JP2007138919A - Two-stage screw compressor and two-stage compression refrigerator using this compressor - Google Patents

Two-stage screw compressor and two-stage compression refrigerator using this compressor Download PDF

Info

Publication number
JP2007138919A
JP2007138919A JP2006212926A JP2006212926A JP2007138919A JP 2007138919 A JP2007138919 A JP 2007138919A JP 2006212926 A JP2006212926 A JP 2006212926A JP 2006212926 A JP2006212926 A JP 2006212926A JP 2007138919 A JP2007138919 A JP 2007138919A
Authority
JP
Japan
Prior art keywords
stage
compressor
stroke volume
capacity
stage compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006212926A
Other languages
Japanese (ja)
Other versions
JP4927468B2 (en
Inventor
Noboru Tsuboi
昇 壷井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006212926A priority Critical patent/JP4927468B2/en
Publication of JP2007138919A publication Critical patent/JP2007138919A/en
Application granted granted Critical
Publication of JP4927468B2 publication Critical patent/JP4927468B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform efficient operation by reducing a burden of one-stage side and two-stage side compressors in response to a change in the evaporation temperature. <P>SOLUTION: This two-stage screw compressor has a stroke volume ratio adjusting means 28 for adjusting the stroke volume ratio of the one-stage side compressor 1 and the two-stage side compressor 10 by changing at least any stroke volume of the one-stage side compressor 7 and the two-stage side compressor 10 by a capacity variable means 18 in response to a change in suction pressure and a capacity adjusting means 28 for adjusting capacity by changing a rotating speed of a motor 12 by a rotation control means 26. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は2段スクリュ圧縮機及びそれを用いた2段圧縮冷凍機に関する。   The present invention relates to a two-stage screw compressor and a two-stage compression refrigerator using the same.

冷媒循環流路に2段スクリュ圧縮機、凝縮器、膨張弁、蒸発器を備えた2段圧縮冷凍機では、蒸発器における冷媒の蒸発温度(ET)が−30°〜−60°の広い温度範囲に対応することができ、しかもこれを同一の冷凍機で対応することが求められる。   In a two-stage compression refrigerator having a two-stage screw compressor, a condenser, an expansion valve, and an evaporator in the refrigerant circulation channel, the refrigerant evaporating temperature (ET) in the evaporator is a wide temperature range from -30 ° to -60 °. It is required to deal with the range and to deal with this with the same refrigerator.

従来、特許文献1に記載のような2段スクリュ圧縮機では、1段側圧縮機にスライド弁からなる容量制御機構が設けられ、スライド弁をアンロードすることで部分負荷運転を行っている。また、特許文献2に記載の2段スクリュ圧縮機では、1段側圧縮機と2段側圧縮機を回転させる駆動モータの回転数を制御することで部分負荷運転を行っている。さらに、特許文献3の冷凍サイクル装置では、低段側圧縮機と高段側圧縮機の回転数を独立して可変にし、負荷に応じてそれぞれの回転数を増減させるものが記載されている。しかし、このような部分負荷運転だけでは、冷媒の蒸発温度(ET)が−30°〜−60°の広い温度範囲に十分に対応することができなかった。   Conventionally, in a two-stage screw compressor as described in Patent Document 1, a capacity control mechanism including a slide valve is provided in a first-stage compressor, and partial load operation is performed by unloading the slide valve. Further, in the two-stage screw compressor described in Patent Document 2, partial load operation is performed by controlling the rotation speed of the drive motor that rotates the first-stage compressor and the second-stage compressor. Furthermore, in the refrigeration cycle apparatus of Patent Document 3, the rotation speeds of the low-stage compressor and the high-stage compressor are made variable independently, and each rotation speed is increased or decreased according to the load. However, such partial load operation alone cannot sufficiently cope with a wide temperature range of the refrigerant evaporation temperature (ET) of −30 ° to −60 °.

一般に、1段側圧縮機の圧縮比と2段側圧縮機の圧縮比が等しいときが、2段圧縮機の理想的な運転となる。吸込圧力をPs、中間圧力をPm、吐出圧力をPdとすると、1段側圧縮比r1=Pm/Ps、2段側圧縮比r2=Pd/Pmであるから、1段側圧縮比r1と2段側圧縮比r2が等しい(r1=r2)とき、Pm/Ps=Pd/Pmより、Pm=√(Ps・Pd)となる。   In general, the ideal operation of the two-stage compressor is when the compression ratio of the first-stage compressor is equal to the compression ratio of the second-stage compressor. When the suction pressure is Ps, the intermediate pressure is Pm, and the discharge pressure is Pd, the first-stage compression ratio r1 = Pm / Ps, and the second-stage compression ratio r2 = Pd / Pm. When the stage side compression ratios r2 are equal (r1 = r2), Pm = √ (Ps · Pd) from Pm / Ps = Pd / Pm.

吐出圧力Pdを15.64ataとし、蒸発温度ET(°C)が−30、−40、−50、−60のときの吸込圧力Ps(ata)をそれぞれ、1.67、1.07、0.658、0.382とすると、中間圧力Pm(ata)は、Pm=√(Ps・Pd)より、5.11、4.09、3.21、2.44となり、これを図にプロットすると、図3に示すようになる。この図3より、2段スクリュ圧縮機の吐出圧力と吸込圧力が決まると、1段側圧縮機の圧縮比と2段側圧縮機の圧縮比が等しいときの理想的な中間圧力が決定されることが分かる。   The suction pressure Ps (ata) when the discharge pressure Pd is 15.64 ata and the evaporation temperature ET (° C) is −30, −40, −50, −60, respectively, is 1.67, 1.07,. 658, 0.382, the intermediate pressure Pm (ata) is 5.11, 4.09, 3.21, 2.44 from Pm = √ (Ps · Pd). As shown in FIG. From FIG. 3, when the discharge pressure and the suction pressure of the two-stage screw compressor are determined, an ideal intermediate pressure when the compression ratio of the first-stage compressor and the compression ratio of the two-stage compressor are equal is determined. I understand that.

しかし、実際には、1段側圧縮機と2段側圧縮機の行程体積の比である行程体積比R(=V1/V2)によって中間圧力が決定される。なお、行程体積は圧縮機における単位時間当たりに圧縮される体積のことを意味する。吸込圧力Psに相当する圧縮媒体の比容積をv1、中間圧力Pmに相当する圧縮媒体の比容積をv2とすると、v1/v2=V1/V2=Rであるから、v2=v1×(1/R)より、v2を求め、このv2に相当する圧力より中間圧力Pmを求める。なお、比容積とは物体の単位重量当たりの体積をいう。また、ここでいう「v2に相当する圧力」は冷凍機の分野で良く知られているモリエル線図(P−h線図)等を利用して求める。例えば、蒸発温度ET(℃)が−30、−40、−50、−60のときのv1は0.135、0.205、0.323、0.536と変化する。このv1と行程体積比R=3を用いて中間圧力Pmを求めて、図にプロットし、理想的な中間圧力とともに示すと、図4のようになる。この図4より、蒸発温度が−40℃では中間圧力は理想の中間圧力とほぼ同じで理想的であるが、蒸発温度が−30〜−40℃では中間圧力は理想の中間圧力より高くて1段側圧縮機の負担が大きく、蒸発温度が−40〜−60℃になると中間圧力は理想の中間圧力より低くなって2段側圧縮機の負担が大きくなることが分かる。   However, in practice, the intermediate pressure is determined by the stroke volume ratio R (= V1 / V2), which is the stroke volume ratio between the first-stage compressor and the second-stage compressor. The stroke volume means a volume compressed per unit time in the compressor. If the specific volume of the compression medium corresponding to the suction pressure Ps is v1, and the specific volume of the compression medium corresponding to the intermediate pressure Pm is v2, v1 / v2 = V1 / V2 = R, so v2 = v1 × (1 / From R), v2 is obtained, and the intermediate pressure Pm is obtained from the pressure corresponding to v2. The specific volume refers to the volume per unit weight of the object. Further, the “pressure corresponding to v2” here is obtained by using a Mollier diagram (Ph diagram) well known in the field of refrigerators. For example, when the evaporation temperature ET (° C.) is −30, −40, −50, −60, v1 changes to 0.135, 0.205, 0.323, and 0.536. Using this v1 and the stroke volume ratio R = 3, the intermediate pressure Pm is obtained, plotted in the figure, and shown together with the ideal intermediate pressure, as shown in FIG. From FIG. 4, when the evaporation temperature is −40 ° C., the intermediate pressure is ideally the same as the ideal intermediate pressure. However, when the evaporation temperature is −30 to −40 ° C., the intermediate pressure is higher than the ideal intermediate pressure. It can be seen that the burden on the stage side compressor is large, and when the evaporation temperature reaches −40 to −60 ° C., the intermediate pressure becomes lower than the ideal intermediate pressure and the burden on the two stage side compressor increases.

このように、従来の2段スクリュ圧縮機は、蒸発温度(ET)が−30°〜−60°にわたって、1段側圧縮機と2段側圧縮機の行程体積比が一定である。このため、設計点を最適蒸発温度に決めると、その点では理想的な中間圧力となるが、それ以外の蒸発温度では、一方の圧縮機に負担がかかりすぎて、圧縮機の効率を悪くすることになる。
特開平11−117879号公報 特開2003−21089号公報 特開2004−278824号公報
Thus, the conventional two-stage screw compressor has a constant stroke volume ratio between the first-stage compressor and the second-stage compressor over an evaporation temperature (ET) of −30 ° to −60 °. For this reason, when the design point is determined to be the optimum evaporation temperature, it becomes an ideal intermediate pressure at that point, but at other evaporation temperatures, one of the compressors is overloaded and the efficiency of the compressor deteriorates. It will be.
Japanese Patent Laid-Open No. 11-117879 JP 2003-21089 A JP 2004-278824 A

本発明は、上記従来の問題点に鑑みてなされたもので、中間圧力を理想的な値にするように1段側と2段側の行程体積比を調整するとともに、蒸発温度の変化に応じて1段側と2段側の圧縮機の負担を軽減し、効率のよい運転を行うことができる2段スクリュ圧縮機及びそれを用いた2段圧縮冷凍機を提供することを課題とする。   The present invention has been made in view of the above-described conventional problems, and adjusts the stroke volume ratio between the first stage and the second stage so that the intermediate pressure is an ideal value, and responds to changes in the evaporation temperature. It is an object of the present invention to provide a two-stage screw compressor capable of reducing the burden on the first-stage and second-stage compressors and performing an efficient operation, and a two-stage compression refrigerator using the same.

図4において、2点鎖線で示す中間圧力を実線で示す理想的な中間圧力に近づけるためには、蒸発温度が−30℃の領域では、比容積v1が0.135である場合において、比容積v2が理想的な中間圧力5.11ataに相当する比容積0.053になるように、行程体積比をR=0.135/0.053=2.55に下げ、すなわち、1段側の圧縮機の行程体積比を2.55/3.0=0.85(15%減少)にすればよい。この結果生じる圧縮能力の低下は、スクリュ圧縮機の回転数を増加することで対処する。一方、蒸発温度が−60℃の領域では、逆の動作を行う。これにより、中間圧力を理想的な中間圧力に近づけることができる。本発明は、かかる知見に基づいてなされたものである。   In FIG. 4, in order to bring the intermediate pressure indicated by the two-dot chain line closer to the ideal intermediate pressure indicated by the solid line, in the region where the evaporation temperature is −30 ° C., the specific volume v1 is 0.135. The stroke volume ratio is lowered to R = 0.135 / 0.053 = 2.55 so that v2 becomes a specific volume of 0.053 corresponding to an ideal intermediate pressure of 5.11 ata, that is, one-stage compression The stroke volume ratio of the machine may be 2.55 / 3.0 = 0.85 (15% reduction). The resulting reduction in compression capacity is addressed by increasing the screw compressor speed. On the other hand, in the region where the evaporation temperature is −60 ° C., the reverse operation is performed. Thereby, the intermediate pressure can be brought close to the ideal intermediate pressure. The present invention has been made based on such knowledge.

すなわち、本発明は、圧縮機本体内に配置した1段側圧縮機及び2段側圧縮機と、前記1段側圧縮機及び2段側圧縮機を駆動する単一のモータと、前記1段側圧縮機及び2段側圧縮機の少なくともいずれかの行程体積を可変にする容量可変手段と、前記モータの回転数を制御する回転制御手段を備えた2段スクリュ圧縮機において、
吸込圧力の変化に応じて前記容量可変手段により前記1段側圧縮機及び2段側圧縮機の少なくともいずれかの行程体積を変化させて1段側圧縮機と2段側圧縮機の行程体積比を調整する行程体積比調整手段と、
前記回転制御手段により前記モータの回転数を変化させて容量を調整する容量調整手段とを備えたものである。
That is, the present invention includes a first-stage compressor and a second-stage compressor disposed in a compressor body, a single motor that drives the first-stage compressor and the second-stage compressor, and the first-stage compressor. A two-stage screw compressor comprising a capacity variable means for making variable the stroke volume of at least one of the side compressor and the two-stage side compressor, and a rotation control means for controlling the rotational speed of the motor;
The stroke volume ratio of the first-stage compressor and the second-stage compressor is changed by changing the stroke volume of at least one of the first-stage compressor and the second-stage compressor by the capacity varying means according to the change of the suction pressure. Stroke volume ratio adjusting means for adjusting
And a capacity adjusting means for adjusting the capacity by changing the number of rotations of the motor by the rotation control means.

本発明において、行程体積比調整手段により1段側圧縮機と2段側圧縮機の行程体積比を変更すると、中間圧力が変化するので、広範囲の蒸発温度に対して、中間圧力を理想的な理論中間圧力に近づけることができる。   In the present invention, when the stroke volume ratio of the first-stage compressor and the second-stage compressor is changed by the stroke volume ratio adjusting means, the intermediate pressure changes. Therefore, the intermediate pressure is ideal for a wide range of evaporation temperatures. Can approach the theoretical intermediate pressure.

前記行程体積比調整手段は、計測した吸込圧力Psと吐出圧力Pdに基づいて√(Ps・Pd)により理論中間圧力Pmthを計算し、計測した中間圧力Pmと前記理論中間圧力Pmthの差がゼロになるように、前記容量可変手段により行程体積を変化させることが好ましい。   The stroke volume ratio adjusting means calculates the theoretical intermediate pressure Pmth by √ (Ps · Pd) based on the measured suction pressure Ps and discharge pressure Pd, and the difference between the measured intermediate pressure Pm and the theoretical intermediate pressure Pmth is zero. It is preferable to change the stroke volume by the capacity varying means.

前記容量調整手段は、検出した蒸発温度が目標温度より高いときは、前記回転制御手段により前記モータの回転数を増大し、検出した蒸発温度が目標温度より低いときは、前記回転制御手段により前記モータの回転数を減少することが好ましい。   When the detected evaporation temperature is higher than the target temperature, the capacity adjusting means increases the rotational speed of the motor by the rotation control means, and when the detected evaporation temperature is lower than the target temperature, the rotation control means It is preferable to reduce the rotational speed of the motor.

前記容量可変手段は、ピストン弁又はスライド弁とすることができる。容量可変手段は、1段側圧縮機と2段側圧縮機の少なくともいずれかにあればよいが、1段側圧縮機に設けることが好ましい。また、前記回転制御手段はインバータとすることができる。   The capacity variable means may be a piston valve or a slide valve. The capacity variable means may be provided in at least one of the first-stage compressor and the second-stage compressor, but is preferably provided in the first-stage compressor. The rotation control means can be an inverter.

冷媒循環流路に2段スクリュ圧縮機、凝縮器、膨張弁、蒸発器を備えた2段圧縮冷凍機において、2段スクリュ圧縮機として、前記本発明の2段スクリュ圧縮機を用いることができる。   In a two-stage compression refrigerator having a two-stage screw compressor, a condenser, an expansion valve, and an evaporator in the refrigerant circulation channel, the two-stage screw compressor of the present invention can be used as the two-stage screw compressor. .

本発明によれば、吸込圧力の変化に応じて容量可変手段により1段側圧縮機及び2段側圧縮機の少なくともいずれかの行程体積を変化させて1段側圧縮機と2段側圧縮機の行程体積比を調整する行程体積比調整手段と、回転制御手段によりモータの回転数を変化させて容量を調整する容量調整手段とを備えたので、広範囲の蒸発温度に対して、中間圧力を理想的な理論中間圧力に近づけることができ、圧縮機の効率を大幅に向上させることができる。特に、従来、−20〜−30℃で中間圧力が上昇しすぎて運転できなかった場合でも、行程体積比調整手段により、行程体積を調整して中間圧力を下げることで、運転を可能にすることができる。   According to the present invention, the stroke volume of at least one of the first-stage compressor and the second-stage compressor is changed by the capacity varying means according to the change in the suction pressure, and the first-stage compressor and the second-stage compressor are changed. The stroke volume ratio adjusting means for adjusting the stroke volume ratio and the capacity adjusting means for adjusting the capacity by changing the number of rotations of the motor by the rotation control means are provided. The ideal theoretical intermediate pressure can be approached, and the efficiency of the compressor can be greatly improved. In particular, even when the intermediate pressure has increased in the past from −20 to −30 ° C. and cannot be operated, the operation can be performed by adjusting the stroke volume and lowering the intermediate pressure by the stroke volume ratio adjusting means. be able to.

以下、本発明の実施の形態を添付図面に従って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明に係る2段スクリュ圧縮機1を用いた2段圧縮冷凍機のサイクルを示す。この冷凍サイクルは、2段スクリュ圧縮機1、オイルセパレータ2、凝縮器3、膨張弁4及び蒸発器5を冷媒循環流路6で連結したものである。   FIG. 1 shows a cycle of a two-stage compression refrigerator using a two-stage screw compressor 1 according to the present invention. In this refrigeration cycle, a two-stage screw compressor 1, an oil separator 2, a condenser 3, an expansion valve 4 and an evaporator 5 are connected by a refrigerant circulation channel 6.

2段スクリュ圧縮機1の本体は、互いに噛合する雌雄の一対のスクリュロータからなる1段側圧縮機7を収容した1段側圧縮機ケーシング8と、前記1段側圧縮機7の雄ロータと共通の駆動軸9を有し、互いに噛合する雌雄の一対のスクリュロータからなる2段側圧縮機10を収容した2段側圧縮機ケーシング11と、前記1段側圧縮機7及び前記2段側圧縮機10の駆動軸9を駆動する単一のモータ12を収容するモータケーシング13とからなっている。   The main body of the two-stage screw compressor 1 includes a first-stage compressor casing 8 that houses a first-stage compressor 7 composed of a pair of male and female screw rotors that mesh with each other, and a male rotor of the first-stage compressor 7. A two-stage compressor casing 11 containing a two-stage compressor 10 having a common drive shaft 9 and a pair of male and female screw rotors engaged with each other, the first-stage compressor 7 and the second-stage side The motor casing 13 accommodates a single motor 12 that drives the drive shaft 9 of the compressor 10.

1段側圧縮機ケーシング8には1段側圧縮機7の吸込側に連通する吸込口14が設けられ、該吸込口14の上流側にはフィルタ15が設けられている。1段側圧縮機7の吐出側はケーシング内空間を介して2段側圧縮機10の吸込側に連通している。2段側圧縮機ケーシング11には、2段側圧縮機10の吐出側に連通する吐出口16が設けられている。   The first-stage compressor casing 8 is provided with a suction port 14 communicating with the suction side of the first-stage compressor 7, and a filter 15 is provided on the upstream side of the suction port 14. The discharge side of the first-stage compressor 7 communicates with the suction side of the second-stage compressor 10 through the space in the casing. The two-stage compressor casing 11 is provided with a discharge port 16 communicating with the discharge side of the two-stage compressor 10.

図2に示すように、1段側圧縮機ケーシング8には、1段側圧縮機7の駆動軸9に平行にシリンダ17が形成され、該シリンダ17にピストン弁18が摺動可能に収容されている。ピストン弁18は、シリンダ17を1段側圧縮機7の吸込側に位置するガス空間19と、1段側圧縮機7の吐出側に位置する油圧空間20とに分離している。ピストン弁18は、シリンダ17のガス空間19側から軸方向に形成された穴21にコイルスプリング22の一端を挿入し、該コイルスプリング22の他端をシリンダ17の端壁に当接することによって、1段側圧縮機7の吐出側に付勢されている。コイルスプリング22はその内側に位置するガイド棒23によってガイドされている。シリンダ17のガス空間19は、1段側圧縮機7の吸込側と連通するとともに、1段側圧縮機ケーシング8に形成された複数の開口部24を介して1段側圧縮機7の閉込空間に連通するようになっている。シリンダ17の油圧空間20には、ピストン弁18をコイルスプリング22の付勢力に抗してガス空間19側に移動させるために油圧が供給されるようになっている。   As shown in FIG. 2, a cylinder 17 is formed in the first-stage compressor casing 8 in parallel with the drive shaft 9 of the first-stage compressor 7, and a piston valve 18 is slidably accommodated in the cylinder 17. ing. The piston valve 18 separates the cylinder 17 into a gas space 19 located on the suction side of the first-stage compressor 7 and a hydraulic space 20 located on the discharge side of the first-stage compressor 7. The piston valve 18 has one end of a coil spring 22 inserted into a hole 21 formed in the axial direction from the gas space 19 side of the cylinder 17, and the other end of the coil spring 22 abuts against the end wall of the cylinder 17. The discharge side of the first stage compressor 7 is urged. The coil spring 22 is guided by a guide bar 23 located inside thereof. The gas space 19 of the cylinder 17 communicates with the suction side of the first-stage compressor 7 and closes the first-stage compressor 7 through a plurality of openings 24 formed in the first-stage compressor casing 8. It is designed to communicate with the space. Hydraulic pressure is supplied to the hydraulic space 20 of the cylinder 17 in order to move the piston valve 18 toward the gas space 19 against the urging force of the coil spring 22.

図1に戻ると、2段側圧縮機10のモータ12は、電源25よりインバータ26を介して電力が供給され、回転数が制御される。インバータ26は回転制御手段を構成する。また、ピストン弁18の油圧空間20には油圧装置27により油圧が供給され、油圧空間20への油圧の供給量を調整することによって、ピストン弁18が全ての開口部24を閉鎖したフルロード状態と、少なくとも1つの開口部24を開口したアンロード状態にすることができる。ピストン弁18は容量制御手段を構成する。インバータ26及び油圧装置27は、コントローラ28によって制御される。コントローラ28には、圧力計にて計測した吸込圧力Ps、中間圧力Pm、吐出圧力Pdを入力することができる。なお、圧力計は1段側圧縮機7の吸込側に連通する流路、1段側圧縮機7の吐出側と2段側圧縮機10の吸込側との間のケーシング内空間、2段側圧縮機10の吐出側に連通する流路にそれぞれ付設されている。また、コントローラ28には、蒸発器5に設けた温度センサ29により検出された蒸発温度が温度調節計30を介して入力される。コントローラ28は、本願発明の行程体積比調整手段と容量調整手段を構成するものである。   Returning to FIG. 1, the motor 12 of the two-stage compressor 10 is supplied with electric power from the power source 25 via the inverter 26, and the rotational speed is controlled. The inverter 26 constitutes rotation control means. Further, the hydraulic pressure is supplied to the hydraulic space 20 of the piston valve 18 by the hydraulic device 27, and the piston valve 18 closes all the openings 24 by adjusting the supply amount of the hydraulic pressure to the hydraulic space 20. Then, an unloaded state in which at least one opening 24 is opened can be achieved. The piston valve 18 constitutes a capacity control means. The inverter 26 and the hydraulic device 27 are controlled by a controller 28. A suction pressure Ps, an intermediate pressure Pm, and a discharge pressure Pd measured with a pressure gauge can be input to the controller 28. The pressure gauge is a flow path communicating with the suction side of the first-stage compressor 7, a space in the casing between the discharge side of the first-stage compressor 7 and the suction side of the second-stage compressor 10, the second stage side Each is attached to a flow path communicating with the discharge side of the compressor 10. Further, the evaporation temperature detected by the temperature sensor 29 provided in the evaporator 5 is input to the controller 28 via the temperature controller 30. The controller 28 constitutes a stroke volume ratio adjusting means and a capacity adjusting means of the present invention.

次に、前記構成からなる2段圧縮冷凍機の動作を説明する。   Next, the operation of the two-stage compression refrigerator having the above configuration will be described.

運転状態において、コントローラ28に2段スクリュ圧縮機1にて計測した吸込圧力Ps、吐出圧力Pd、中間圧力Pmを入力すると、コントローラ28は、理論中間圧力Pmth=√(Ps・Pd)を計算し、計測中間圧力Pmと理論中間圧力Pmthの差がゼロになるように、ピストン弁18を移動させる。   When the suction pressure Ps, discharge pressure Pd, and intermediate pressure Pm measured by the two-stage screw compressor 1 are input to the controller 28 in the operating state, the controller 28 calculates the theoretical intermediate pressure Pmth = √ (Ps · Pd). The piston valve 18 is moved so that the difference between the measured intermediate pressure Pm and the theoretical intermediate pressure Pmth becomes zero.

例えば、1段側圧縮機7の行程体積V1と2段側圧縮機10の行程体積V2の行程体積比R(=V1/V2)がR=3に設計されているとする。この場合、1段側圧縮機7がフルロードの状態で、1段側圧縮機7と2段側圧縮機10との行程体積比がR=3のままでは、中間圧力Pmは、図4に示したとおり、理論中間圧力Pmthを上回る6.3ataとなることが予測される。ここで、ピストン弁18を移動させて、1段側圧縮機7を15%アンロードすると、1段側圧縮機7の行程体積が85%になり、行程体積比RはR=3×0.85=2.55となる結果、中間圧力Pmが低下し、理論中間圧力Pmthに近づけることができる。このようにして、広範囲の蒸発温度に対して、中間圧力を理想的な理論中間圧力Pmthに近づけることができ、圧縮機の効率を大幅に向上させることができる。   For example, it is assumed that the stroke volume ratio R (= V1 / V2) between the stroke volume V1 of the first stage compressor 7 and the stroke volume V2 of the second stage compressor 10 is designed to be R = 3. In this case, if the first-stage compressor 7 is fully loaded and the stroke volume ratio between the first-stage compressor 7 and the second-stage compressor 10 remains R = 3, the intermediate pressure Pm is as shown in FIG. As shown, it is predicted to be 6.3 data that exceeds the theoretical intermediate pressure Pmth. Here, when the piston valve 18 is moved and the first stage compressor 7 is unloaded by 15%, the stroke volume of the first stage compressor 7 becomes 85%, and the stroke volume ratio R is R = 3 × 0. As a result of 85 = 2.55, the intermediate pressure Pm decreases and can approach the theoretical intermediate pressure Pmth. In this way, the intermediate pressure can be brought close to the ideal theoretical intermediate pressure Pmth for a wide range of evaporation temperatures, and the efficiency of the compressor can be greatly improved.

上記のように、行程体積比R(=V1/V2)がR=3、吐出圧力Pdが15.64ataとなるようにこの2段圧縮冷凍機が設計されている場合、図4から理解できるとおり、蒸発温度ET(℃)が−40℃以上、ひいては吸込圧力Psが1.07ata以上であれば、ピストン弁18を移動させて、1段側圧縮機7を所定の割合だけアンロードすることによって、中間圧力Pmを低下させ、理論中間圧力Pmthに近づけることができる。また、計測した吸込圧力Ps、吐出圧力Pdに基づいて理論中間圧力Pmth=√(Ps・Pd)を算出し、その理論中間圧力Pmthと計測した中間圧力Pmに基づき、その差がまさにゼロとなるように、PID演算にてピストン弁18の移動位置、ひいては1段側圧縮機7のアンロードの割合を算出し、ピストン弁18を移動させるようにしてもよい。あるいは、吐出圧力Pdを15.64ataなどの所定の一定値とみなし、吐出圧力Pdの計測を割愛してもよい。   As described above, when this two-stage compression refrigerator is designed so that the stroke volume ratio R (= V1 / V2) is R = 3 and the discharge pressure Pd is 15.64 ata, as can be understood from FIG. If the evaporation temperature ET (° C.) is −40 ° C. or higher, and the suction pressure Ps is 1.07 at or higher, the piston valve 18 is moved to unload the first stage compressor 7 by a predetermined ratio. The intermediate pressure Pm can be reduced to approach the theoretical intermediate pressure Pmth. Further, a theoretical intermediate pressure Pmth = √ (Ps · Pd) is calculated based on the measured suction pressure Ps and discharge pressure Pd, and the difference is exactly zero based on the theoretical intermediate pressure Pmth and the measured intermediate pressure Pm. As described above, the moving position of the piston valve 18 and thus the unloading ratio of the first stage compressor 7 may be calculated by PID calculation, and the piston valve 18 may be moved. Alternatively, the discharge pressure Pd may be regarded as a predetermined constant value such as 15.64 data and the measurement of the discharge pressure Pd may be omitted.

一方、蒸発器5内の温度センサ29により検出された蒸発温度は、温度調節計30に入力され、温度調節計30は検出された蒸発温度を目標温度と比較し、目標温度より高いときはコントローラ28に増速を要求する。これにより、コントローラ28は、インバータ26を介してモータ12の回転数を増大する。この結果、1段側圧縮機7と2段側圧縮機10の行程体積が同時に大きくなり、行程体積比Rを理想的な状態に保ったまま、容量ひいては冷凍能力を大きくすることができる。逆に、目標温度より低いときは、モータ12の回転数を減少し、冷却しすぎ等のロスを防止する。   On the other hand, the evaporation temperature detected by the temperature sensor 29 in the evaporator 5 is input to the temperature controller 30. The temperature controller 30 compares the detected evaporation temperature with the target temperature. 28 is requested to increase the speed. Thereby, the controller 28 increases the rotation speed of the motor 12 via the inverter 26. As a result, the stroke volumes of the first-stage compressor 7 and the second-stage compressor 10 simultaneously increase, and the capacity and thus the refrigerating capacity can be increased while maintaining the stroke volume ratio R in an ideal state. On the contrary, when the temperature is lower than the target temperature, the number of rotations of the motor 12 is decreased to prevent loss such as excessive cooling.

なお、前記構成からなる2段圧縮冷凍機は、蒸発温度ET(℃)が所定温度(具体的には−40℃)以上、ひいては吸込圧力Psが所定圧力(具体的には1.07ata)以上の場合に中間圧力Pmを理論中間圧力Pmthに近づけることができるものであるが、それ以外の場合にも同等の効果が得られるようにすることが望ましい。そのためには前記の構成に加え、2段圧縮機ケーシング11に2段側圧縮機10の駆動軸9(1段側圧縮機7の駆動軸9と共通)と平行にシリンダが形成され、そのシリンダに前記ピストン弁18とは別のピストン弁が摺動可能に収容されていることが望ましい。この構成にかかる2段圧縮冷凍機であれば、1段側圧縮機7の行程体積のみならず、2段側圧縮機10の行程体積も変化させることができる。そして、この構成にかかる2段圧縮冷凍機であれば、−40℃より低い、ひいては吸込圧力Psが1.07ataより低圧の場合に、2段側圧縮機10側のピストン弁を移動させて2段側圧縮機10を所定の割合だけアンロードすることによって、中間圧力Pmを上昇させ、理論中間圧力Pmthに近づけることができる。   In the two-stage compression refrigerator having the above-described configuration, the evaporation temperature ET (° C.) is equal to or higher than a predetermined temperature (specifically −40 ° C.), and the suction pressure Ps is equal to or higher than a predetermined pressure (specifically 1.07 ata). In this case, the intermediate pressure Pm can be brought close to the theoretical intermediate pressure Pmth, but it is desirable to obtain the same effect in other cases. For this purpose, in addition to the above-described configuration, a cylinder is formed in the two-stage compressor casing 11 in parallel with the drive shaft 9 of the second-stage compressor 10 (common to the drive shaft 9 of the first-stage compressor 7). It is desirable that a piston valve other than the piston valve 18 is slidably accommodated. With the two-stage compression refrigerator according to this configuration, not only the stroke volume of the first-stage compressor 7 but also the stroke volume of the two-stage compressor 10 can be changed. In the case of the two-stage compression refrigerator according to this configuration, when the suction pressure Ps is lower than −40 ° C. and thus the suction pressure Ps is lower than 1.07 ata, the piston valve on the second-stage compressor 10 side is moved to 2 By unloading the stage side compressor 10 by a predetermined ratio, the intermediate pressure Pm can be increased and brought close to the theoretical intermediate pressure Pmth.

なお、前記実施形態では、容量可変手段としてピストン弁18を用いたがスライド弁を用いたものでもよい。また、ピストン弁18やスライド弁は、1段側圧縮機7に限らず、2段側圧縮機10に設けてもよいし、前述のとおり、1段側圧縮機7と2段側圧縮機10の両方に設けてもよい。   In the above embodiment, the piston valve 18 is used as the capacity varying means, but a slide valve may be used. Further, the piston valve 18 and the slide valve may be provided not only in the first stage compressor 7 but also in the second stage compressor 10, or as described above, the first stage compressor 7 and the second stage compressor 10 are provided. You may provide in both.

本発明にかかる2段スクリュ圧縮機を備えた2段圧縮冷凍機サイクルを示す図。The figure which shows the two-stage compression refrigerator cycle provided with the two-stage screw compressor concerning this invention. 図1の2段スクリュ圧縮機のピストン弁の拡大断面図。The expanded sectional view of the piston valve of the two-stage screw compressor of FIG. 蒸発温度の変化に対する2段スクリュ圧縮機の吸込圧力、中間圧力、吐出圧力の変化を示すグラフ。The graph which shows the change of the suction pressure of the two-stage screw compressor with respect to the change of evaporation temperature, intermediate pressure, and discharge pressure. 蒸発温度の変化に対する2段スクリュ圧縮機の理想的な中間圧力と行程体積比が一定の場合の中間圧力の変化を示すグラフ。The graph which shows the change of the intermediate pressure when the ideal intermediate pressure and stroke volume ratio of a two-stage screw compressor are constant with respect to the change of evaporation temperature.

符号の説明Explanation of symbols

1 2段スクリュ圧縮機
3 凝縮器
4 膨張弁
5 蒸発器
6 冷媒樹幹流路
7 1段側圧縮機
10 2段側圧縮機
12 モータ
18 ピストン弁
26 インバータ
28 コントローラ
DESCRIPTION OF SYMBOLS 1 2 stage screw compressor 3 Condenser 4 Expansion valve 5 Evaporator 6 Refrigerant trunk flow path 7 1st stage side compressor 10 2nd stage side compressor 12 Motor 18 Piston valve 26 Inverter 28 Controller

Claims (7)

圧縮機本体内に配置した1段側圧縮機及び2段側圧縮機と、前記1段側圧縮機及び2段側圧縮機を駆動する単一のモータと、前記1段側圧縮機及び2段側圧縮機の少なくともいずれかの行程体積を可変にする容量可変手段と、前記モータの回転数を制御する回転制御手段を備えた2段スクリュ圧縮機において、
吸込圧力の変化に応じて前記容量可変手段により前記1段側圧縮機及び2段側圧縮機の少なくともいずれかの行程体積を変化させて1段側圧縮機と2段側圧縮機の行程体積比を調整する行程体積比調整手段と、
前記回転制御手段により前記モータの回転数を変化させて容量を調整する容量調整手段とを備えたことを特徴とする2段スクリュ圧縮機。
A first-stage compressor and a second-stage compressor disposed in the compressor body, a single motor for driving the first-stage compressor and the second-stage compressor, the first-stage compressor and the second-stage compressor In a two-stage screw compressor comprising a capacity variable means for changing the stroke volume of at least one of the side compressors, and a rotation control means for controlling the rotation speed of the motor,
The stroke volume ratio of the first-stage compressor and the second-stage compressor is changed by changing the stroke volume of at least one of the first-stage compressor and the second-stage compressor by the capacity varying means according to the change of the suction pressure. Stroke volume ratio adjusting means for adjusting
A two-stage screw compressor comprising: capacity adjusting means for adjusting the capacity by changing the rotation speed of the motor by the rotation control means.
前記行程体積比調整手段は、計測した吸込圧力Psと吐出圧力Pdに基づいて√(Ps・Pd)により理論中間圧力Pmthを計算し、計測した中間圧力Pmと前記理論中間圧力Pmthの差がゼロになるように、前記容量可変手段により行程体積を変化させることを特徴とする請求項1に記載の2段スクリュ圧縮機。   The stroke volume ratio adjusting means calculates the theoretical intermediate pressure Pmth by √ (Ps · Pd) based on the measured suction pressure Ps and discharge pressure Pd, and the difference between the measured intermediate pressure Pm and the theoretical intermediate pressure Pmth is zero. The two-stage screw compressor according to claim 1, wherein a stroke volume is changed by the capacity varying means. 前記容量調整手段は、検出した蒸発温度が目標温度より高いときは、前記回転制御手段により前記モータの回転数を増大し、検出した蒸発温度が目標温度より低いときは、前記回転制御手段により前記モータの回転数を減少することを特徴とする請求項1又は2に記載の2段スクリュ圧縮機。   When the detected evaporation temperature is higher than the target temperature, the capacity adjusting means increases the rotational speed of the motor by the rotation control means, and when the detected evaporation temperature is lower than the target temperature, the rotation control means The two-stage screw compressor according to claim 1 or 2, wherein the number of rotations of the motor is reduced. 前記容量可変手段はピストン弁であることを特徴とする請求項1から3のいずれかに記載の2段スクリュ圧縮機。   The two-stage screw compressor according to any one of claims 1 to 3, wherein the capacity changing means is a piston valve. 前記容量可変手段はスライド弁であることを特徴とする請求項1から3のいずれかに記載の2段スクリュ圧縮機。   The two-stage screw compressor according to any one of claims 1 to 3, wherein the capacity varying means is a slide valve. 前記回転制御手段はインバータであることを特徴とする請求項1から5のいずれかに記載の2段スクリュ圧縮機。   6. The two-stage screw compressor according to claim 1, wherein the rotation control means is an inverter. 冷媒循環流路に2段スクリュ圧縮機、凝縮器、膨張弁、蒸発器を備えた2段圧縮冷凍機において、前記2段スクリュ圧縮機に前記請求項1から5のいずれかに記載の2段スクリュ圧縮機を用いたことを特徴とする2段圧縮冷凍機。   6. A two-stage compression refrigerator having a two-stage screw compressor, a condenser, an expansion valve, and an evaporator in a refrigerant circulation flow path, wherein the two-stage screw compressor has the two-stage according to any one of claims 1 to 5. A two-stage compression refrigerator using a screw compressor.
JP2006212926A 2005-10-17 2006-08-04 Two-stage screw compressor and two-stage compression refrigerator using the same Expired - Fee Related JP4927468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006212926A JP4927468B2 (en) 2005-10-17 2006-08-04 Two-stage screw compressor and two-stage compression refrigerator using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005301963 2005-10-17
JP2005301963 2005-10-17
JP2006212926A JP4927468B2 (en) 2005-10-17 2006-08-04 Two-stage screw compressor and two-stage compression refrigerator using the same

Publications (2)

Publication Number Publication Date
JP2007138919A true JP2007138919A (en) 2007-06-07
JP4927468B2 JP4927468B2 (en) 2012-05-09

Family

ID=38202086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006212926A Expired - Fee Related JP4927468B2 (en) 2005-10-17 2006-08-04 Two-stage screw compressor and two-stage compression refrigerator using the same

Country Status (1)

Country Link
JP (1) JP4927468B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067954A (en) * 2010-09-22 2012-04-05 Kobe Steel Ltd Two-stage compression refrigerator
WO2013146674A1 (en) * 2012-03-30 2013-10-03 株式会社神戸製鋼所 Two-stage compression device
CN104912800A (en) * 2015-07-10 2015-09-16 金鑫 Stand-alone two-stage variable frequency screw rod compressor with adjustable internal volume ratio
US9182161B2 (en) 2010-09-30 2015-11-10 Mitsubishi Heavy Industries, Ltd. Turbo refrigeration unit, control device therefor, and control method therefor
JP2016090142A (en) * 2014-11-05 2016-05-23 三菱重工業株式会社 Two-stage compression type refrigeration cycle, and its control device and control method
CN105715548A (en) * 2016-04-01 2016-06-29 浙江开山凯文螺杆机械有限公司 Two-grade screw rod compressor with flexible slide valve
CN105782036A (en) * 2014-12-25 2016-07-20 珠海格力节能环保制冷技术研究中心有限公司 Compressor and internal volume ratio adjusting method for compressor
JP2016160753A (en) * 2015-02-26 2016-09-05 尼寺空圧工業株式会社 Air compressor with engine
CN110617218A (en) * 2019-09-11 2019-12-27 珠海格力电器股份有限公司 Two-stage compressor, control method of two-stage compressor and air conditioning unit
CN110821829A (en) * 2019-09-23 2020-02-21 无锡压缩机股份有限公司 Design method of slide valve of screw compressor
JP2020139487A (en) * 2019-03-01 2020-09-03 株式会社日立産機システム Multistage compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62688A (en) * 1985-06-26 1987-01-06 Kobe Steel Ltd Capacity adjusting method for double-stage screw compressor
JPH06347107A (en) * 1993-06-08 1994-12-20 Hitachi Ltd Method of controlling freezer and control device for freezer for thermo-hygrostat
JP2000054977A (en) * 1998-08-07 2000-02-22 Kobe Steel Ltd Intermediate-stage pressure control method for screw compressor
JP2002266782A (en) * 2001-03-07 2002-09-18 Kobe Steel Ltd Screw refrigerating machine
JP2003021089A (en) * 2001-07-03 2003-01-24 Kobe Steel Ltd Two-stage compression refrigerating machine, and its operating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62688A (en) * 1985-06-26 1987-01-06 Kobe Steel Ltd Capacity adjusting method for double-stage screw compressor
JPH06347107A (en) * 1993-06-08 1994-12-20 Hitachi Ltd Method of controlling freezer and control device for freezer for thermo-hygrostat
JP2000054977A (en) * 1998-08-07 2000-02-22 Kobe Steel Ltd Intermediate-stage pressure control method for screw compressor
JP2002266782A (en) * 2001-03-07 2002-09-18 Kobe Steel Ltd Screw refrigerating machine
JP2003021089A (en) * 2001-07-03 2003-01-24 Kobe Steel Ltd Two-stage compression refrigerating machine, and its operating method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435018A (en) * 2010-09-22 2012-05-02 株式会社神户制钢所 Two-stage compression refrigerating device
KR101317541B1 (en) * 2010-09-22 2013-10-15 가부시키가이샤 고베 세이코쇼 Two-stage compression refrigerating device
JP2012067954A (en) * 2010-09-22 2012-04-05 Kobe Steel Ltd Two-stage compression refrigerator
US9182161B2 (en) 2010-09-30 2015-11-10 Mitsubishi Heavy Industries, Ltd. Turbo refrigeration unit, control device therefor, and control method therefor
WO2013146674A1 (en) * 2012-03-30 2013-10-03 株式会社神戸製鋼所 Two-stage compression device
JP2016090142A (en) * 2014-11-05 2016-05-23 三菱重工業株式会社 Two-stage compression type refrigeration cycle, and its control device and control method
CN105782036A (en) * 2014-12-25 2016-07-20 珠海格力节能环保制冷技术研究中心有限公司 Compressor and internal volume ratio adjusting method for compressor
JP2016160753A (en) * 2015-02-26 2016-09-05 尼寺空圧工業株式会社 Air compressor with engine
CN104912800A (en) * 2015-07-10 2015-09-16 金鑫 Stand-alone two-stage variable frequency screw rod compressor with adjustable internal volume ratio
CN105715548A (en) * 2016-04-01 2016-06-29 浙江开山凯文螺杆机械有限公司 Two-grade screw rod compressor with flexible slide valve
JP2020139487A (en) * 2019-03-01 2020-09-03 株式会社日立産機システム Multistage compressor
JP7198116B2 (en) 2019-03-01 2022-12-28 株式会社日立産機システム Multi-stage compressor
CN110617218A (en) * 2019-09-11 2019-12-27 珠海格力电器股份有限公司 Two-stage compressor, control method of two-stage compressor and air conditioning unit
CN110617218B (en) * 2019-09-11 2023-12-22 珠海格力电器股份有限公司 Control method of two-stage compressor and air conditioning unit
CN110821829A (en) * 2019-09-23 2020-02-21 无锡压缩机股份有限公司 Design method of slide valve of screw compressor
CN110821829B (en) * 2019-09-23 2023-11-14 神钢无锡压缩机股份有限公司 Screw compressor slide valve design method

Also Published As

Publication number Publication date
JP4927468B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP4927468B2 (en) Two-stage screw compressor and two-stage compression refrigerator using the same
JP4949768B2 (en) Screw compressor
US20090007590A1 (en) Refrigeration System
JP2001165073A (en) Scroll compressor and air conditioner
JP2008520901A (en) Variable capacity rotary compressor and cooling system including the same
JP6083173B2 (en) AIR CONDITIONER AND COMPRESSOR USED FOR THE SAME
JP5881403B2 (en) Screw compressor
JP6685379B2 (en) Screw compressor and refrigeration cycle equipment
CN103180677A (en) Two-stage pressure boosting type refrigeration cycle device
AU2006340101B2 (en) Slide valve with hot gas bypass port
CN103196250A (en) Refrigerating apparatus and refrigerating unit
WO2017126539A1 (en) Refrigeration cycle provided with plurality of multistage compressors connected in parallel
KR100798559B1 (en) Two stage screw compressor and compression refrigerator using the same
KR20140048620A (en) Turbo chiller
WO2017094057A1 (en) Single-screw compressor and refrigeration cycle device
JP2014206098A (en) Screw compressor
JP6373034B2 (en) refrigerator
JP3837298B2 (en) Screw refrigerator
JP5971633B2 (en) Refrigeration cycle equipment
JP5538061B2 (en) Refrigeration equipment
JP2010048460A (en) Refrigerating cycle device with oil equalizing function to a plurality of compressors
JP2014159950A (en) Freezer
KR102494567B1 (en) A refrigerator and a control method the same
JP2007187359A (en) Cooling system and vending machine using it
JP5449881B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4927468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees