Hereinafter, the recovery of the refrigerant from the refrigerant circuit 1 to the refrigerant amount adjustment tank 100 and the additional refrigerant amount adjustment tank 116 by the control device C and the release of the refrigerant to the refrigerant circuit 1 are performed. Control will be described. The control device C performs a high pressure shut-off operation for stopping the operation of the compressor 11 when the high pressure side pressure HP detected by the unit outlet side pressure sensor 58 exceeds a predetermined high pressure protection value (for example, 12 MPa). And Based on this premise, the following control regarding refrigerant recovery and release will be described.

制御装置Cは前述した目標高圧THPと、ユニット出口側圧力センサ58(前述した如く増設冷媒量回収装置111については増設高圧圧力センサ120)が検出する冷媒回路1の高圧側圧力HPに基づいて電動膨張弁(第1の弁装置)102及び電動膨張弁(第1の増設弁装置)117、電磁弁(第2の弁装置)106及び電磁弁(第2の増設弁装置)122、電磁弁(第3の弁装置)104及び電磁弁(第3の増設弁装置)119を制御することにより、冷媒量調整タンク100及び増設冷媒量調整タンク116に冷媒を回収しながら、それらより冷媒を放出すると共に、冷媒の回収と冷媒の放出の度合いを調整することで、冷媒回路1内の循環冷媒量を制御する。   The control device C is electrically driven based on the target high pressure THP described above and the high pressure side pressure HP of the refrigerant circuit 1 detected by the unit outlet side pressure sensor 58 (as described above, the additional high pressure sensor 120 for the additional refrigerant amount recovery device 111). Expansion valve (first valve device) 102 and electric expansion valve (first expansion valve device) 117, electromagnetic valve (second valve device) 106, electromagnetic valve (second expansion valve device) 122, electromagnetic valve ( By controlling the third valve device) 104 and the solenoid valve (third extension valve device) 119, the refrigerant is discharged from the refrigerant amount adjusting tank 100 and the additional refrigerant amount adjusting tank 116 while collecting the refrigerant. At the same time, the amount of circulating refrigerant in the refrigerant circuit 1 is controlled by adjusting the degree of refrigerant recovery and refrigerant release.

次に、図4を用いて制御装置Cによる具体的な冷媒回収と冷媒放出の制御を説明する。尚、以下の説明では冷媒量調整タンク100の冷媒回収と放出制御(電動膨張弁102、電磁弁106、104の制御)についてのみ説明するが、増設冷媒量調整タンク116についても、電動膨張弁102、電磁弁106、104にそれぞれ対応する電動膨張弁117、電磁弁122、119が冷媒量調整タンク100の場合と同様に制御されるものとして説明を省略する。但し、増設冷媒量調整タンク116は電磁弁122により冷媒回路1の低圧側に連通され、冷媒が放出される点で冷媒量調整タンク100とは異なる。   Next, specific refrigerant recovery and refrigerant discharge control by the control device C will be described with reference to FIG. In the following description, only the refrigerant recovery and discharge control (control of the electric expansion valve 102 and the electromagnetic valves 106 and 104) of the refrigerant amount adjustment tank 100 will be described, but the electric expansion valve 102 is also applied to the additional refrigerant amount adjustment tank 116. The explanation will be omitted on the assumption that the electric expansion valve 117 and the electromagnetic valves 122 and 119 respectively corresponding to the electromagnetic valves 106 and 104 are controlled similarly to the case of the refrigerant amount adjusting tank 100. However, the additional refrigerant amount adjustment tank 116 is connected to the low pressure side of the refrigerant circuit 1 by the electromagnetic valve 122 and is different from the refrigerant amount adjustment tank 100 in that the refrigerant is discharged.

図4は高圧側圧力HPの変化に伴う電動膨張弁102の弁開度の制御と電磁弁106、104の開閉制御の変遷を示している。今、ユニット出口側圧力センサ58が検出する冷媒回路1の高圧側圧力HPが前述の如く決定された目標高圧THP付近にある図4のUP2の状態であるものとすると、制御装置Cは電動膨張弁102(増設冷媒量調整タンク116の場合は電動膨張弁117。以下、同じ)の弁開度を全閉状態とし、電磁弁106(増設冷媒量調整タンク116の場合は電磁弁119。以下、同じ)を開き、電磁弁104(増設冷媒量調整タンク116の場合は電磁弁122。以下、同じ)を閉じている。この状態では冷媒量調整タンク100(及び増設冷媒量調整タンク116。以下、同じ)内は高圧側に連通されず、上部も中間圧領域に連通されず、下部のみが中間圧領域(増設冷媒量調整タンク116の場合は低圧側)に連通される。従って、冷媒量調整タンク100内の冷媒は全て冷媒回路1の中間圧領域(増設冷媒量調整タンク116の場合は低圧側。以下、同じ)に放出され、冷媒量調整タンク100内は空となった状態となるので所謂液封が防止される。   FIG. 4 shows changes in the control of the opening degree of the electric expansion valve 102 and the opening / closing control of the electromagnetic valves 106 and 104 in accordance with the change in the high-pressure side pressure HP. Assuming that the high pressure side pressure HP of the refrigerant circuit 1 detected by the unit outlet side pressure sensor 58 is in the state of UP2 in FIG. 4 in the vicinity of the target high pressure THP determined as described above, the controller C performs the electric expansion. The valve opening of the valve 102 (electric expansion valve 117 in the case of the additional refrigerant amount adjustment tank 116; hereinafter the same) is fully closed, and the electromagnetic valve 106 (electromagnetic valve 119 in the case of the additional refrigerant amount adjustment tank 116). The same) is opened, and the electromagnetic valve 104 (the electromagnetic valve 122 in the case of the additional refrigerant amount adjusting tank 116, hereinafter the same) is closed. In this state, the refrigerant amount adjustment tank 100 (and the additional refrigerant amount adjustment tank 116; the same applies hereinafter) is not communicated with the high pressure side, the upper part is not communicated with the intermediate pressure region, and only the lower part is in the intermediate pressure region (additional refrigerant amount). In the case of the adjustment tank 116, it communicates with the low pressure side). Accordingly, all the refrigerant in the refrigerant amount adjustment tank 100 is discharged to the intermediate pressure region of the refrigerant circuit 1 (low pressure side in the case of the additional refrigerant amount adjustment tank 116; the same applies hereinafter), and the refrigerant amount adjustment tank 100 becomes empty. Therefore, so-called liquid sealing is prevented.

制御装置Cは所定のサンプリングタイミングT1(例えば、200ms等)毎にユニット出口圧力センサ58(増設冷媒量調整タンク116の場合は増設高圧圧力センサ120。以下、同じ)が検出する高圧側圧力HPを取り込み、目標高圧THPと比較して図4の実線矢印の遷移を判定する。即ち、図4のUP2の状態から高圧側圧力HPが上昇し、例えば目標高圧THP+1.0(MPa)より高くなると(目標高圧THP+1.0<高圧側圧力HP)、制御装置Cは図4のUP3の状態に遷移する。このUP3の状態では制御装置Cは電磁弁106を閉じ、電動膨張弁102の弁開度を全閉状態(零ステップ)から所定ステップS(例えば、100ステップ等)開いた状態とする。また、電磁弁104を開放する。   The control device C detects the high pressure side pressure HP detected by the unit outlet pressure sensor 58 (the extended high pressure sensor 120 in the case of the extended refrigerant amount adjustment tank 116; the same applies hereinafter) at every predetermined sampling timing T1 (for example, 200 ms). Compared with the target high pressure THP, the transition of the solid arrow in FIG. 4 is determined. That is, when the high-pressure side pressure HP increases from the state of UP2 in FIG. 4 and becomes higher than, for example, the target high-pressure THP + 1.0 (MPa) (target high-pressure THP + 1.0 <high-pressure side pressure HP), the control device C Transition to the state. In the state of UP3, the control device C closes the electromagnetic valve 106 and changes the valve opening degree of the electric expansion valve 102 from the fully closed state (zero step) to the predetermined step S (for example, 100 steps). Further, the electromagnetic valve 104 is opened.

これにより、圧縮機11の高段側吐出口28から吐出された高温高圧冷媒は、オイルセパレータ44を経て、ガスクーラ46、中間熱交換器80にて冷却された後、その一部が開放されている電動膨張弁102が介設された第1の連通回路101(増設冷媒量調整タンク116の場合は第1の増設連通配管126。以下、同じ)を介して冷媒量調整タンク100内に流入する。   As a result, the high-temperature and high-pressure refrigerant discharged from the high-stage discharge port 28 of the compressor 11 passes through the oil separator 44 and is cooled by the gas cooler 46 and the intermediate heat exchanger 80, and then a part thereof is opened. Flows into the refrigerant amount adjustment tank 100 via the first communication circuit 101 (the first additional communication pipe 126 in the case of the additional refrigerant amount adjustment tank 116; the same applies hereinafter). .

また、図4のUP3の状態から高圧側圧力HPが更に上昇し、例えば目標高圧THP+1.3(MPa)より高くなると(目標高圧THP+1.3<高圧側圧力HP)、制御装置Cは図4のUP4の状態に遷移する。このUP4の状態では制御装置Cは電磁弁106を閉じ、電動膨張弁102の弁開度をUP3のステップS(100ステップ)から更に所定ステップS開き、全閉状態から合わせてステップ2S(200ステップ)開いた状態に弁開度を拡大する。また、電磁弁104は開放したままである。これにより、電動膨張弁102を介して第1の連通回路101から冷媒量調整タンク100に流入する冷媒の回収速度が上昇する。   Further, when the high-pressure side pressure HP further increases from the state of UP3 in FIG. 4 and becomes higher than the target high-pressure THP + 1.3 (MPa) (target high-pressure THP + 1.3 <high-pressure side pressure HP), the control device C is shown in FIG. Transition to the UP4 state. In this UP4 state, the control device C closes the electromagnetic valve 106, and the valve opening degree of the electric expansion valve 102 is further opened by a predetermined step S from step S (100 step) of UP3. ) Expand the valve opening to the open state. Further, the electromagnetic valve 104 remains open. As a result, the recovery rate of the refrigerant flowing from the first communication circuit 101 into the refrigerant amount adjustment tank 100 via the electric expansion valve 102 is increased.

また、図4のUP4の状態から高圧側圧力HPが更に上昇し、例えば目標高圧THP+1.6(MPa)より高くなると(目標高圧THP+1.6<高圧側圧力HP)、制御装置Cは図4のUP5の状態に遷移する。このUP5の状態では制御装置Cは電磁弁106を閉じ、電動膨張弁102の弁開度をUP4のステップ2S(200ステップ)から更に所定ステップS開き、全閉状態から合わせてステップ3S(300ステップ)開いた状態に弁開度を拡大する。また、電磁弁104は開放したままである。これにより、電動膨張弁102を介して第1の連通回路101から冷媒量調整タンク100に流入する冷媒の回収速度が更に上昇する。   Further, when the high-pressure side pressure HP further increases from the state of UP4 in FIG. 4 and becomes higher than the target high-pressure THP + 1.6 (MPa) (target high-pressure THP + 1.6 <high-pressure side pressure HP), the control device C is shown in FIG. Transition to the UP5 state. In this UP5 state, the control device C closes the electromagnetic valve 106, and the valve opening degree of the electric expansion valve 102 is further opened by a predetermined step S from step 2S (200 steps) of UP4, and from the fully closed state, step 3S (300 steps) is performed. ) Expand the valve opening to the open state. Further, the electromagnetic valve 104 remains open. As a result, the recovery rate of the refrigerant flowing into the refrigerant amount adjustment tank 100 from the first communication circuit 101 via the electric expansion valve 102 further increases.

このUP2からUP5までの間、電磁弁104が開放されていることにより、冷媒量調整タンク100の上部と冷媒回路1の中間圧領域とを連通する第3の連通回路103(増設冷媒量調整タンク116の場合には第3の増設連通配管127。以下、同じ)を介して、冷媒量調整タンク100内の圧力をタンク外にそれぞれ逃がすことができる。そのため、外気温度が高くなった場合など、冷媒回路1内の冷媒が液化しない超臨界サイクル運転している場合であっても、冷媒量調整タンク100内の圧力が低下して当該冷媒量調整タンク100内に流入した冷媒は液化し、冷媒量調整タンク100内に溜まる。即ち、冷媒量調整タンク100内の圧力は超臨界圧力以下に降下することによって、冷媒がガス領域から飽和領域となり、液面を確保することができる。   During the period from UP2 to UP5, the solenoid valve 104 is opened, so that the third communication circuit 103 (the additional refrigerant amount adjustment tank) that connects the upper part of the refrigerant amount adjustment tank 100 and the intermediate pressure region of the refrigerant circuit 1 is provided. In the case of 116, the pressure in the refrigerant quantity adjustment tank 100 can be released to the outside of the tank via the third additional communication pipe 127 (hereinafter the same). Therefore, even when the supercritical cycle operation in which the refrigerant in the refrigerant circuit 1 is not liquefied, such as when the outside air temperature becomes high, the pressure in the refrigerant amount adjustment tank 100 decreases and the refrigerant amount adjustment tank The refrigerant flowing into 100 is liquefied and accumulated in the refrigerant quantity adjustment tank 100. That is, when the pressure in the refrigerant quantity adjustment tank 100 drops below the supercritical pressure, the refrigerant changes from the gas region to the saturation region, and the liquid level can be secured.

これにより、迅速に、且つ、効率的に、冷媒回路1内の冷媒を冷媒量調整タンク100(及び増設冷媒量調整タンク116)に回収することができる。従って、冷媒回路1内の高圧側が余剰となった冷媒によって異常高圧となる不都合を解消することができ、高圧異常による圧縮機11の過負荷運転を防止することが可能となる。   Thereby, the refrigerant | coolant in the refrigerant circuit 1 can be collect | recovered to the refrigerant | coolant amount adjustment tank 100 (and expansion refrigerant | coolant amount adjustment tank 116) rapidly and efficiently. Accordingly, it is possible to eliminate the disadvantage that the refrigerant circuit 1 has an excessively high pressure on the high pressure side, resulting in an abnormally high pressure, and it is possible to prevent the compressor 11 from being overloaded due to the high pressure abnormality.

このように、制御装置Cは高圧側圧力HPが上昇するに伴って電動膨張弁102の弁開度を拡大していき、冷媒量調整タンク100への冷媒回収速度を上昇させていく。   Thus, the control device C increases the opening degree of the electric expansion valve 102 as the high-pressure side pressure HP increases, and increases the refrigerant recovery rate to the refrigerant amount adjustment tank 100.

次に、このように冷媒量調整タンク100に冷媒を回収したことで、このUP5の状態からユニット出口圧力センサ58が検出する高圧側圧力HPが低下し、高圧側圧力HPが例えば目標高圧THP+0.6(MPa)以下に低下した場合、制御装置Cは図4のDN4の状態に遷移する。尚、制御装置Cは前記サンプリングタイミングT1より長い所定のサンプリングタイミングT2(例えば、3s等)毎にユニット出口圧力センサ58が検出する高圧側圧力HPを取り込み、目標高圧THPと比較して図4の破線矢印の遷移を判定する。   Next, by collecting the refrigerant in the refrigerant amount adjustment tank 100 in this way, the high pressure side pressure HP detected by the unit outlet pressure sensor 58 from the state of UP5 is reduced, and the high pressure side pressure HP is, for example, the target high pressure THP + 0. When the pressure drops below 6 (MPa), the control device C transitions to the state of DN4 in FIG. The control device C takes in the high pressure side pressure HP detected by the unit outlet pressure sensor 58 at every predetermined sampling timing T2 (for example, 3 s) longer than the sampling timing T1, and compares it with the target high pressure THP in FIG. The transition of the dashed arrow is determined.

このDN4の状態では、制御装置Cは電動膨張弁102の弁開度をステップS/2(全閉状態から50ステップ開いた状態。冷媒回収速度は最も低くなる。)に縮小すると共に、電磁弁104は閉じる。また、電磁弁106を所定時間t1(例えば、10s)開いた後、閉じる。これにより、電動膨張弁102を介して冷媒量調整タンク100内に冷媒を回収しながら、電磁弁104を介して冷媒量調整タンク100内から所定量の冷媒が冷媒回路1の中間圧領域に放出される。   In the state of DN4, the control device C reduces the valve opening of the electric expansion valve 102 to step S / 2 (a state in which 50 steps are opened from the fully closed state. The refrigerant recovery speed is the lowest) and the solenoid valve. 104 closes. Further, the electromagnetic valve 106 is opened after a predetermined time t1 (for example, 10 s) and then closed. Thus, a predetermined amount of refrigerant is released from the refrigerant amount adjustment tank 100 to the intermediate pressure region of the refrigerant circuit 1 via the electromagnetic valve 104 while collecting the refrigerant in the refrigerant amount adjustment tank 100 via the electric expansion valve 102. Is done.

係る冷媒の放出によっても高圧側圧力HPが依然下がり続け、例えば目標高圧THP+1.2(MPa)以下に低下した場合(高圧側圧力HP≦目標高圧+1.2)、制御装置Cは図4のDN3の状態に遷移する。このDN3の状態では、制御装置Cは同様に電動膨張弁102の弁開度をステップS/2に縮小した状態とし、電磁弁104も閉じたままとする。また、電磁弁106を再度所定時間t1開いた後、閉じる。これにより、電動膨張弁102を介して冷媒量調整タンク100内に冷媒を回収しながら、電磁弁104を介して冷媒量調整タンク100内から更に所定量の冷媒が冷媒回路1の中間圧領域に放出される。   When the high-pressure side pressure HP continues to decrease due to the release of the refrigerant, for example, when the pressure falls below the target high-pressure THP + 1.2 (MPa) (high-pressure side pressure HP ≦ target high-pressure + 1.2), the control device C selects DN3 in FIG. Transition to the state. In the state of DN3, the control device C similarly reduces the opening degree of the electric expansion valve 102 to step S / 2, and keeps the electromagnetic valve 104 closed. Further, the electromagnetic valve 106 is opened again for a predetermined time t1, and then closed. As a result, while the refrigerant is collected in the refrigerant quantity adjustment tank 100 via the electric expansion valve 102, a predetermined amount of refrigerant further enters the intermediate pressure region of the refrigerant circuit 1 from the refrigerant quantity adjustment tank 100 via the electromagnetic valve 104. Released.

また、係る冷媒の放出によっても高圧側圧力HPが依然下がり続け、例えば目標高圧THP+0.9(MPa)以下に低下した場合(高圧側圧力HP≦目標高圧+0.9)、制御装置Cは図4のDN2の状態に遷移する。このDN2の状態でも、制御装置Cは同様に電動膨張弁102の弁開度をステップS/2に縮小した状態とし、電磁弁104も閉じたままとする。また、電磁弁106を再度所定時間t1開いた後、閉じる。これにより、電動膨張弁102を介して冷媒量調整タンク100内に冷媒を回収しながら、電磁弁104を介して冷媒量調整タンク100内から更に所定量の冷媒が冷媒回路1の中間圧領域に放出される。   Also, when the refrigerant is discharged, the high pressure side pressure HP continues to decrease, for example, when the pressure decreases to a target high pressure THP + 0.9 (MPa) or less (high pressure side pressure HP ≦ target high pressure + 0.9), the control device C uses FIG. Transition to the state of DN2. Even in the state of DN2, the control device C similarly reduces the opening degree of the electric expansion valve 102 to step S / 2 and keeps the electromagnetic valve 104 closed. Further, the electromagnetic valve 106 is opened again for a predetermined time t1, and then closed. As a result, while the refrigerant is collected in the refrigerant quantity adjustment tank 100 via the electric expansion valve 102, a predetermined amount of refrigerant further enters the intermediate pressure region of the refrigerant circuit 1 from the refrigerant quantity adjustment tank 100 via the electromagnetic valve 104. Released.

そして、係る冷媒の放出によっても高圧側圧力HPが依然下がり続け、例えば目標高圧THP以下に低下した場合(高圧側圧力≦目標高圧)、制御装置Cは図4のDN1の状態に遷移する。このDN1の状態では制御装置Cは電動膨張弁102を全閉とし、電磁弁104も閉じたままとする。また、電磁弁106は開放状態とすることで、前述したUP2の状態と同じ状態に戻る。   Then, even when the refrigerant is discharged, the high pressure side pressure HP continues to decrease. For example, when the pressure falls below the target high pressure THP (high pressure side pressure ≦ target high pressure), the control device C transitions to the state of DN1 in FIG. In the state of DN1, the control device C fully closes the electric expansion valve 102 and keeps the electromagnetic valve 104 closed. Further, when the electromagnetic valve 106 is opened, it returns to the same state as the state of UP2 described above.

このように、制御装置Cは高圧側圧力HPが低下するに伴って冷媒量調整タンク100から冷媒を徐々に、即ち、電磁弁106を最短でサンプリングタイミングT2毎に所定時間t1開くことで徐々に低圧側に放出していく。   As described above, the control device C gradually releases the refrigerant from the refrigerant amount adjustment tank 100 as the high-pressure side pressure HP decreases, that is, by gradually opening the electromagnetic valve 106 for a predetermined time t1 at every sampling timing T2. Release to the low pressure side.

尚、図4のDN1の状態から高圧側圧力HPが上昇に転じて目標高圧THPより高くなった場合(高圧側圧力HP>目標高圧THP)、制御装置Cは図4のUP2の状態に遷移するが、各弁の状態は同じである。また、図4のDN2の状態から冷媒の放出で高圧側圧力HPが上昇に転じ、例えば目標高圧THP+1.0(MPa)より高くなった場合(高圧側圧力HP>目標高圧THP+1.0)、制御装置Cは図4のUP3の状態に遷移する。即ち、UP3の状態で制御装置Cは電磁弁106を閉じ、電動膨張弁102の弁開度を全閉状態(零ステップ)からステップS(100ステップ)開いた状態とし、電磁弁104を開放する。これにより、冷媒回収速度が上昇する。   When the high pressure side pressure HP starts to increase from the state of DN1 in FIG. 4 and becomes higher than the target high pressure THP (high pressure side pressure HP> target high pressure THP), the control device C transitions to the state of UP2 in FIG. However, the state of each valve is the same. Further, when the high pressure side pressure HP is increased by the discharge of the refrigerant from the state of DN2 in FIG. 4 and becomes higher than the target high pressure THP + 1.0 (MPa), for example (high pressure side pressure HP> target high pressure THP + 1.0), control is performed. Device C transitions to the state of UP3 in FIG. That is, in the state of UP3, the control device C closes the electromagnetic valve 106, changes the valve opening degree of the electric expansion valve 102 from the fully closed state (zero step) to the step S (100 step), and opens the electromagnetic valve 104. . As a result, the refrigerant recovery rate increases.

また、図4のDN3の状態から冷媒の放出で高圧側圧力HPが上昇に転じ、例えば目標高圧THP+1.3(MPa)より高くなった場合(高圧側圧力HP>目標高圧THP+1.3)、制御装置Cは図4のUP4の状態に遷移する。即ち、UP4の状態で制御装置Cは電磁弁106を閉じ、電動膨張弁102の弁開度を全閉状態(零ステップ)からステップ2S(200ステップ)開いた状態とし、電磁弁104を開放する。これにより、冷媒回収速度が更に上昇する。   Further, when the high pressure side pressure HP is increased by the discharge of the refrigerant from the state of DN3 in FIG. 4 and becomes higher than the target high pressure THP + 1.3 (MPa), for example (high pressure side pressure HP> target high pressure THP + 1.3), control is performed. Device C transitions to the state of UP4 in FIG. That is, in the state of UP4, the control device C closes the electromagnetic valve 106, changes the valve opening degree of the electric expansion valve 102 from the fully closed state (zero step) to the step 2S (200 step), and opens the electromagnetic valve 104. . Thereby, the refrigerant recovery rate further increases.

また、図4のDN3の状態から冷媒の放出で高圧側圧力HPが上昇に転じ、例えば目標高圧THP+1.6(MPa)より高くなった場合(高圧側圧力HP>目標高圧THP+1.6)、制御装置Cは図4のUP5の状態に遷移する。即ち、UP5の状態で制御装置Cは電磁弁106を閉じ、電動膨張弁102の弁開度を全閉状態(零ステップ)からステップ3S(300ステップ)開いた状態とし、電磁弁104を開放する。これにより、冷媒回収速度が更に上昇する。   Further, when the high pressure side pressure HP is increased by the discharge of the refrigerant from the state of DN3 in FIG. 4 and becomes higher than, for example, the target high pressure THP + 1.6 (MPa) (high pressure side pressure HP> target high pressure THP + 1.6), control is performed. Device C transitions to the state of UP5 in FIG. That is, in the state of UP5, the control device C closes the solenoid valve 106, changes the valve opening degree of the electric expansion valve 102 from the fully closed state (zero step) to the step 3S (300 step), and opens the solenoid valve 104. . Thereby, the refrigerant recovery rate further increases.

逆に、図4のUP4の状態から冷媒の回収で高圧側圧力HPが降下に転じ、例えば目標高圧THP+0.3(MPa)以下となった場合(高圧側圧力HP≦目標高圧THP+0.3)、制御装置Cは図4のDN3の状態に遷移する。即ち、DN3の状態で制御装置Cは電動膨張弁102の弁開度をステップS/2に縮小した状態とし、電磁弁104を閉じ、電磁弁106を所定時間t1開いた後、閉じる。これにより、電動膨張弁102を介して冷媒量調整タンク100内に冷媒を回収しながら、電磁弁104を介して冷媒量調整タンク100内から所定量の冷媒が冷媒回路1の中間圧領域に放出される。   On the other hand, when the refrigerant is recovered from the state of UP4 in FIG. 4 and the high pressure side pressure HP is lowered, for example, the target high pressure THP + 0.3 (MPa) or less (high pressure side pressure HP ≦ target high pressure THP + 0.3), The control device C transitions to the state of DN3 in FIG. That is, in the state of DN3, the control device C reduces the opening degree of the electric expansion valve 102 to step S / 2, closes the electromagnetic valve 104, opens the electromagnetic valve 106 for a predetermined time t1, and then closes it. Thus, a predetermined amount of refrigerant is released from the refrigerant amount adjustment tank 100 to the intermediate pressure region of the refrigerant circuit 1 via the electromagnetic valve 104 while collecting the refrigerant in the refrigerant amount adjustment tank 100 via the electric expansion valve 102. Is done.

また、図4のUP3の状態から冷媒の回収で高圧側圧力HPが降下に転じ、例えば目標高圧THP以下となった場合(高圧側圧力HP≦目標高圧THP)、制御装置Cは図4のDN2の状態に遷移する。即ち、DN2の状態で制御装置Cは電動膨張弁102の弁開度をステップS/2に縮小した状態とし、電磁弁104を閉じ、電磁弁106を所定時間t1開いた後、閉じる。これにより、電動膨張弁102を介して冷媒量調整タンク100内に冷媒を回収しながら、電磁弁104を介して冷媒量調整タンク100内から所定量の冷媒が冷媒回路1の中間圧領域に放出される。   Further, when the high pressure side pressure HP is lowered by the recovery of the refrigerant from the state of UP3 in FIG. 4 and becomes lower than the target high pressure THP, for example (high pressure side pressure HP ≦ target high pressure THP), the control device C selects DN2 in FIG. Transition to the state. That is, in the state of DN2, the control device C makes the valve opening degree of the electric expansion valve 102 reduced to step S / 2, closes the electromagnetic valve 104, opens the electromagnetic valve 106 for a predetermined time t1, and then closes it. Thus, a predetermined amount of refrigerant is released from the refrigerant amount adjustment tank 100 to the intermediate pressure region of the refrigerant circuit 1 via the electromagnetic valve 104 while collecting the refrigerant in the refrigerant amount adjustment tank 100 via the electric expansion valve 102. Is done.

尚、例えば図4のDN4の状態で、高圧側圧力HPが目標高圧THP+1.2(MPa)より高く、目標高圧THP+1.6(MPa)以下の状態で安定した場合、制御装置CはDN4の状態を維持する。即ち、高圧側圧力HPは目標高圧THPより高めの状態で維持されるので、冷凍装置Rの冷却性能が確保されることになる。   For example, when the high pressure side pressure HP is higher than the target high pressure THP + 1.2 (MPa) and stabilized below the target high pressure THP + 1.6 (MPa) in the state of DN4 in FIG. 4, the control device C is in the state of DN4. To maintain. That is, the high pressure side pressure HP is maintained higher than the target high pressure THP, so that the cooling performance of the refrigeration apparatus R is ensured.

このように冷媒回路1に冷媒量調整タンク100及び増設冷凍装置116が接続されていることで、冷媒回路1内の余剰となった冷媒を高圧側から冷媒量調整タンク100及び増設冷媒量調整タンク116に回収し、また、冷媒量調整タンク100から冷媒回路1の中間圧領域に、増設冷媒量調整タンク116からは低圧側に冷媒を放出して冷媒回路1内の循環冷媒量を適切に維持することが可能となる。これにより、冷媒回路1内の高圧側が異常高圧となる不都合を解消することができ、高圧異常による圧縮機11の過負荷運転を防止することが可能となる。   Since the refrigerant amount adjustment tank 100 and the additional refrigeration apparatus 116 are connected to the refrigerant circuit 1 in this way, the refrigerant that has become excessive in the refrigerant circuit 1 is supplied from the high pressure side to the refrigerant amount adjustment tank 100 and the additional refrigerant amount adjustment tank. 116, and the refrigerant is discharged from the refrigerant amount adjustment tank 100 to the intermediate pressure region of the refrigerant circuit 1 and from the additional refrigerant amount adjustment tank 116 to the low pressure side, so that the circulating refrigerant amount in the refrigerant circuit 1 is appropriately maintained. It becomes possible to do. Thereby, the disadvantage that the high pressure side in the refrigerant circuit 1 becomes abnormally high can be solved, and the overload operation of the compressor 11 due to the high pressure abnormality can be prevented.

特に、制御装置Cは冷媒量調整タンク100及び増設冷媒量調整タンク116に冷媒を回収しながら放出し、目標高圧THPに基づいて回収と放出の度合いを調整することで循環冷媒量を制御するので、冷媒量調整タンク100及び増設冷媒量調整タンク116への冷媒の回収とそれらからの冷媒の放出に伴う循環冷媒量の急激な変動を防止することが可能となる。   In particular, the control device C controls the circulating refrigerant amount by discharging the refrigerant to the refrigerant amount adjustment tank 100 and the additional refrigerant amount adjustment tank 116 while collecting the refrigerant, and adjusting the degree of collection and release based on the target high pressure THP. Thus, it is possible to prevent sudden fluctuations in the circulating refrigerant amount accompanying the recovery of the refrigerant into the refrigerant amount adjustment tank 100 and the additional refrigerant amount adjustment tank 116 and the release of the refrigerant therefrom.

また、制御装置Cは冷媒回路1の高圧側圧力HPの上昇に伴い、冷媒量調整タンク100及び増設冷媒量調整タンク116への冷媒回収速度を変更すると共に、高圧側圧力HPが上昇するのに伴って冷媒回収速度を上昇させるので、過剰な冷媒回収を未然に防止することができるようになり、冷媒量調整タンク100及び増設冷媒量調整タンク116への冷媒の回収に伴う循環冷媒量の急激な変動を効果的に防止することが可能となる。   Further, as the high pressure side pressure HP of the refrigerant circuit 1 increases, the control device C changes the refrigerant recovery rate to the refrigerant amount adjustment tank 100 and the additional refrigerant amount adjustment tank 116, and the high pressure side pressure HP increases. Accordingly, the refrigerant recovery rate is increased, so that excessive refrigerant recovery can be prevented in advance, and the amount of circulating refrigerant suddenly increases with the recovery of refrigerant to the refrigerant amount adjustment tank 100 and the additional refrigerant amount adjustment tank 116. It is possible to effectively prevent such fluctuations.

更に、冷媒量調整タンク100及び増設冷媒量調整タンク116に冷媒を回収しながら、冷媒回路1の高圧側圧力HPに基づき、冷媒量調整タンク100及び増設冷媒量調整タンク116より冷媒を放出し、そして、冷媒回路1の高圧側圧力HPが低下するに伴い、冷媒量調整タンク100及び増設冷媒量調整タンク116から冷媒を徐々に放出するので、冷媒量調整タンク100及び増設冷媒量調整タンク116からの冷媒の放出に伴う循環冷媒量の急激な変動を効果的に防止することが可能となる。   Further, while collecting the refrigerant in the refrigerant amount adjustment tank 100 and the additional refrigerant amount adjustment tank 116, the refrigerant is discharged from the refrigerant amount adjustment tank 100 and the additional refrigerant amount adjustment tank 116 based on the high pressure side pressure HP of the refrigerant circuit 1. Then, as the high pressure side pressure HP of the refrigerant circuit 1 decreases, the refrigerant is gradually released from the refrigerant amount adjustment tank 100 and the additional refrigerant amount adjustment tank 116, and thus from the refrigerant amount adjustment tank 100 and the additional refrigerant amount adjustment tank 116. This makes it possible to effectively prevent a sudden change in the amount of circulating refrigerant accompanying the release of the refrigerant.

これらにより、高圧側が臨界圧力となる冷凍装置Rの冷媒回路1内の循環冷媒量を適切に維持管理し、安定した冷却性能を実現することができるようになる。   Accordingly, it is possible to appropriately maintain and manage the circulating refrigerant amount in the refrigerant circuit 1 of the refrigeration apparatus R in which the high pressure side becomes the critical pressure, and to realize stable cooling performance.

また、制御装置Cが電動膨張弁102、117の弁開度により冷媒量調整タンク100及び増設冷媒量調整タンク116への冷媒回収速度を変更し、電磁弁106、122の開放時間により冷媒量調整タンク100及び増設冷媒量調整タンク116から冷媒を徐々に放出するようにしているので、冷媒量調整タンク100及び増設冷媒量調整タンク116への冷媒回収とそれらからの冷媒の放出の度合いを電動膨張弁102、117の弁開度と電磁弁106、122の開放時間で的確に制御することができるようになる。   Further, the control device C changes the refrigerant recovery rate to the refrigerant quantity adjustment tank 100 and the additional refrigerant quantity adjustment tank 116 by the opening degree of the electric expansion valves 102 and 117, and adjusts the refrigerant quantity by the opening time of the electromagnetic valves 106 and 122. Since the refrigerant is gradually released from the tank 100 and the additional refrigerant quantity adjustment tank 116, the degree of refrigerant recovery to the refrigerant quantity adjustment tank 100 and the additional refrigerant quantity adjustment tank 116 and the release of the refrigerant from them is electrically expanded. It becomes possible to accurately control the opening of the valves 102 and 117 and the opening time of the electromagnetic valves 106 and 122.

更に、制御装置Cは冷媒量調整タンク100及び増設冷媒量調整タンク116に冷媒を回収する際、電磁弁104、119を開放するので、冷媒量調整タンク100及び増設冷媒量調整タンク116内の圧力をタンク外に逃がすことができるようになり、円滑に冷媒回路1内の冷媒を冷媒量調整タンク100及び増設冷媒量調整タンク116に回収することができるようになる。このとき、冷媒量調整タンク100及び増設冷媒量調整タンク116の上部と冷媒回路1の中間圧領域とを連通させるので、冷媒回路1の低圧側領域と連通させる場合と異なり、低圧側圧力が上昇されることによる冷却効率の低下を回避することが可能となる。   Further, when the control device C collects the refrigerant in the refrigerant amount adjustment tank 100 and the additional refrigerant amount adjustment tank 116, it opens the electromagnetic valves 104 and 119, so that the pressure in the refrigerant amount adjustment tank 100 and the additional refrigerant amount adjustment tank 116 is increased. The refrigerant in the refrigerant circuit 1 can be smoothly collected in the refrigerant quantity adjustment tank 100 and the additional refrigerant quantity adjustment tank 116. At this time, since the upper part of the refrigerant amount adjustment tank 100 and the additional refrigerant amount adjustment tank 116 and the intermediate pressure region of the refrigerant circuit 1 are communicated with each other, the low pressure side pressure increases unlike the case where the refrigerant circuit 1 communicates with the low pressure side region. It is possible to avoid a decrease in cooling efficiency due to being performed.

また、制御装置Cは冷媒回路1の目標高圧THPを基準として冷媒量調整タンク100及び増設冷媒量調整タンク116への冷媒の回収とそれらからの冷媒の放出を制御するので、高圧側圧力HPに基づいて冷媒回収と放出の度合いを制御でき、的確に高圧保護及び過負荷運転の防止することができる。これにより、冷凍装置Rの冷却性能を確保することができ、COPの適正化を図ることが可能となる。   Further, the control device C controls the recovery of the refrigerant to the refrigerant amount adjustment tank 100 and the additional refrigerant amount adjustment tank 116 and the discharge of the refrigerant from them with reference to the target high pressure THP of the refrigerant circuit 1, so that the high pressure side pressure HP is set. Based on this, the degree of refrigerant recovery and release can be controlled, and high pressure protection and overload operation can be accurately prevented. As a result, the cooling performance of the refrigeration apparatus R can be ensured, and the COP can be optimized.

この場合、前述したように制御装置Cは外気温度と蒸発器63における冷媒の蒸発温度に基づいて目標高圧THPを決定するので、外気温度により飽和サイクルと超臨界サイクルに変化する冷媒の状態を考慮し、且つ、蒸発温度に基づいて好適な高圧側圧力を実現でき、高効率な運転が可能となる。   In this case, as described above, since the control device C determines the target high pressure THP based on the outside air temperature and the evaporation temperature of the refrigerant in the evaporator 63, the state of the refrigerant changing into the saturation cycle and the supercritical cycle depending on the outside air temperature is taken into consideration. In addition, a suitable high-pressure side pressure can be realized based on the evaporation temperature, and high-efficiency operation is possible.

尚、この場合において、圧縮機11(圧縮手段)は、密閉容器12内に第1、第2の圧縮要素18、20と電動要素を組み込んだ二段圧縮式ロータリコンプレッサを採用しているが、このほかにも、2台の単段のロータリコンプレッサ、又は、その他の形式のコンプレッサで中間圧部から冷媒を取り出し、導入できる形式のものであってもよいものとする。   In this case, the compressor 11 (compression means) employs a two-stage compression rotary compressor in which the first and second compression elements 18 and 20 and the electric element are incorporated in the sealed container 12. In addition to this, it may be of a type in which the refrigerant can be taken out and introduced from the intermediate pressure section with two single-stage rotary compressors or other types of compressors.

(B)スプリットサイクル
次に、実施例の冷凍装置Rのスプリットサイクルについて説明する。実施例における冷凍装置Rは、各圧縮機11の前記第1の回転圧縮要素(低段側18)、インタークーラ38、2つの流体の流れを合流させる合流装置としての合流器81、各圧縮機11の前記第2の回転圧縮要素(高段側)20、オイルセパレータ44、ガスクーラ46、分流器82、補助絞り手段(補助膨張弁)83、中間熱交換器80、主絞り手段(主膨張弁)62、蒸発器63とから冷凍サイクルが構成される。
(B) Split cycle Next, the split cycle of the refrigeration apparatus R of the embodiment will be described. The refrigeration apparatus R in the embodiment includes the first rotary compression element (low stage side 18) of each compressor 11, the intercooler 38, a merger 81 as a merger that merges two fluid flows, and each compressor. 11, the second rotary compression element (high stage side) 20, oil separator 44, gas cooler 46, flow divider 82, auxiliary throttle means (auxiliary expansion valve) 83, intermediate heat exchanger 80, main throttle means (main expansion valve) ) 62 and the evaporator 63 constitute a refrigeration cycle.

分流器82は、ガスクーラ46から出た冷媒を二つの流れに分岐させる分流装置である。即ち、本実施例の分流器82は、ガスクーラ46から出た冷媒を第1の冷媒流と第2の冷媒流とに分流し、第1の冷媒流を補助回路に流し、第2の冷媒流を主回路に流すように構成されている。   The flow divider 82 is a flow dividing device that divides the refrigerant from the gas cooler 46 into two flows. That is, the flow divider 82 of the present embodiment diverts the refrigerant that has exited the gas cooler 46 into the first refrigerant flow and the second refrigerant flow, the first refrigerant flow through the auxiliary circuit, and the second refrigerant flow. In the main circuit.

図1における主回路とは、圧縮機11の第1の回転圧縮要素18、インタークーラ38、合流器81、第2の回転圧縮要素20、ガスクーラ46、分流器82、中間熱交換器80の第2の流路80B、主絞り手段62、蒸発器63から成る環状の冷媒回路であり、補助回路とは、分流器82から補助絞り手段83、中間熱交換器80の第1の流路80Aを順次経て合流器81に至る回路を示す。電磁弁106、キャピラリチューブ107の下流側の前記第2の連通回路105は、補助絞り手段83の下流側の第1の流路80A入口に合流している。   The main circuit in FIG. 1 is the first rotary compression element 18 of the compressor 11, the intercooler 38, the merger 81, the second rotary compression element 20, the gas cooler 46, the flow divider 82, and the intermediate heat exchanger 80. 2 is an annular refrigerant circuit composed of the second flow path 80B, the main throttle means 62, and the evaporator 63, and the auxiliary circuit is connected from the flow divider 82 to the auxiliary throttle means 83 and the first flow path 80A of the intermediate heat exchanger 80. A circuit that sequentially reaches the merger 81 is shown. The second communication circuit 105 on the downstream side of the solenoid valve 106 and the capillary tube 107 joins the inlet of the first flow path 80 </ b> A on the downstream side of the auxiliary throttle means 83.

補助絞り手段83は、上記分流器82で分流され、補助回路を流れる第1の冷媒流を減圧するものである。中間熱交換器80は、補助絞り手段83で減圧された補助回路の第1の冷媒流及び第2の連通回路105を介して冷媒量調整タンク100の下部から放出された冷媒(以下、これらを総じて第1の冷媒流という)と分流器82で分流された第2の冷媒流との熱交換を行う熱交換器である。当該中間熱交換器80には、第2の冷媒流が流れる第2の流路80Bと、上記第1の冷媒流が流れる第1の流路80Aとが熱交換可能な関係で設けられており、該中間熱交換器80の第2の流路80Bを通過することにより、第2の冷媒流は第1の流路80Aを流れる第1の冷媒流により冷却されるので、蒸発器63における比エンタルピを小さくすることができる。   The auxiliary throttle means 83 diverts the first refrigerant flow that is diverted by the flow divider 82 and flows through the auxiliary circuit. The intermediate heat exchanger 80 includes a first refrigerant flow in the auxiliary circuit decompressed by the auxiliary throttle means 83 and a refrigerant discharged from the lower part of the refrigerant amount adjustment tank 100 through the second communication circuit 105 (hereinafter referred to as “the refrigerant”). This heat exchanger generally performs heat exchange between the first refrigerant flow) and the second refrigerant flow diverted by the flow divider 82. In the intermediate heat exchanger 80, a second flow path 80B through which the second refrigerant flow flows and a first flow path 80A through which the first refrigerant flow flows are provided in a heat exchangeable relationship. Since the second refrigerant flow is cooled by the first refrigerant flow flowing through the first flow path 80A by passing through the second flow path 80B of the intermediate heat exchanger 80, the ratio in the evaporator 63 Enthalpy can be reduced.

上記制御装置Cは、図2に示すように入力側に吐出温度センサ(吐出温度検出手段)50、前記ユニット出口側圧力センサ(ユニット出口側圧力検出手段)58、中間圧圧力センサ(中間圧圧力検出手段)49、低圧圧力センサ(吸込圧力検出手段)32、ガスクーラ出口温度センサ(ガスクーラ出口温度検出手段)52、ユニット出口温度センサ(ユニット出口温度検出手段)54、ユニット入口温度センサ(入口温度検出手段)34が接続されている。   As shown in FIG. 2, the control device C includes a discharge temperature sensor (discharge temperature detection means) 50, a unit outlet side pressure sensor (unit outlet side pressure detection means) 58, an intermediate pressure sensor (intermediate pressure pressure) on the input side. 49), low pressure sensor (suction pressure detection means) 32, gas cooler outlet temperature sensor (gas cooler outlet temperature detection means) 52, unit outlet temperature sensor (unit outlet temperature detection means) 54, unit inlet temperature sensor (inlet temperature detection) Means) 34 is connected.

吐出温度センサ50は、各圧縮機11の高段側吐出口28に設けられ、第2の回転圧縮要素20から吐出された冷媒の吐出温度を検出する。ユニット出口側圧力センサ58は前述したものである。低圧圧力センサ32は、冷媒回路1の低圧側、本実施例では、各蒸発器63の下流側であって、圧縮機11の低段側吸込口22に接続される冷媒配管9に設けられ、当該冷媒導入管30に向かう冷媒の吸込圧力を検出する。中間圧圧力センサ49は、冷媒回路1の中間圧領域、本実施例では、電磁弁104の下流側の第3の連通回路103の圧力を検出する。   The discharge temperature sensor 50 is provided at the high-stage discharge port 28 of each compressor 11 and detects the discharge temperature of the refrigerant discharged from the second rotary compression element 20. The unit outlet side pressure sensor 58 is as described above. The low pressure sensor 32 is provided in the refrigerant pipe 9 connected to the low pressure side suction port 22 of the compressor 11 on the low pressure side of the refrigerant circuit 1, in the present embodiment, on the downstream side of each evaporator 63. The suction pressure of the refrigerant toward the refrigerant introduction pipe 30 is detected. The intermediate pressure sensor 49 detects the pressure of the third communication circuit 103 on the downstream side of the solenoid valve 104 in the intermediate pressure region of the refrigerant circuit 1, in this embodiment.

ガスクーラ出口温度センサ52は、ガスクーラ46の出口側に設けられ、当該ガスクーラ46を出た冷媒の温度(GCT)を検出する。ユニット出口温度センサ54は、冷媒配管7に接続される中間熱交換器80の出口側に設けられ、ユニット出口温度(LT)を検出する。ユニット入口温度センサ34は、圧縮機11の低段側吸込口22に接続される冷媒配管9に設けられ、当該冷媒導入管30に向かう冷媒の吸込温度を検出する。そして、制御装置Cの出力側には、スプリットサイクルを構成する補助絞り手段83が接続されている。当該補助絞り手段83も、ステップモータによって開度が制御される電動膨張弁である。   The gas cooler outlet temperature sensor 52 is provided on the outlet side of the gas cooler 46 and detects the temperature (GCT) of the refrigerant that has exited the gas cooler 46. The unit outlet temperature sensor 54 is provided on the outlet side of the intermediate heat exchanger 80 connected to the refrigerant pipe 7 and detects the unit outlet temperature (LT). The unit inlet temperature sensor 34 is provided in the refrigerant pipe 9 connected to the lower stage suction port 22 of the compressor 11 and detects the refrigerant suction temperature toward the refrigerant introduction pipe 30. Further, auxiliary throttle means 83 constituting a split cycle is connected to the output side of the control device C. The auxiliary throttle means 83 is also an electric expansion valve whose opening degree is controlled by a step motor.

以下、補助絞り手段83の開度制御について詳述する。補助絞り手段83は、圧縮機11の運転開始時点では、所定の初期弁開度とする。その後、制御装置Cは、以下の第1の制御量、第2の制御量、第3の制御量に基づき補助絞り手段83の弁開度を増大させる操作量を決定する。   Hereinafter, the opening degree control of the auxiliary throttle means 83 will be described in detail. The auxiliary throttle means 83 has a predetermined initial valve opening when the compressor 11 starts operating. Thereafter, the control device C determines an operation amount for increasing the valve opening degree of the auxiliary throttle means 83 based on the following first control amount, second control amount, and third control amount.

(B−1)補助絞り手段の弁開度増大制御
第1の制御量(DTcont)は、圧縮機11の吐出冷媒温度DTに基づいて得られる。制御装置Cは、上記吐出温度センサ50にて検出される温度DTが所定値DT0より高いか否かを判断し、当該吐出冷媒温度DTが所定値DT0より高い場合には、補助絞り手段83の開度を増大させる方向に作用する制御量とする。当該所定値DT0は、圧縮機11の適正な運転を実現可能とする限界温度(一例として+100℃)より少許低い温度(一例として+95℃)とし、温度が上昇した場合、補助絞り手段83の開度を増大させることで、当該圧縮機11の温度上昇を抑制し、圧縮機11が限界温度に達しないような制御を行う。
(B-1) Valve Opening Increase Control of Auxiliary Throttle Means The first control amount (DTcont) is obtained based on the discharge refrigerant temperature DT of the compressor 11. The control device C determines whether or not the temperature DT detected by the discharge temperature sensor 50 is higher than a predetermined value DT0. If the discharge refrigerant temperature DT is higher than the predetermined value DT0, the control device C The control amount acts in the direction of increasing the opening. The predetermined value DT0 is set to a temperature (for example, + 95 ° C.) that is slightly lower than a limit temperature (for example, + 100 ° C.) that enables proper operation of the compressor 11. When the temperature rises, the auxiliary throttle means 83 is opened. By increasing the degree, the temperature rise of the compressor 11 is suppressed, and control is performed so that the compressor 11 does not reach the limit temperature.

第2の制御量(MPcont)は、スプリットサイクルの補助回路に流す冷媒量を調整して中間圧力(MP)の適正化を図る制御量である。本実施例では、ユニット出口側圧力センサ58により検出される冷媒回路1の高圧側圧力HPと、低圧圧力センサ32により検出される冷媒回路1の低圧側圧力LPとから算出される(求められる)適正中間圧力値よりも、中間圧圧力センサ49により検出される冷媒回路1の中間圧領域の圧力MPが高いか否かを判断し、当該中間圧領域の圧力MPが適正中間圧力値よりも低い場合には、補助絞り手段83の開度を増大させる方向に作用させる。   The second control amount (MPcont) is a control amount for adjusting the amount of refrigerant flowing through the auxiliary circuit of the split cycle to optimize the intermediate pressure (MP). In this embodiment, it is calculated (obtained) from the high pressure side pressure HP of the refrigerant circuit 1 detected by the unit outlet side pressure sensor 58 and the low pressure side pressure LP of the refrigerant circuit 1 detected by the low pressure sensor 32. It is determined whether or not the pressure MP in the intermediate pressure region of the refrigerant circuit 1 detected by the intermediate pressure sensor 49 is higher than the appropriate intermediate pressure value, and the pressure MP in the intermediate pressure region is lower than the appropriate intermediate pressure value. In this case, the auxiliary throttle means 83 is acted in the direction of increasing the opening degree.

尚、適正中間圧力値は、検出された高圧側圧力HPと、低圧側圧力LPとの相乗平均から算出してもよく、これ以外に、予め高圧側圧力HPと低圧側圧力LPとから適正な中間圧力値を実験的に取得し、これに基づいて構築されるデータテーブルから決定しても良い。   The appropriate intermediate pressure value may be calculated from the geometric mean of the detected high-pressure side pressure HP and the low-pressure side pressure LP. In addition, an appropriate intermediate pressure value may be calculated from the high-pressure side pressure HP and the low-pressure side pressure LP in advance. The intermediate pressure value may be obtained experimentally and determined from a data table constructed based on this.

また、本実施例では、高圧側圧力HPと、低圧側圧力LPとから求められる適正中間圧力値と、中間圧領域の圧力MPとを比較して第2の制御量(MPcont)を決定しているが、これに限定されるものではなく、例えば、下記のものを採用しても良い。即ち、中間圧圧力センサ49により検出される冷媒回路1の中間圧領域の圧力MPと、低圧圧力センサ32により検出される冷媒回路1の低圧側圧力LPから過圧縮判定値MPOを求め、当該過圧縮判定値MPOがユニット出口側圧力センサ58により検出される冷媒回路1の高圧側圧力HPよりも低いか否かを判断し、過圧縮判定値MPOが高圧側圧力HPよりも低い場合には、補助絞り手段83の開度を増大させる方向に作用させる。当該第2の制御量を補助絞り手段83の開度制御に反映させることで、高圧側圧力HP、中間圧領域の圧力MP、低圧側圧力LPの圧力差を適正に保つことができ、冷凍サイクルの運転の安定化を図ることができる。   In the present embodiment, the second control amount (MPcont) is determined by comparing the appropriate intermediate pressure value obtained from the high pressure side pressure HP and the low pressure side pressure LP with the pressure MP in the intermediate pressure region. However, the present invention is not limited to this. For example, the following may be adopted. That is, the over-compression determination value MPO is obtained from the pressure MP in the intermediate pressure region of the refrigerant circuit 1 detected by the intermediate pressure sensor 49 and the low-pressure side pressure LP of the refrigerant circuit 1 detected by the low-pressure sensor 32. It is determined whether the compression determination value MPO is lower than the high pressure side pressure HP of the refrigerant circuit 1 detected by the unit outlet side pressure sensor 58, and when the over compression determination value MPO is lower than the high pressure side pressure HP, The auxiliary throttle means 83 is operated in the direction of increasing the opening degree. By reflecting the second control amount in the opening degree control of the auxiliary throttle means 83, the pressure difference among the high pressure side pressure HP, the intermediate pressure region pressure MP, and the low pressure side pressure LP can be appropriately maintained, and the refrigeration cycle The operation can be stabilized.

第3の制御量(SPcont)は、中間熱交換器80の第2の流路から出た冷媒温度LTの適正化を図る制御量である。本実施例では、制御装置Cは、ガスクーラ出口温度センサ52により検出されるガスクーラ46を経た冷媒の温度GCTと、ユニット出口温度センサ54により検出される中間熱交換器80を経た第2の冷媒流の温度LTとの差(GCT−LT)が所定値SPより小さいか否かを判断し、小さい場合には、補助絞り手段83の開度を増大させる方向に作用させる。   The third control amount (SPcont) is a control amount for optimizing the refrigerant temperature LT that has come out of the second flow path of the intermediate heat exchanger 80. In the present embodiment, the control device C includes the refrigerant temperature GCT that has passed through the gas cooler 46 detected by the gas cooler outlet temperature sensor 52 and the second refrigerant flow that has passed through the intermediate heat exchanger 80 detected by the unit outlet temperature sensor 54. It is determined whether or not the difference (GCT−LT) from the temperature LT is smaller than the predetermined value SP. If the difference is smaller, the opening degree of the auxiliary throttle means 83 is increased.

ここで、所定値SPは、高圧側圧力HPが当該冷媒の超臨界領域である場合と、飽和領域である場合とで異なるものとする。本実施例では、高圧側圧力HPが超臨界領域であるか飽和領域であるかは、外気温度センサ56により検出された外気温度に基づき、当該外気温度が高い場合、例えば、+31℃以上では、超臨界領域であると判断し、外気温度が低い場合、例えば、+31℃未満では飽和領域であるものと判断する。そして、超臨界領域と判断した場合には、所定値SPは上げた設定とし、飽和領域と判断した場合には、所定値SPを下げた設定とする。本実施例では、超臨界領域では所定値SPは、35℃、飽和領域では20℃とする。   Here, the predetermined value SP is different depending on whether the high-pressure side pressure HP is in the supercritical region or the saturation region of the refrigerant. In the present embodiment, whether the high-pressure side pressure HP is a supercritical region or a saturated region is based on the outside air temperature detected by the outside air temperature sensor 56, and when the outside air temperature is high, for example, at + 31 ° C. or higher, If it is determined that the temperature is in the supercritical region and the outside air temperature is low, for example, if it is less than + 31 ° C., it is determined that the region is a saturated region. If it is determined that the region is a supercritical region, the predetermined value SP is set to be increased, and if it is determined to be a saturated region, the predetermined value SP is decreased. In this embodiment, the predetermined value SP is 35 ° C. in the supercritical region and 20 ° C. in the saturation region.

制御装置Cは、上述した如く得られた3つの制御量、即ち、第1の制御量(DTcont)と、第2の制御量(MPcont)と、第3の制御量(SPcont)とを合算して、補助絞り手段83の弁開度の操作量を決定し、これに基づき弁開度を増大させる。   The control device C adds the three control amounts obtained as described above, that is, the first control amount (DTcont), the second control amount (MPcont), and the third control amount (SPcont). Thus, the operation amount of the valve opening of the auxiliary throttle means 83 is determined, and the valve opening is increased based on this.

(B−2)補助絞り手段の弁開度縮小制御
また、制御装置Cは、中間熱交換器80を経た第2の冷媒流の温度LT、又は、圧縮機11からの吐出冷媒温度DTとガスクーラ46を経た冷媒の温度GCTとの差から補助絞り手段83の弁開度を縮小させる操作量を決定する。
(B-2) Valve Opening Reduction Control of Auxiliary Throttle Means Further, the control device C is configured such that the temperature LT of the second refrigerant flow that has passed through the intermediate heat exchanger 80 or the refrigerant temperature DT discharged from the compressor 11 and the gas cooler. The operation amount for reducing the valve opening degree of the auxiliary throttle means 83 is determined from the difference from the refrigerant temperature GCT after 46.

即ち、制御装置Cは、ユニット出口温度センサ54により検出される中間熱交換器80を経た第2の冷媒流の温度LTが所定値より低いか否かを判断する。本実施例では、当該所定値は一例として0℃とする。これにより、ユニット出口温度が0℃以下である場合には、補助絞り手段83の開度を縮小させる方向に操作し、中間熱交換器80において冷却される第2の冷媒流が過剰に冷却されてしまう不都合を解消することができる。   That is, the control device C determines whether or not the temperature LT of the second refrigerant flow that has passed through the intermediate heat exchanger 80 detected by the unit outlet temperature sensor 54 is lower than a predetermined value. In this embodiment, the predetermined value is 0 ° C. as an example. Thereby, when the unit outlet temperature is 0 ° C. or lower, the second refrigerant flow cooled in the intermediate heat exchanger 80 is excessively cooled by operating in the direction of reducing the opening degree of the auxiliary throttle means 83. Can eliminate the inconvenience.

また、制御装置Cは、吐出温度センサ50にて検出される温度DTと、ガスクーラ出口温度センサ52により検出されるガスクーラ46を経た冷媒の温度GCTとの差(DT−GCT)が所定値TDTより低いか否かを判断し、低い場合には、補助絞り手段83の開度を縮小させる方向に作用させる。   Further, in the control device C, the difference (DT−GCT) between the temperature DT detected by the discharge temperature sensor 50 and the temperature GCT of the refrigerant passed through the gas cooler 46 detected by the gas cooler outlet temperature sensor 52 is based on the predetermined value TDT. It is determined whether or not it is low. If it is low, the opening of the auxiliary throttle means 83 is acted in a direction to reduce it.

ここで、所定値TDTは、高圧側圧力HPが当該冷媒の超臨界領域である場合と、飽和領域である場合とで異なる。本実施例では、上記第3の制御量を求めた場合と同様に、高圧側圧力HPが超臨界領域であるか飽和領域であるかは、外気温度に基づき判断する。そして、超臨界領域と判断した場合には、所定値TDTは下げた設定とし、飽和領域と判断した場合には、所定値TDTを上げる設定とする。本実施例では、超臨界領域では所定値TDTは10℃、飽和領域では35℃とする。   Here, the predetermined value TDT differs depending on whether the high-pressure side pressure HP is in the supercritical region or the saturation region of the refrigerant. In the present embodiment, as in the case of obtaining the third control amount, whether the high-pressure side pressure HP is in the supercritical region or the saturated region is determined based on the outside air temperature. When it is determined that the region is a supercritical region, the predetermined value TDT is set to be lowered. When it is determined that the region is a saturated region, the predetermined value TDT is increased. In this embodiment, the predetermined value TDT is 10 ° C. in the supercritical region and 35 ° C. in the saturation region.

制御装置Cは、中間熱交換器80を経た第2の冷媒流の温度LTが所定値(0℃)以下である場合、又は、圧縮機11からの吐出冷媒温度DTとガスクーラ46を経た冷媒の温度GCTとの差が所定値TDTより低い場合、補助絞り手段83の弁開度の操作量を決定し、上記弁開度増大制御にかかわらず、これに基づき弁開度を縮小させる。   When the temperature LT of the second refrigerant flow that has passed through the intermediate heat exchanger 80 is equal to or lower than a predetermined value (0 ° C.), the control device C or the discharge refrigerant temperature DT from the compressor 11 and the refrigerant that has passed through the gas cooler 46 When the difference from the temperature GCT is lower than the predetermined value TDT, the operation amount of the valve opening of the auxiliary throttle means 83 is determined, and the valve opening is reduced based on this, regardless of the valve opening increase control.

上述したようなスプリットサイクルを備えた本実施例における冷凍装置Rでは、ガスクーラ46で放熱した後の冷媒を分流し、補助絞り手段83で減圧膨張された第1の冷媒流により、第2の冷媒流を冷却することができるようになり、蒸発器63入口の比エンタルピを小さくすることができるようになる。これにより、冷凍効果を大きくすることが可能となり、従来の装置に比べて効果的に性能を向上させることができるようになる。また、分流された第1の冷媒流は圧縮機11の高段側吸込口26から第2の回転圧縮要素20(中間圧部)に戻されるため、圧縮機11の低段側吸込口22から第1の回転圧縮要素18(低圧部)に吸い込まれる第2の冷媒流の量が減少し、低圧から中間圧まで圧縮するための第1の回転圧縮要素18(低段部)における圧縮仕事量が減少する。その結果、圧縮機11における圧縮動力が低下して成績係数が向上する。   In the refrigeration apparatus R in the present embodiment having the split cycle as described above, the second refrigerant is separated by the first refrigerant flow that is diverted and decompressed by the auxiliary throttle means 83 after the refrigerant that has radiated heat by the gas cooler 46 is divided. The flow can be cooled, and the specific enthalpy at the inlet of the evaporator 63 can be reduced. As a result, the refrigeration effect can be increased and the performance can be effectively improved as compared with the conventional apparatus. Further, since the divided first refrigerant flow is returned to the second rotary compression element 20 (intermediate pressure portion) from the high-stage suction port 26 of the compressor 11, the first refrigerant flow from the low-stage suction port 22 of the compressor 11 is returned. The amount of the second refrigerant flow sucked into the first rotary compression element 18 (low pressure part) decreases, and the compression work in the first rotary compression element 18 (low stage part) for compression from low pressure to intermediate pressure Decrease. As a result, the compression power in the compressor 11 is reduced and the coefficient of performance is improved.

ここで、上記所謂スプリットサイクルの効果は中間熱交換器80を流れる第1の冷媒流と第2の冷媒流の量に依存する。即ち、第1の冷媒流の量が多すぎれば蒸発器63において最終的に蒸発する第2の冷媒流の量が不足することにより、逆に第1の冷媒流の量が少なすぎればスプリットサイクルの効果が薄れてくる。一方、補助絞り手段83で減圧された第1の冷媒流の圧力は冷媒回路1の中間圧力であり、当該中間圧力を制御することは第1の冷媒流の量を制御することになる。   Here, the effect of the so-called split cycle depends on the amounts of the first refrigerant flow and the second refrigerant flow flowing through the intermediate heat exchanger 80. That is, if the amount of the first refrigerant flow is too large, the amount of the second refrigerant flow that finally evaporates in the evaporator 63 is insufficient, and conversely if the amount of the first refrigerant flow is too small, the split cycle. The effect will fade. On the other hand, the pressure of the first refrigerant flow depressurized by the auxiliary throttle means 83 is the intermediate pressure of the refrigerant circuit 1, and controlling the intermediate pressure controls the amount of the first refrigerant flow.

ここで、本実施例では、上述したように圧縮機11からの吐出冷媒の温度DT(吐出温度センサ50)が所定値DT0より高い場合に補助絞り手段83の開度を増大させる方向に作用する第1の制御量と、冷媒回路1の高圧側圧力HPと低圧側圧力LPとから求められる適正中間圧力値よりも、冷媒回路1の中間圧領域の圧力MPが低い場合に補助絞り手段83の開度を増大させる方向に作用する第2の制御量と、ガスクーラ46を経た冷媒の温度GCTと中間熱交換器80を経た第2の冷媒流の温度LTとの差(GCT−LT)が所定値SPより小さい場合に補助絞り手段83の開度を増大させる方向に作用する第3の制御量を演算し、これら第1乃至第3の制御量を合算することにより、補助絞り手段83の弁開度を増大させる操作量を決定する。また、温度LTが所定値よりも低い場合、又は、温度DT−GCTが所定値TDTより低い場合に補助絞り手段83の弁開度を縮小する方向で操作量を決定する。   Here, in this embodiment, as described above, when the temperature DT (discharge temperature sensor 50) of the refrigerant discharged from the compressor 11 is higher than the predetermined value DT0, the opening of the auxiliary throttle means 83 is increased. When the pressure MP in the intermediate pressure region of the refrigerant circuit 1 is lower than the appropriate intermediate pressure value obtained from the first control amount, the high pressure side pressure HP and the low pressure side pressure LP of the refrigerant circuit 1, the auxiliary throttle means 83 The difference (GCT−LT) between the second control amount acting in the direction of increasing the opening degree and the temperature LT of the refrigerant passing through the gas cooler 46 and the temperature LT of the second refrigerant flow passing through the intermediate heat exchanger 80 is predetermined. If the value of the auxiliary throttle means 83 is smaller than the value SP, a third control amount acting in the direction of increasing the opening degree of the auxiliary throttle means 83 is calculated, and the first to third control quantities are added together to calculate the valve of the auxiliary throttle means 83. The operation amount to increase the opening A constant. Further, when the temperature LT is lower than a predetermined value, or when the temperature DT-GCT is lower than the predetermined value TDT, the operation amount is determined in a direction to reduce the valve opening degree of the auxiliary throttle means 83.

これにより、第1の制御量によって吐出冷媒の温度DTを所定値DT0以下に保つことができ、第2の制御量によって、冷媒回路1の中間圧力MPを適正化でき、これによって、低圧側圧力LP、中間圧力MP、高圧側圧力HPの圧力差を適正に保つことができる。また、第3の制御量によって中間熱交換器80を経た第2の冷媒流の温度LTを低くし、冷凍効果を保つことができる。これらにより、総じて冷凍装置の高効率化と安定化を達成することが可能となる。   As a result, the temperature DT of the discharged refrigerant can be kept at a predetermined value DT0 or less by the first control amount, and the intermediate pressure MP of the refrigerant circuit 1 can be optimized by the second control amount. The pressure difference among LP, intermediate pressure MP, and high-pressure side pressure HP can be kept appropriate. In addition, the temperature LT of the second refrigerant flow that has passed through the intermediate heat exchanger 80 can be lowered by the third control amount, and the refrigeration effect can be maintained. As a result, it is possible to achieve high efficiency and stabilization of the refrigeration apparatus as a whole.

また、制御装置Cは、高圧側圧力HPが超臨界領域にある場合、所定値SPを上げ、所定値TDTを下げると共に、高圧側圧力HPが飽和領域にある場合、所定値SPを下げ、所定値TDTを上げることにより、高圧側圧力HPが超臨界領域にある場合と飽和領域にある場合とに分けて第3の制御量と第1の制御量の所定値SP及びTDTを変更して制御することが可能となる。   Further, the control device C increases the predetermined value SP and decreases the predetermined value TDT when the high pressure side pressure HP is in the supercritical region, and decreases the predetermined value SP when the high pressure side pressure HP is in the saturation region. By increasing the value TDT, control is performed by changing the third control amount and the predetermined values SP and TDT of the first control amount separately for the case where the high pressure side pressure HP is in the supercritical region and the case where it is in the saturation region. It becomes possible to do.

これにより、高圧側圧力HPが飽和領域にある場合であっても中間熱交換器80における過熱度を確実に確保することができ、圧縮機11に液バックが生じる不都合を回避することができる。また、高圧側圧力HPが超臨界領域にある場合には、このような液バックが生じないため、効率を優先した設定とすることができる。   Thereby, even when the high-pressure side pressure HP is in the saturation region, the degree of superheat in the intermediate heat exchanger 80 can be reliably ensured, and the inconvenience of causing a liquid back in the compressor 11 can be avoided. Further, when the high-pressure side pressure HP is in the supercritical region, such a liquid back does not occur, and therefore, the efficiency can be set as a priority.

尚、上記実施例における第2の制御量を、冷媒回路1の中間圧領域の圧力MPと低圧側圧力LPから求められる過圧縮判定値MPOが、冷媒回路の高圧側圧力HPより低い場合に補助絞り手段の開度を増大させる方向に作用する第2の制御量として、第1乃至第3の制御量を合算することにより、補助絞り手段の弁開度の操作量を決定することとしても、上記と同様に、冷媒回路の中間圧力MPを適正化でき、これによって、低圧側圧力LP、中間圧力MP、高圧側圧力HPの圧力差を適正に保つことができる。   Note that the second control amount in the above embodiment is supplemented when the overcompression determination value MPO obtained from the pressure MP and the low pressure LP in the intermediate pressure region of the refrigerant circuit 1 is lower than the high pressure HP of the refrigerant circuit. As the second control amount acting in the direction of increasing the opening of the throttle means, the operation amount of the valve opening of the auxiliary throttle means can be determined by adding the first to third control amounts. Similarly to the above, the intermediate pressure MP of the refrigerant circuit can be optimized, whereby the pressure difference among the low pressure side pressure LP, the intermediate pressure MP, and the high pressure side pressure HP can be kept appropriate.

また、当該実施例における中間熱交換器80から出た第1の冷媒流は、インタークーラ38の出口側に設けられた合流器81によって当該インタークーラ38の出口側に戻すことができ、インタークーラ38における圧力損失を防止して、円滑に中間熱交換器80から出た冷媒流を冷媒回路1の中間圧側に合流することが可能となる。   In addition, the first refrigerant flow output from the intermediate heat exchanger 80 in this embodiment can be returned to the outlet side of the intercooler 38 by the merger 81 provided on the outlet side of the intercooler 38. Thus, it is possible to prevent the pressure loss at 38 and smoothly join the refrigerant flow coming out of the intermediate heat exchanger 80 to the intermediate pressure side of the refrigerant circuit 1.

更に、実施例では冷媒量調整タンク100から放出した冷媒も中間熱交換器80の第1の流路80Aに流しているので、放出した冷媒も第2の流路80Bを流れる第2の冷媒流の冷却に利用することができる効果がある。   Furthermore, in the embodiment, since the refrigerant released from the refrigerant quantity adjustment tank 100 is also flowing through the first flow path 80A of the intermediate heat exchanger 80, the released refrigerant also flows through the second flow path 80B. There is an effect that can be used for cooling of.

(D)ガスクーラ用送風機の制御
次に、上述した如きガスクーラ46を空冷するガスクーラ用送風機47の制御について説明する。本実施例における制御装置Cは、図2に示すように入力側に高圧圧力センサ(高圧圧力検出手段)48と、低圧圧力センサ32と、外気温度センサ56が接続されている。ここで、低圧圧力センサ32にて検出される圧力と、蒸発器63における蒸発温度TEとは、一定の関係を有するため、制御装置Cは、当該低圧圧力センサ32に検出された圧力により、蒸発器63における冷媒の蒸発温度TEを換算して取得する。また、制御装置Cの出力側には、ガスクーラ46を空冷するガスクーラ用送風機47のファンモータ47Mが接続されている。
(D) Control of Gas Cooler Blower Next, control of the gas cooler blower 47 that air-cools the gas cooler 46 as described above will be described. As shown in FIG. 2, the control device C in the present embodiment is connected to a high pressure sensor (high pressure detector) 48, a low pressure sensor 32, and an outside air temperature sensor 56 on the input side. Here, since the pressure detected by the low pressure sensor 32 and the evaporation temperature TE in the evaporator 63 have a certain relationship, the controller C evaporates by the pressure detected by the low pressure sensor 32. The refrigerant evaporation temperature TE in the vessel 63 is converted and acquired. Further, a fan motor 47M of a gas cooler blower 47 that air-cools the gas cooler 46 is connected to the output side of the control device C.

制御装置Cは、高圧圧力センサ48により検出される高圧側圧力HPが目標高圧:THPとなるように、ガスクーラ用送風機47の回転数を制御する。即ち、制御装置Cは、高圧圧力センサ(高圧圧力検出手段)48により検出された高圧側圧力HPと、目標高圧THPと、これらHPとTHPの偏差e、当該偏差eに基づきP(比例。偏差eの大きさに比例して、当該偏差eを縮小させる方向の制御)と、D(微分。偏差eの変化を縮小させる方向の制御)とから、比例微分演算を実行し、操作量として導出されるガスクーラ用送風機47(のファンモータ47M)の回転数を決定する。当該回転数は、目標高圧THPが高いほど、送風機47の回転数は上げられ、目標高圧THPが低いほど、送風機47の回転数が下げられる。   The control device C controls the rotational speed of the gas cooler blower 47 so that the high pressure side pressure HP detected by the high pressure sensor 48 becomes the target high pressure: THP. That is, the control device C uses the high pressure side pressure HP detected by the high pressure sensor 48 (high pressure detection means), the target high pressure THP, the deviation e between these HP and THP, and P (proportional deviation based on the deviation e). Proportional differential operation is performed from D (differentiation, control in the direction to reduce the change of the deviation e), and derived as an operation amount in proportion to the magnitude of e. The rotational speed of the gas cooler blower 47 (the fan motor 47M) is determined. The rotational speed of the blower 47 is increased as the target high pressure THP is higher, and the rotational speed of the blower 47 is decreased as the target high pressure THP is lower.

これにより、制御装置Cは、外気温度TAと蒸発器における冷媒の蒸発温度(低圧圧力センサ32にて検出された低圧圧力から換算して取得)TEに基づいてガスクーラ用送風機47の回転数を制御することにより、高圧側が超臨界圧力となる冷凍装置Rであっても、適切な高圧圧力となるようにガスクーラ用送風機47の回転数を制御することができる。これにより、ガスクーラ用送風機47の運転による騒音を低減しつつ、高効率な運転を実現することができる。   Thereby, the control apparatus C controls the rotation speed of the gas cooler blower 47 based on the outside air temperature TA and the evaporation temperature of refrigerant in the evaporator (converted from the low pressure detected by the low pressure sensor 32) TE. By doing so, even if the refrigeration apparatus R has a supercritical pressure on the high pressure side, the rotational speed of the gas cooler blower 47 can be controlled so as to have an appropriate high pressure. Thereby, high efficiency operation can be realized while reducing noise due to operation of the gas cooler blower 47.

本実施例では、制御装置Cは、外気温度TAと蒸発温度TEに基づき、冷媒回路1の高圧側圧力の目標値THPを、例えば、外気温度TAが低い程、目標値THPを低くし、蒸発温度TEが高い程、目標値THPを高くする方向で当該目標値THPを決定し、高圧側圧力が目標値THPとなるよう、ガスクーラ用送風機47を制御することにより、外気温度TAにより飽和サイクルと超臨界サイクルに変化する冷媒の状態を考慮し、且つ、蒸発温度TEに基づいて好適な高圧側圧力を実現でき、これにより、高効率な運転を実現できる。   In the present embodiment, the control device C reduces the target value THP of the high-pressure side pressure of the refrigerant circuit 1 based on the outside air temperature TA and the evaporation temperature TE, for example, the lower the outside air temperature TA, the lower the target value THP. As the temperature TE is higher, the target value THP is determined in the direction of increasing the target value THP, and the gas cooler blower 47 is controlled so that the high-pressure side pressure becomes the target value THP. In consideration of the state of the refrigerant changing to the supercritical cycle, a suitable high-pressure side pressure can be realized based on the evaporation temperature TE, thereby realizing a highly efficient operation.

(E)オイルセパレータ
一方、上述した如き圧縮機11の高段側吐出口28とガスクーラ46とを接続する高圧吐出配管42には、オイルセパレータ44が介設されている。このオイルセパレータ44は、圧縮機11から吐出された高圧の吐出冷媒中に含まれるオイルを冷媒と分離して捕捉するものであり、このオイルセパレータ44には、捕捉したオイルを圧縮機11に戻すオイル戻し回路73が接続されている。このオイル戻し回路73中には、オイルタンク79と、捕捉したオイルを冷却するオイルクーラ74が設けられ、このオイルクーラ74の下流側で、オイル戻し回路73は2系統に分岐され、それぞれ流量調整弁(電動弁)76を介して圧縮機11の密閉容器12に接続される。圧縮機11の密閉容器12内は、上述のように中間圧に保たれるため、捕捉されたオイルは、オイルセパレータ44内の高圧と密閉容器12内の中間圧との差圧によって当該密閉容器12内に戻される。また、圧縮機11の密閉容器12には、この密閉容器12内に保有するオイルのレベルを検出するオイルレベルフロートスイッチ77が設けられている。
(E) Oil Separator On the other hand, an oil separator 44 is interposed in the high-pressure discharge pipe 42 that connects the high-stage discharge port 28 of the compressor 11 and the gas cooler 46 as described above. The oil separator 44 separates and captures the oil contained in the high-pressure discharged refrigerant discharged from the compressor 11 from the refrigerant. The oil separator 44 returns the captured oil to the compressor 11. An oil return circuit 73 is connected. The oil return circuit 73 is provided with an oil tank 79 and an oil cooler 74 for cooling the captured oil. The oil return circuit 73 is branched into two systems on the downstream side of the oil cooler 74, and the flow rate is adjusted respectively. It is connected to the hermetic container 12 of the compressor 11 via a valve (electric valve) 76. Since the inside of the sealed container 12 of the compressor 11 is maintained at an intermediate pressure as described above, the trapped oil is caused by the differential pressure between the high pressure in the oil separator 44 and the intermediate pressure in the sealed container 12. 12 is returned. The hermetic container 12 of the compressor 11 is provided with an oil level float switch 77 that detects the level of oil held in the hermetic container 12.

また、上述したように、当該オイルクーラ74は、上記ガスクーラ46と同一の風路45に設置されており、ガスクーラ用送風機47により空冷される。各圧縮機11の高段側吐出口28から吐出された高温高圧冷媒は、第2の回転圧縮要素20の下流側で合流し、オイルセパレータ44、ガスクーラ46等を経てショーケースユニット5に接続される。オイルセパレータ44内に流入した高温高圧冷媒中に含まれるオイルは、ここで冷媒と分離されて捕捉される。そして、圧縮機11の密閉容器12内は、中間圧に保持されるため、捕捉されたオイルはオイルセパレータ44内の高圧と密閉容器12内の中間圧との差圧によって、オイル戻し回路28を介して圧縮機11に戻される。   Further, as described above, the oil cooler 74 is installed in the same air passage 45 as the gas cooler 46 and is air-cooled by the gas cooler blower 47. The high-temperature and high-pressure refrigerant discharged from the high-stage discharge port 28 of each compressor 11 merges on the downstream side of the second rotary compression element 20, and is connected to the showcase unit 5 via the oil separator 44, the gas cooler 46, and the like. The The oil contained in the high-temperature and high-pressure refrigerant that has flowed into the oil separator 44 is separated from the refrigerant and captured. Since the inside of the sealed container 12 of the compressor 11 is maintained at an intermediate pressure, the trapped oil is supplied to the oil return circuit 28 by the differential pressure between the high pressure in the oil separator 44 and the intermediate pressure in the sealed container 12. To the compressor 11.

オイル戻し回路28内に流入したオイルは、ガスクーラ46と同一の風路45に配設されるオイルクーラ74にて送風機47の運転により空冷される。当該オイルクーラ74を経た後、二系統に分離して流量調整弁76を経て圧縮機11に戻る。これにより、高温冷媒と共に高温とされたオイルは、オイルクーラ74にて冷却されて圧縮機11に帰還するため、圧縮機11の温度上昇を抑制することができる。   The oil flowing into the oil return circuit 28 is air-cooled by the operation of the blower 47 in the oil cooler 74 disposed in the same air passage 45 as the gas cooler 46. After passing through the oil cooler 74, it is separated into two systems, and returns to the compressor 11 through the flow rate adjusting valve 76. As a result, the oil heated to a high temperature together with the high-temperature refrigerant is cooled by the oil cooler 74 and returned to the compressor 11, so that an increase in the temperature of the compressor 11 can be suppressed.

(F)冷媒封入量調整機構
次に、冷凍装置Rに設けられた冷媒封入量調整機構131について説明する。この冷媒封入量調整機構131は、冷凍機ユニット3内に設けられる。冷凍機ユニット3内の冷媒回路1の冷媒配管9には、排出管132が連通して接続されており、この排出管132には電動弁から成る排出弁133が取り付けられている。尚、実施例では冷媒配管9に排出管132及び排出弁133を取り付けたが、それに限らず、図1に示すようにインタークーラ38の入口側の中間圧吐出配管36や、インタークーラ38の出口側の中間圧吸入管40等、冷媒回路1の中間圧領域に取り付けても良い。
(F) Refrigerant Enclosed Amount Adjusting Mechanism Next, the refrigerant enclosed amount adjusting mechanism 131 provided in the refrigeration apparatus R will be described. The refrigerant charging amount adjusting mechanism 131 is provided in the refrigerator unit 3. A discharge pipe 132 is connected in communication with the refrigerant pipe 9 of the refrigerant circuit 1 in the refrigerator unit 3, and a discharge valve 133 including an electric valve is attached to the discharge pipe 132. In the embodiment, the discharge pipe 132 and the discharge valve 133 are attached to the refrigerant pipe 9. However, the present invention is not limited thereto, and the intermediate pressure discharge pipe 36 on the inlet side of the intercooler 38 and the outlet of the intercooler 38 are not limited thereto. It may be attached to the intermediate pressure region of the refrigerant circuit 1 such as the intermediate pressure suction pipe 40 on the side.

そして、これら排出管132及び排出弁133、制御装置Cにより冷媒封入量調整機構131が構成され、排出弁133は制御装置Cの出力側に接続されている。制御装置Cには、例えば前述した冷媒回収動作を開始する条件の一つとしての回収閾値(10.5MPa)よりも高く、前記高圧保護値(12MPa)より低い所定の排出規定値(例えば11.5MPa等)を有しており、この排出規定値(11.5MPa)と例えば前述した回収閾値(10.5MPa)に基づいて排出弁133を開閉する。   The discharge pipe 132, the discharge valve 133, and the control device C constitute a refrigerant charging amount adjusting mechanism 131, and the discharge valve 133 is connected to the output side of the control device C. In the control device C, for example, a predetermined discharge regulation value (for example, 11.1 MPa) that is higher than a recovery threshold value (10.5 MPa) as one of the conditions for starting the refrigerant recovery operation described above and lower than the high-pressure protection value (12 MPa). The discharge valve 133 is opened and closed based on the specified discharge value (11.5 MPa) and, for example, the recovery threshold value (10.5 MPa) described above.

前述したように制御装置Cは、ユニット出口側圧力センサ58の検出圧力が上昇して回収閾値(10.5MPa)を超えた場合、前述した冷媒量調整タンク100及び増設冷媒量調整タンク116への冷媒回収動作を開始する。制御装置Cが冷媒回収動作を開始すると、前述したように電動膨張弁102、電磁弁104、電動膨張弁117及び電磁弁119を開放するので、冷媒量調整タンク100及び増設冷媒量調整タンク116への冷媒回収能力は最大となる。しかしながら、冷媒回路1への冷媒封入量がもともと過剰であった場合(過充填)には、各タンクへ冷媒回収能力を最大としても回収し切れない状態となり、ユニット出口側圧力センサ58の検出圧力は下がらずに更に上昇するようになる。   As described above, when the detected pressure of the unit outlet side pressure sensor 58 rises and exceeds the recovery threshold (10.5 MPa), the control device C supplies the refrigerant amount adjustment tank 100 and the additional refrigerant amount adjustment tank 116 described above. The refrigerant recovery operation is started. When the control device C starts the refrigerant recovery operation, the electric expansion valve 102, the electromagnetic valve 104, the electric expansion valve 117, and the electromagnetic valve 119 are opened as described above, so that the refrigerant amount adjustment tank 100 and the additional refrigerant amount adjustment tank 116 are reached. The refrigerant recovery capacity is the maximum. However, if the amount of refrigerant enclosed in the refrigerant circuit 1 is originally excessive (overfilling), the refrigerant cannot be fully recovered even if the refrigerant recovery capacity is maximized in each tank, and the detected pressure of the unit outlet side pressure sensor 58 Will rise further without going down.

ここで、飽和サイクルと超臨界サイクルの両方の条件で運転する本発明のような冷凍装置Rの場合、冷媒回路1内へ冷媒を封入する際の気温(外気温度)により、適正な封入量を判断することが難しく、外気温度が低い冬場に封入したものが、夏季には過充填となってしまい、高圧側が異常に上昇するようになる。   Here, in the case of a refrigeration apparatus R such as the present invention that operates under both conditions of a saturation cycle and a supercritical cycle, an appropriate amount of sealing is determined by the temperature (outside air temperature) when the refrigerant is sealed in the refrigerant circuit 1. What is difficult to judge and sealed in winter when the outside air temperature is low becomes overfilled in the summer and the high pressure side rises abnormally.

そこで、制御装置Cはユニット出口側圧力センサ58の検出圧力(高圧側圧力)が前述した排出既定値(11.5MPa)まで上昇した場合、排出弁133を開放し、排出管132を介して冷媒回路1から外部に冷媒を排出する。係る冷媒の排出により、ユニット出口側圧力センサ58の検出圧力は低下していくので、ユニット出口側圧力センサ58の検出圧力が前記高圧保護値(12MPa)を超え、圧縮機11が停止される不都合が未然に防止される。そして、前述した回収閾値(排出停止値。10.5MPa)までユニット出口側圧力センサ58の検出圧力が低下した場合、制御装置Cは排出弁133を閉じ、冷媒の排出を停止する。以後は前述した冷媒回収動作に委ねられることになる。これにより、過充填分の冷媒が排出される。   Therefore, when the detected pressure (high pressure side pressure) of the unit outlet side pressure sensor 58 rises to the above-mentioned predetermined discharge value (11.5 MPa), the control device C opens the discharge valve 133 and supplies the refrigerant through the discharge pipe 132. The refrigerant is discharged from the circuit 1 to the outside. Since the detected pressure of the unit outlet side pressure sensor 58 decreases due to the discharge of the refrigerant, the detected pressure of the unit outlet side pressure sensor 58 exceeds the high pressure protection value (12 MPa), and the compressor 11 is stopped. Is prevented in advance. When the detected pressure of the unit outlet side pressure sensor 58 decreases to the above-described recovery threshold (discharge stop value; 10.5 MPa), the control device C closes the discharge valve 133 and stops the discharge of the refrigerant. Thereafter, the above-described refrigerant recovery operation is entrusted. Thereby, the refrigerant | coolant for an overfill is discharged | emitted.

このようにして制御装置Cは冷媒回路1の高圧側圧力が異常に上昇し、所定の排出既定値以上となった場合、排出弁133を開いて排出管132より冷媒回路1から外部に過充填分の冷媒を排出するので、季節が変化して冷凍装置Rが冷媒の過充填状態に陥った場合にも、自動的に冷媒回路1内の冷媒封入量が適正値に調整されるようになる。従って、飽和サイクルと超臨界サイクルの両方で運転される冷凍装置Rの冷媒封入量の調整が極めて容易となる。特に、実施例のように冷媒量調整タンク100や増設冷媒量調整タンク116を設けても冷媒を回収し切れない程、過充填であった場合、係る過充填状態を冷媒封入量調整機構131で確実に解消することができるようになる。   In this way, the control device C opens the discharge valve 133 and overfills the refrigerant circuit 1 from the discharge pipe 132 to the outside when the high-pressure side pressure of the refrigerant circuit 1 rises abnormally and exceeds a predetermined predetermined discharge value. Therefore, even when the season changes and the refrigeration apparatus R falls into the refrigerant overfill state, the refrigerant filling amount in the refrigerant circuit 1 is automatically adjusted to an appropriate value. . Therefore, adjustment of the refrigerant filling amount of the refrigeration apparatus R operated in both the saturation cycle and the supercritical cycle is extremely easy. In particular, when the refrigerant amount adjustment tank 100 and the additional refrigerant amount adjustment tank 116 are provided as in the embodiment, and the refrigerant is overfilled so that the refrigerant cannot be recovered, the overfill state is determined by the refrigerant charging amount adjustment mechanism 131. It will be possible to resolve it reliably.

また、この場合、排出管132は冷媒回路1の低圧側(実施例)又は中間圧領域に連通して取り付けられており、排出弁133は低圧側から冷媒を排出するので、高圧側から排出する場合に比して、穏やかに冷媒を排出することができるようになり、必要以上に冷媒を排出してしまう不都合が防止される。   Further, in this case, the discharge pipe 132 is attached in communication with the low pressure side (example) or the intermediate pressure region of the refrigerant circuit 1, and the discharge valve 133 discharges the refrigerant from the low pressure side, and therefore discharges from the high pressure side. Compared to the case, the refrigerant can be discharged gently, and the disadvantage of discharging the refrigerant more than necessary is prevented.

尚、実施例では増設冷媒量調整タンク116を備えた増設冷媒量調整装置111を取り付けた冷凍装置Rについて説明したが、それに限らず、冷凍機ユニット3内に冷媒量調整タンク100のみが設けられた冷凍装置Rにも本発明は有効である。   In addition, although the Example demonstrated the refrigeration apparatus R which attached the expansion refrigerant | coolant amount adjustment apparatus 111 provided with the expansion refrigerant | coolant amount adjustment tank 116, it is not restricted to it, Only the refrigerant | coolant amount adjustment tank 100 is provided in the refrigerator unit 3. The present invention is also effective for the refrigeration apparatus R.

更に、実施例で例示した各数値は、それに限定されるものでは無く、当該冷凍装置Rに応じて適宜設定するとよい。   Furthermore, each numerical value illustrated in the embodiment is not limited thereto, and may be appropriately set according to the refrigeration apparatus R.

R 冷凍装置
C 制御装置(制御手段)
1 冷媒回路
3 冷凍機ユニット
5 ショーケースユニット
7、9 冷媒配管
11 圧縮機
36 中間圧吐出配管
38 インタークーラ
44 オイルセパレータ
46 ガスクーラ
48 高圧圧力センサ(高圧圧力検出手段)
49 中間圧圧力センサ(中間圧圧力検出手段)
58 ユニット出口側圧力センサ(ユニット出口側圧力検出手段)
62 主絞り手段(絞り手段)
63 蒸発器
80 中間熱交換器
80A 第1の流路
80B 第2の流路
83 補助膨張弁(補助絞り手段)
100 冷媒量調整タンク
101 第1の連通回路
102 電動膨張弁(絞り機能を有する第1の弁装置)
103 第3の連通回路
104 電磁弁(第3の弁装置)
105 第2の連通回路
106 電磁弁(第2の弁装置)
111 増設冷媒量調整装置
116 増設冷媒量調整タンク
117 電動膨張弁(絞り機能を有する第1の増設弁装置)
119 電磁弁(第3の増設弁装置)
122 電磁弁(第2の増設弁装置)
126 第1の増設連通配管(第1の増設連通回路を構成)
127 第3の増設連通配管(第3の増設連通回路を構成)
128 第2の増設連通配管(第2の増設連通回路を構成)
131 冷媒封入量調整機構
R Refrigeration equipment C Control equipment (control means)
DESCRIPTION OF SYMBOLS 1 Refrigerant circuit 3 Refrigerator unit 5 Showcase unit 7, 9 Refrigerant piping 11 Compressor 36 Intermediate pressure discharge piping 38 Intercooler 44 Oil separator 46 Gas cooler 48 High pressure sensor (high pressure detection means)
49 Intermediate pressure sensor (Intermediate pressure detection means)
58 Unit outlet pressure sensor (Unit outlet pressure detector)
62 Main throttle means (throttle means)
63 Evaporator 80 Intermediate heat exchanger 80A First flow path 80B Second flow path 83 Auxiliary expansion valve (auxiliary throttle means)
DESCRIPTION OF SYMBOLS 100 Refrigerant amount adjustment tank 101 1st communication circuit 102 Electric expansion valve (1st valve apparatus which has a throttling function)
103 Third communication circuit 104 Solenoid valve (third valve device)
105 Second communication circuit 106 Solenoid valve (second valve device)
111 Additional refrigerant amount adjusting device 116 Additional refrigerant amount adjusting tank 117 Electric expansion valve (first expansion valve device having a throttling function)
119 Solenoid valve (third extension valve device)
122 Solenoid valve (second expansion valve device)
126 First extension communication pipe (configures a first extension communication circuit)
127 Third extension communication pipe (configures a third extension communication circuit)
128 Second extension communication pipe (configures a second extension communication circuit)
131 Refrigerant charge amount adjustment mechanism

Claims (4)

圧縮手段と、ガスクーラと、絞り手段と、蒸発器とから冷媒回路が構成され、高圧側が超臨界圧力となる冷凍装置において、
前記冷媒回路に接続された冷媒量調整タンクと、
前記冷媒量調整タンクと前記冷媒回路の高圧側とを連通する第1の連通回路と、
前記冷媒量調整タンクの下部と前記冷媒回路の中間圧領域、又は、低圧側とを連通する第2の連通回路と、
前記冷媒量調整タンクの上部と前記冷媒回路の中間圧領域とを連通する第3の連通回路と、
前記第1の連通回路に設けられた絞り機能を有する第1の弁装置と、
前記第2の連通回路に設けられた第2の弁装置と、
前記第3の連通回路に設けられた第3の弁装置と、
前記冷媒回路の高圧側の循環冷媒を前記冷媒量調整タンクに回収し、該冷媒量調整タンクに回収した冷媒を前記冷媒回路の中間圧領域、又は、低圧側に放出する制御手段と、を備え、
前記制御手段は、外気温度と前記蒸発器における冷媒の蒸発温度に基づいて前記冷媒回路の高圧側圧力の目標値を決定し、
前記冷媒回路の高圧側圧力が前記高圧側圧力の目標値より高い場合は、前記第3の弁装置を開放するとともに前記第1の弁装置の弁開度により前記冷媒量調整タンクへの冷媒回収速度を変更し、前記冷媒回路の高圧側圧力が前記高圧側圧力の目標値より低い場合は、前記第1の弁装置をわずかに開いた状態で、前記第2の弁装置の開放時間により前記冷媒量調整タンクから冷媒を徐々に放出することを特徴とする冷凍装置。
In the refrigerating apparatus in which the refrigerant circuit is configured by the compression means, the gas cooler, the throttling means, and the evaporator, and the high pressure side is the supercritical pressure,
A refrigerant amount adjusting tank connected to the refrigerant circuit;
A first communication circuit communicating the refrigerant amount adjustment tank and the high pressure side of the refrigerant circuit;
A second communication circuit communicating the lower part of the refrigerant amount adjustment tank and the intermediate pressure region of the refrigerant circuit, or the low pressure side;
A third communication circuit communicating the upper part of the refrigerant amount adjustment tank and the intermediate pressure region of the refrigerant circuit;
A first valve device having a throttling function provided in the first communication circuit;
A second valve device provided in the second communication circuit;
A third valve device provided in the third communication circuit;
Control means for recovering the circulating refrigerant on the high-pressure side of the refrigerant circuit in the refrigerant amount adjustment tank and releasing the refrigerant collected in the refrigerant amount adjustment tank to an intermediate pressure region or a low-pressure side of the refrigerant circuit; ,
The control means determines a target value of the high-pressure side pressure of the refrigerant circuit based on an outside air temperature and an evaporation temperature of the refrigerant in the evaporator,
When the high-pressure side pressure of the refrigerant circuit is higher than the target value of the high-pressure side pressure, the third valve device is opened and the refrigerant is recovered into the refrigerant amount adjustment tank by the valve opening of the first valve device. When the speed is changed and the high pressure side pressure of the refrigerant circuit is lower than the target value of the high pressure side pressure, the first valve device is slightly opened and the second valve device is opened according to the opening time. A refrigeration apparatus that gradually discharges refrigerant from a refrigerant quantity adjustment tank .
前記制御手段は、前記冷媒回路の高圧側圧力の上昇に伴い、前記第1の弁装置の弁開度を徐々に開くように制御することを特徴とする請求項1に記載の冷凍装置。 2. The refrigeration apparatus according to claim 1, wherein the control unit controls the valve opening degree of the first valve device to gradually open as the high-pressure side pressure of the refrigerant circuit increases . 前記制御手段は、前記冷媒回路の高圧側圧力が低下するに伴い、前記第2の弁装置を所定時間だけ開動作させて冷媒量調整タンクから冷媒を徐々に放出することを特徴とする請求項1または請求項2に記載の冷凍装置。 The said control means opens the said 2nd valve apparatus only for predetermined time, and discharge | releases a refrigerant | coolant gradually from a refrigerant | coolant amount adjustment tank as the high pressure side pressure of the said refrigerant circuit falls. The refrigeration apparatus according to claim 1 or claim 2. 前記冷媒として二酸化炭素を使用したことを特徴とする請求項1から請求項3のうちの何れかに記載の冷凍装置。 The refrigeration apparatus according to any one of claims 1 to 3, wherein carbon dioxide is used as the refrigerant.
JP2012252077A 2012-11-16 2012-11-16 Refrigeration equipment Active JP6112388B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012252077A JP6112388B2 (en) 2012-11-16 2012-11-16 Refrigeration equipment
CN201310581020.8A CN103822419B (en) 2012-11-16 2013-11-18 Refrigerating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012252077A JP6112388B2 (en) 2012-11-16 2012-11-16 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2014102008A JP2014102008A (en) 2014-06-05
JP6112388B2 true JP6112388B2 (en) 2017-04-12

Family

ID=50757599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012252077A Active JP6112388B2 (en) 2012-11-16 2012-11-16 Refrigeration equipment

Country Status (2)

Country Link
JP (1) JP6112388B2 (en)
CN (1) CN103822419B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021048900A1 (en) * 2019-09-09 2021-03-18 三菱電機株式会社 Outdoor unit and refrigeration cycle device
FI4030116T3 (en) * 2019-09-09 2023-11-02 Mitsubishi Electric Corp Outdoor unit and refrigeration cycle device
JP6989808B1 (en) 2020-11-24 2022-01-12 ダイキン工業株式会社 Refrigerant and Refrigerant Amount Determination Method for Refrigerator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4856288A (en) * 1983-07-18 1989-08-15 Weber Robert C Refrigerant alert and automatic recharging device
JP4115017B2 (en) * 1998-11-16 2008-07-09 三洋電機株式会社 Refrigeration air conditioner
TWI315383B (en) * 2003-03-24 2009-10-01 Sanyo Electric Co Refrigerant cycle apparatus
JP4431755B2 (en) * 2006-04-11 2010-03-17 株式会社前川製作所 Operation method of water heater
KR100922222B1 (en) * 2007-12-24 2009-10-20 엘지전자 주식회사 Air conditioning system
JP2009192090A (en) * 2008-02-12 2009-08-27 Denso Corp Refrigerating cycle device
JP5292940B2 (en) * 2008-06-20 2013-09-18 ダイキン工業株式会社 Air conditioner
KR101590884B1 (en) * 2008-12-03 2016-02-19 삼성전자 주식회사 Air conditioner and control method thereof
CN201599899U (en) * 2009-04-28 2010-10-06 欧威尔空调(中国)有限公司 Refrigerant addition control system of air conditioner,
JP5484890B2 (en) * 2009-12-25 2014-05-07 三洋電機株式会社 Refrigeration equipment
JP5502459B2 (en) * 2009-12-25 2014-05-28 三洋電機株式会社 Refrigeration equipment

Also Published As

Publication number Publication date
CN103822419B (en) 2017-12-05
CN103822419A (en) 2014-05-28
JP2014102008A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5502459B2 (en) Refrigeration equipment
JP6292480B2 (en) Refrigeration equipment
US9353976B2 (en) Refrigerating apparatus
JP5484889B2 (en) Refrigeration equipment
JP5484890B2 (en) Refrigeration equipment
JP6179842B2 (en) Refrigeration apparatus and additional refrigerant amount adjusting apparatus for refrigeration apparatus
JP6264688B2 (en) Refrigeration equipment
JP5496645B2 (en) Refrigeration equipment
JP6080031B2 (en) Refrigeration equipment
JP5523817B2 (en) Refrigeration equipment
JP2013155972A (en) Refrigeration device
KR101332478B1 (en) Freezing device
JP6112388B2 (en) Refrigeration equipment
JP5502460B2 (en) Refrigeration equipment
JP4313083B2 (en) Screw refrigeration equipment
JP2013164250A (en) Refrigerating apparatus
JP2011133208A (en) Refrigerating apparatus
JP5927553B2 (en) Refrigeration equipment
JP2014159950A (en) Freezer
JP6206787B2 (en) Refrigeration equipment
JP6065261B2 (en) Refrigeration equipment
JP5934931B2 (en) Tank for refrigeration cycle apparatus and refrigeration cycle apparatus including the same
JP2011137556A (en) Refrigerating apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141006

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141017

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150313

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170302

R151 Written notification of patent or utility model registration

Ref document number: 6112388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151