JP7198116B2 - Multi-stage compressor - Google Patents

Multi-stage compressor Download PDF

Info

Publication number
JP7198116B2
JP7198116B2 JP2019037458A JP2019037458A JP7198116B2 JP 7198116 B2 JP7198116 B2 JP 7198116B2 JP 2019037458 A JP2019037458 A JP 2019037458A JP 2019037458 A JP2019037458 A JP 2019037458A JP 7198116 B2 JP7198116 B2 JP 7198116B2
Authority
JP
Japan
Prior art keywords
stage
pressure
compressor
working chamber
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019037458A
Other languages
Japanese (ja)
Other versions
JP2020139487A (en
Inventor
豪 土屋
紘太郎 千葉
利明 矢部
雅之 笠原
航平 酒井
雄二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2019037458A priority Critical patent/JP7198116B2/en
Publication of JP2020139487A publication Critical patent/JP2020139487A/en
Application granted granted Critical
Publication of JP7198116B2 publication Critical patent/JP7198116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、複数の圧縮機本体を備えた多段圧縮機に関する。 The present invention relates to a multi-stage compressor having multiple compressor bodies.

近年、圧縮機の省エネ化が強く求められており、高効率や大風量であることが益々重要になっている。圧縮機の多段化は、そのための手法の1つであり、例えば、特許文献1は、二段スクリュー圧縮機を開示する。 In recent years, there is a strong demand for energy-saving compressors, and high efficiency and large air volume are becoming more and more important. A multi-stage compressor is one of the methods for achieving this. For example, Patent Literature 1 discloses a two-stage screw compressor.

多段圧縮機は、前段圧縮機本体と、前段圧縮機本体で圧縮された気体を更に圧縮する後段圧縮機本体と、前段圧縮機本体の吐出側と後段圧縮機本体の吸入側の間で接続された中間流路とを備える。 The multistage compressor is connected between a front compressor body, a rear compressor body that further compresses the gas compressed by the front compressor body, a discharge side of the front compressor body, and a suction side of the rear compressor body. and an intermediate flow path.

特開2017-166401号公報JP 2017-166401 A

中間流路の圧力(以降、中間圧力という)の設定値は、多段圧縮機の圧力比(詳細には、最終段圧縮機本体の吐出側圧力と初段圧縮機本体の吸入側圧力との比)の設定値に応じて決める。構造上の各段圧縮機本体の容積比(詳細には、吸入完了時の作動室の容積と吐出開始時の作動室の容積との比)は、多段圧縮機の圧力比の設定値と中間圧力の設定値に基づいて設計する。 The set value of the pressure in the intermediate flow path (hereinafter referred to as the intermediate pressure) is the pressure ratio of the multi-stage compressor (more specifically, the ratio of the pressure on the discharge side of the main body of the final stage compressor and the pressure on the suction side of the main body of the first stage compressor). Determined according to the set value of . Structurally, the volume ratio of the main body of each stage compressor (more specifically, the ratio of the volume of the working chamber at the completion of suction to the volume of the working chamber at the start of discharge) is between the set value of the pressure ratio of the multi-stage compressor and the Design based on pressure setting.

ところで、多段圧縮機の運転条件(詳細には、例えば最終段圧縮機本体の吐出側圧力の制御値)によって多段圧縮機の圧力比の運転値が変化し、これに伴って中間圧力の運転値が変化する。また、各段圧縮機本体の圧力差(詳細には、吐出側圧力と吸入側圧力との差)が変化し、これに伴って各段圧縮機本体の体積効率が変化し、その影響も受けて中間圧力の運転値が変化する。 By the way, the operating value of the pressure ratio of the multi-stage compressor changes depending on the operating conditions of the multi-stage compressor (more specifically, for example, the control value of the discharge side pressure of the main body of the final stage compressor), and accordingly the operating value of the intermediate pressure changes. In addition, the pressure difference between the main bodies of each stage compressor (more specifically, the difference between the pressure on the discharge side and the pressure on the suction side) changes, and accordingly the volumetric efficiency of the main body of each stage compressor changes. , the operating value of the intermediate pressure changes.

中間圧力の運転値が設定値より高ければ、前段圧縮機本体の圧縮行程の作動室の圧力が中間圧力の運転値より低くなり、圧縮不足な状態となる。そのため、中間圧力の設定値が比較的高くなるように、各段圧縮機本体の容積比を設計することが好ましい。しかし、中間圧力の設定値が比較的高くなるように設計した場合、中間圧力の運転値が設定値より低くなりやすい。中間圧力の運転値が設定値より低ければ、前段圧縮機本体の圧縮行程の作動室の圧力が中間圧力の運転値より高くなり、圧縮過剰な状態となる。すなわち、エネルギー損失が発生し、効率が低下する。 If the operating value of the intermediate pressure is higher than the set value, the pressure in the working chamber during the compression stroke of the pre-compressor main body becomes lower than the operating value of the intermediate pressure, resulting in insufficient compression. Therefore, it is preferable to design the volume ratio of each stage compressor main body so that the set value of the intermediate pressure is relatively high. However, when the intermediate pressure is designed to have a relatively high set value, the operating value of the intermediate pressure tends to be lower than the set value. If the operating value of the intermediate pressure is lower than the set value, the pressure in the working chamber during the compression stroke of the pre-compressor body becomes higher than the operating value of the intermediate pressure, resulting in excessive compression. That is, energy loss occurs and efficiency decreases.

本発明は、上記事柄に鑑みてなされたものであり、中間圧力の変化に応じて前段圧縮機本体の圧縮行程の作動室の圧力を調整して、効率を向上させることを課題の一つとするものである。 SUMMARY OF THE INVENTION It is an object of the present invention to improve efficiency by adjusting the pressure in the working chamber in the compression stroke of the main body of the pre-compressor in accordance with the change in the intermediate pressure. It is.

上記課題を解決するために、特許請求の範囲に記載の構成を適用する。本発明は、上記課題を解決するための手段を複数含んでいるが、その一例を挙げるならば、前段圧縮機本体と、前記前段圧縮機本体で圧縮された気体を更に圧縮する後段圧縮機本体と、前記前段圧縮機本体の吐出側と前記後段圧縮機本体の吸入側の間で接続された中間流路と、前記後段圧縮機本体の吐出側に接続された吐出流路と、を備えた多段圧縮機において、前記前段圧縮機本体の吐出行程の作動室とは異なる圧縮行程の作動室と前記中間流路を連通する前段弁孔と、前記前段弁孔に配置され、前記前段圧縮機本体の前記圧縮行程の作動室の圧力と前記中間流路の圧力との差圧によって作動する前段リリース弁と、前記後段圧縮機本体の吐出行程の作動室とは異なる圧縮行程の作動室と前記吐出流路の間で接続された後段弁孔と、前記後段弁孔に配置され、前記後段圧縮機本体の前記圧縮行程の作動室の圧力と前記吐出流路の圧力との差圧によって作動する後段リリース弁とを備え、前記前段リリース弁は、前記前段圧縮機本体の前記圧縮行程の作動室の圧力が前記中間流路の圧力より低い場合に前記前段弁孔を遮断状態とし、前記前段圧縮機本体の前記圧縮行程の作動室の圧力が前記中間流路の圧力より高い場合に前記前段弁孔を連通状態とし、前記後段リリース弁は、前記後段圧縮機本体の前記圧縮行程の作動室の圧力が前記吐出流路の圧力より低い場合に前記後段弁孔を遮断状態とし、前記後段圧縮機本体の前記圧縮行程の作動室の圧力が前記吐出流路の圧力より高い場合に前記後段弁孔を連通状態とする。 In order to solve the above problems, the configurations described in the claims are applied. The present invention includes a plurality of means for solving the above-mentioned problems, and to give an example, a front compressor main body and a rear compressor main body for further compressing the gas compressed by the front compressor main body an intermediate flow path connected between the discharge side of the front-stage compressor body and the suction side of the rear-stage compressor body; and a discharge flow path connected to the discharge side of the rear-stage compressor body . In the multi-stage compressor, a front stage valve hole that communicates the intermediate passage with a working chamber for a compression stroke different from a working chamber for a discharge stroke of the front stage compressor main body; a pressure difference between the pressure in the working chamber in the compression stroke and the pressure in the intermediate flow path ; a post-stage valve hole connected between the flow paths, and a post-stage arranged in the post-stage valve hole and operated by a pressure difference between a pressure in the working chamber during the compression stroke of the post-compressor main body and a pressure in the discharge flow path. a release valve , wherein the pre-stage release valve blocks the pre-stage valve hole when the pressure in the working chamber in the compression stroke of the pre-compressor main body is lower than the pressure in the intermediate flow path, and the pre-stage compressor When the pressure in the compression stroke working chamber of the main body is higher than the pressure in the intermediate flow path, the front stage valve hole is brought into communication, and the rear release valve opens the pressure in the compression stroke working chamber of the rear compressor body. The latter valve hole is closed when the pressure is lower than the pressure in the discharge passage, and the latter valve hole is closed when the pressure in the working chamber of the compression stroke of the latter compressor body is higher than the pressure in the discharge passage. are in communication.

本発明によれば、中間圧力の変化に応じて前段圧縮機本体の圧縮行程の作動室の圧力を調整して、効率を向上させることができる。 According to the present invention, efficiency can be improved by adjusting the pressure in the working chamber in the compression stroke of the main body of the pre-compressor according to the change in the intermediate pressure.

なお、上記以外の課題、構成及び効果は、以下の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description.

本発明の第1の実施形態における二段スクリュー圧縮機の概略構造を表す鉛直断面図である。1 is a vertical sectional view showing a schematic structure of a two-stage screw compressor according to a first embodiment of the present invention; FIG. 本発明の第1の実施形態における前段圧縮機本体の構造を表す水平断面図である。FIG. 2 is a horizontal cross-sectional view showing the structure of the main body of the pre-compressor in the first embodiment of the present invention; 本発明の第1の実施形態における前段圧縮機本体の構造を表す径方向断面図である。FIG. 3 is a radial cross-sectional view showing the structure of the main body of the pre-compressor in the first embodiment of the present invention; 本発明の第1の変形例における前段圧縮機本体の構造を表す水平断面図である。It is a horizontal sectional view showing the structure of the front stage compressor main body in the 1st modification of this invention. 本発明の第2の実施形態における二段スクリュー圧縮機の概略構造を表す鉛直断面図である。FIG. 5 is a vertical cross-sectional view showing a schematic structure of a two-stage screw compressor according to a second embodiment of the present invention; 本発明の第2の変形例における二段スクロール圧縮機の概略構造を表す鉛直断面図である。FIG. 5 is a vertical cross-sectional view showing a schematic structure of a two-stage scroll compressor in a second modified example of the present invention; 本発明の第3の変形例における二段スクロール圧縮機の概略構造を表す鉛直断面図である。FIG. 5 is a vertical cross-sectional view showing a schematic structure of a two-stage scroll compressor in a third modified example of the invention; 本発明の第4の変形例におけるリリース弁の構造を表す断面図である。FIG. 11 is a cross-sectional view showing the structure of a release valve in a fourth modified example of the invention;

本発明の適用対象として二段スクリュー圧縮機を例にとり、本発明の第1の実施形態を、図1~図3を用いて説明する。 Taking a two-stage screw compressor as an example to which the present invention is applied, a first embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG.

図1は、本実施形態における二段スクリュー圧縮機の概略構造を表す鉛直断面図である。図2は、本実施形態における前段圧縮機本体の構造を表す水平断面図である。図3は、本実施形態における前段圧縮機本体の構造を表す径方向断面図である。なお、図2においては、便宜上、前段リリース弁のリテーナの図示を省略する。 FIG. 1 is a vertical sectional view showing a schematic structure of a two-stage screw compressor in this embodiment. FIG. 2 is a horizontal sectional view showing the structure of the main body of the pre-compressor in this embodiment. FIG. 3 is a radial cross-sectional view showing the structure of the main body of the pre-compressor in this embodiment. In addition, in FIG. 2, for the sake of convenience, illustration of the retainer of the pre-stage release valve is omitted.

本実施形態の二段スクリュー圧縮機は、前段圧縮機本体1と、前段圧縮機本体1で圧縮された気体(詳細には、空気又は冷媒等)を更に圧縮する後段圧縮機本体2と、前段圧縮機本体1の吐出側と後段圧縮機本体2の吸入側の間で接続された中間流路3と、後段圧縮機本体2の吐出側に接続された吐出流路4とを備える。なお、図示しないものの、中間流路3にはインタークーラが設けられ、吐出流路4にはアフタークーラが設けられている。 The two-stage screw compressor of this embodiment includes a front compressor main body 1, a rear compressor main body 2 for further compressing gas (specifically, air or refrigerant, etc.) compressed by the front compressor main body 1, An intermediate flow path 3 connected between the discharge side of the compressor main body 1 and the suction side of the post-compressor main body 2 and a discharge flow path 4 connected to the discharge side of the post-compressor main body 2 are provided. Although not shown, the intermediate flow path 3 is provided with an intercooler, and the discharge flow path 4 is provided with an aftercooler.

前段圧縮機本体1は、回転軸が平行で互いに噛み合う雄ロータ5A及び雌ロータ6A(スクリューロータ)と、雄ロータ5A及び雌ロータ6Aを収納して、それらの歯溝に雄ロータ側作動室及び雌ロータ側作動室を形成するケーシング7Aとを備える。 The pre-compressor main body 1 accommodates a male rotor 5A and a female rotor 6A (screw rotors) having parallel rotation axes and meshing with each other, and a male rotor 5A and a female rotor 6A. and a casing 7A forming a female rotor side working chamber.

雄ロータ5Aは、吸入側軸受8A及び吐出側軸受9Aで回転可能に支持され、雌ロータ6Aは、吸入側軸受8B及び吐出側軸受9Bで回転可能に支持されている。雄ロータ5A及び雌ロータ6Aのうちの一方は、第1モータ(図示せず)によって回転し、他方は、雄ロータ5Aと雌ロータ6Aの噛み合いによって回転する。但し、ギアを用いて、雄ロータ5Aと雌ロータ6Aを同期回転させてもよい。 The male rotor 5A is rotatably supported by a suction side bearing 8A and a discharge side bearing 9A, and the female rotor 6A is rotatably supported by a suction side bearing 8B and a discharge side bearing 9B. One of the male rotor 5A and the female rotor 6A is rotated by a first motor (not shown), and the other is rotated by the meshing of the male rotor 5A and the female rotor 6A. However, gears may be used to synchronously rotate the male rotor 5A and the female rotor 6A.

雄ロータ5A及び雌ロータ6Aの回転に伴い、雄ロータ側作動室及び雌ロータ側作動室は、軸方向の一方側(図1及び図2の左側)から他方側(図1及び図2の右側)へ移動しつつ、それらの容積が変化する。これにより、吸入行程、圧縮行程、吐出行程を順次行うようになっている。詳しく説明すると、吸入行程の雄ロータ側作動室X1及び雌ロータ側作動室Y1は、それらの容積が増加して、吸入口10Aから気体を吸入する。圧縮行程の雄ロータ側作動室X2及び雌ロータ側作動室Y2は、それらの容積が縮小して、気体を圧縮する。吐出行程の雄ロータ側作動室X3及び雌ロータ側作動室Y3は、吐出口11Aから圧縮気体を吐出する。 As the male rotor 5A and the female rotor 6A rotate, the male rotor side working chamber and the female rotor side working chamber move from one axial side (left side in FIGS. 1 and 2) to the other side (right side in FIGS. 1 and 2). ), their volumes change. As a result, a suction stroke, a compression stroke, and a discharge stroke are sequentially performed. More specifically, in the suction stroke, the male rotor side working chamber X1 and the female rotor side working chamber Y1 increase in volume and suck gas from the suction port 10A. The volumes of the male rotor side working chamber X2 and the female rotor side working chamber Y2 in the compression stroke are reduced to compress the gas. The male rotor side working chamber X3 and the female rotor side working chamber Y3 in the discharge stroke discharge the compressed gas from the discharge port 11A.

後段圧縮機本体2は、回転軸が平行で互いに噛み合う雄ロータ5B及び雌ロータ6B(但し、5Bのみ図示)と、雄ロータ5B及び雌ロータ6Bを収納して、それらの歯溝に雄ロータ側作動室及び雌ロータ側作動室を形成するケーシング7Bとを備える。 The post-compressor main body 2 accommodates a male rotor 5B and a female rotor 6B (only 5B is shown) which are meshed with each other and whose rotating shafts are parallel, and the male rotor 5B and the female rotor 6B. It has a casing 7B that forms a working chamber and a female rotor side working chamber.

雄ロータ5Bは、吸入側軸受及び吐出側軸受(図示せず)で回転可能に支持され、雌ロータ6Bは、吸入側軸受及び吐出側軸受(図示せず)で回転可能に支持されている。雄ロータ5B及び雌ロータ6Bのうちの一方は、第2モータ(図示せず)によって回転し、他方は、雄ロータ5Bと雌ロータ6Bの噛み合いによって回転する。但し、ギアを用いて、雄ロータ5Bと雌ロータ6Bを同期回転させてもよい。 The male rotor 5B is rotatably supported by a suction side bearing and a discharge side bearing (not shown), and the female rotor 6B is rotatably supported by a suction side bearing and a discharge side bearing (not shown). One of the male rotor 5B and the female rotor 6B is rotated by a second motor (not shown), and the other is rotated by the meshing of the male rotor 5B and the female rotor 6B. However, gears may be used to synchronously rotate the male rotor 5B and the female rotor 6B.

雄ロータ5B及び雌ロータ6Bの回転に伴い、雄ロータ側作動室及び雌ロータ側作動室は、軸方向の一方側(図1の左側)から他方側(図1の右側)へ移動しつつ、その容積が変化する。これにより、吸入行程、圧縮行程、吐出行程を順次行うようになっている。詳しく説明すると、吸入行程の雄ロータ側作動室X4及び雌ロータ側作動室(図示せず)は、それらの容積が増加して、吸入口10Bから気体を吸入する。圧縮行程の雄ロータ側作動室X5及び雌ロータ側作動室(図示せず)は、それらの容積が縮小して、気体を圧縮する。吐出行程の雄ロータ側作動室X6及び雌ロータ側作動室(図示せず)は、吐出口11Bから圧縮気体を吐出する。 As the male rotor 5B and the female rotor 6B rotate, the male rotor side working chamber and the female rotor side working chamber move from one side (left side in FIG. 1) to the other side (right side in FIG. 1) in the axial direction. Its volume changes. As a result, a suction stroke, a compression stroke, and a discharge stroke are sequentially performed. More specifically, the male rotor side working chamber X4 and the female rotor side working chamber (not shown) in the suction stroke increase in volume and suck gas from the suction port 10B. The volumes of the male rotor side working chamber X5 and the female rotor side working chamber (not shown) in the compression stroke are reduced to compress the gas. The male rotor side working chamber X6 and the female rotor side working chamber (not shown) in the discharge stroke discharge compressed gas from the discharge port 11B.

ここで、本実施形態の特徴の一つとして、二段スクリュー圧縮機の圧力比(詳細には、後段圧縮機本体2の吐出側圧力と前段圧縮機本体1の吸入側圧力との比)の運転値の変化に伴う中間流路3の圧力(以降、中間圧力という)の運転値の変化を考慮するため、中間圧力の設定値が比較的高くなるように、前段圧縮機本体1の容積比が設定されている。これにより、前段圧縮機本体1の圧縮不足を回避するようになっている。以下、その詳細を説明する。 Here, as one of the features of the present embodiment, the pressure ratio of the two-stage screw compressor (more specifically, the ratio of the pressure on the discharge side of the main body 2 of the post-stage compressor and the pressure on the side of the suction side of the main body 1 of the pre-compressor) is In order to consider changes in the operating value of the pressure in the intermediate flow path 3 (hereinafter referred to as intermediate pressure) accompanying changes in the operating value, the volume ratio of the pre-compressor main body 1 is adjusted so that the set value of the intermediate pressure is relatively high. is set. As a result, insufficient compression of the pre-compressor main body 1 is avoided. The details are described below.

中間流路3の圧力損失や気体漏れが無いと仮定し、後段圧縮機本体2の吸気温度が前段圧縮機本体1の吸気温度と同じであると仮定した場合に、動力が最小になるための前段圧縮機本体1の圧力比Pi/Ps1は、下記の式(1)で与えられる。Ps1は前段圧縮機本体1の吸入側圧力、Piは中間圧力、Pd2は後段圧縮機本体2の吐出側圧力である。 Assuming that there is no pressure loss or gas leakage in the intermediate passage 3, and that the intake air temperature of the post-compressor main body 2 is the same as the intake air temperature of the pre-compressor main body 1, the power is minimized. The pressure ratio Pi/Ps1 of the pre-compressor body 1 is given by the following equation (1). Ps1 is the pressure on the suction side of the main body 1 of the pre-compressor, Pi is the intermediate pressure, and Pd2 is the pressure on the side of the discharge of the main body 2 of the post-compressor.

Figure 0007198116000001
Figure 0007198116000001

しかしながら、実際には、中間流路3での冷却不足により、後段圧縮機本体2の吸気温度が前段圧縮機本体1の吸気温度と同じにならない。また、二段スクリュー圧縮機の圧力比の運転値が変化すると、各段圧縮機本体の圧力差(詳細には、吐出側圧力と吸入側圧力との差)も変化し、これに伴って各段圧縮機本体の体積効率が変化する。そして、下記の式(2)で示すように、前段圧縮機本体1の圧力比Pi/Ps1は、後段圧縮機本体2の行程容積Vth2と前段圧縮機本体1の行程容積Vth1との比、後段圧縮機本体2の回転数N2と前段圧縮機本体1の回転数N1との比、後段圧縮機本体2の体積効率ηv2と前段圧縮機本体1の体積効率ηv1との比、及び後段圧縮機本体2の吸入側温度Ts2と前段圧縮機本体1の吸入側温度Ts1との比で決まる。すなわち、実際の圧力比Pi/Ps1は、式(1)を用いて算出された理想値より高くなる。 However, in practice, due to insufficient cooling in the intermediate passage 3, the intake air temperature of the post-compressor main body 2 does not become the same as the intake air temperature of the pre-compressor main body 1. In addition, when the operating value of the pressure ratio of the two-stage screw compressor changes, the pressure difference in the main body of each stage compressor (more specifically, the difference between the discharge side pressure and the suction side pressure) also changes. The volumetric efficiency of the stage compressor body changes. Then, as shown by the following equation (2), the pressure ratio Pi/Ps1 of the front compressor body 1 is the ratio of the stroke volume Vth2 of the rear compressor body 2 and the stroke volume Vth1 of the front compressor body 1, The ratio between the rotation speed N2 of the compressor main body 2 and the rotation speed N1 of the pre-compressor main body 1, the ratio between the volumetric efficiency ηv2 of the post-compressor main body 2 and the volumetric efficiency ηv1 of the pre-compressor main body 1, and the post-compressor main body 2 and the suction side temperature Ts1 of the main body 1 of the pre-compressor. That is, the actual pressure ratio Pi/Ps1 is higher than the ideal value calculated using equation (1).

Figure 0007198116000002
Figure 0007198116000002

例えば二段スクリュー圧縮機の圧力比の運転値が8~9の範囲で変化する場合を想定する。式(1)を用いれば、二段スクリュー圧縮機の圧力比Pd2/Ps1=9であるとき、前段圧縮機本体1の圧力比Pi/Ps1=3である(すなわち、前段圧縮機本体1の吸入側圧力Ps1=0.1MPaであれば、中間圧力Pi=0.3MPaである)。そして、圧力比Pi/Ps1=3(理想値)に対応する前段圧縮機本体1の容積比=2.2であるものの、実際の圧力比Pi/Ps1が理想値より高いため、前段圧縮機本体1の容積比=2.3となるように設定する。これにより、二段スクリュー圧縮機の圧力比の運転値の変化に伴って中間圧力の運転値が変化しても、前段圧縮機本体1の圧縮行程の作動室の圧力が中間圧力の運転値より高くならない。したがって、圧縮不足な状態とならない。 For example, assume that the operating value of the pressure ratio of a two-stage screw compressor varies in the range of 8-9. Using formula (1), when the pressure ratio of the two-stage screw compressor is Pd2/Ps1=9, the pressure ratio of the pre-compressor main body 1 is Pi/Ps1=3 (that is, the suction of the pre-compressor main body 1 If the side pressure Ps1=0.1 MPa, then the intermediate pressure Pi=0.3 MPa). Although the volume ratio of the pre-compressor main body 1 corresponding to the pressure ratio Pi/Ps1=3 (ideal value) is 2.2, since the actual pressure ratio Pi/Ps1 is higher than the ideal value, the pre-compressor main body The volume ratio of 1 is set to 2.3. As a result, even if the operating value of the intermediate pressure changes with changes in the operating value of the pressure ratio of the two-stage screw compressor, the pressure in the working chamber in the compression stroke of the pre-compressor main body 1 is lower than the operating value of the intermediate pressure. not high. Therefore, under-compression does not occur.

また、例えば二段スクリュー圧縮機の圧力比の運転値が8~14の範囲で変化する場合を想定する。式(1)を用いれば、二段スクリュー圧縮機の圧力比Pd2/Ps1=14であるとき、前段圧縮機本体1の圧力比Pi/Ps1=3.74である(すなわち、前段圧縮機本体1の吸入側圧力Ps1=0.1MPaであれば、中間圧力Pi=0.374MPaである)。そして、圧力比Pi/Ps1=3.74(理想値)に対応する前段圧縮機本体1の容積比=2.6であるものの、実際の圧力比Pi/Ps1が理想値より高いため、前段圧縮機本体1の容積比=2.8となるように設定する。これにより、二段スクリュー圧縮機の圧力比の運転値の変化に伴って中間圧力の運転値が変化しても、前段圧縮機本体1の圧縮行程の作動室の圧力が中間圧力の運転値より高くならない。したがって、圧縮不足な状態とならない。前述した考察によれば、前段圧縮機本体1の容積比は、2.3以上2.8以下となる。 Also, assume that the operating value of the pressure ratio of the two-stage screw compressor varies in the range of 8 to 14, for example. Using formula (1), when the pressure ratio Pd2/Ps1 of the two-stage screw compressor is 14, the pressure ratio Pi/Ps1 of the pre-compressor body 1 is 3.74 (i.e., the pre-compressor body 1 , the intermediate pressure Pi=0.374 MPa). Although the volume ratio of the pre-compressor body 1 corresponding to the pressure ratio Pi/Ps1=3.74 (ideal value) is 2.6, the actual pressure ratio Pi/Ps1 is higher than the ideal value. The volume ratio of the machine body 1 is set to be 2.8. As a result, even if the operating value of the intermediate pressure changes with changes in the operating value of the pressure ratio of the two-stage screw compressor, the pressure in the working chamber in the compression stroke of the pre-compressor main body 1 is lower than the operating value of the intermediate pressure. not high. Therefore, under-compression does not occur. According to the consideration described above, the volume ratio of the pre-compressor main body 1 is 2.3 or more and 2.8 or less.

上述した通り、中間圧力の設定値が比較的高くなるように、前段圧縮機本体1の容積比が設定されている。そして、二段スクリュー圧縮機の圧力比の運転値が比較的低くなり、これに伴って中間圧力の運転値が比較的低くなれば、前段圧縮機本体1が過圧縮(詳細には、圧縮行程の作動室の圧力が中間圧力より高い状態)となる。そのため、本実施形態の他の特徴として、前段圧縮機本体1は、圧縮行程の雄ロータ側作動室X2と中間流路3を連通する前段弁孔12Aと、前段弁孔12Aに配置された前段リリース弁13Aと、圧縮行程の雌ロータ側作動室Y2と中間流路3を連通する前段弁孔12Bと、前段弁孔12Bに配置された前段リリース弁13Bとを備える。 As described above, the volume ratio of the pre-compressor main body 1 is set so that the set value of the intermediate pressure is relatively high. Then, if the operating value of the pressure ratio of the two-stage screw compressor becomes relatively low, and accordingly the operating value of the intermediate pressure becomes relatively low, the pre-compressor main body 1 is overcompressed (specifically, the compression stroke The pressure in the working chamber of is higher than the intermediate pressure). Therefore, as another feature of the present embodiment, the pre-compressor body 1 includes a pre-stage valve hole 12A communicating between the male rotor side working chamber X2 in the compression stroke and the intermediate flow path 3, and a pre-stage valve hole 12A arranged in the pre-stage valve hole 12A. It has a release valve 13A, a front stage valve hole 12B communicating between the female rotor side working chamber Y2 in the compression stroke and the intermediate flow path 3, and a front stage release valve 13B arranged in the front stage valve hole 12B.

図2で示すように、前段弁孔12Aは、雄ロータ5Aの軸方向に対して垂直な方向に延在するように形成されている。同様に、前段弁孔12Bは、雌ロータ6Aの軸方向に対して垂直な方向に延在するように形成されている。 As shown in FIG. 2, the pre-stage valve hole 12A is formed to extend in a direction perpendicular to the axial direction of the male rotor 5A. Similarly, the front stage valve hole 12B is formed to extend in a direction perpendicular to the axial direction of the female rotor 6A.

図3で示すように、前段弁孔12A,12Bの弁座(段差面)は、雄ロータ5Aの中心と雌ロータ6Aの中心を結ぶ直線に対して平行な方向に延在するように形成されている。但し、前段弁孔12A,12Bにおける座面より作動室側の容積を低減するため、前段弁孔12A,12Bの弁座は、雄ロータ5Aの中心と雌ロータ6Aの中心を結ぶ直線に対して傾斜させてもよい。 As shown in FIG. 3, the valve seats (step surfaces) of the front stage valve holes 12A and 12B are formed so as to extend in a direction parallel to a straight line connecting the center of the male rotor 5A and the center of the female rotor 6A. ing. However, in order to reduce the volume on the working chamber side of the seating surfaces of the front stage valve holes 12A and 12B, the valve seats of the front stage valve holes 12A and 12B are positioned so that they You can tilt it.

前段リリース弁13Aは、前段弁孔12Aの弁座に配置された弁体14Aと、弁体14Aの抑えであるリテーナ15Aと、弁体14A及びリテーナ15Aを固定するボルト16Aとを有する。そして、圧縮行程の雄ロータ側作動室X2の圧力が中間圧力より低い場合は、弁体14Aが変形しないため、前段弁孔12Aを遮断状態とする。一方、圧縮行程の雄ロータ側作動室X2の圧力が中間圧力より高い場合は、弁体14Aが変形するため、前段弁孔12Aを連通状態とする。これにより、圧縮行程の雄ロータ側作動室X2の圧力を中間圧力まで低減することができる。 The pre-stage release valve 13A has a valve body 14A arranged on the valve seat of the pre-stage valve hole 12A, a retainer 15A that holds the valve body 14A, and bolts 16A that fix the valve body 14A and the retainer 15A. When the pressure in the male rotor side working chamber X2 in the compression stroke is lower than the intermediate pressure, the valve body 14A does not deform, so the front stage valve hole 12A is closed. On the other hand, when the pressure in the male rotor side working chamber X2 in the compression stroke is higher than the intermediate pressure, the valve body 14A is deformed, so that the front stage valve hole 12A is brought into the communicating state. As a result, the pressure in the male rotor side working chamber X2 in the compression stroke can be reduced to the intermediate pressure.

同様に、前段リリース弁13Bは、前段弁孔12Bの弁座に配置された弁体14Bと、弁体14Bの抑えであるリテーナ15Bと、弁体14B及びリテーナ15Bを固定するボルト16Bとを有する。そして、圧縮行程の雌ロータ側作動室Y2の圧力が中間圧力より低い場合は、弁体14Bが変形しないため、前段弁孔12Bを遮断状態とする。一方、圧縮行程の雌ロータ側作動室Y2の圧力が中間圧力より高い場合は、弁体14Bが変形するため、前段弁孔12Bを連通状態とする。これにより、圧縮行程の雌ロータ側作動室Y2の圧力を中間圧力まで低減することができる。 Similarly, the pre-stage release valve 13B has a valve body 14B arranged on the valve seat of the pre-stage valve hole 12B, a retainer 15B that restrains the valve body 14B, and bolts 16B that fix the valve body 14B and the retainer 15B. . When the pressure in the female rotor side working chamber Y2 in the compression stroke is lower than the intermediate pressure, the valve body 14B is not deformed, so the front stage valve hole 12B is closed. On the other hand, when the pressure in the female rotor side working chamber Y2 in the compression stroke is higher than the intermediate pressure, the valve body 14B is deformed, so that the front stage valve hole 12B is brought into a communicating state. As a result, the pressure in the female rotor side working chamber Y2 in the compression stroke can be reduced to the intermediate pressure.

したがって、本実施形態では、中間圧力の変化に応じて前段圧縮機本体1の圧縮行程の作動室の圧力を調整して、効率を向上させることができる。また、本実施形態では、前段リリース弁13A,13Bは、前段圧縮機本体1の圧縮行程の作動室の圧力と中間圧力との差圧によって作動する。そのため、オイルフリー式の(詳細には、作動室に油を供給しない)圧縮機に好適である。 Therefore, in this embodiment, it is possible to improve the efficiency by adjusting the pressure in the working chamber in the compression stroke of the precompressor main body 1 according to the change in the intermediate pressure. Further, in the present embodiment, the front release valves 13A and 13B are actuated by the differential pressure between the pressure in the working chamber during the compression stroke of the front compressor main body 1 and the intermediate pressure. Therefore, it is suitable for an oil-free compressor (specifically, no oil is supplied to the working chamber).

なお、第1の実施形態において、前段弁孔12Aは、雄ロータ5Aの軸方向に対して垂直な方向に延在するように形成され、前段弁孔12Bは、雌ロータ6Aの軸方向に対して垂直な方向に延在するように形成された場合を例にとって説明したが、これに限られず、本発明の趣旨を逸脱しない範囲内で変形が可能である。例えば図4で示す変形例のように、前段弁孔12Aは、雄ロータ5Aの歯溝の延在方向に沿って形成され、前段弁孔12Bは、雌ロータ6Aの歯溝の延在方向に沿って形成されてもよい。この変形例では、第1の実施形態と比べ、隣接する圧縮行程の雄ロータ側作動室が前段弁孔12Aを介して連通する時間を低減することができる。また、第1の実施形態と比べ、隣接する圧縮行程の雌ロータ側作動室が前段弁孔12Bを介して連通する時間を低減することができる。したがって、圧縮動作の阻害を抑制することができる。 In the first embodiment, the front valve hole 12A is formed to extend in a direction perpendicular to the axial direction of the male rotor 5A, and the front valve hole 12B is formed to extend in the axial direction of the female rotor 6A. Although the case where it is formed so as to extend in a vertical direction has been described as an example, it is not limited to this and can be modified without departing from the gist of the present invention. For example, as in the modification shown in FIG. 4, the front valve hole 12A is formed along the extending direction of the tooth spaces of the male rotor 5A, and the front valve hole 12B is formed along the extending direction of the tooth spaces of the female rotor 6A. may be formed along In this modified example, compared to the first embodiment, it is possible to reduce the time during which the adjacent male rotor side working chambers in the compression stroke are communicated with each other via the pre-stage valve hole 12A. In addition, compared to the first embodiment, it is possible to reduce the time during which the adjacent female rotor side working chambers in the compression stroke are communicated with each other via the pre-stage valve hole 12B. Therefore, inhibition of compression operation can be suppressed.

本発明の第2の実施形態を、図5を用いて説明する。なお、本実施形態において、第1の実施形態と同等の部分は同一の符号を付し、適宜、説明を省略する。 A second embodiment of the present invention will be described with reference to FIG. In addition, in this embodiment, the same code|symbol is attached|subjected to the part equivalent to 1st Embodiment, and description is abbreviate|omitted suitably.

図5は、本実施形態における二段スクリュー圧縮機の構造を表す鉛直断面図である。 FIG. 5 is a vertical sectional view showing the structure of the two-stage screw compressor in this embodiment.

本実施形態では、後段圧縮機本体2は、圧縮行程の雄ロータ側作動室X5と吐出流路4を連通する後段弁孔17Aと、後段弁孔17Aに配置された後段リリース弁18Aと、圧縮行程の雌ロータ側作動室と吐出流路4を連通する後段弁孔17B(図示せず)と、後段弁孔17Bに配置された後段リリース弁18B(図示せず)とを備える。なお、後段弁孔17A,17Bは、上述した前段弁孔12A,12Bと同様の構造であるため、その説明を省略する。 In this embodiment, the rear compressor main body 2 includes a rear valve hole 17A that communicates the male rotor side working chamber X5 in the compression stroke with the discharge passage 4, a rear release valve 18A that is arranged in the rear valve hole 17A, a compression A post-stage valve hole 17B (not shown) that communicates the female rotor-side working chamber of the stroke with the discharge passage 4, and a post-stage release valve 18B (not shown) arranged in the post-stage valve hole 17B. Since the rear valve holes 17A and 17B have the same structure as the front valve holes 12A and 12B described above, the description thereof will be omitted.

後段リリース弁18Aは、上述した前段リリース弁13Aと同様の構造である。すなわち、後段弁孔17Aの弁座に配置された弁体と、弁体の抑えであるリテーナと、弁体及びリテーナを固定するボルトとを有する。そして、圧縮行程の雄ロータ側作動室X5の圧力が吐出流路4の圧力より低い場合は、弁体が変形しないため、後段弁孔17Aを遮断状態とする。一方、圧縮行程の雄ロータ側作動室X5の圧力が吐出流路4の圧力より高い場合は、弁体が変形するため、後段弁孔17Aを連通状態とする。これにより、圧縮行程の雄ロータ側作動室X5の圧力を吐出流路4の圧力まで低減することができる。 The post-release valve 18A has the same structure as the above-described pre-release valve 13A. That is, it has a valve disc arranged on the valve seat of the rear stage valve hole 17A, a retainer for holding the valve disc, and bolts for fixing the valve disc and the retainer. When the pressure in the male rotor side working chamber X5 in the compression stroke is lower than the pressure in the discharge passage 4, the valve body does not deform, so that the rear stage valve hole 17A is closed. On the other hand, when the pressure in the male rotor side working chamber X5 in the compression stroke is higher than the pressure in the discharge passage 4, the valve body deforms, so that the rear stage valve hole 17A is brought into communication. As a result, the pressure in the male rotor-side working chamber X5 during the compression stroke can be reduced to the pressure in the discharge passage 4 .

同様に、後段リリース弁18Bは、上述した前段リリース弁13Bと同様の構造である。すなわち、後段弁孔17Bの弁座に配置された弁体と、弁体の抑えであるリテーナと、弁体及びリテーナを固定するボルトとを有する。そして、圧縮行程の雌ロータ側作動室の圧力が吐出流路4の圧力より低い場合は、弁体が変形しないため、後段弁孔17Bを遮断状態とする。一方、圧縮行程の雌ロータ側作動室の圧力が吐出流路4の圧力より高い場合は、弁体が変形するため、後段弁孔17Bを連通状態とする。これにより、圧縮行程の雌ロータ側作動室の圧力を吐出流路4の圧力まで低減することができる。 Similarly, the post-release valve 18B has the same structure as the pre-release valve 13B described above. That is, it has a valve body arranged on the valve seat of the rear stage valve hole 17B, a retainer for holding the valve body, and bolts for fixing the valve body and the retainer. When the pressure in the working chamber on the female rotor side in the compression stroke is lower than the pressure in the discharge passage 4, the valve body does not deform, so that the rear stage valve hole 17B is closed. On the other hand, when the pressure in the working chamber on the female rotor side in the compression stroke is higher than the pressure in the discharge passage 4, the valve element deforms, so that the rear stage valve hole 17B is brought into communication. As a result, the pressure in the female rotor side working chamber during the compression stroke can be reduced to the pressure in the discharge passage 4 .

したがって、本実施形態では、第1の実施形態と同様の効果に加え、吐出流路4の圧力の変化に応じて後段圧縮機本体2の圧縮行程の作動室の圧力を調整して、効率を向上させるという効果を得ることができる。 Therefore, in this embodiment, in addition to the same effect as the first embodiment, the pressure in the working chamber in the compression stroke of the post-compressor main body 2 is adjusted in accordance with the change in the pressure in the discharge passage 4 to improve the efficiency. You can get the effect of improving.

なお、第1及び第2の実施形態において、各段圧縮機本体は、2つのスクリューロータを備えた場合を例にとって説明したが、これに限られず、本発明の趣旨を逸脱しない範囲内で変形が可能である。例えば、各段圧縮機本体は、1つ又は3つのスクリューロータを備えたものでもよい。 In the first and second embodiments, the main body of each stage compressor has two screw rotors. is possible. For example, each stage compressor body may have one or three screw rotors.

また、第1及び第2の実施形態において、本発明の適用対象として二段スクリュー圧縮機を例にとって説明したが、これに限られず、二段スクロール圧縮機であってもよい。このような変形例を、図6又は図7を用いて説明する。なお、本変形例において、第1又は第2の実施形態と同等の部分は同一の符号を付し、適宜、説明を省略する。 In addition, in the first and second embodiments, the two-stage screw compressor was described as an example of application of the present invention, but the present invention is not limited to this, and may be a two-stage scroll compressor. Such a modified example will be described with reference to FIG. 6 or FIG. In addition, in this modified example, the same code|symbol is attached|subjected to the part equivalent to 1st or 2nd embodiment, and description is abbreviate|omitted suitably.

図6で示す変形例では、前段圧縮機本体1Aは、渦巻状のラップを有する固定スクロール部材20Aと、固定スクロール部材20Aのラップと噛み合って作動室を形成する渦巻き状のラップを有する旋回スクロール部材21Aと、旋回スクロール部材21Aに係合されたクランク軸22Aと、固定スクロール部材20Aの下側に設けられて旋回スクロール部材21Aを収納するケーシング23Aと、固定スクロール部材20Aの上側(吐出側)に設けられたカバー24Aとを備える。 In the modification shown in FIG. 6, the pre-compressor main body 1A includes a fixed scroll member 20A having a spiral wrap and an orbiting scroll member having a spiral wrap that meshes with the wrap of the fixed scroll member 20A to form a working chamber. 21A, a crankshaft 22A engaged with the orbiting scroll member 21A, a casing 23A provided below the fixed scroll member 20A and housing the orbiting scroll member 21A, and above (discharge side) the fixed scroll member 20A. and a provided cover 24A.

旋回スクロール部材21Aは、オルダムリング(図示せず)で自転することなく旋回可能に支持され、クランク軸22Aは、軸受(図示せず)で回転可能に支持されている。クランク軸22Aは、モータ(図示せず)によって回転して、旋回スクロール部材21Aを旋回させる。 The orbiting scroll member 21A is rotatably supported by an Oldham ring (not shown) without rotating, and the crankshaft 22A is rotatably supported by bearings (not shown). The crankshaft 22A is rotated by a motor (not shown) to orbit the orbiting scroll member 21A.

旋回スクロール部材21Aの旋回に伴い、作動室は、径方向の外側から内側へ移動しつつ、その容積が変化する。これにより、吸入行程、圧縮行程、吐出行程を順次行うようになっている。詳しく説明すると、吸入行程の作動室は、その容積が増加して、吸入口25Aから気体を吸入する。圧縮行程の作動室Z1は、その容積が縮小して、気体を圧縮する。吐出行程の作動室Z2は、吐出口26Aから圧縮気体を吐出する。 As the orbiting scroll member 21A orbits, the volume of the working chamber changes while moving from the outside to the inside in the radial direction. As a result, a suction stroke, a compression stroke, and a discharge stroke are sequentially performed. Specifically, in the suction stroke, the working chamber increases in volume and sucks gas from the suction port 25A. The volume of the working chamber Z1 in the compression stroke is reduced to compress the gas. The working chamber Z2 in the discharge stroke discharges the compressed gas from the discharge port 26A.

後段圧縮機本体2Aは、渦巻状のラップを有する固定スクロール部材20Bと、固定スクロール部材20Bのラップと噛み合って作動室を形成する渦巻き状のラップを有する旋回スクロール部材21Bと、旋回スクロール部材21Bに係合されたクランク軸22Bと、固定スクロール部材20Bの下側に設けられて旋回スクロール部材21Bを収納するケーシング23Bと、固定スクロール部材20Bの上側(吐出側)に設けられたカバー24Bとを備える。 The post-compressor main body 2A includes a fixed scroll member 20B having a spiral wrap, an orbiting scroll member 21B having a spiral wrap that meshes with the wrap of the fixed scroll member 20B to form a working chamber, and an orbiting scroll member 21B. It comprises an engaged crankshaft 22B, a casing 23B provided below the fixed scroll member 20B to accommodate the orbiting scroll member 21B, and a cover 24B provided above (discharge side) the fixed scroll member 20B. .

旋回スクロール部材21Bは、オルダムリング(図示せず)で自転することなく旋回可能に支持され、クランク軸22Bは、軸受(図示せず)で回転可能に支持されている。クランク軸22Bは、モータ(図示せず)によって回転して、旋回スクロール部材21Bを旋回させる。 The orbiting scroll member 21B is rotatably supported by an Oldham ring (not shown) without rotating, and the crankshaft 22B is rotatably supported by bearings (not shown). The crankshaft 22B is rotated by a motor (not shown) to orbit the orbiting scroll member 21B.

旋回スクロール部材21Bの旋回に伴い、作動室は、径方向の外側から内側へ移動しつつ、その容積が変化する。これにより、吸入行程、圧縮行程、吐出行程を順次行うようになっている。詳しく説明すると、吸入行程の作動室は、その容積が増加して、吸入口25Bから気体を吸入する。圧縮行程の作動室Z3は、その容積が縮小して、気体を圧縮する。吐出行程の作動室Z4は、吐出口26Bから圧縮気体を吐出する。 As the orbiting scroll member 21B orbits, the volume of the working chamber changes while moving from the outside to the inside in the radial direction. As a result, a suction stroke, a compression stroke, and a discharge stroke are sequentially performed. More specifically, the working chamber in the suction stroke increases in volume and sucks gas from the suction port 25B. The volume of the working chamber Z3 in the compression stroke is reduced to compress the gas. The working chamber Z4 in the discharge stroke discharges the compressed gas from the discharge port 26B.

本変形例では、第1及び第2の実施形態と同様、中間圧力の設定値が比較的高くなるように、前段圧縮機本体1Aの容積比が設定されている。前段圧縮機本体1Aは、圧縮行程の作動室Z1と中間流路3を連通する前段弁孔12と、前段弁孔12に配置された前段リリース弁13とを備える。そして、圧縮行程の作動室Z1の圧力が中間圧力より低い場合に、前段リリース弁13は、前段弁孔12を遮断状態とする。一方、圧縮行程の作動室Z1の圧力が中間圧力より高い場合に、前段リリース弁13は、前段弁孔12を連通状態とする。これにより、圧縮行程の作動室Z1の圧力を中間圧力まで低減することができる。したがって、第1及び第2の実施形態と同様、中間圧力の変化に応じて前段圧縮機本体1Aの圧縮行程の作動室の圧力を調整して、効率を向上させることができる。 In this modification, as in the first and second embodiments, the volume ratio of the pre-compressor main body 1A is set so that the set value of the intermediate pressure is relatively high. The front-stage compressor body 1A includes a front-stage valve hole 12 that communicates the working chamber Z1 in the compression stroke with the intermediate flow path 3, and a front-stage release valve 13 arranged in the front-stage valve hole 12. Then, when the pressure in the working chamber Z1 in the compression stroke is lower than the intermediate pressure, the front release valve 13 closes the front valve hole 12 . On the other hand, when the pressure in the working chamber Z1 in the compression stroke is higher than the intermediate pressure, the front release valve 13 brings the front valve hole 12 into communication. As a result, the pressure in the working chamber Z1 during the compression stroke can be reduced to the intermediate pressure. Therefore, as in the first and second embodiments, efficiency can be improved by adjusting the pressure in the working chamber in the compression stroke of the front compressor main body 1A according to the change in the intermediate pressure.

図7で示す変形例では、第2の実施形態と同様、後段圧縮機本体2Aは、圧縮行程の作動室Z3と吐出流路4を連通する後段弁孔17と、後段弁孔17に配置された後段リリース弁18とを備える。そして、圧縮行程の作動室Z3の圧力が吐出流路4の圧力より低い場合に、後段リリース弁18は、後段弁孔17を遮断状態とする。一方、圧縮行程の作動室Z3の圧力が吐出流路4の圧力より高い場合に、後段リリース弁18は、後段弁孔17を連通状態とする。これにより、圧縮行程の作動室Z3の圧力を吐出流路4の圧力まで低減することができる。したがって、第2の実施形態と同様、吐出流路4の圧力の変化に応じて後段圧縮機本体2Aの圧縮行程の作動室の圧力を調整して、効率を向上させることができる。 In the modification shown in FIG. 7, as in the second embodiment, the rear compressor main body 2A is arranged in the rear valve hole 17 communicating between the working chamber Z3 in the compression stroke and the discharge passage 4, and the rear valve hole 17. and a post-stage release valve 18 . When the pressure in the working chamber Z3 during the compression stroke is lower than the pressure in the discharge passage 4, the rear release valve 18 closes the rear valve hole 17. As shown in FIG. On the other hand, when the pressure in the working chamber Z3 in the compression stroke is higher than the pressure in the discharge passage 4, the rear release valve 18 brings the rear valve hole 17 into communication. As a result, the pressure in the working chamber Z3 during the compression stroke can be reduced to the pressure in the discharge passage 4. FIG. Therefore, as in the second embodiment, the pressure in the working chamber in the compression stroke of the post-compressor main body 2A can be adjusted in accordance with the change in the pressure in the discharge passage 4 to improve the efficiency.

なお、上述した実施形態及び変形例において、前段リリース弁(又は後段リリース弁)は、圧縮行程の作動室の圧力と中間圧力(又は吐出流路の圧力)との差圧によって変形する弁体を有する場合を例にとって説明したが、これに限られず、本発明の趣旨を逸脱しない範囲内で変形が可能である。このような変形例を、図8を用いて説明する。なお、図8においては、代表として前段リリース弁13を示すものの、他の前段リリース弁又は後段リリース弁であってもよい。 In the embodiments and modifications described above, the front release valve (or the rear release valve) has a valve body that deforms due to the pressure difference between the pressure in the working chamber during the compression stroke and the intermediate pressure (or the pressure in the discharge passage). Although the case has been described as an example, it is not limited to this, and modifications are possible without departing from the gist of the present invention. Such a modified example will be described with reference to FIG. Although FIG. 8 shows the front release valve 13 as a representative, other front release valves or rear release valves may be used.

本変形例では、前段リリース弁(又は後段リリース弁)は、弁体30と、弁体30を作動室側(図8の下側)へ付勢するバネ31と、弁体30及びバネ31の抑えであるリテーナ32と、リテーナ32を固定するボルト34とを有する。そして、圧縮行程の作動室の圧力が中間圧力(又は吐出流路の圧力)とバネ31の付勢力の総和より低い場合は、弁体30が作動室側に位置して前段弁孔(又は後段弁孔)を遮断状態とし、圧縮行程の作動室の圧力が中間流路の圧力(又は吐出流路の圧力)とバネ31の付勢力の総和より高い場合は、弁体30が中間流路側(又は吐出流路側)に位置して前段弁孔(又は後段弁孔)を連通状態とする。このような変形例においても、上記同様の効果を得ることができる。 In this modification, the front release valve (or the rear release valve) includes a valve body 30, a spring 31 that biases the valve body 30 toward the working chamber side (lower side in FIG. 8), and the valve body 30 and the spring 31. It has a retainer 32 as a restraint and bolts 34 for fixing the retainer 32 . When the pressure in the working chamber in the compression stroke is lower than the sum of the intermediate pressure (or the pressure in the discharge passage) and the biasing force of the spring 31, the valve element 30 is positioned on the working chamber side and the front stage valve hole (or the rear stage valve hole) is closed. valve hole) is closed and the pressure in the working chamber in the compression stroke is higher than the sum of the pressure in the intermediate flow path (or the pressure in the discharge flow path) and the biasing force of the spring 31, the valve body 30 is positioned on the side of the intermediate flow path ( or the discharge channel side) to bring the front stage valve hole (or the rear stage valve hole) into a communicating state. Even in such a modified example, the same effect as described above can be obtained.

なお、以上においては、本発明の適用対象として、2つの圧縮機本体を備えた二段圧縮機を例にとって説明したが、これに限られず、3つ以上の圧縮機本体を備えた多段圧縮機でもよい。具体例の一つである三段圧縮機について詳述する。 In the above description, the present invention is applied to a two-stage compressor having two compressor bodies. It's okay. A three-stage compressor, which is one of the specific examples, will be described in detail.

三段圧縮機は、第1段圧縮機本体と、第1段圧縮機本体で圧縮された気体を更に圧縮する第2段圧縮機本体と、第2段圧縮機本体で圧縮された気体を更に圧縮する第3段圧縮機本体と、第1段圧縮機本体の吐出側と第2段圧縮機本体の吸入側を接続する第1中間流路と、第2段圧縮機本体の吐出側と第3段圧縮機本体の吸入側を接続する第2中間流路と、第3段圧縮機本体の吐出側に接続された吐出流路とを備える。 The three-stage compressor includes a first-stage compressor body, a second-stage compressor body that further compresses the gas compressed by the first-stage compressor body, and a second-stage compressor body that further compresses the gas compressed by the second-stage compressor body. a third-stage compressor body to be compressed; a first intermediate flow path connecting the discharge side of the first-stage compressor body and the suction side of the second-stage compressor body; A second intermediate flow path connecting the suction side of the three-stage compressor main body and a discharge flow path connected to the discharge side of the third-stage compressor main body are provided.

そして、第1段圧縮機本体の吐出行程の作動室とは異なる圧縮行程の作動室と第1中間流路を連通する第1段弁孔(前段弁孔)と、第1段弁孔に配置された第1段リリース弁(前段リリース弁)とを設けてもよい。また、第2段圧縮機本体の吐出行程の作動室とは異なる圧縮行程の作動室と第2中間流路を連通する第2段弁孔(前段弁孔)と、第2段弁孔に配置された第2段リリース弁(前段リリース弁)とを設けてもよい。また、第3段圧縮機本体の吐出行程の作動室とは異なる圧縮行程の作動室と吐出流路を連通する第3段弁孔(後段弁孔)と、第3段弁孔に配置された第3段リリース弁(後段リリース弁)とを設けてもよい。 A first stage valve hole (previous stage valve hole) that communicates the first intermediate passage with a working chamber for a compression stroke that is different from the working chamber for a discharge stroke of the first stage compressor main body, and is arranged in the first stage valve hole. A first stage release valve (pre-stage release valve) may be provided. In addition, a second stage valve hole (previous stage valve hole) that communicates the second intermediate passage with a working chamber for a compression stroke that is different from the working chamber for a discharge stroke of the second stage compressor main body, and is arranged in the second stage valve hole. A second stage release valve (previous stage release valve) may be provided. Also, a third stage valve hole (rear stage valve hole) that communicates a discharge passage with a working chamber for a compression stroke different from the working chamber for a discharge stroke of the third stage compressor main body, and A third stage release valve (later stage release valve) may be provided.

1,1A…前段圧縮機本体、2,2A…後段圧縮機本体、3…中間流路、4…吐出流路、5A,5B…雄ロータ(スクリューロータ)、6A,6B…雌ロータ(スクリューロータ)、7A,7B…ケーシング、12,12A,12B…前段弁孔、13,13A,13B…前段リリース弁、17,17A,17B…後段弁孔、18,18A,18B…後段リリース弁 1, 1A front compressor main body, 2, 2A rear compressor main body, 3 intermediate flow path, 4 discharge flow path, 5A, 5B male rotor (screw rotor), 6A, 6B female rotor (screw rotor) ), 7A, 7B ... casing, 12, 12A, 12B ... front stage valve hole, 13, 13A, 13B ... front stage release valve, 17, 17A, 17B ... rear stage valve hole, 18, 18A, 18B ... rear stage release valve

Claims (3)

前段圧縮機本体と、前記前段圧縮機本体で圧縮された気体を更に圧縮する後段圧縮機本体と、前記前段圧縮機本体の吐出側と前記後段圧縮機本体の吸入側の間で接続された中間流路と、前記後段圧縮機本体の吐出側に接続された吐出流路と、を備えた多段圧縮機において、
前記前段圧縮機本体の吐出行程の作動室とは異なる圧縮行程の作動室と前記中間流路を連通する前段弁孔と、
前記前段弁孔に配置され、前記前段圧縮機本体の前記圧縮行程の作動室の圧力と前記中間流路の圧力との差圧によって作動する前段リリース弁と
前記後段圧縮機本体の吐出行程の作動室とは異なる圧縮行程の作動室と前記吐出流路の間で接続された後段弁孔と、
前記後段弁孔に配置され、前記後段圧縮機本体の前記圧縮行程の作動室の圧力と前記吐出流路の圧力との差圧によって作動する後段リリース弁とを備え、
前記前段リリース弁は、前記前段圧縮機本体の前記圧縮行程の作動室の圧力が前記中間流路の圧力より低い場合に前記前段弁孔を遮断状態とし、前記前段圧縮機本体の前記圧縮行程の作動室の圧力が前記中間流路の圧力より高い場合に前記前段弁孔を連通状態とし、
前記後段リリース弁は、前記後段圧縮機本体の前記圧縮行程の作動室の圧力が前記吐出流路の圧力より低い場合に前記後段弁孔を遮断状態とし、前記後段圧縮機本体の前記圧縮行程の作動室の圧力が前記吐出流路の圧力より高い場合に前記後段弁孔を連通状態とすることを特徴とする多段圧縮機。
a front compressor body, a rear compressor body for further compressing the gas compressed by the front compressor body, and an intermediate connected between the discharge side of the front compressor body and the suction side of the rear compressor body. A multi-stage compressor comprising a flow path and a discharge flow path connected to the discharge side of the post-compressor main body ,
a pre-stage valve hole that communicates the intermediate passage with a working chamber for a compression stroke that is different from a working chamber for a discharge stroke of the pre-stage compressor main body;
a pre-stage release valve disposed in the pre-stage valve hole and operated by a differential pressure between the pressure in the working chamber of the compression stroke of the pre-compressor main body and the pressure in the intermediate passage ;
a post-stage valve hole connected between a compression stroke working chamber different from the discharge stroke working chamber of the post-compressor main body and the discharge passage;
a post-stage release valve disposed in the post-stage valve hole and operated by a differential pressure between a pressure in the working chamber of the compression stroke of the post-compressor main body and a pressure in the discharge passage ;
The pre-stage release valve shuts off the pre-stage valve hole when the pressure in the working chamber during the compression stroke of the pre-compressor main body is lower than the pressure in the intermediate flow passage, and the pre-stage release valve closes the pre-stage valve hole during the compression stroke of the pre-compressor main body. when the pressure in the working chamber is higher than the pressure in the intermediate passage, the pre-stage valve hole is brought into communication ;
The latter release valve shuts off the latter valve hole when the pressure in the working chamber of the latter compressor main body during the compression stroke is lower than the pressure of the discharge flow path, thereby closing the latter compressor main body during the compression stroke. A multi-stage compressor , wherein the rear stage valve hole is brought into communication when the pressure in the working chamber is higher than the pressure in the discharge passage .
請求項1に記載の多段圧縮機において、
前記前段圧縮機本体は、スクリューロータと、前記スクリューロータを収納してその歯溝に作動室を形成するケーシングとを備え、
前記前段弁孔は、前記スクリューロータの歯溝の延在方向に沿って形成されたことを特徴とする多段圧縮機。
In the multistage compressor according to claim 1,
The front-stage compressor main body includes a screw rotor and a casing housing the screw rotor and forming a working chamber in a tooth space thereof,
A multi-stage compressor, wherein the pre-stage valve hole is formed along an extending direction of tooth grooves of the screw rotor.
請求項1又は2記載の多段圧縮機において、
前記前段圧縮機本体の容積比は、2.3以上2.8以下であることを特徴とする多段圧縮機。
In the multistage compressor according to claim 1 or 2 ,
A multi-stage compressor, wherein the volume ratio of the front-stage compressor main body is 2.3 or more and 2.8 or less.
JP2019037458A 2019-03-01 2019-03-01 Multi-stage compressor Active JP7198116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019037458A JP7198116B2 (en) 2019-03-01 2019-03-01 Multi-stage compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019037458A JP7198116B2 (en) 2019-03-01 2019-03-01 Multi-stage compressor

Publications (2)

Publication Number Publication Date
JP2020139487A JP2020139487A (en) 2020-09-03
JP7198116B2 true JP7198116B2 (en) 2022-12-28

Family

ID=72280105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019037458A Active JP7198116B2 (en) 2019-03-01 2019-03-01 Multi-stage compressor

Country Status (1)

Country Link
JP (1) JP7198116B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7403493B2 (en) * 2021-03-23 2023-12-22 株式会社日立産機システム multistage screw compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138919A (en) 2005-10-17 2007-06-07 Kobe Steel Ltd Two-stage screw compressor and two-stage compression refrigerator using this compressor
JP2012524202A (en) 2009-04-17 2012-10-11 オーリコン レイボルド バキューム ゲーエムベーハー Screw type vacuum pump

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221634A (en) * 1989-02-23 1990-09-04 Mazda Motor Corp Control means for engine equipped with super charger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138919A (en) 2005-10-17 2007-06-07 Kobe Steel Ltd Two-stage screw compressor and two-stage compression refrigerator using this compressor
JP2012524202A (en) 2009-04-17 2012-10-11 オーリコン レイボルド バキューム ゲーエムベーハー Screw type vacuum pump

Also Published As

Publication number Publication date
JP2020139487A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
US8702407B2 (en) Multistage roots vacuum pump having different tip radius and meshing clearance from inlet stage to exhaust stage
CN203272136U (en) Single-cylinder multistage compressor
EP2626562A2 (en) Pump
CN101137824B (en) Compressor sound suppression
JP2012112338A (en) Screw compressor
CN113383163B (en) Multistage screw compressor
EP3084222B1 (en) Compressor comprising a variable volume index valve
JP7198116B2 (en) Multi-stage compressor
US8579614B2 (en) Scroll compressor with three discharge valves, and discharge pressure tap to back pressure chamber
CN111894852B (en) Scroll compressor having a scroll compressor with a suction chamber
WO2019163628A1 (en) Scroll fluid machine
JP5595209B2 (en) Screw compressor
WO2019163516A1 (en) Scroll fluid machine
EP3273060B1 (en) Scallop step for a scroll compressor
US12078172B2 (en) Multi-stage screw compressor
JPH09158856A (en) Scroll gas compressor
JP2000136787A (en) Vacuum pump
WO2019163536A1 (en) Scroll fluid machine
JP7317462B2 (en) scroll compressor
CN114352524B (en) Multi-stage supercharging type double-screw core of refrigeration compressor
WO2020059608A1 (en) Multiple-stage compressor
WO2019163537A1 (en) Scroll fluid machine
WO2024175883A1 (en) Multistage rotary vane vacuum pump
JPH01167492A (en) Volume type hydraulic machine having built-in variable compression ratio mechanism
JP2024148277A (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221216

R150 Certificate of patent or registration of utility model

Ref document number: 7198116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150