JPS62688A - Capacity adjusting method for double-stage screw compressor - Google Patents

Capacity adjusting method for double-stage screw compressor

Info

Publication number
JPS62688A
JPS62688A JP14137885A JP14137885A JPS62688A JP S62688 A JPS62688 A JP S62688A JP 14137885 A JP14137885 A JP 14137885A JP 14137885 A JP14137885 A JP 14137885A JP S62688 A JPS62688 A JP S62688A
Authority
JP
Japan
Prior art keywords
screw compressor
stage screw
capacity
run
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14137885A
Other languages
Japanese (ja)
Inventor
Seiji Yoshimura
省二 吉村
Norio Kawaguchi
則男 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14137885A priority Critical patent/JPS62688A/en
Publication of JPS62688A publication Critical patent/JPS62688A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To enable economic partial load run by performing full capacity run by a high-stage screw compressor only until pressure reaches a specified intermediate value which depends on temperature or dew point of gas discharge from the high-stage compress and thereafter performing capacity adjusting run by both the high-state and the low-stage screw compressors to maintain each specified intermediate pressure respectively. CONSTITUTION:Until pressure reaches a specified intermediate value, that is, a set value by a pressure switch PSL which depends on temperature or dew point of the gas from the discharge side of a high-stage screw compressor 2, a low-stage screw compressor 1 performs capacity adjusting run by a slide valve 3 while until the intermediate pressure loweres to the set value, a high- stage screw compressor 2 performs full capacity run. After pressure reaches the specified intermediate pressure, the high-stage screw compressor 2 also performs capacity adjusting run by virtue of a slide valve 4 which is controlled by a controller 6. Since loading at the time of capacity adjusting run is thereby reduced to improve the unloading characteristics, power generating ratio may be reduced so that economic partial load run may be enabled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、少なくとも高段側にスライド弁式容量調節装
置を備えた2段スクリュ圧縮機の容量調節方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a capacity adjustment method for a two-stage screw compressor equipped with a slide valve type capacity adjustment device at least on the higher stage side.

(従来の技術) 従来、この種の2段スクリュ圧縮機の容量調節方法とし
て、次の二つの方法がある。
(Prior Art) Conventionally, there are the following two methods for adjusting the capacity of this type of two-stage screw compressor.

第一の方法は、第5図に示すように、低段スクリュ圧縮
機1と高段スクリュ圧縮機2の間に設けた圧力指示調節
計PIC及びスライド弁4に設けたスライド抵抗器SR
からの信号に基づきポジショナ5及び制御装置6を介し
てスライド弁4の開度を調整可能にすることにより、中
間圧力が一定圧力になるようにスライド弁3を制御する
ものである。
The first method, as shown in FIG.
By making the opening degree of the slide valve 4 adjustable via the positioner 5 and the control device 6 based on the signal from the slide valve 3, the slide valve 3 is controlled so that the intermediate pressure becomes a constant pressure.

第2の方法は、第6図に示すように、低段スクリュ圧縮
機1と高段スクリュ圧縮機2のそれぞれのスライド弁3
.4に制御装置6を設けて同時に制御信号を与えること
により、各スライド弁3゜4の開度か同じようになるよ
うに制御するものである。この方法においても、低段ス
クリュ圧縮機Iと高段スクリュ圧縮機2の容量調節運転
時における吸込容量の変化に対する軸動力の変化(以下
、アンロード特性という)は同じであるため、中間圧力
はほぼ一定となる。
The second method, as shown in FIG.
.. 4 is provided with a control device 6, and by simultaneously applying control signals, the opening degrees of each slide valve 3.4 are controlled to be the same. Also in this method, the change in shaft power with respect to the change in suction capacity (hereinafter referred to as unloading characteristic) during capacity adjustment operation of low stage screw compressor I and high stage screw compressor 2 is the same, so the intermediate pressure is It remains almost constant.

この中間圧力は、負部軽減のため2段スクリュ圧縮機の
軸動力Wが最小となるように決定する。
This intermediate pressure is determined so that the shaft power W of the two-stage screw compressor is minimized in order to reduce the negative part.

一般に、スライド弁が全量のときの軸動力Wは、吸込容
量をV、所要トルクをTrとし、所要トルクTrを吸込
圧力Psと吐出圧力Pdの関数としてTr(Ps、Pd
)で示すと、 W= VXTr(PS、Pd)         −・
・■で表される。この場合、第7図に示すように、吸込
圧力Psが小さくなるほど、又吐出圧力Pdが小さくな
るほど、所要トルクTrが低減して軸動力Wは軽減する
。従って、2段スクリュ圧縮機の場合は、第9図に示す
ように、低段スクリュ圧縮機1の吸込ガスの圧ツノ、容
量、温度をそれぞれP 、、Vl、TIとし、高段スク
リュ圧縮機2のそれをPIV 2 、 T tとし、高
段スクリュ圧縮機2の吐出ガスのそれをP 3. V 
’y 、 T 3とすると、低段及び高段のスクリュ圧
縮機の軸動ノ) W 、 、 VTI 、は、それぞれ
W + = V IX T r (P + 、 P t
 )W2−V 2X T r(P 、、P 3)となり
、 であるから、 W= W、+W。
In general, the shaft power W when the slide valve is at full capacity is determined by setting the suction capacity to V and the required torque to Tr, and setting the required torque Tr as a function of the suction pressure Ps and the discharge pressure Pd (Tr(Ps, Pd).
), W= VXTr(PS, Pd) −・
・Represented by ■. In this case, as shown in FIG. 7, as the suction pressure Ps decreases and as the discharge pressure Pd decreases, the required torque Tr decreases and the shaft power W decreases. Therefore, in the case of a two-stage screw compressor, as shown in FIG. 2 as PIV 2 , T t, and that of the discharge gas of the high stage screw compressor 2 as P 3. V
'y, T 3, the shaft motion of the low stage and high stage screw compressors) W, , VTI, are respectively W + = V IX T r (P +, P t
)W2-V2XTr(P,,P3), so W=W, +W.

・・■ となる。ここで、P 1. T + 、 T t 、 
P sは不変として、C= (T v/ T + ) 
X P l とする。
...■ becomes. Here, P1. T+, Tt,
Assuming that P s remains unchanged, C = (T v / T + )
Let it be X P l .

第8図は■式の関係を示したもので、軸動ツ7wが極小
となる高段スクリュ圧縮機2の吸込圧力すなわち、中間
圧力P、、=Popが存在することがわかる。
FIG. 8 shows the relationship of equation (2), and it can be seen that there exists a suction pressure of the high-stage screw compressor 2, that is, an intermediate pressure P, .

(発明が解決しようとする問題点) 容量調節時には、負荷を軽減して経済的な部分負荷運転
を行うことが肝要であり、アンロード特性は、吸込容量
に比例して軸動ツノが低下することか好ましい。
(Problem to be solved by the invention) When adjusting the capacity, it is important to reduce the load and perform economical partial load operation, and the unloading characteristic is such that the shaft movement horn decreases in proportion to the suction capacity. That's preferable.

しかしながら、前記いずれの方法においても、中間圧力
が一定であり、低段及び高段のアンロード特性は、それ
ぞれ第3図及び第4図に実線で示すように比較的緩やか
な曲線となり、吸込容量の減少の割合に比べて軸動力の
低下の割合が少なくなっている。
However, in any of the above methods, the intermediate pressure is constant, and the unloading characteristics of the low stage and high stage are relatively gentle curves as shown by the solid lines in Figures 3 and 4, respectively, and the suction capacity is The rate of decrease in shaft power is smaller than the rate of decrease in .

そこで、本発明は、斯るアンロード特性の改善により、
容量調節時の負荷を軽減して動力費の低減を図り、経済
的な部分負荷運転を行うことが可能な2段スクリュ圧縮
機の容量調節方法を提供することを目的とする。
Therefore, the present invention provides the following advantages by improving the unloading characteristics.
It is an object of the present invention to provide a method for adjusting the capacity of a two-stage screw compressor, which reduces the load during capacity adjustment, reduces power costs, and allows economical partial load operation.

(問題点を解決するための手段) 前記目的を達成するため、本発明は、少なくとも高段側
はスライド弁の操作による容量調節を行なう2段スクリ
ュ圧縮機の容量調節方法において、高段側の吐出ガスの
温度又は露点によって決定される所定の中間圧力になる
までは、高段側のみ全量運転を行ない、前記所定の中間
圧力に達した後は、低段側及び高段側共その所定の中間
圧力を維持すべく容[1m節運転を行なうものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a capacity adjustment method for a two-stage screw compressor in which capacity is adjusted at least on the high stage side by operating a slide valve. Until the predetermined intermediate pressure determined by the temperature or dew point of the discharged gas is reached, only the high stage side is operated at full capacity, and after reaching the predetermined intermediate pressure, both the low stage side and the high stage side are operated at their predetermined levels. In order to maintain an intermediate pressure, operation is performed at a capacity of 1 m.

前記所定の中間圧力は、高段側が無給油式スクリュ圧縮
機の場合と油冷式スクリュ圧縮機の場合とでは、その決
定方法が異なる。
The method for determining the predetermined intermediate pressure is different depending on whether the high stage side is an oil-free screw compressor or an oil-cooled screw compressor.

無給油式スクリュ圧縮機の場合は、吸込ガスの圧力(中
間圧力)、温度をそれぞれPz、T7、吐出ガスの圧力
、温度をそれぞれP3.T3、比熱比をkとすると、吐
出ガス温度T3は、 で表され、吐出ガス圧力P3を不変とすれば、中間圧力
P、を下げると、圧縮比(p 3/P 2)が大きくな
り、吐出ガス温度T3は上昇する。しかし、この場合吐
出ガス温度T3が、例えば、250〜300℃になると
スクリュロータが相互に、又はケーシングと接触するた
め、中間圧ノ]P2はある圧力以下に下げることが出来
なくなる。従って、無給油式スクリュ圧縮機の場合、前
記所定の中間圧力は吐出ガス温度T3により制限される
In the case of an oil-free screw compressor, the pressure (intermediate pressure) and temperature of the suction gas are Pz and T7, respectively, and the pressure and temperature of the discharge gas are P3. When T3 and the specific heat ratio are k, the discharge gas temperature T3 is expressed as follows.If the discharge gas pressure P3 remains unchanged, lowering the intermediate pressure P increases the compression ratio (p3/P2), The discharge gas temperature T3 increases. However, in this case, when the discharge gas temperature T3 reaches, for example, 250 to 300°C, the screw rotors come into contact with each other or with the casing, making it impossible to lower the intermediate pressure P2 below a certain pressure. Therefore, in the case of an oil-free screw compressor, the predetermined intermediate pressure is limited by the discharge gas temperature T3.

これに対し、油冷式スクリュ圧縮機の場合、所定の中間
圧力は高段側の吐出ガス中に含まれる水蒸気の露点によ
って制限される。吸込ガス中に水蒸気が含まれる場合に
は、圧縮によって吐出側における露点が上昇するが、吐
出ガス温度T3を越えると、この水蒸気が凝縮して油回
収器により梅離された潤滑油中に水分が混入することに
なる。
On the other hand, in the case of an oil-cooled screw compressor, the predetermined intermediate pressure is limited by the dew point of water vapor contained in the discharged gas on the higher stage side. If the suction gas contains water vapor, the dew point on the discharge side will rise due to compression, but if the discharge gas temperature exceeds T3, this water vapor will condense and water will be added to the lubricating oil removed by the oil recovery device. will be mixed in.

この水分が混入した潤滑油が圧縮機本体に戻されると、
軸受等での潤滑作用に悪影響を及ぼすため、吐出ガス温
度T3は常に露点以上に維持する必要がある。
When this lubricating oil mixed with water is returned to the compressor body,
Since this adversely affects the lubrication effect on bearings and the like, the discharge gas temperature T3 must always be maintained above the dew point.

(実施例) 次に、本発明の一実施例を図面に従って説明する。(Example) Next, one embodiment of the present invention will be described with reference to the drawings.

第1図において、低段スクリュ圧縮機lと高段スクリュ
圧縮機2の間に設けた2つの圧力スイッチpSL、ps
Hからの信号に基づき制御装置6を介して高段スクリュ
圧縮機2のスライド弁3の開度が調整可能になっている
。そして、圧力スイッチPSLは所定の中間圧力(Pm
)に設定し、圧力スイッチPS、はPm+αに設定して
、中間圧力がPm以下で容量調節運転となり、Pm+α
以上で全量運転となるように形成する。ここで、制御点
に+αのずれを設けであるのは、スライド弁3がハンチ
ングを起こさないようにするためである。
In FIG. 1, two pressure switches pSL and ps are provided between the low-stage screw compressor 1 and the high-stage screw compressor 2.
Based on the signal from H, the opening degree of the slide valve 3 of the high-stage screw compressor 2 can be adjusted via the control device 6. Then, the pressure switch PSL is set to a predetermined intermediate pressure (Pm
), and the pressure switch PS is set to Pm+α, and when the intermediate pressure is below Pm, the capacity adjustment operation starts, and the pressure switch PS is set to Pm+α.
With the above steps, the system is configured to operate at full capacity. Here, the reason why the control point is provided with a shift of +α is to prevent the slide valve 3 from causing hunting.

前記所定の中間圧力(Pm)の値は、高段スクリュ圧縮
機2の吐出側の露点に基づき決定する。まず、高段スク
リュ圧縮機2の吸込ガス温度T、[℃]、吸込ガス湿度
ψ[%]及び圧縮比P3/P2(P3:吐出ガス圧力、
P2:吸込ガス圧力)を検出し、次式により吐出ガスの
露点Tdw[’C]を求める。
The value of the predetermined intermediate pressure (Pm) is determined based on the dew point on the discharge side of the high-stage screw compressor 2. First, the suction gas temperature T of the high-stage screw compressor 2 [°C], the suction gas humidity ψ [%] and the compression ratio P3/P2 (P3: discharge gas pressure,
P2: suction gas pressure) is detected, and the dew point Tdw['C] of the discharged gas is determined by the following equation.

蒸気圧Pを温度Tの関数として、 P−φ(T) =  225.65xexp[−(7,21379+(
1,l52x10−’+4.787xlO−9T)X(
T−483,16)月X(647,31−T)/Tl 
             ・・・■とすると、 Tdw−φ−・(φ(Tt) xユ×ユ)・・・■to
o   p。
Let vapor pressure P be a function of temperature T, P-φ(T) = 225.65xexp[-(7,21379+(
1,l52x10-'+4.787xlO-9T)X(
T-483, 16) Month X (647, 31-T)/Tl
...■, then Tdw-φ-・(φ(Tt) xyu×yu)...■to
o p.

0式から萌らかなように、吸込ガス圧力P2すなわち中
間圧力が低下すると吐出ガスの露点Tdwが上昇するが
、前述したように、これと同時に吐出ガス温度T3も上
昇する。そして、この吐出ガスの露点Tdwと吐出ガス
温度T、3の上昇比率は必ずしも一致しないので、吐出
ガスの露点Tdwの方が高くなる点があり、このときの
中間圧力P2をPmと設定する。この場合、吐出ガスの
露点Tdwは、0式により計算で求めた値に、例えば、
IO℃程度の余裕を見込んでTdw=Tdw+10℃と
してもよい。
As is clear from Equation 0, when the suction gas pressure P2, that is, the intermediate pressure, decreases, the dew point Tdw of the discharged gas increases, but as described above, the discharged gas temperature T3 also increases at the same time. Since the rate of increase in the dew point Tdw of the discharged gas and the temperature T,3 of the discharged gas does not necessarily match, there is a point where the dew point Tdw of the discharged gas becomes higher, and the intermediate pressure P2 at this time is set as Pm. In this case, the dew point Tdw of the discharged gas is calculated using the formula 0, for example,
It is also possible to set Tdw=Tdw+10°C with a margin of about IO°C.

以上のように所定の中間圧力Pmを設定した後、容量調
節運転を行うには、低段スクリュ圧縮機lはスライド弁
3による容量調節運転を行い、高段スクリュ圧縮機2は
中間圧力がPmに低下するまで全量運転を行う。
After setting the predetermined intermediate pressure Pm as described above, in order to perform a capacity adjustment operation, the low stage screw compressor 1 performs a capacity adjustment operation using the slide valve 3, and the high stage screw compressor 2 performs a capacity adjustment operation when the intermediate pressure Pm Operate at full capacity until it drops to .

以下、本発明に係る方法による容量調節運転時のアンロ
ード特性を、低段スクリュ圧縮機と高段スクリュ圧縮機
のそれぞれについて、従来方法と比較して説明する。
Hereinafter, the unloading characteristics during capacity adjustment operation using the method according to the present invention will be explained in comparison with the conventional method for each of a low stage screw compressor and a high stage screw compressor.

低段スクリュ圧縮機1の吸込容量がαV、になったとす
ると(0〈αく1)、中間圧力P2は、P、=αXPo
pとなり、低段スクリュ圧縮機lの軸動力W、は第3図
中曲線2(破線)で示すようになる。
Assuming that the suction capacity of the low stage screw compressor 1 becomes αV (0 < α × 1), the intermediate pressure P2 is P, = αXPo
p, and the shaft power W of the low-stage screw compressor I is as shown by curve 2 (broken line) in FIG.

一方、従来の容量調節方法では中間圧力が一定であるた
め、曲線1で示すようになる。従って、図から明らかな
ように、曲線1をW 、 = f(α)2曲線2オーW
−=ct(α)、X−tわlf−σ(n)<f(α)で
訊り一従来の容量調節方法に比して軸動力か低下したこ
とになる。
On the other hand, in the conventional capacity adjustment method, the intermediate pressure is constant, so it becomes as shown by curve 1. Therefore, as is clear from the figure, curve 1 can be defined as W, = f(α)2 curve 2o W
Since -=ct(α) and X-tlf-σ(n)<f(α), the shaft power is reduced compared to the conventional capacity adjustment method.

また、第4図に示すように、低段スクリュ圧縮機lの吸
込容量がαV、になると、前述したように、中間圧力す
なわち高段スクリュ圧縮機2の吸込圧力はPz=αXP
opとなるか、所定の中間圧力になるまでは全量運転を
行うため、吸込容量はV2を維持し、高段スクリュ圧縮
機2の軸動力W。
Furthermore, as shown in FIG. 4, when the suction capacity of the low stage screw compressor 1 becomes αV, as mentioned above, the intermediate pressure, that is, the suction pressure of the high stage screw compressor 2 becomes Pz=αXP.
The suction capacity is maintained at V2, and the shaft power W of the high stage screw compressor 2 is maintained at full capacity operation until it becomes OP or a predetermined intermediate pressure is reached.

はP、−αXPopの曲線上の点Bの値となる。これに
対し、従来の容量調節方法では中間圧力が一定であるた
め、低段スクリュ圧縮機1の吸込容量がαvlになると
高段スクリュ圧縮機2の吸込容量はα■、となり、高段
スクリュ圧縮機2の軸動力W、はP ! = P op
(一定)の曲線上の点Aの値となる。この点Aと前記点
Bに示す高段スクリュ圧縮機2の軸動力W、は計算上大
差はないが、前記低段スクリュ圧縮機lの軸動力W、の
低下により、結果的に2段スクリュ圧縮機としての軸動
力Wは軽減し、アンロード特性が改善されたことになる
is the value of point B on the curve of P, -αXPop. On the other hand, in the conventional capacity adjustment method, the intermediate pressure is constant, so when the suction capacity of the low-stage screw compressor 1 becomes αvl, the suction capacity of the high-stage screw compressor 2 becomes α■, and the high-stage screw compressor The shaft power W of machine 2 is P! =Pop
This is the value at point A on the (constant) curve. Although there is no significant difference in calculation between the axial power W of the high-stage screw compressor 2 shown at this point A and the above-mentioned point B, due to the decrease in the axial power W of the low-stage screw compressor 1, the 2-stage screw This means that the shaft power W for the compressor is reduced, and the unloading characteristics are improved.

次に、吐出ガス温度T3を前記吐出ガスの露点Tdw以
上に制御する方法を第2図に基いて説明する。
Next, a method for controlling the discharge gas temperature T3 to be higher than the dew point Tdw of the discharge gas will be explained with reference to FIG. 2.

すなわち、高段スクリュ圧縮機2の吐出側に設けた油回
収器7の潤滑油溜り部より油クーラ8゜油フィルタ9及
び油ポンプ10を介して高段スクリュ圧縮機2に至る潤
滑油循環ラインにおいて、油クーラ8と油回収器7の間
に三方弁11を設けて、その一方の出口を油クーラ8の
入側に、他方の出口を出側に接続して油クーラ8のバイ
パスラインを形成する。そして、高段スクリュ圧縮機2
の吐出側に温度指示調節計TICを設けて、吐出ガスの
温度T3に応じて前記三方弁itを切換えることにより
、油クーラ8を通るラインとそのバイパスラインの流量
比を変更可能に形成する。さらに、高段スクリュ圧縮機
2の吸込側に吸込ガスの圧力Pt、温度T、及び湿度ψ
を検出する検出器XDと、吐出側に吐出ガスの圧力P3
を検出する圧力検出器PDと、これらの検出器XD、P
Dからの検出値を基に前記0式により吐出ガスの露点T
dwを算出するとともに、前記温度指示調節計Ticの
設定温度をTset=Tdw+l 0℃に設定可能にす
る制御装置!2とを設ける。以上の構成により、高段ス
クリュ圧縮機2の吸込ガスの状態に応じた露点が求めら
れ、温度指示調節計Ticの設定値は常に露点以上に設
定される。このため、例えば温度指示調節計TTCが設
定値T set以下の吐出ガス温度T3を検出すると、
三方弁11が作動して油クーラ8を通過する流量が減少
し、潤滑油の給油温度が上昇するので、常に吐出ガス温
度T3を露点Tdw以上に制御することが可能となる。
That is, a lubricating oil circulation line runs from a lubricating oil reservoir of an oil recovery device 7 provided on the discharge side of the high-stage screw compressor 2 to the high-stage screw compressor 2 via an oil cooler 8, an oil filter 9, and an oil pump 10. , a three-way valve 11 is provided between the oil cooler 8 and the oil recovery device 7, and one outlet of the three-way valve 11 is connected to the inlet side of the oil cooler 8 and the other outlet is connected to the outlet side of the oil cooler 8 to connect the bypass line of the oil cooler 8. Form. And high stage screw compressor 2
A temperature indicating controller TIC is provided on the discharge side of the oil cooler 8, and the three-way valve it is switched according to the temperature T3 of the discharged gas, thereby making it possible to change the flow rate ratio between the line passing through the oil cooler 8 and its bypass line. Furthermore, on the suction side of the high-stage screw compressor 2, the pressure Pt, temperature T, and humidity ψ of the suction gas are
Detector XD detects the discharge gas pressure P3 on the discharge side.
pressure detector PD that detects the
Based on the detected value from D, the dew point T of the discharged gas is determined by the above formula 0.
A control device that calculates dw and makes it possible to set the set temperature of the temperature indicating controller Tic to Tset=Tdw+l 0°C! 2 will be provided. With the above configuration, the dew point is determined according to the state of the suction gas of the high-stage screw compressor 2, and the set value of the temperature indicating controller Tic is always set above the dew point. Therefore, for example, when the temperature indicator controller TTC detects a discharge gas temperature T3 that is lower than the set value T set,
Since the three-way valve 11 operates to reduce the flow rate passing through the oil cooler 8 and increase the supply temperature of lubricating oil, it becomes possible to always control the discharge gas temperature T3 to be equal to or higher than the dew point Tdw.

(発明の効果) 以上の説明から明らかなように、本発明によれば、容攪
調節運転時の負荷が軽減し、アンロード特性が改善され
るので、動力比が低減して経済的な部分負荷運転が可能
となる。
(Effects of the Invention) As is clear from the above explanation, according to the present invention, the load during volume agitation adjustment operation is reduced and the unloading characteristics are improved, so the power ratio is reduced and the economical part is achieved. Load operation becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る容量調節方法を適用する2段ス
クリュ圧縮機の系統図、第2図は、吐出ガス温度の制御
方法を示す系統図、第3図は、低段スクリュ圧縮機のア
ンロード特性を示す図、第4図は、高段スクリュ圧縮機
のアンロード特性を示す図、第5図及び第6図は、従来
の容量調節方法を適用した2段スクリュ圧縮機の系統図
、第7図は、吸込圧力及び吐出圧力と所要トルクとの関
係を示す図、第8図は、中間圧力と軸動力との関係を示
す図、第9図は、吸込ガスの状態量の記号の説明図であ
る。 ■・・低段スクリュ圧縮機、2・・・高段スクリュ圧縮
機、3.4・・・スライド弁、6・・・制御装置。 特 許 出 願 人  株式会社神戸製鋼所代 理 人
 弁理士  青白 葆 ほか2名第1図 第2図 第3図 00.6xlAOJlxvIV+ 低綬吸込客量 第4図 0           αXV2   V2高ffl
吸込啓量 第6図
Fig. 1 is a system diagram of a two-stage screw compressor to which the capacity adjustment method according to the present invention is applied, Fig. 2 is a system diagram showing a method of controlling discharge gas temperature, and Fig. 3 is a system diagram of a low-stage screw compressor. Figure 4 is a diagram showing the unloading characteristics of a high-stage screw compressor, and Figures 5 and 6 are diagrams showing the system of a two-stage screw compressor to which the conventional capacity adjustment method is applied. Figure 7 shows the relationship between suction pressure, discharge pressure, and required torque, Figure 8 shows the relationship between intermediate pressure and shaft power, and Figure 9 shows the state quantity of suction gas. It is an explanatory diagram of symbols. ■...Low stage screw compressor, 2...High stage screw compressor, 3.4...Slide valve, 6...Control device. Patent applicant Kobe Steel Co., Ltd. Agent Patent attorney Aohaku Ao and 2 others Figure 1 Figure 2 Figure 3 00.6xlAOJlxvIV+ Low Ribbon Suction Customer Volume Figure 4 0 αXV2 V2 High ffl
Suction amount figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも高段側はスライド弁の操作による容量
調節を行なう2段スクリュ圧縮機の容量調節方法におい
て、高段側の吐出ガスの温度又は露点によって決定され
る所定の中間圧力になるまでは、高段側のみ全量運転を
行ない、前記所定の中間圧力に達した後は、低段側及び
高段側共その所定の中間圧力を維持すべく容量調節運転
を行なうことを特徴とする2段スクリュ圧縮機の容量調
節方法。
(1) In a capacity adjustment method for a two-stage screw compressor in which the capacity is adjusted at least on the high stage side by operating a slide valve, until the predetermined intermediate pressure determined by the temperature or dew point of the discharge gas on the high stage side is reached. , a two-stage system characterized in that full capacity operation is performed only on the high stage side, and after reaching the predetermined intermediate pressure, capacity adjustment operation is performed on both the low stage side and the high stage side in order to maintain the predetermined intermediate pressure. How to adjust the capacity of a screw compressor.
JP14137885A 1985-06-26 1985-06-26 Capacity adjusting method for double-stage screw compressor Pending JPS62688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14137885A JPS62688A (en) 1985-06-26 1985-06-26 Capacity adjusting method for double-stage screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14137885A JPS62688A (en) 1985-06-26 1985-06-26 Capacity adjusting method for double-stage screw compressor

Publications (1)

Publication Number Publication Date
JPS62688A true JPS62688A (en) 1987-01-06

Family

ID=15290604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14137885A Pending JPS62688A (en) 1985-06-26 1985-06-26 Capacity adjusting method for double-stage screw compressor

Country Status (1)

Country Link
JP (1) JPS62688A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5860801A (en) * 1994-11-30 1999-01-19 Svenska Rotor Maskiner Ab Rotary screw compressor with unloading means
JP2007138919A (en) * 2005-10-17 2007-06-07 Kobe Steel Ltd Two-stage screw compressor and two-stage compression refrigerator using this compressor
TWI663334B (en) * 2018-01-04 2019-06-21 大陸商復盛實業(上海)有限公司 Inter-stage discharge air compressor
CN110939569A (en) * 2018-09-25 2020-03-31 阿特拉斯·科普柯空气动力股份有限公司 Oil-injected multistage compressor arrangement and method for controlling a compressor arrangement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5860801A (en) * 1994-11-30 1999-01-19 Svenska Rotor Maskiner Ab Rotary screw compressor with unloading means
JP2007138919A (en) * 2005-10-17 2007-06-07 Kobe Steel Ltd Two-stage screw compressor and two-stage compression refrigerator using this compressor
TWI663334B (en) * 2018-01-04 2019-06-21 大陸商復盛實業(上海)有限公司 Inter-stage discharge air compressor
CN110939569A (en) * 2018-09-25 2020-03-31 阿特拉斯·科普柯空气动力股份有限公司 Oil-injected multistage compressor arrangement and method for controlling a compressor arrangement
CN110939569B (en) * 2018-09-25 2022-02-18 阿特拉斯·科普柯空气动力股份有限公司 Oil-injected multistage compressor arrangement and method for controlling a compressor arrangement

Similar Documents

Publication Publication Date Title
AU650571B2 (en) High to low side bypass to prevent reverse rotation
JP2754079B2 (en) Control method and control device for compressor system
US8826680B2 (en) Pressure ratio unload logic for a compressor
US7048511B2 (en) Device for prevention of backward operation of scroll compressors
JP2004020179A (en) Air conditioning device and its control method
WO2006068931A2 (en) Prevention of unpowered reverse rotation in compressors
JPS62688A (en) Capacity adjusting method for double-stage screw compressor
JP3516108B2 (en) Screw compressor and control method thereof
EP3211353B1 (en) Compressor having sound control system
JP2000054977A (en) Intermediate-stage pressure control method for screw compressor
JPH02191882A (en) Displacement control device for compressor and control method thereof
US4976588A (en) Compressor control system to improve turndown and reduce incidents of surging
JPH01285692A (en) Control method for screw compressor driven by expansion machine
JP3405426B2 (en) Refrigerator unit control device
JP2581622B2 (en) Method and apparatus for controlling capacity of screw compressor
KR100388655B1 (en) Air conditioner control system and control method thereof
JP2994862B2 (en) Cryogenic refrigeration equipment
JPH109147A (en) Reciprocating compressor control method
KR100384516B1 (en) Air conditioner control system and control method thereof
KR20010110628A (en) Control system for starting of air conditioner and control method thereof
JP2793510B2 (en) Centrifugal compressor capacity control device
JP2003042083A (en) Screw compressor
JP2574864B2 (en) Refrigeration equipment
JPS59140120A (en) Air conditioner for automobile
JPH0384366A (en) Freezing device