JP2581622B2 - Method and apparatus for controlling capacity of screw compressor - Google Patents

Method and apparatus for controlling capacity of screw compressor

Info

Publication number
JP2581622B2
JP2581622B2 JP3135098A JP13509891A JP2581622B2 JP 2581622 B2 JP2581622 B2 JP 2581622B2 JP 3135098 A JP3135098 A JP 3135098A JP 13509891 A JP13509891 A JP 13509891A JP 2581622 B2 JP2581622 B2 JP 2581622B2
Authority
JP
Japan
Prior art keywords
compressor
load
capacity
operating
side air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3135098A
Other languages
Japanese (ja)
Other versions
JPH04359759A (en
Inventor
眞一朗 山田
誠 藤田
浩清 寺田
賢司 川崎
修 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3135098A priority Critical patent/JP2581622B2/en
Publication of JPH04359759A publication Critical patent/JPH04359759A/en
Application granted granted Critical
Publication of JP2581622B2 publication Critical patent/JP2581622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、マルチタイプ大形空調
装置におけるスクリュー圧縮機の運転制御方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the operation of a screw compressor in a large multi-type air conditioner.

【0002】[0002]

【従来の技術】従来のマルチタイプ空調装置は容量が比
較的小さく、圧縮機の容量制御は、インバータを用いて
負荷側空調機の運転台数に見合った容量制御を行った
り、バイパス弁を用いて負荷側の負担を軽減する等の方
式がとられている。しかし、複数台の負荷側空調機を持
った大形マルチタイプ空調装置では、スクリュー圧縮機
の容量を負荷側空調機の運転に応じてただちに必要な容
量に制御することが困難であり、容量制御電磁弁等によ
る段階的な大ざっぱな容量制御に限定されてしまう。こ
の種の公知例としては特開昭50−37013号公報に
記載のものがある。
2. Description of the Related Art A conventional multi-type air conditioner has a relatively small capacity, and the capacity of a compressor is controlled by using an inverter to control the capacity according to the number of load air conditioners in operation or by using a bypass valve. A method of reducing the load on the load side is adopted. However, in a large multi-type air conditioner with multiple load-side air conditioners, it is difficult to immediately control the capacity of the screw compressor to the required capacity according to the operation of the load-side air conditioner. The control is limited to a step-by-step rough control of the capacity by a solenoid valve or the like. A known example of this type is described in Japanese Patent Application Laid-Open No. 50-37013.

【0003】また特開昭55−17027号公報は、圧
縮機と電線保護のためのバイパス弁を用いた電流上限値
制限運転方式を開示しているが、圧縮機を最低容量から
最大容量までの間で必要な容量に常時制御する事を目的
としたものでなく、圧縮機そのものはある一定の容量の
もとに運転し、冷凍サイクルの熱交換器間で電磁弁を用
いたバイパス回路を構成して圧縮機の寿命、配線の寿命
等の面から許容される最大電流以下にすることのみ目的
としたものである。したがって、マルチタイプ空調装置
のように複数の負荷側空調機が個々に頻度高く発停し、
負荷変動追従のために空調装置の容量制御を要求される
場合には圧縮機容量そのものを制御し運転圧力の変動や
電流の変動を同時に安定させる必要がある。
Japanese Unexamined Patent Publication No. 55-17027 discloses a current upper limit limiting operation method using a compressor and a bypass valve for protecting electric wires. It is not intended to always control the required capacity between the compressors.The compressor itself operates under a certain fixed capacity and forms a bypass circuit using a solenoid valve between the heat exchangers of the refrigeration cycle. It is intended only to reduce the current below the maximum current allowable in terms of the life of the compressor, the life of the wiring, and the like. Therefore, a plurality of load-side air conditioners, such as a multi-type air conditioner, frequently start and stop individually,
When it is required to control the capacity of the air conditioner in order to follow the load fluctuation, it is necessary to control the compressor capacity itself to stabilize the fluctuation of the operating pressure and the fluctuation of the current at the same time.

【0004】特開昭55−17027号公報開示の技術
においては、電流値検出が行われてはいる。しかし、負
荷側に複数の空調機すなわち熱交換器が接続されている
マルチタイプ空調装置の場合には圧縮機のアンロード状
態と複数熱交換器の運転台数の組合せ状態により同一の
電流条件がいくつも存在するし、前記特開昭55−17
027号公報開示の技術は単にオーバロード防止が目的
であって、負荷追従のために容量制御を目的として冷凍
サイクルの制御を行うものでなく、検出された電流値を
もとに圧縮機の容量がどの程度出力されているか判断し
ようとするものでもない。これに対し従来のインバータ
による圧縮機容量制御では、負荷側空調機の運転台数に
見合った圧縮機の容量制御が可能でありインバータの出
力を任意に出力してなめらかな容量制御が行われてい
る。
In the technique disclosed in Japanese Patent Application Laid-Open No. 55-17027, current value detection is performed. However, in the case of a multi-type air conditioner in which a plurality of air conditioners, that is, heat exchangers are connected to the load side, the same current condition depends on the combination of the unload state of the compressor and the number of operating heat exchangers. And the above-mentioned JP-A-55-17.
The technology disclosed in Japanese Patent No. 027 is simply for the purpose of preventing overload, and does not control the refrigeration cycle for the purpose of capacity control in order to follow the load. Instead, the capacity of the compressor is determined based on the detected current value. Is not intended to determine how much is output. In contrast, with conventional compressor capacity control using an inverter, it is possible to control the capacity of the compressor in accordance with the number of operating load-side air conditioners, and the output of the inverter is arbitrarily output to perform smooth capacity control. .

【0005】[0005]

【発明が解決しようとする課題】マルチタイプ空調装置
用圧縮機として使用する場合、往復動式圧縮機では負荷
の変動により段階的に容量制御が行われるため、段階の
途中にある中間的な負荷に対しては容量不足又は容量過
大を生じ、圧縮機の発停繰り返し制御となって冷凍サイ
クルの挙動不安定やこれらの影響による圧縮機の信頼性
低下等の問題を生じる。
When the compressor is used as a compressor for a multi-type air conditioner, the capacity of the reciprocating compressor is controlled stepwise by the fluctuation of the load. In such a case, the capacity is insufficient or the capacity is excessive, and the start / stop of the compressor is repeatedly controlled, which causes problems such as unstable behavior of the refrigeration cycle and a reduction in the reliability of the compressor due to these effects.

【0006】一方、スクリュー圧縮機は圧縮機構のネジ
形回転部に冷媒を閉じ込めて圧縮を行うため、シール部
からの漏れ量の比率を少なくするようにある定められた
値以上の回転速度で運転されることが必要である。前述
したインバータ等で回転数制御が行われると、前記定め
られた値以下の低速回転による容量制御時は圧縮効率の
低下により所定能力を得られなくなる。そこで圧縮部の
壁面の一部を構成するスライド弁により圧縮室容量を増
減させて圧縮機容量、つまり圧縮機出力の制御が行われ
ており、このスライド弁を積極的に位置制御することに
より最低容量から最大100%容量までの間を連続的に
容量制御できる。しかしながら現在のスクリュー圧縮機
では外部からスライド弁の位置を必要な圧縮機容量の位
置に制御できる構造でなく、またスライド弁の位置検出
も容易ではなく安価な実用的手段もない。例えば複数台
の負荷側空調機が冷房運転され、これに圧縮機が100
%出力でつり合って運転している時に、負荷側の任意の
空調機が数台サーモ停止した場合には圧縮機容量を低下
させねばならないが、前述の理由でスライド弁位置を負
荷とつり合う容量の位置に制御できず負荷側、反負荷側
のバランスがとれない運転状態となり、保護装置作動等
運転が継続できなくなる場合もしばしば生じる。
On the other hand, the screw compressor is operated at a rotation speed higher than a predetermined value so as to reduce the ratio of the amount of leakage from the seal portion because the screw compressor compresses the refrigerant by confining the refrigerant in the screw-type rotating portion of the compression mechanism. Need to be done. When the rotation speed control is performed by the inverter or the like described above, a predetermined capacity cannot be obtained due to a decrease in compression efficiency during the capacity control at a low speed rotation equal to or less than the predetermined value. Therefore, the capacity of the compressor, that is, the output of the compressor is controlled by increasing or decreasing the capacity of the compression chamber by a slide valve constituting a part of the wall of the compression section. The capacity can be controlled continuously from the capacity to the maximum capacity of 100%. However, the current screw compressor does not have a structure in which the position of the slide valve can be controlled from the outside to the position of the required compressor capacity, and the position of the slide valve is not easily detected and there is no inexpensive practical means. For example, a plurality of load side air conditioners are operated for cooling, and
When several air conditioners on the load side are thermo-stopped while operating with the% output balanced, the compressor capacity must be reduced. , And the load side and the non-load side are in an unbalanced operation state, and it often happens that the operation such as the operation of the protection device cannot be continued.

【0007】また、スライド弁の位置を機械的に予め定
められた容量となる位置で止める段階制御方式では容量
制御できる段階に限界があり、また設定された段階の中
間に負荷とのマッチング容量があるときには容量が多い
か少ないかの一方となり能力過大か能力不足となって快
適性をそこなうとともに複数台の負荷側空調機の運転に
見合わないため、このような圧縮機を複数の空調機から
なる負荷に適応させるには、どうしてもスライド弁によ
る連続容量制御が必要である。
Further, in the step control system in which the position of the slide valve is stopped mechanically at a position where the displacement is predetermined, there is a limit to the stage in which the displacement can be controlled, and the matching capacity with the load is set in the middle of the set stage. In some cases, the capacity becomes too large or small, and the capacity becomes too large or too small, which degrades comfort and is incompatible with the operation of multiple load-side air conditioners. In order to adapt to different loads, continuous capacity control by a slide valve is absolutely necessary.

【0008】本発明の目的は、スクリュー圧縮機を備え
たマルチタイプの空調装置において、負荷側の複数の空
調機が運転中に不規則に起動・停止をしている場合、圧
縮機をそれに見合った圧縮機容量に制御するにある。
An object of the present invention is to provide a multi-type air conditioner equipped with a screw compressor, in which a plurality of load-side air conditioners are started and stopped irregularly during operation, and the compressor is commensurate therewith. To control the compressor capacity.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、圧縮機の運転中の吐出圧力を検出する圧力検出器と
圧縮機運転電流を検出する電流検出器を設けてそれぞれ
電気信号として取出し、運転中の負荷側空調機の運転台
数に応じて変化する前記吐出圧力と圧縮機運転電流の関
係を予め基準データとして格納しておき、取り出した前
記電気信号と前記基準データとを対比して当該時点の圧
縮機容量が運転可能な圧縮機容量を上回っていないかど
うかを判断する。検出された圧力とその時点における負
荷側空調機の運転台数に対して電流が過大であれば、適
正な容量以上の容量で圧縮機が運転されていると判断し
て圧縮機スライド弁を制御して容量を下げるようにし、
適正な電流値範囲に入るようにフィードバックしながら
容量制御を行うようにし連続的に負荷に見合った圧縮機
容量制御をする。
In order to achieve the above object , a pressure detector for detecting a discharge pressure during operation of a compressor and a current detector for detecting a compressor operating current are provided and taken out as electric signals, respectively. The relationship between the discharge pressure and the compressor operating current, which varies according to the number of operating load-side air conditioners in operation, is stored in advance as reference data, and the extracted electric signal is compared with the reference data to determine the relationship. It is determined whether or not the compressor capacity at the time does not exceed the operable compressor capacity. If the current is excessive with respect to the detected pressure and the number of operating load side air conditioners at that time, it is determined that the compressor is operating with a capacity equal to or greater than the appropriate capacity, and the compressor slide valve is controlled. To reduce the capacity,
Capacity control is performed while feeding back so as to fall within an appropriate current value range, and compressor capacity control is continuously performed according to the load.

【0010】また、前記目的を達成するため、容量制御
用スライド弁を有するスクリュー圧縮機で冷媒を圧縮す
る室外機と、該室外機に接続され前記冷媒を循環させて
空気調和を行う複数台の負荷側空調機の組合せよりなる
マルチタイプ空調装置に、各負荷側空調機の設定温度と
当該空調機の吸い込み空気温度の偏差量を検出する偏差
検出手段と、検出された各負荷側空調機の偏差量から圧
縮機のスライド弁の制御量を算出する手段と、算出され
た制御量に基づいてスライド弁を無段階に移動させる手
段と、スクリュー圧縮機運転電流を検出する電流検出器
と、冷凍サイクル圧力を検出する圧力検出器と、負荷側
空調機の運転台数を検出する運転台数検知手段と、検出
されたスクリュー圧縮機運転電流と冷凍サイクル圧力と
からその時点での実際の圧縮機出力を算出する演算部と
を備え、該演算部を、算出された実際の圧縮機出力が、
検出された負荷側空調機の運転台数から定まる運転可能
圧縮機容量を上回らないように前記スライド弁位置を無
段階に制御する信号を生成する手段を備えたものとす
る。
In order to achieve the above object , an outdoor unit for compressing refrigerant by a screw compressor having a slide valve for capacity control, and a plurality of units connected to the outdoor unit and circulating the refrigerant for air conditioning. A multi-type air conditioner comprising a combination of load side air conditioners, a deviation detecting means for detecting a deviation amount between a set temperature of each load side air conditioner and a suction air temperature of the air conditioner; Means for calculating the control amount of the slide valve of the compressor from the deviation amount, means for moving the slide valve steplessly based on the calculated control amount, a current detector for detecting the screw compressor operating current, and refrigeration. A pressure detector for detecting the cycle pressure, an operating number detecting means for detecting the operating number of the load side air conditioners, and the detected screw compressor operating current and the refrigeration cycle pressure at that time. And an arithmetic unit for calculating a compressor output of time, the calculation unit, the actual compressor output is calculated,
Means are provided for generating a signal for steplessly controlling the position of the slide valve so as not to exceed the operable compressor capacity determined from the detected number of operating load-side air conditioners.

【0011】[0011]

【作用】演算部は、与えられた圧縮機容量(絶対値的な
出力値)に圧縮機を制御するのでなく、入力された偏差
が小さくなる方向にスライド弁を動かし、動かした結果
偏差がどうなったかをみてスライド弁の位置を修正す
る。つまり、スライド弁は常に現在の位置を基準にして
動かされる。したがって、ある圧縮機容量にするため
に、特定の位置にスライド弁を移動させる必要はなく、
スライド弁の位置を特定する手段を要しない。
The operation unit does not control the compressor to a given compressor capacity (absolute output value), but moves the slide valve in a direction in which the input deviation becomes smaller, and determines how the deviation as a result of the movement is. Correct the position of the slide valve according to the condition. That is, the slide valve is always moved with reference to the current position. Therefore, it is not necessary to move the slide valve to a specific position to achieve a certain compressor capacity,
No means for specifying the position of the slide valve is required.

【0012】また、圧縮機出力は圧縮機運転電流と吐出
圧力とに相関性があるため、これらを同時に検出するこ
とにより現在の圧縮機容量(出力)を知ることができ
る。負荷の変化の状態を検知しながら連続的(無段階)
にスライド弁の位置が変化させられ、これにともなって
圧縮機出力(容量)が変化するが、負荷側空調機の運転
台数が常にチェックされ、この台数から定まる運転可能
圧縮機容量と、前記圧縮機運転電流と吐出圧力とから算
出された圧縮機容量(出力)が比較され、該算出された
圧縮機容量(出力)が前記運転可能圧縮機容量を上回る
ことのないようにスライド弁が制御されるから、圧縮機
出力が過大になることがない。
Further, since the compressor output has a correlation between the compressor operating current and the discharge pressure, the current compressor capacity (output) can be known by detecting these at the same time. Continuous (stepless) while detecting the state of load change
The position of the slide valve is changed, and the compressor output (capacity) changes accordingly. However, the number of operating load side air conditioners is constantly checked, and the operable compressor capacity determined from this number and the compressor capacity are determined. The compressor capacity (output) calculated from the machine operating current and the discharge pressure is compared, and the slide valve is controlled so that the calculated compressor capacity (output) does not exceed the operable compressor capacity. Therefore, the compressor output does not become excessive.

【0013】[0013]

【実施例】以下、本発明の一実施例を図1〜図5を参照
して説明する。図1は本発明が適用された空調装置の要
部構成を示す。図示の空調装置は、室外機1と、該室外
機1に冷媒配管19を介して接続された冷媒分岐管3
と、該冷媒分岐管3にそれぞれ並列に一端を接続された
複数の負荷側空調機2と、該複数の負荷側空調機2それ
ぞれの他端に接続された冷媒分岐管4と、該冷媒分岐管
4を前記室外機1に接続する冷媒配管20とを含んでな
り、前記室外機1には電源18が接続されている。室外
機1は、モータで駆動されて冷媒ガスを圧縮するスクリ
ュー圧縮機(以下単に圧縮機という)と、該圧縮機の吐
出圧力を検出する高圧圧力検出器1aと、圧縮機を駆動
する前記モータへの入力電流を検出する電流検出器1b
と、それらのデータを処理し前記圧縮機を制御する演算
部1cとを含んで構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a main configuration of an air conditioner to which the present invention is applied. The illustrated air conditioner includes an outdoor unit 1 and a refrigerant branch pipe 3 connected to the outdoor unit 1 via a refrigerant pipe 19.
A plurality of load-side air conditioners 2 each having one end connected in parallel to the refrigerant branch pipe 3; a refrigerant branch pipe 4 connected to the other end of each of the plurality of load-side air conditioners 2; And a refrigerant pipe 20 connecting the pipe 4 to the outdoor unit 1, and a power supply 18 is connected to the outdoor unit 1. The outdoor unit 1 includes a screw compressor (hereinafter, simply referred to as a compressor) driven by a motor to compress refrigerant gas, a high-pressure detector 1a that detects a discharge pressure of the compressor, and the motor that drives the compressor. Current detector 1b for detecting the input current to
And a processing unit 1c for processing the data and controlling the compressor.

【0014】前記圧縮機のロータを収容するケーシング
の一部はスライド弁で構成され、該スライド弁はシリン
ダ中を移動する油圧ピストン及び該シリンダに圧力油を
出し入れする電磁弁によって軸方向に無段階に動かされ
るようになっている。スライド弁の位置が変化すると、
冷媒ガスのバイパス量が変化し、冷媒ガスの吐出量、つ
まり、圧縮機の出力(容量)が変化する。
A part of a casing accommodating a rotor of the compressor is constituted by a slide valve. The slide valve is stepless in an axial direction by a hydraulic piston moving in a cylinder and a solenoid valve for putting and receiving pressure oil into and out of the cylinder. Is to be moved. When the position of the slide valve changes,
The bypass amount of the refrigerant gas changes, and the discharge amount of the refrigerant gas, that is, the output (capacity) of the compressor changes.

【0015】図6にスライド弁の移動操作部の概念を示
す。圧縮機のロータ61を収容するケーシングの一部が
軸方向に移動可能なスライド弁62で構成され、該スラ
イド弁62にはロータ軸方向に平行にピストンロッド6
3が取り付けられている。ピストンロッド63の先端に
取り付けられたピストン64はシリンダ65内を摺動す
るようになっており、該シリンダ65のピストン64の
ピストンロッド63側端部に高圧側油圧管70が、反対
側端部には低圧側油圧管66が、それぞれ接続されてい
る。高圧側油圧管70は三つに分岐し、それぞれ電磁弁
67,68,69が設けられ、電磁弁67は図示されて
いない油圧発生装置の低圧側に、電磁弁68,69は高
圧側に接続されている。前記低圧側油圧管66も油圧発
生装置の低圧側に接続されている。また、シリンダ64
とピストン64の間にはピストン64をピストンロッド
側に引き付けるバネ71が設けられている。電磁弁6
8,69を閉じ、電磁弁67を開くとシリンダ65内の
高圧油は低圧側に排出され、ピストン64はバネ71に
よりピストンロッド側に引き付けられ、スライド弁62
は圧縮機の容量が最大になる位置に復帰する。電磁弁6
7を閉じ、電磁弁68及びまたは69を短時間開くと、
ピストン64のピストンロッド側に高圧油が流入し、ピ
ストン64が反ピストンロッド側に動く。ピストン64
の移動に伴ってスライド弁62も軸方向に移動し、冷媒
ガスのバイパス量が増えて圧縮機の容量は低減される。
ピストン64の移動量は電磁弁68およびまたは69の
開いている時間に比例し、前記演算部1cは、電磁弁の
開閉の組合せ及び開時間を制御して容量制御を行う。
FIG. 6 shows the concept of the moving operation section of the slide valve. A part of a casing accommodating a rotor 61 of the compressor is constituted by a slide valve 62 movable in the axial direction, and the slide valve 62 has a piston rod 6 parallel to the rotor axial direction.
3 is attached. A piston 64 attached to the tip of the piston rod 63 slides in a cylinder 65. A high-pressure side hydraulic pipe 70 is provided at an end of the cylinder 65 at the piston rod 63 side, and at an opposite end. Is connected to a low-pressure side hydraulic pipe 66. The high-pressure-side hydraulic pipe 70 branches into three, and electromagnetic valves 67, 68, and 69 are provided, respectively. Have been. The low pressure side hydraulic pipe 66 is also connected to the low pressure side of the hydraulic pressure generator. Also, the cylinder 64
A spring 71 for pulling the piston 64 toward the piston rod is provided between the piston 71 and the piston 64. Solenoid valve 6
When the solenoid valve 67 is opened and the solenoid valve 67 is opened, the high-pressure oil in the cylinder 65 is discharged to the low-pressure side, the piston 64 is attracted to the piston rod side by the spring 71, and the slide valve 62
Returns to the position where the capacity of the compressor is maximized. Solenoid valve 6
7 and closing the solenoid valves 68 and / or 69 for a short time,
High-pressure oil flows into the piston rod side of the piston 64, and the piston 64 moves to the opposite side of the piston rod. Piston 64
The slide valve 62 also moves in the axial direction with the movement of the compressor, and the bypass amount of the refrigerant gas increases, thereby reducing the capacity of the compressor.
The amount of movement of the piston 64 is proportional to the time during which the solenoid valves 68 and / or 69 are open, and the arithmetic unit 1c controls the combination of opening and closing of the solenoid valves and the opening time to perform capacity control.

【0016】また、複数の負荷側空調機2は、それぞれ
室外機1から供給される冷媒と室内空気の熱交換器を行
う熱交換器2aと送風機2bと各負荷側空調機の設定温
度と当該空調機の吸い込み空気温度の偏差量を検出する
偏差検出手段2cとを含んで構成されている。この偏差
検出手段2cは、前記演算部1cに接続されており、前
記偏差量を出力するとともに、当該負荷側空調機が運転
状態にあるかどうかをも送信する。
The plurality of load-side air conditioners 2 are provided with a heat exchanger 2a for performing heat exchange between the refrigerant supplied from the outdoor unit 1 and the indoor air, a blower 2b, the set temperatures of the respective load-side air conditioners, and the like. Deviation detecting means 2c for detecting a deviation amount of the intake air temperature of the air conditioner. The deviation detecting means 2c is connected to the calculation section 1c, outputs the deviation amount, and also transmits whether the load-side air conditioner is in an operating state.

【0017】図2は、横軸に時間を、縦軸に温度及び圧
縮機容量(%)をとり、負荷が負荷変動曲線5に示すよ
うに変化する区画内で本実施例の空調装置を運転した場
合のの室温変化6とそのときの本実施例の空調装置に用
いられている連続容量制御圧縮機の容量変化8、同様条
件で従来の段階容量制御式空調を行った場合の室温変動
7とそのときの段階制御圧縮機の容量(出力)変化9を
示す。
FIG. 2 shows time in the horizontal axis, temperature and compressor capacity (%) in the vertical axis, and operates the air conditioner of this embodiment in a section where the load changes as shown by a load fluctuation curve 5. And the change in the capacity of the continuous displacement control compressor used in the air conditioner of this embodiment at that time, and the change in the room temperature when the conventional step displacement control type air conditioning is performed under the same conditions. And the change (capacity (output)) 9 of the stage control compressor at that time.

【0018】図3は、横軸に圧縮機吐出圧力を、縦軸に
圧縮機容量(出力)(%)をとり、圧縮機を駆動するモ
ータへの入力電流値と圧縮機吐出圧力及び圧縮機容量
(出力)(%)の関係を示している。直線10A,10
B,10Cは、それぞれ圧縮機を駆動するモータへの入
力電流値が電流値a,b,c(c>a>b)のときの圧
縮機吐出圧力と圧縮機容量(出力)(%)の関係を示し
ている。
FIG. 3 shows the compressor discharge pressure on the horizontal axis and the compressor capacity (output) (%) on the vertical axis, the input current value to the motor for driving the compressor, the compressor discharge pressure and the compressor. The relationship between capacity (output) (%) is shown. Straight lines 10A, 10
B and 10C are the compressor discharge pressure and the compressor capacity (output) (%) when the input current value to the motor for driving the compressor is a current value a, b, c (c>a> b), respectively. Shows the relationship.

【0019】図4は、横軸に運転される負荷側空調機の
台数を、縦軸に圧縮機運転可能容量(出力)(%)をと
り、運転される負荷側空調機の台数に対して運転可能な
圧縮機容量(出力)(%)を棒線11で示している。図
4は、設計吐出圧力での運転可能圧縮機容量を示してお
り、異なる圧力で運転される場合は台数は変化する。
FIG. 4 shows the number of operated load-side air conditioners on the horizontal axis and the operable capacity (output) (%) of the compressor on the vertical axis. The operable compressor capacity (output) (%) is indicated by a bar 11. FIG. 4 shows the operable compressor capacity at the designed discharge pressure, and the number changes when the compressor is operated at a different pressure.

【0020】次に、図1に示す空調装置が冷房運転を行
っている場合についてその容量制御方法を説明する。運
転開始後、室外機1の圧縮機から高温高圧のガス冷媒が
吐出され、室外機熱交換器内で凝縮され冷媒分岐管3を
経て負荷側空調機2へ分配される。各負荷側空調機2に
分配された液冷媒は、室内負荷と熱交換し室内空気から
熱を奪って該室内空気を冷却するとともに、自身は蒸発
して気化したのち、冷媒分岐管4へ集められ室外機1へ
戻る。このとき、凝縮する冷媒の圧力は、室外機1の周
囲外気温度と圧縮機運転容量により決まり、圧縮機を駆
動するモータへの入力電流値(以下、圧縮機運転電流と
いう)もその運転状態(負荷状態)により定まる値をと
る。室外機1に取りつけられた電流検出器1bと高圧圧
力検出器1aで常に圧縮機運転電流と冷凍サイクル圧力
の一つである圧縮機吐出圧力が検出され、演算部1cに
よって図3に示す特性からその時点での圧縮機運転容量
(出力%)が算出される。
Next, a capacity control method for the case where the air conditioner shown in FIG. 1 performs a cooling operation will be described. After the start of operation, a high-temperature and high-pressure gas refrigerant is discharged from the compressor of the outdoor unit 1, condensed in the outdoor unit heat exchanger, and distributed to the load-side air conditioner 2 via the refrigerant branch pipe 3. The liquid refrigerant distributed to each load-side air conditioner 2 exchanges heat with the indoor load to remove heat from the indoor air to cool the indoor air and, after evaporating and vaporizing itself, collects in the refrigerant branch pipe 4. And returns to the outdoor unit 1. At this time, the pressure of the refrigerant to be condensed is determined by the ambient temperature of the outdoor unit 1 and the operating capacity of the compressor, and the input current value to the motor for driving the compressor (hereinafter referred to as the compressor operating current) is also in its operating state ( (Load condition). The compressor operating current and the compressor discharge pressure, which is one of the refrigeration cycle pressures, are constantly detected by the current detector 1b and the high-pressure pressure detector 1a attached to the outdoor unit 1, and are calculated by the calculation unit 1c from the characteristics shown in FIG. The compressor operating capacity (output%) at that time is calculated.

【0021】図2は負荷が負荷変動曲線5のように変化
する区画での空調装置の運転状態を示す。演算部1cに
は、圧縮機起動後、負荷側空調機の設定温度と該負荷側
空調機の吸い込み空気温度の差の大きさを表す偏差信号
が各負荷側空調機2の偏差検出手段2cから入力され、
該演算部1cは入力される複数の偏差信号を演算処理し
てスライド弁の制御信号に変換する。偏差が大きければ
圧縮機容量が増加する方向の制御信号が出力され、この
制御信号によりスライド弁駆動部の電磁弁が開閉され
る。
FIG. 2 shows the operating state of the air conditioner in a section where the load changes as indicated by a load fluctuation curve 5. After the compressor is started, a deviation signal indicating the difference between the set temperature of the load-side air conditioner and the suction air temperature of the load-side air conditioner is transmitted from the deviation detection means 2c of each load-side air conditioner 2 to the calculation unit 1c. Entered,
The arithmetic unit 1c performs arithmetic processing on a plurality of input deviation signals to convert the deviation signals into slide valve control signals. If the deviation is large, a control signal in the direction of increasing the compressor capacity is output, and the control signal opens and closes the solenoid valve of the slide valve drive unit.

【0022】吸い込み空気温度がしだいに設定値に近づ
くと、それに従って圧縮機容量が低減される。連続容量
制御である本実施例の圧縮機容量変化9と段階容量制御
の場合の圧縮機容量変化10に示すように、本実施例の
連続容量制御では負荷変動に従ってなめらかに容量制御
可能であり、室温も設定値に追従するが、段階制御では
段階の途中での負荷に圧縮機出力が一致しないため、ど
うしても負荷よりも大きい出力で圧縮機が運転されるこ
とになる。このため、冷えすぎから発停制御となり、室
温の変動が大きく快適性が減少しまた発停による効率低
下を生じてしまう。
As the suction air temperature gradually approaches the set value, the compressor capacity is reduced accordingly. As shown in the compressor capacity change 9 of this embodiment, which is continuous capacity control, and the compressor capacity change 10 in the case of stepwise capacity control, in the continuous capacity control of this embodiment, capacity can be smoothly controlled in accordance with a load change. The room temperature also follows the set value, but in the step control, the compressor output does not match the load in the middle of the step, so that the compressor must be operated with an output larger than the load. For this reason, start / stop control is performed after the temperature is too cold, and the room temperature fluctuates greatly, reducing comfort and causing a drop in efficiency due to start / stop.

【0023】一方、複数の負荷側空調機n台それぞれに
任意の負荷変動が与えられるマルチパッケージでは、室
内負荷の程度により負荷側空調機が個別に発停する。こ
のため、今100%容量で運転していても次の時点で急
に1台または複数台の負荷側空調機が停止してしまうと
冷凍サイクルのバランスが保てなくなり、圧縮機容量が
過大となる。圧縮機容量が過大となると低圧圧力が低下
し、保護装置の作動にいたる等異常となるため、圧縮機
の容量を負荷側の運転台数に追従させ適正に保たれねば
ならない。
On the other hand, in a multipackage in which an arbitrary load variation is given to each of a plurality of n load-side air conditioners, the load-side air conditioners individually start and stop according to the degree of indoor load. Therefore, if one or more load-side air conditioners suddenly stop at the next point in time even when operating at 100% capacity, the balance of the refrigeration cycle cannot be maintained, and the compressor capacity becomes excessive. Become. If the capacity of the compressor becomes excessive, the low-pressure pressure decreases, and the operation of the protection device becomes abnormal. For example, the capacity of the compressor must follow the number of operating units on the load side and be properly maintained.

【0024】図5にフローチャートとして示すその制御
方法の一実施例を以下に説明する。予め図3の直線10
A,10B,10Cに示されるようなデータが細かい電
流値間隔で作成され演算部1cのメモリに格納される。
運転開始後、所定の時間間隔(サンプリングタイム)
で、吐出圧力と圧縮機運転電流が検出され、演算部1c
に入力される(手順52)。ついで各負荷側空調機が運
転中かどうかの信号が同様に演算部1cに入力される
(手順53)。演算部1cには、さらに、各負荷側空調
機から設定温度と該負荷側空調機の吸い込み空気温度の
差の大きさを表す偏差信号(吸い込み空気温度が設定温
度より高いときプラス側の偏差とする)が入力され、入
力された偏差信号から負荷の大きさが判断される。偏差
信号は複数の負荷側空調機から個々に入力され、大小の
偏差が混在するから、演算部1cはこれらの信号の平均
あるいは加重平均を行って負荷を検出する(手順5
4)。
One embodiment of the control method shown in the flowchart of FIG. 5 will be described below. The straight line 10 in FIG.
Data such as A, 10B, and 10C are created at fine current value intervals and stored in the memory of the arithmetic unit 1c.
Predetermined time interval after starting operation (sampling time)
Then, the discharge pressure and the compressor operating current are detected, and the calculation unit 1c
(Step 52). Next, a signal indicating whether or not each load-side air conditioner is operating is similarly input to the calculation unit 1c (step 53). The calculation unit 1c further includes a deviation signal (a plus-side deviation when the intake air temperature is higher than the set temperature) indicating the difference between the set temperature and the intake air temperature of the load side air conditioner from each load side air conditioner. Is input, and the magnitude of the load is determined from the input deviation signal. The deviation signal is individually input from a plurality of load-side air conditioners, and large and small deviations are mixed. Therefore, the arithmetic unit 1c detects the load by averaging or weighting these signals (Step 5).
4).

【0025】演算部1cは次いで、検出した負荷に基づ
いて、圧縮機容量(出力)を増加すべきかどうかを判断
する(手順55)。偏差(負荷)がプラスであれば手順
58に進んでスライド弁制御による容量(出力)増加が
行われる。偏差(負荷)がプラスでなければ手順56に
進んで、偏差がマイナスかどうかが判断される。偏差が
マイナスであれば手順60に進んでスライド弁制御によ
る容量(出力)低減が行われる。偏差がマイナスでなけ
れば手順57に進み、そのままの容量で圧縮機運転が継
続される。演算部1cは、負荷(偏差)を入力とし、比
例制御、比例積分制御、PID制御等の制御論理によ
り、前記電磁弁開閉信号を生成する手段を備えており、
手順58,60におけるスライド弁制御による容量増減
は、演算部1cから出力される電磁弁67,68,69
への電磁弁開閉信号によって行われる。
The arithmetic unit 1c then determines whether or not the compressor capacity (output) should be increased based on the detected load (step 55). If the deviation (load) is positive, the routine proceeds to step 58, where the capacity (output) is increased by the slide valve control. If the deviation (load) is not positive, the process proceeds to step 56, where it is determined whether the deviation is negative. If the deviation is negative, the routine proceeds to step 60, where the capacity (output) is reduced by the slide valve control. If the deviation is not minus, the procedure proceeds to step 57, and the compressor operation is continued with the same capacity. The arithmetic unit 1c includes a unit that receives the load (deviation) as input and generates the solenoid valve opening / closing signal by control logic such as proportional control, proportional integral control, and PID control.
The capacity increase / decrease due to the slide valve control in steps 58 and 60 is determined by the solenoid valves 67, 68 and 69 output from the calculation unit 1c.
This is performed by a solenoid valve opening / closing signal to the controller.

【0026】手順58で圧縮機出力が増加されたら、手
順59に進む。手順59では、演算部1cは、手順52
で入力された吐出圧力と圧縮機運転電流から前記メモリ
に格納されたデータを参照してその時点での圧縮機出力
を算出するとともに、入力された負荷側空調機運転信号
から運転中の空調機台数を算出し、図4を参照して運転
可能圧縮機容量を算出する。演算部1cは、算出された
その時点での圧縮機出力と運転可能圧縮機容量を比較
し、圧縮機出力が低ければそのまま運転を継続し、手順
52に進む。圧縮機出力が高ければ手順60に進んでス
ライド弁制御による容量(出力)低減が行われる。この
場合のスライド弁制御信号は、圧縮機出力と運転可能圧
縮機容量の偏差を入力とする単純な比例制御方式で生成
される。手順60で演算部1cが出力する制御信号によ
って圧縮機出力が低減されたら、再び手順52に戻っ
て、これまでの手順が繰り返される。
When the compressor output is increased in step 58, the process proceeds to step 59. In step 59, the operation unit 1c executes step 52
Calculates the compressor output at that time by referring to the data stored in the memory from the discharge pressure and compressor operation current input in the above, and also operates the air conditioner from the input load side air conditioner operation signal. The number is calculated, and the operable compressor capacity is calculated with reference to FIG. The operation unit 1c compares the calculated compressor output at that time with the operable compressor capacity. If the compressor output is low, the operation is continued, and the procedure proceeds to step 52. If the compressor output is high, the procedure proceeds to step 60 where the capacity (output) is reduced by the slide valve control. In this case, the slide valve control signal is generated by a simple proportional control method using a deviation between the compressor output and the operable compressor capacity as an input. When the output of the compressor is reduced by the control signal output from the arithmetic unit 1c in step 60, the process returns to step 52 again, and the previous steps are repeated.

【0027】段階制御では台数に応じ圧縮機容量を段階
的に制御できるがその範囲での発停制御には容量の追従
に限度がある。スライド弁の位置を連続的(無段階)に
変化させる本実施例の制御では、きめ細かく負荷に追従
することが可能であり、図2の特性8に示す特徴を持っ
た良好な制御が行われる。
In the stage control, the compressor capacity can be controlled stepwise according to the number of units, but the start / stop control in that range has a limit in following the capacity. In the control of the present embodiment in which the position of the slide valve is changed continuously (steplessly), it is possible to finely follow the load, and good control having the characteristics shown in the characteristic 8 in FIG. 2 is performed.

【0028】なお、図3で示す電流時性10A,10
B,10Cは、例として圧縮機運転電流値がそれぞれa
値b値c値等の場合を示す。図示の電流特性では、例え
ば電流値がa,吐出圧力がP1であれば、そのときの圧
縮機出力は100%であり、吐出圧力が同じP1に維持
されていても電流値がbになれば圧縮機出力はm1%に
低下する。また、圧力がP1、電流値がaの状態から、
電流値をaに維持しつつ圧力をP2に上昇させようとす
ると、電流特性10A上で変化させることになり、スラ
イド弁を動かして冷媒バイパス量を増加させ、冷媒吐出
量を減少させることになる。冷媒吐出量の減少により、
圧縮機の容量がm2%に低下する。これらの関係を数式
化又は数表化して室外機の演算部に入力、格納しておく
ことで本制御が成立し実施できる。
It should be noted that the current aging 10A, 10A shown in FIG.
B and 10C have, for example, compressor operating current values a
The values b, c, etc. are shown. In the illustrated current characteristics, for example, if the current value is a and the discharge pressure is P1, the compressor output at that time is 100%, and if the current value becomes b even if the discharge pressure is maintained at the same P1, The compressor output drops to m1%. Further, from the state where the pressure is P1 and the current value is a,
If an attempt is made to increase the pressure to P2 while maintaining the current value at a, the pressure characteristic will be changed on the current characteristic 10A, and the slide valve will be moved to increase the refrigerant bypass amount and decrease the refrigerant discharge amount. . Due to the decrease in refrigerant discharge,
The capacity of the compressor drops to m2%. This control is established and executed by formulating or storing these relationships in a mathematical expression or a numerical table, and inputting and storing them in the arithmetic unit of the outdoor unit.

【0029】本実施例によれば、スクリュー圧縮機を使
用したマルチ形空調装置において、負荷側空調機の負荷
変動に圧縮機容量を連続的に追従させることができ、ま
たマルチ特有の負荷側空調機個別運転時にも圧縮機能力
を過剰にならないよう監視制御できるため最低容量から
適正容量までの連続容量制御が実現できる。さらに無段
階で容量制御が行われるので、段階制御で生じる圧縮機
の発停回数を低減でき、冷えすぎや圧縮機起動時の過大
な突入電流の緩和、電気的ノイズの発生緩和等に効果が
あり、信頼性が向上するとともにエネルギ消費が低減さ
れる。段階制御の発停をなくすことで、COPを一定と
仮定したとき約9%程度の省エネルギが可能である。
According to this embodiment, in the multi-type air conditioner using the screw compressor, the compressor capacity can continuously follow the load fluctuation of the load side air conditioner, and the load side air conditioner unique to the multi type. Even during individual operation of the machine, it is possible to monitor and control the compression function so as not to be excessive, so that continuous capacity control from a minimum capacity to an appropriate capacity can be realized. In addition, since the capacity control is performed in a stepless manner, the number of start / stop of the compressor caused by the stepwise control can be reduced, which is effective in reducing excessive cooling, excessive rush current at the time of starting the compressor, and alleviating the generation of electrical noise. In addition, reliability is improved and energy consumption is reduced. By eliminating the start / stop of the step control, it is possible to save about 9% of energy when the COP is assumed to be constant.

【0030】[0030]

【発明の効果】本発明によれば、スクリュー圧縮機を使
用したマルチ形空調装置において、負荷側空調機の負荷
変動に圧縮機容量を連続的に追従させることができ、ま
たマルチ特有の負荷側空調機個別運転時にも圧縮機能力
を過剰にならないよう監視制御できるため最低容量から
適正容量までの連続容量制御が実現できる。さらに連続
容量制御のため段階制御で生じる圧縮機発停の回数を低
減でき、冷えすぎや圧縮機起動時の突入電流過大の緩
和、電気的ノイズの発生緩和等に効果があり信頼性の向
上と省エネルギ化が図れる。省エネ性では段階制御の発
停をなくすことでCOPを一定と仮定したとき約9%程
度となる。
According to the present invention, in a multi-type air conditioner using a screw compressor, the compressor capacity can continuously follow the load fluctuation of the load-side air conditioner, and the load side unique to the multi-type air conditioner can be changed. Even during individual operation of the air conditioners, monitoring and control can be performed so that the compression function is not excessive, so that continuous capacity control from a minimum capacity to an appropriate capacity can be realized. Furthermore, continuous capacity control can reduce the number of compressor start / stops caused by step control, which is effective in alleviating excessive cooling, excessive rush current when starting the compressor, and reducing the occurrence of electrical noise. Energy can be achieved. Energy saving is about 9% when COP is assumed to be constant by eliminating start / stop of step control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例であるマルチタイプ空調装置の
系統図である。
FIG. 1 is a system diagram of a multi-type air conditioner according to an embodiment of the present invention.

【図2】負荷変動に対する圧縮機容量制御状態を本発明
の実施例と従来技術の場合で比較して示す概念図であ
る。
FIG. 2 is a conceptual diagram showing a compressor capacity control state with respect to a load change in comparison with an embodiment of the present invention and a conventional technique.

【図3】圧縮機運転圧力と容量の関係を圧縮機運転電流
を介して示す概念図である。
FIG. 3 is a conceptual diagram showing the relationship between compressor operating pressure and capacity via compressor operating current.

【図4】負荷側空調機台数に対する運転可能圧縮機容量
を示す概念図である。
FIG. 4 is a conceptual diagram showing the operable compressor capacity with respect to the number of load-side air conditioners.

【図5】本発明の実施例を示す制御フローチャートであ
る。
FIG. 5 is a control flowchart showing an embodiment of the present invention.

【図6】本発明の実施例におけるスクリュー圧縮機のス
ライド弁操作の機構例を示す概念図である。
FIG. 6 is a conceptual diagram showing an example of a mechanism for operating a slide valve of the screw compressor in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 室外機 1a 高圧圧力検出器 1b 電流検出器 1c 演算部 2 負荷側空調機 2a 熱交換器 2b 送風機 2c 偏差検出手段 3,4 冷媒分岐管 5 負荷変動 10A,10B,10C 電流特性曲線 11 運転可能圧縮機容量 62 容量制御用スライド弁 63,64,65,67,68,69,70,71 ス
ライド弁を無段階に移動させる手段
DESCRIPTION OF SYMBOLS 1 Outdoor unit 1a High-pressure detector 1b Current detector 1c Operation part 2 Load side air conditioner 2a Heat exchanger 2b Blower 2c Deviation detecting means 3, 4 Refrigerant branch pipe 5 Load fluctuation 10A, 10B, 10C Current characteristic curve 11 Operable Compressor capacity 62 Capacity control slide valve 63, 64, 65, 67, 68, 69, 70, 71 Means for moving slide valve steplessly

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川崎 賢司 静岡県清水市村松390番地 株式会社 日立製作所 清水工場内 (72)発明者 関 修 静岡県清水市村松390番地 株式会社 日立製作所 清水工場内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kenji Kawasaki 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Inside the Shimizu Plant, Hitachi, Ltd.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 容量制御用スライド弁を有するスクリュ
ー圧縮機で冷媒を圧縮する室外機と、該室外機に接続さ
れ前記冷媒を循環させて空気調和を行う複数台の負荷側
空調機の組合せよりなるマルチタイプ空調装置における
圧縮機の容量制御方法において、スクリュー圧縮機運転
電流と冷凍サイクル圧力と負荷側空調機の運転台数とを
検出し、検出されたスクリュー圧縮機運転電流と冷凍サ
イクル圧力とからその時点での実際の圧縮機出力を算出
し、算出された実際の圧縮機出力が、検出された負荷側
空調機の運転台数から定まる運転可能圧縮機容量を上回
らないように、前記スライド弁を操作してスクリュー圧
縮機の容量制御を無段階に行うことを特徴とするスクリ
ュー圧縮機の容量制御方法。
1. A combination of an outdoor unit for compressing refrigerant by a screw compressor having a slide valve for capacity control and a plurality of load-side air conditioners connected to the outdoor unit and circulating the refrigerant for air conditioning. In the compressor capacity control method in the multi-type air conditioner, the screw compressor operating current, the refrigeration cycle pressure, and the number of operating load side air conditioners are detected, and the detected screw compressor operating current and the refrigeration cycle pressure are used. The actual compressor output at that time is calculated, and the slide valve is adjusted so that the calculated actual compressor output does not exceed the operable compressor capacity determined from the detected number of operating load-side air conditioners. A capacity control method for a screw compressor, wherein the capacity control of the screw compressor is performed steplessly by operation.
【請求項2】 容量制御用スライド弁を有するスクリュ
ー圧縮機で冷媒を圧縮する室外機と、該室外機に接続さ
れ前記冷媒を循環させて空気調和を行う複数台の負荷側
空調機の組合せよりなるマルチタイプ空調装置における
圧縮機の容量制御方法において、スクリュー圧縮機運転
電流と冷凍サイクル圧力と負荷側空調機の運転台数とを
検出し、前記検出されたスクリュー圧縮機運転電流が、
検出された冷凍サイクル圧力と負荷側空調機の運転台数
とから定まる最大許容電流値以下となるように前記スラ
イド弁を操作することを特徴とするスクリュー圧縮機の
容量制御方法。
2. A combination of an outdoor unit that compresses a refrigerant by a screw compressor having a slide valve for capacity control and a plurality of load-side air conditioners connected to the outdoor unit and circulating the refrigerant to perform air conditioning. In the capacity control method of the compressor in the multi-type air conditioner, the operating current of the screw compressor, the refrigeration cycle pressure and the number of operating load-side air conditioners are detected, and the detected operating current of the screw compressor is:
A capacity control method for a screw compressor, comprising: operating the slide valve so as to be equal to or less than a maximum allowable current value determined from a detected refrigeration cycle pressure and the number of operating load-side air conditioners.
【請求項3】 連続的に容量制御可能なスライド弁構造
のスクリュー圧縮機を内蔵した室外機と複数台の負荷側
空調機の組合せよりなるマルチタイプ空調装置における
圧縮機の容量制御方法において、運転時の冷凍サイクル
圧力と圧縮機運転電流を同時に検出し、圧縮機の運転電
流が、負荷側空調機の運転台数及び冷凍サイクル圧力に
見合った運転電流になるように前記スライド弁を操作し
て、スクリュー圧縮機の容量制御を無段階に行うことを
特徴とするスクリュー圧縮機の容量制御方法。
3. A method for controlling the capacity of a compressor in a multi-type air conditioner comprising a combination of an outdoor unit incorporating a screw compressor having a slide valve structure capable of continuously controlling the capacity and a plurality of load side air conditioners. Simultaneously detect the refrigeration cycle pressure and the compressor operating current at the time, operate the slide valve so that the operating current of the compressor becomes an operating current that matches the number of operating load side air conditioners and the refrigeration cycle pressure, A capacity control method for a screw compressor, wherein the capacity control of the screw compressor is performed steplessly.
【請求項4】各負荷側空調機の設定温度と当該空調機の
吸い込み空気温度の偏差量を検出し、検出された各負荷
側空調機の偏差量から圧縮機のスライド弁の制御量を算
出し、算出された制御量に基づいてスライド弁を無段階
に移動させる手順を備えたことを特徴とする請求項1乃
至3のいずれかに記載のスクリュー圧縮機の容量制御方
法。
4. A method for detecting a deviation between a set temperature of each load-side air conditioner and a suction air temperature of the air-conditioner, and calculating a control amount of a slide valve of the compressor from the detected deviation of each load-side air conditioner. 4. The capacity control method for a screw compressor according to claim 1, further comprising a step of moving the slide valve steplessly based on the calculated control amount.
【請求項5】 容量制御用スライド弁を有するスクリュ
ー圧縮機で冷媒を圧縮する室外機と、該室外機に接続さ
れ前記冷媒を循環させて空気調和を行う複数台の負荷側
空調機の組合せよりなるマルチタイプ空調装置におい
て、スクリュー圧縮機運転電流を検出する電流検出器
と、冷凍サイクル圧力を検出する圧力検出器と、負荷側
空調機の運転台数を検出する運転台数検知手段と、検出
されたスクリュー圧縮機運転電流と冷凍サイクル圧力と
からその時点での実際の圧縮機出力を算出する演算部と
を含んでなり、該演算部は、算出された実際の圧縮機出
力が、検出された負荷側空調機の運転台数から定まる運
転可能圧縮機容量を上回らないように前記スライド弁位
置を無段階に操作する制御信号生成手段を備えたもので
あることを特徴とするスクリュー圧縮機の容量制御装
置。
5. A combination of an outdoor unit for compressing refrigerant by a screw compressor having a slide valve for capacity control and a plurality of load-side air conditioners connected to the outdoor unit and circulating the refrigerant for air conditioning. In the multi-type air conditioner, a current detector for detecting a screw compressor operating current, a pressure detector for detecting a refrigeration cycle pressure, an operating number detecting means for detecting the operating number of the load side air conditioners, A calculating unit for calculating the actual compressor output at that time from the screw compressor operating current and the refrigeration cycle pressure, the calculating unit comprising: A control signal generating means for continuously operating the slide valve position so as not to exceed the operable compressor capacity determined from the number of side air conditioners operated. Clew compressor capacity control device.
【請求項6】 容量制御用スライド弁を有するスクリュ
ー圧縮機で冷媒を圧縮する室外機と、該室外機に接続さ
れ前記冷媒を循環させて空気調和を行う複数台の負荷側
空調機の組合せよりなるマルチタイプ空調装置におい
て、各負荷側空調機の設定温度と当該空調機の吸い込み
空気温度の偏差量を検出する偏差検出手段と、検出され
た各負荷側空調機の偏差量から圧縮機のスライド弁の制
御量を算出する手段と、算出された制御量に基づいてス
ライド弁を無段階に移動させる手段と、スクリュー圧縮
機運転電流を検出する電流検出器と、冷凍サイクル圧力
を検出する圧力検出器と、負荷側空調機の運転台数を検
出する運転台数検知手段と、検出されたスクリュー圧縮
機運転電流と冷凍サイクル圧力とからその時点での実際
の圧縮機出力を算出する演算部とを含んでなり、該演算
部は、算出された実際の圧縮機出力が、検出された負荷
側空調機の運転台数から定まる運転可能圧縮機容量を上
回らないように前記スライド弁位置を無段階に操作する
制御信号生成手段を備えたものであることを特徴とする
スクリュー圧縮機の容量制御装置。
6. An outdoor unit for compressing refrigerant by a screw compressor having a slide valve for capacity control, and a plurality of load-side air conditioners connected to the outdoor unit and circulating the refrigerant for air conditioning. In a multi-type air conditioner, a deviation detecting means for detecting a deviation between a set temperature of each load side air conditioner and a suction air temperature of the air conditioner, and a compressor slide based on the detected deviation amount of each load side air conditioner. Means for calculating the control amount of the valve, means for continuously moving the slide valve based on the calculated control amount, a current detector for detecting the operating current of the screw compressor, and a pressure detection for detecting the refrigeration cycle pressure And an operating unit detecting means for detecting the operating number of the load side air conditioners, and calculating an actual compressor output at that time from the detected screw compressor operating current and refrigeration cycle pressure. And a computing unit for controlling the position of the slide valve so that the calculated actual compressor output does not exceed the operable compressor capacity determined from the detected number of operating load-side air conditioners. And a control signal generating means for continuously operating the screw compressor.
JP3135098A 1991-06-06 1991-06-06 Method and apparatus for controlling capacity of screw compressor Expired - Fee Related JP2581622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3135098A JP2581622B2 (en) 1991-06-06 1991-06-06 Method and apparatus for controlling capacity of screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3135098A JP2581622B2 (en) 1991-06-06 1991-06-06 Method and apparatus for controlling capacity of screw compressor

Publications (2)

Publication Number Publication Date
JPH04359759A JPH04359759A (en) 1992-12-14
JP2581622B2 true JP2581622B2 (en) 1997-02-12

Family

ID=15143792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3135098A Expired - Fee Related JP2581622B2 (en) 1991-06-06 1991-06-06 Method and apparatus for controlling capacity of screw compressor

Country Status (1)

Country Link
JP (1) JP2581622B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153729A (en) * 2010-01-26 2011-08-11 Daikin Industries Ltd Air conditioner
CN107476981A (en) * 2017-10-16 2017-12-15 珠海格力电器股份有限公司 Energy level adjusting method for screw compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233884B (en) * 2013-05-10 2016-04-13 何峰 A kind of reciprocating compressor load stepless regulating method
CN104949282B (en) * 2015-06-30 2017-12-08 重庆美的通用制冷设备有限公司 The determination methods and device of compressor slide position

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153729A (en) * 2010-01-26 2011-08-11 Daikin Industries Ltd Air conditioner
CN107476981A (en) * 2017-10-16 2017-12-15 珠海格力电器股份有限公司 Energy level adjusting method for screw compressor
CN107476981B (en) * 2017-10-16 2019-02-05 珠海格力电器股份有限公司 Energy level adjusting method for screw compressor

Also Published As

Publication number Publication date
JPH04359759A (en) 1992-12-14

Similar Documents

Publication Publication Date Title
JP3347103B2 (en) How to run a compressor in steady state
US5537830A (en) Control method and appartus for a centrifugal chiller using a variable speed impeller motor drive
US6779356B2 (en) Apparatus and method for controlling operation of air conditioner
JP2004522132A (en) Method and apparatus for controlling heat removal from a condenser in a cooling system
US20100236264A1 (en) Compressor motor control
JP2002130148A (en) Method and apparatus for controlling at least one compressor of cooling system having variable speed drive
EP0520628A2 (en) Head pressure controller for air conditioning and refrigeration systems
US4494382A (en) Method and apparatus for controlling when to initiate an increase in compressor capacity
EP1681990A2 (en) Refrigerant cycle with operating range extension
US6705097B2 (en) Compressor-controlling device and method for air conditioner comprising a plurality of compressors
US20040003610A1 (en) Air conditioning system with two compressors and method for operating the same
KR20030097179A (en) Heat-Pump Air Conditioner's Operating Method
CA2086398C (en) Automatic chiller stopping sequence
CN104653444A (en) Method and device for controlling starting of variable-frequency air conditioner
JPH0567864B2 (en)
WO2003019085A1 (en) A vapour-compression-cycle device
JPH05223362A (en) Capacity balance control system of refrigeration system and operating method thereof
JP2581622B2 (en) Method and apparatus for controlling capacity of screw compressor
JPH10288408A (en) Method for controlling energy conservation refrigerating system
CN111854203B (en) Refrigerator equipment, refrigerating system and control method of refrigerating system
JP2994862B2 (en) Cryogenic refrigeration equipment
JPS629153A (en) Refrigerator
WO2022118729A1 (en) Refrigerator, and method of operation during pre-cooling of refrigerator
KR100251567B1 (en) Cooling cycle and its control method
JP2004205163A (en) Refrigerating plant

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees