WO2020059608A1 - Multiple-stage compressor - Google Patents

Multiple-stage compressor Download PDF

Info

Publication number
WO2020059608A1
WO2020059608A1 PCT/JP2019/035772 JP2019035772W WO2020059608A1 WO 2020059608 A1 WO2020059608 A1 WO 2020059608A1 JP 2019035772 W JP2019035772 W JP 2019035772W WO 2020059608 A1 WO2020059608 A1 WO 2020059608A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure refrigerant
chamber
stage
pressure
discharge port
Prior art date
Application number
PCT/JP2019/035772
Other languages
French (fr)
Japanese (ja)
Inventor
賢哲 安嶋
岩崎 正道
宏幸 寺脇
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201980016332.XA priority Critical patent/CN111868384B/en
Priority to JP2020548408A priority patent/JP6943345B2/en
Priority to EP19863099.8A priority patent/EP3842640B1/en
Publication of WO2020059608A1 publication Critical patent/WO2020059608A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0276Different wall heights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid

Definitions

  • the present invention has a multi-stage compression mechanism, and has a simple configuration even when the amount of refrigerant circulated to a low-stage compression mechanism is different from the amount of refrigerant circulated to a high-stage compression mechanism.
  • the present invention relates to a multi-stage compressor capable of realizing miniaturization of a compressor.
  • Patent Literature 1 discloses a land portion that divides a compression chamber of a fixed scroll into two stages, and a lower-stage compression mechanism on the outer periphery side and a higher-stage compression mechanism on the inner periphery side divided by the land portion. And a two-stage compression scroll compressor that introduces air compressed by a low-stage compression mechanism into a high-stage compression mechanism.
  • the refrigerant circulation amount compressed by the low-stage compression mechanism is directly compressed by the high-stage compression mechanism.
  • an intermediate-pressure refrigerant expanded by a high-stage expansion valve is introduced into a high-stage compression mechanism. Therefore, the amount of refrigerant circulating into the high-stage compression mechanism is larger than the amount of refrigerant circulating through the low-stage compression mechanism, and it has been difficult to achieve two-stage compression.
  • a pair of scroll compressors including a low-stage scroll compressor and a high-stage scroll compressor were required. For this reason, the scroll compressor of the two-stage compression and two-stage expansion cycle has a large device configuration and a complicated piping configuration.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a multi-stage compressor capable of consolidating a large number of valves, openings, and pipes peculiar to two-stage compression and achieving maintenance and compactness.
  • a multi-stage compressor includes a plurality of compression chambers provided in a housing and an intermediate-pressure refrigerant from a lower-stage compression chamber of the plurality of compression chambers.
  • An intermediate-pressure refrigerant discharge port for discharging, an intermediate-pressure refrigerant suction port that opens in the same direction as the intermediate-pressure refrigerant discharge port, and allows the intermediate-pressure refrigerant to be sucked into a higher stage of the plurality of compression chambers;
  • a high-pressure refrigerant discharge port that opens in the same direction as the discharge port and discharges high-pressure refrigerant discharged from a high-stage compression chamber of the plurality of compression chambers; and the intermediate-pressure refrigerant suction port detachably attached to the housing.
  • an intermediate-pressure refrigerant chamber that communicates with the intermediate-pressure refrigerant discharge port and has an external intermediate-pressure refrigerant connection introduction port that opens to the outside; and a high-pressure refrigerant outlet that communicates with the high-pressure refrigerant discharge port and opens to the outside.
  • Refrigerant connection cover forming a high-pressure refrigerant chamber , Characterized in that it comprises a.
  • the casing in the above invention, opens in the same direction as the intermediate-pressure refrigerant discharge port, and discharges the intermediate-pressure refrigerant via a seal in the casing.
  • a body intermediate pressure refrigerant suction port is formed, and the intermediate pressure refrigerant suction port and the external intermediate pressure refrigerant connection introduction port are connected by a pipe.
  • the high-stage compression chamber when the internal pressure of the high-stage compression chamber becomes a predetermined value or more, the high-stage compression chamber communicates with the high-pressure refrigerant chamber.
  • a high-pressure relief means is provided in the high-pressure refrigerant chamber of the housing.
  • the low-stage compression chamber when the internal pressure of the low-stage compression chamber becomes a predetermined value or more, the low-stage compression chamber communicates with the intermediate-pressure refrigerant chamber.
  • An intermediate-pressure relief means for causing the housing to be provided is provided in the intermediate-pressure refrigerant chamber of the housing.
  • a check valve for preventing a backflow from the intermediate pressure refrigerant discharge port to the compression chamber is provided in the intermediate pressure refrigerant chamber of the housing. It is characterized by having.
  • a check valve for preventing a backflow from the high-pressure refrigerant discharge port to the compression chamber is provided in the high-pressure refrigerant chamber of the housing. It is characterized by the following.
  • the multistage compressor is a scroll compressor including an orbiting scroll and a fixed scroll, and the fixed scroll forms a part of the housing. And the refrigerant connection cover is attached.
  • the multistage compressor according to the present invention is characterized in that, in the above invention, the volume of the intermediate-pressure refrigerant chamber is larger than the volume of the high-pressure refrigerant chamber.
  • the multistage compressor according to the present invention is characterized in that, in the above invention, a notch for positioning is provided in the refrigerant connection cover.
  • a multi-stage compressor according to the present invention is characterized in that the multi-stage compressor according to any of the above-mentioned inventions is used in a heat cycle system of two-stage compression and two-stage expansion.
  • valves, openings, and pipes peculiar to two-stage compression can be integrated, and maintenance performance and compactness can be achieved.
  • FIG. 1 is a circuit diagram showing a schematic configuration of a heat cycle system to which a scroll compressor as a multi-stage compressor according to Embodiment 1 of the present invention is applied.
  • FIG. 2 is a PH diagram of the heat cycle system shown in FIG.
  • FIG. 3 is a sectional view showing the structure of the scroll compressor.
  • FIG. 4 is a sectional view taken along the line AA shown in FIG.
  • FIG. 5 is a sectional view of the fixed scroll and the orbiting scroll shown in FIG.
  • FIG. 6 is a perspective view of the fixed scroll shown in FIG. 4 as viewed obliquely from below.
  • FIG. 7 is a perspective view of the orbiting scroll shown in FIG. 4 as viewed obliquely from above.
  • FIG. 1 is a circuit diagram showing a schematic configuration of a heat cycle system to which a scroll compressor as a multi-stage compressor according to Embodiment 1 of the present invention is applied.
  • FIG. 2 is a PH diagram of the heat cycle
  • FIG. 8 is an explanatory diagram illustrating the compression operation of the symmetric scroll compressor.
  • FIG. 9 is an explanatory diagram illustrating a compression operation of the asymmetric scroll compressor.
  • FIG. 10 is an explanatory diagram showing the relationship between the position on the involute curve and the spread angle.
  • FIG. 11 is a diagram comparing the compression operations of a symmetric scroll compressor and an asymmetric scroll compressor.
  • FIG. 12 is an explanatory diagram illustrating reduction of recompression loss by the compression operation of the asymmetric scroll compressor.
  • FIG. 13 is a cross-sectional view showing a state where the orbiting scroll is inclined.
  • FIG. 14 is an explanatory diagram illustrating a reduction in compression efficiency of the outer compression unit in the state of FIG. FIG.
  • FIG. 15 is an explanatory diagram illustrating a decrease in volume efficiency of the inner compression section in the state of FIG.
  • FIG. 16 is a cross-sectional view showing a state in which a ring-shaped seal is provided on the distal end surface of the outer wall of the fixed scroll.
  • FIG. 17 is a sectional view taken along the line BB when a ring-shaped seal is provided in the scroll compressor shown in FIG.
  • FIG. 18 is a cross-sectional view showing a state in which the ring-shaped seal is provided on the base plate of the orbiting scroll.
  • FIG. 19 is a diagram illustrating an example in which a division gap is provided in a ring-shaped seal.
  • FIG. 20 is a diagram illustrating an example in which a division gap is provided in a ring-shaped seal.
  • FIG. 21 is a diagram illustrating an example in which a space is provided in a ring-shaped seal.
  • FIG. 22 is a circuit diagram illustrating an example of the heat cycle system.
  • FIG. 23 is a PH diagram of the heat cycle system shown in FIG.
  • FIG. 24 is a circuit diagram illustrating an example of the heat cycle system.
  • FIG. 25 is a PH diagram of the heat cycle system shown in FIG.
  • FIG. 26 is a circuit diagram illustrating an example of the heat cycle system.
  • FIG. 27 is a PH diagram of the heat cycle system shown in FIG.
  • FIG. 28 is a circuit diagram illustrating an example of the heat cycle system.
  • FIG. 29 is a PH diagram of the heat cycle system shown in FIG. FIG.
  • FIG. 30 is a longitudinal sectional view showing the configuration of the scroll compressor according to the fourth embodiment.
  • FIG. 31 is a perspective view of the scroll compressor shown in FIG. 30 as viewed obliquely from the right.
  • FIG. 32 is a perspective view of the scroll compressor shown in FIG. 30 as viewed obliquely from the left.
  • FIG. 33 is a perspective view of the refrigerant connection cover shown in FIG. 30 as viewed from the back side.
  • FIG. 34 is a front view in a state where the refrigerant connection cover is attached.
  • FIG. 35 is a front view in a state where the refrigerant connection cover is removed.
  • FIG. 1 is a circuit diagram showing a schematic configuration of a heat cycle system 1 to which a scroll compressor 2 as a multi-stage compressor according to Embodiment 1 of the present invention is applied.
  • FIG. 2 is a PH diagram of the heat cycle system 1 shown in FIG.
  • the scroll compressor 2 is a two-stage compressor, and is an example of a multi-stage compressor.
  • the heat cycle of the heat cycle system 1 is a two-stage compression and two-stage expansion cycle.
  • the high-stage compression chamber of the scroll compressor 2 generates the high-pressure refrigerant RH having the refrigerant circulation amount GH and introduces it into the condenser 3 (from point P2 to point P3 in FIG. 2).
  • the high-pressure refrigerant RH is radiated and condensed by the condenser 3 and further supercooled by the subcooler 4 (from point P3 to point P4 in FIG. 2).
  • the high-pressure refrigerant RH is decompressed and expanded by the high-stage expansion valve 5 (from the point P4 to the point P5 in FIG. 2), becomes the intermediate-pressure refrigerant RM, and is introduced into the gas-liquid separator 6.
  • the gaseous intermediate-pressure refrigerant RM1 which is a vapor of the intermediate-pressure refrigerant RM, is introduced into the high-stage compression chamber of the scroll compressor 2 (point P2 in FIG. 2).
  • the intermediate-pressure refrigerant RM2 in the liquid state of the intermediate-pressure refrigerant RM is decompressed and expanded by the low-stage expansion valve 7 (from the point P6 to the point P7 in FIG. 2), and is introduced into the evaporator 8 as the low-pressure refrigerant RL.
  • the evaporator 8 evaporates the low-pressure refrigerant RL (from point P7 to point P1 in FIG. 2) and is introduced into the lower-stage compression chamber of the scroll compressor 2 (point P1 in FIG. 2).
  • the low-stage compression chamber of the scroll compressor 2 compresses the introduced low-pressure refrigerant RL to the intermediate-pressure refrigerant RM3.
  • the high-stage compression chamber of the scroll compressor 2 compresses the intermediate-pressure refrigerants RM1 and RM3 to the high-pressure refrigerant RH. Therefore, the refrigerant circulation amount GL in the liquid state separated by the gas-liquid separator 6 is introduced into the low-stage compression chamber of the scroll compressor 2.
  • the refrigerant circulation amount GM in the gaseous state separated by the gas-liquid separator 6 and the refrigerant circulation amount GL introduced from the low stage compression chamber are added to the high-stage compression chamber of the scroll compressor 2.
  • the introduced refrigerant circulation amount GH is introduced. That is, the circulation amount of the refrigerant introduced into the high-stage compression chamber is larger than the circulation amount of the refrigerant introduced into the low-stage compression chamber.
  • FIG. 3 is a sectional view showing the structure of the scroll compressor 2.
  • FIG. 4 is a sectional view taken along the line AA shown in FIG.
  • FIG. 5 is a sectional view of the fixed scroll 11 and the orbiting scroll 12 shown in FIG.
  • FIG. 6 is a perspective view of the fixed scroll 11 shown in FIG. 4 as viewed obliquely from below.
  • FIG. 7 is a perspective view of the orbiting scroll 12 shown in FIG. 4 as viewed obliquely from above.
  • the fixed scroll 11 and the orbiting scroll 12 form an outer compression section 40, which functions as a low-pressure side compression chamber, and an inner compression section 41, which functions as a high-pressure side compression chamber, and perform two-stage compression.
  • the fixed scroll 11 and the orbiting scroll 12 are provided in a housing 10 formed by the housings 10a and 10b.
  • the two-stage compression is performed by the orbiting scroll 12 orbiting in the rotational direction AL with respect to the fixed scroll 11.
  • the crankshaft 13 transmits a rotational force from a rotary drive source (not shown) to the orbiting scroll 12.
  • the thrust bearing 14 supports the rotation of the orbiting scroll 12 in the thrust direction.
  • An intermediate pressure chamber 16 and a high pressure chamber 17 are formed in the housing 10.
  • the crankshaft 13 is provided with a balance weight 15 for balancing the rotation of the orbiting scroll 12 with respect to the revolving motion.
  • the low-pressure refrigerant suction pipe L1 is a pipe for introducing the low-pressure refrigerant RL into the outer compression section 40.
  • the intermediate-pressure refrigerant suction pipe L2 is a pipe that introduces the intermediate-pressure refrigerant RM1 into the intermediate-pressure chamber 16.
  • the high-pressure refrigerant discharge pipe L3 is a pipe that discharges the high-pressure refrigerant RH discharged from the inner compression unit 41 through the discharge valve 18 and the high-pressure chamber 17 to the outside of the housing 10.
  • the fixed scroll 11 has fixed scroll plate-shaped spiral teeth 11b which stand on the base plate 11a.
  • the orbiting scroll 12 has a orbiting scroll plate-shaped spiral tooth 12b that stands on a base plate 12a.
  • the fixed scroll 11 and the orbiting scroll 12 mesh with each other at the tip of the fixed scroll plate-shaped spiral tooth 11b and the tip of the orbiting scroll plate-shaped spiral tooth 12b to form an outer compressed portion 40 and an inner compressed portion 41.
  • a compression chamber is formed outside and inside the orbiting scroll 12 in the outer compression section 40 and the inner compression section 41, and the volume of the compression chamber is reduced by orbiting the orbiting scroll 12, so that the compression chamber is moved toward the center side. To compress the refrigerant in the compression chamber.
  • the orbiting scroll plate-shaped spiral teeth 12b are formed at a position corresponding to the dividing wall 20 so as to be divided so as not to interfere with the dividing wall 20 with the revolving motion of the orbiting scroll 12 (see FIG. 7). .
  • the dividing wall 20 forms an outer compressed part 40 and an inner compressed part 41.
  • the formation of the division region E causes the orbiting scroll plate-shaped spiral teeth 12 b to revolve in the outer compression section 40 and the orbiting scroll plate-shaped spiral teeth 32 and the inner compression section 41. And the orbiting scroll plate-shaped spiral teeth 33 that revolve. Further, the fixed scroll plate-shaped spiral teeth 11b have the fixed scroll plate-shaped spiral teeth 30 forming the outer compressed portion 40 by the dividing wall 20 and the fixed scroll plate-shaped spiral teeth 31 forming the inner compressed portion 41. .
  • a low-pressure refrigerant suction port 21 is formed at the outer end of the outer compression section 40 outside the orbiting scroll plate-shaped spiral teeth 32, and is connected to the low-pressure refrigerant suction pipe L1.
  • An intermediate-pressure refrigerant discharge port 23 that discharges the intermediate-pressure refrigerant RM3 compressed in the outer compression unit 40 to the intermediate pressure chamber 16 is formed at the winding start position of the orbiting scroll plate-shaped spiral tooth 32 in the outer compression unit 40.
  • an intermediate-pressure refrigerant suction port 22 that forms the intermediate-pressure chamber 16 and sucks the intermediate-pressure refrigerants RM1 and RM3 is formed at an end position of the outer side of the orbiting scroll plate-shaped spiral teeth 33 in the inner compression portion 41.
  • a high-pressure refrigerant discharge port 24 is formed at a winding start position inside the orbiting scroll plate-shaped spiral teeth 33 in the inner compression section 41, that is, at the center.
  • the high-pressure refrigerant discharge port 24 communicates with the high-pressure chamber 17 via the discharge valve 18, and discharges the high-pressure refrigerant RH compressed by the inner compression section 41 to the outside via the high-pressure refrigerant discharge pipe L3.
  • the fixed scroll plate-shaped spiral teeth forming the inner compression section 41 as shown in FIG.
  • the height h2 of the spiral teeth 31 and the orbiting scroll plate-shaped spiral teeth 33 is higher than the height h1 of the fixed scroll plate-shaped spiral teeth 30 and the orbiting scroll plate-shaped spiral teeth 32 forming the outer compressed portion 40.
  • the compression volume of the inner compression portion 41 can be made larger than the compression volume of the outer compression portion 40.
  • the intermediate-pressure refrigerant expanded by the high-stage expansion valve is introduced into the high-stage compression mechanism, and the refrigerant circulation amount introduced into the high-stage compression mechanism is larger than the refrigerant circulation amount introduced into the low-stage compression mechanism. Even so, the size of the apparatus can be reduced with a simple configuration.
  • tip seals 51 and 52 are provided on the distal end side of the fixed scroll plate-shaped spiral teeth 11b and the distal end side of the orbiting scroll plate-shaped spiral teeth 12b, respectively.
  • inner compression portion 41 refrigerant leakage between the outside and the inside of the fixed scroll plate-shaped spiral teeth 11b and refrigerant leakage between the outside and the inside of the orbiting scroll plate-shaped spiral teeth 12b are prevented.
  • the low-pressure refrigerant RL is first supplied to the first inner compression chamber 60-1 inside the orbiting scroll 12 and the first outer compression chamber 60-1 outside the orbiting scroll 12.
  • a compression chamber 61-1 is formed.
  • the first inner compression chamber 60-1 becomes the compressed second inner compression chamber 60-2
  • the first outer compression chamber 61-1 becomes the compressed second inner compression chamber 61-1.
  • Two outer compression chambers 61-2 are formed. That is, the first inner compression chamber 60-1 and the first outer compression chamber 61-1 show a state before one rotation of the second inner compression chamber 60-2 and the second outer compression chamber 61-2, respectively.
  • FIG. 8B shows a state in which the orbiting scroll 12 has been rotated from the state of FIG. 8A by a communication angle ⁇ A at which the second inner compression chamber 60-2 communicates with the intermediate-pressure refrigerant discharge port 23.
  • the intermediate-pressure refrigerant in the second inner compression chamber 60-2 communicates with and discharges to the intermediate-pressure refrigerant discharge port 23, and at the same time, communicates with the first outer compression chamber 61-1 and, as shown by the arrow A1, the first refrigerant
  • the intermediate-pressure refrigerant compressed in the second inner compression chamber 60-2 having a relatively higher pressure than the outer compression chamber 61-1 leaks to the first outer compression chamber 61-1. As a result, a recompression loss occurs, and the compression efficiency is reduced.
  • the winding end position PB20 of the fixed scroll 11 and the winding end position PB21 of the orbiting scroll 12 are arranged asymmetrically with respect to the center (the position of the high-pressure refrigerant discharge port 24).
  • the end-of-winding position PB10 of the fixed scroll 11 in the symmetrical scroll compressor is determined by setting the expansion angle ⁇ a from the end-of-winding position PB10 to 0 ° ⁇ a ⁇ 180. ° stretched.
  • the winding end position PB20 is set to the opening angle ⁇ a of 180 °.
  • each inner wall and each outer wall of the fixed scroll 11 and the orbiting scroll 12 form an involute curve LI.
  • the involute curve LI is a plane curve whose normal is always in contact with a fixed circle (base circle C).
  • base circle C the radius of the base circle C
  • the position PB ( ⁇ ) on the involute curve L1 ⁇ PBx ( ⁇ ), PBy ( ⁇ ) ⁇
  • FIG. 9 shows an asymmetric scroll compressor in which the winding end position PB20 of the fixed scroll 11 and the winding end position PB21 of the orbiting scroll 12 are arranged at the same angle position with respect to the symmetric scroll compressor shown in FIG. It is the opportunity.
  • the outer compression chamber 61 before a half rotation is formed. ⁇ 0 has already been formed.
  • the outer compression chamber 61-0 becomes the first outer compression chamber 61-1 after one rotation. That is, when the first inner compression chamber 60-1 is formed, the first outer compression chamber 61-1 has already been compressed half a cycle before. Therefore, when the communication angle ⁇ A shown in FIG.
  • the pressure in the first outer compression chamber 61-1 is substantially the same as the pressure in the second inner compression chamber 60-2, and the second inner compression chamber 60-2 is compressed.
  • the amount of the intermediate-pressure refrigerant compressed in the chamber 60-2 leaking to the first outer compression chamber 61-1 is reduced. As a result, the recompression loss is reduced, and a decrease in compression efficiency can be prevented.
  • FIG. 11 is a diagram comparing pressure changes in the inner compression chamber and the outer compression chamber and the pressure difference at the communication angle ⁇ A between the symmetric scroll compressor shown in FIG. 8 and the asymmetric scroll compressor shown in FIG. 9. is there.
  • the characteristic curves L60-1, L60-2, L61-0, L61-1, and L61-2 correspond to the first inner compression chamber 60-1, the second inner compression chamber 60-2, the outer compression chamber 61-0, and the The pressure changes in the first outer compression chamber 61-1 and the second outer compression chamber 61-2 are shown.
  • FIG. 11 (b) in the asymmetric scroll compressor, from the rotation angle ⁇ 1 one rotation before the rotation angle becomes 0 °, the first outer compression chamber 61-1 becomes the first outer compression chamber 61-1.
  • the re-compression loss S2 of the asymmetric scroll compressor is smaller than the re-pressure loss S1 of the symmetric scroll compressor.
  • the configuration of the asymmetric scroll compressor can be applied not only to the two-stage compression two-stage expansion cycle shown in the first embodiment but also to the two-stage compression one-stage expansion cycle. Specifically, the height h2 of the fixed scroll plate-shaped spiral teeth 31 and the orbiting scroll plate-shaped spiral teeth 33 forming the inner compression section 41 is changed by the fixed scroll plate-shaped spiral teeth 30 and the orbited scroll forming the outer compression section 40. It is not necessary to adopt a configuration in which the height is higher than the height h1 of the plate-shaped spiral teeth 32.
  • the intermediate pressure chamber 16 has an intermediate pressure PM.
  • the intermediate pressure PM is applied to the back surface of the orbiting scroll 12, so that the thrust load of the orbiting scroll 12 is reduced, and the mechanical loss and the wear of the thrust bearing 14 are reduced.
  • the reliability of the scroll compressor 2 can be improved.
  • the orbiting scroll plate-shaped spiral teeth 12b of the orbiting scroll 12 receive a load in the radial direction A2. May be.
  • a gap d is generated between the front end surface of the outer peripheral portion of the fixed scroll 11 on the orbiting scroll 12 side and the upper surface of the base plate 12a of the orbiting scroll 12.
  • the intermediate-pressure refrigerant RM in the intermediate-pressure chamber 16 leaks to the outer compression section 40 that compresses the low-pressure refrigerant RL.
  • the leakage of the intermediate-pressure refrigerant RM to the outer compression section 40 reduces the compression efficiency of the outer compression section 40.
  • the compression efficiency of the outer compression section 40 decreases because the pressure of the outer compression section 40 increases due to the increase of the intermediate-pressure refrigerant RM in the outer compression section 40, and the compression power for the region E10 increases. It is. Further, as shown in FIG. 15, the intermediate-pressure refrigerant having a higher temperature than the low-pressure refrigerant in the outer compression section 40 leaks to the outer compression section 40, so that the low-pressure refrigerant is heated as indicated by an arrow A10 and compressed in the outer compression section 40. The obtained intermediate-pressure refrigerant has a higher temperature than the ideal intermediate-pressure refrigerant as indicated by an arrow A11. When the high-pressure intermediate-pressure refrigerant is introduced into the inner compression section 41, the density of the intermediate-pressure refrigerant in the inner compression section 41 decreases, so that the volume efficiency of the inner compression section 41 decreases.
  • the fixed scroll 11 is formed with the outer wall 11 c having the U-shaped cross section in the axial direction of the orbiting scroll 12, and the distal end face of the outer wall 11 c and the orbiting scroll are formed.
  • a ring-shaped seal is provided on the sliding surface of the base 12 with the base plate 12a. 16 and 17, a ring-shaped seal 70 is provided on the distal end surface side of the outer wall 11c.
  • the ring-shaped seal 70 may be provided on the base plate 12a side of the orbiting scroll 12, as shown in FIG. Further, the shape of the ring-shaped seal 70 is not limited to a circle, but may be an ellipse, a polygon, or the like according to a use mode.
  • the ring-shaped seal 70 is formed of, for example, resin or metal.
  • thermal expansion occurs in the ring-shaped seal 70 due to a temperature rise accompanying the operation of the scroll compressor 2.
  • the ring-shaped seal 70 has a longer circumferential length than the width and thickness, and during thermal expansion, the circumferential elongation is set in the groove and restrained, so that thermal stress is generated, and furthermore, the axial direction is increased. May be damaged due to deformation.
  • the ring-shaped seal 70 with a thermal expansion absorbing portion that absorbs thermal expansion during thermal expansion.
  • a division gap 71 is provided in a part of the ring-shaped seal 70 as a clearance for thermal expansion.
  • the division gap 71 in FIG. 19 is inclined with respect to the axial direction of the orbiting scroll 12.
  • the circumferential width d10 of the division gap 71 is a value corresponding to the amount of thermal expansion during thermal expansion.
  • the division gap 71 is restricted by the groove, it is preferable to provide a plurality of division gaps in the circumferential direction.
  • a division gap 72 may be provided instead of the division gap 71.
  • the division gap 72 is inclined with respect to the circumferential direction of the orbiting scroll 12 or the fixed scroll 11.
  • the circumferential width d20 of the split gap 72 is a value corresponding to the amount of thermal expansion during thermal expansion.
  • the division gap 72 is restricted by the groove, it is preferable to provide a plurality of division gaps in the circumferential direction. By providing the division gap 72, it is possible to avoid sticking at the time of thermal expansion and to reliably shut off refrigerant leakage.
  • the outer peripheral surface 70a and the inner peripheral surface 70b of the ring-shaped seal 70 are interposed and formed in a region not including the outer peripheral surface 70a and the inner peripheral surface 70b.
  • One or more spaces 73 may be provided.
  • the space portion 73 absorbs thermal expansion by crushing the space portion 73 during thermal expansion, suppressing deformation of the outer shape of the ring-shaped seal 70, and more reliably preventing refrigerant leakage as compared with a ring-shaped seal having a division gap. Can be shut off.
  • the third embodiment can be applied to general scroll compressors other than the two-stage compression scroll compressor described in the first embodiment.
  • the present invention can be applied to a scroll compressor of one-stage compression.
  • the heat cycle system shown in FIGS. 1 and 2 is shown as an example of the heat cycle system employing the two-stage compression and two-stage expansion cycle.
  • the scroll compressor 2 shown in the first to third embodiments can be applied to a heat cycle system other than the heat cycle system shown in FIGS.
  • the supercooler 4 may be removed from the heat cycle system 1 shown in FIG.
  • the gas-liquid separator 6 of the heat cycle system 1 shown in FIG. 1 is deleted, and the high-pressure refrigerant RH derived from the subcooler 4 is branched at a branch point PS,
  • An internal heat exchanger that introduces one of the branched high-pressure refrigerants RH into the intermediate expansion valve 5a, expands and reduces the pressure, and performs heat exchange between the intermediate-pressure refrigerant that has been reduced and expanded and the other high-pressure refrigerant that is not reduced and expanded.
  • 9b is provided.
  • the internal heat exchanger 9b heats the adiabatic expanded intermediate-pressure refrigerant using the heat of the other high-pressure refrigerant that is not decompressed and expanded.
  • This intermediate-pressure refrigerant is directly introduced into the high-stage compression chamber of the scroll compressor 2.
  • the high-pressure refrigerant that is not adiabatically expanded through the internal heat exchanger 9b is introduced into the low-stage expansion valve 7, and is decompressed and expanded into an intermediate-pressure refrigerant.
  • FIG. 30 is a longitudinal sectional view showing the configuration of the scroll compressor 102 according to the fourth embodiment.
  • FIG. 31 is a perspective view of the scroll compressor 102 shown in FIG. 30 as viewed obliquely from the right.
  • FIG. 32 is a perspective view of the scroll compressor 102 shown in FIG. 30 as viewed obliquely from the left.
  • FIG. 33 is a perspective view of the refrigerant connection cover 100 shown in FIG. 30 as viewed from the back side (Y direction).
  • FIG. 34 is a front view of a state where the refrigerant connection cover 100 is attached.
  • FIG. 35 is a front view in a state where the refrigerant connection cover 100 is removed.
  • the casing 10a forming the intermediate pressure chamber 16 and the high pressure chamber 17 is covered on the back surface outside the fixed scroll 11, and is connected to the casing 10b.
  • the suction of the intermediate-pressure refrigerants RM1 and RM3 and the intermediate-pressure refrigerant RM1 are provided on the back surface of the fixed scroll 11 facing the outside (Y direction).
  • RM3 and a refrigerant connection cover 100 that forms an intermediate-pressure refrigerant chamber 116 that discharges the intermediate-pressure refrigerant RM4 and a high-pressure refrigerant chamber 117 that suctions and discharges the high-pressure refrigerant RH.
  • the intermediate-pressure refrigerant chamber 116 and the high-pressure refrigerant chamber 117 formed between the refrigerant connection cover 100 and the fixed scroll 11 are sealed by an O-ring or the like.
  • the thrust bearing mechanism 114 has a thrust bearing mechanism and a rotation suppressing mechanism of the orbiting scroll 12, and is provided three in the XZ plane.
  • the refrigerant connection cover 100 is detachably attached to the housing 10.
  • the refrigerant connection cover 100 By directly attaching the refrigerant connection cover 100 to the fixed scroll 11, the refrigerant connection cover 100 is not affected by the casing 10 (the casing 10c) including the casings 10c and 10d, and can be detached independently of the casing 10. And maintainability and compactness can be achieved.
  • the casing 10c is fixed to the fixed scroll 11, and the fixed scroll 11 forms a part of the casing 10.
  • the refrigerant connection cover 100 does not need to have the function of a housing, a large number of valves, openings, and pipes unique to two-stage compression can be integrated.
  • the intermediate-pressure refrigerant chamber 116 is formed such that the concave portion 105 on the fixed scroll 11 side and the concave portion 106 on the refrigerant connection cover 100 face each other.
  • the high-pressure refrigerant chamber 117 is formed such that the concave portion 107 on the fixed scroll 11 side and the concave portion 108 on the refrigerant connection cover 100 face each other.
  • the intermediate-pressure refrigerant chamber 116 and the high-pressure refrigerant chamber 117 are separated by a partition 101.
  • the recess 105 has an intermediate-pressure refrigerant discharge port 123 corresponding to the intermediate-pressure refrigerant discharge port 23 communicating with the outer compression section 40, and an intermediate-pressure refrigerant suction port 122 corresponding to the intermediate-pressure refrigerant suction port 22 communicating with the inner compression section 41. , And an outlet opening 151 of the intermediate pressure relief hole 141 communicating with the outer compression portion 40.
  • the concave portion 106 is formed with an external intermediate-pressure refrigerant connection suction port 126 for sucking the gaseous intermediate-pressure refrigerant RM1 sucked from the external gas-liquid separator 6.
  • the intermediate-pressure refrigerant RM1 is introduced into the housing 10d from the external intermediate-pressure refrigerant suction port 130 together with oil, and is sucked into the housing intermediate-pressure refrigerant via a seal in the housing 10.
  • the mouth 131 is reached.
  • An intermediate pipe LM is connected between the casing intermediate-pressure refrigerant suction port 131 and the external intermediate-pressure refrigerant connection suction port 126. Therefore, the intermediate-pressure refrigerant RM1 drawn from the casing intermediate-pressure refrigerant suction port 131 is introduced into the intermediate-pressure refrigerant chamber 116 through the external intermediate-pressure refrigerant connection suction port 126.
  • the intermediate pipe LM is a pipe (see FIG. 1) for introducing the gas-phase intermediate-pressure refrigerant RM1 separated by the gas-liquid separator 6 into the intermediate-pressure refrigerant chamber 116, and partially has the housing 10 interposed therebetween. Pipe.
  • the fixed scroll 11 is provided with a low-pressure refrigerant suction port 121 corresponding to the low-pressure refrigerant suction port 21, and the low-pressure refrigerant RL is sucked into the outer compression section 40 through the low-pressure refrigerant suction port 121.
  • the recess 107 is formed with a high-pressure refrigerant discharge port 124 corresponding to the high-pressure refrigerant discharge port 24 and an outlet opening 152 of a high-pressure relief hole 151 communicating with the outer compression section 40.
  • a high-pressure refrigerant external discharge port 125 for discharging the high-pressure refrigerant RH in the high-pressure refrigerant chamber 117 to the outside is formed.
  • a check valve V1 for preventing the intermediate-pressure refrigerant RM3 from flowing backward from the intermediate-pressure refrigerant discharge port 123 to the outer compression section 40 is provided.
  • a check valve V2 for preventing the high-pressure refrigerant RH from flowing backward from the high-pressure refrigerant discharge port 124 to the inner compression section 41 is provided.
  • the intermediate pressure is inserted into the outlet opening 151 of the intermediate-pressure relief hole 141 (see FIGS. 6 and 35) in order to suppress the refrigerant pressure of the outer compression section 40 to a first predetermined pressure or less.
  • An intermediate pressure relief valve V11 which is a relief means, is provided.
  • the high-pressure relief means is provided to the outlet opening 152 of the high-pressure relief hole 142 (see FIGS. 6 and 35) in order to suppress the refrigerant pressure of the inner compression section 41 to a second predetermined pressure or less.
  • a certain high pressure relief valve V12 is provided.
  • the intermediate-pressure refrigerant outlet 123, the intermediate-pressure refrigerant inlet 122, and the high-pressure refrigerant outlet 124 are formed on the housing 10 side, and the refrigerant connection cover 110 having an external intermediate-pressure refrigerant connection inlet 126 and a high-pressure refrigerant outlet 125 is provided.
  • the refrigerant connection cover 110 having an external intermediate-pressure refrigerant connection inlet 126 and a high-pressure refrigerant outlet 125 is provided.
  • an intermediate-pressure refrigerant chamber 116 and a high-pressure refrigerant chamber 117 are formed.
  • the intermediate-pressure refrigerant suction port 122, the intermediate-pressure refrigerant discharge port 123, and the external intermediate-pressure refrigerant connection inlet 126 are connected to the intermediate-pressure refrigerant chamber 116, and the high-pressure refrigerant discharge port 124 and the high-pressure refrigerant outlet 125 are connected to the high-pressure refrigerant. It communicates with the chamber 127.
  • the intermediate pressure refrigerant suction port 122 and the high pressure refrigerant discharge port 124 open in the same direction as the intermediate pressure refrigerant discharge port 123.
  • the casing intermediate-pressure refrigerant suction port 131 opens in the same direction as the intermediate-pressure refrigerant discharge port 123, and discharges the intermediate-pressure refrigerant via a seal in the casing 10.
  • the intermediate pressure relief valve V11, the high pressure relief valve V12, the check valve V1, and the check valve V2 appear on the surface of the housing 10, so that the maintainability is improved. Can be.
  • the capacity of the intermediate-pressure refrigerant chamber 116 is larger than the capacity of the high-pressure refrigerant chamber 117. That is, since the intermediate-pressure refrigerants RM1, RM3, and RM4 have a lower density and a higher pressure loss than the high-pressure refrigerant RH, the pressure loss is reduced by increasing the volume of the intermediate-pressure refrigerant chamber 116.
  • the depth d1 of the intermediate-pressure refrigerant chamber 116 and the depth d2 of the high-pressure refrigerant chamber 117 are the same, and the cross-sectional area of the intermediate-pressure refrigerant chamber 116 is changed to the cross-sectional area of the high-pressure refrigerant chamber 117.
  • the volume of the intermediate-pressure refrigerant chamber 116 may be increased by making the depth d1 of the intermediate-pressure refrigerant chamber 116 greater than the depth d2 of the high-pressure refrigerant chamber 117.
  • the thickness of the refrigerant connection cover 100 around the intermediate-pressure refrigerant chamber 116 can be reduced, and the depth d2 is increased. It is easy.
  • the volume of the intermediate-pressure refrigerant chamber 116 or the high-pressure refrigerant chamber 117 is changed, by controlling the volume (depth) of the concave portion 106 or the concave portion 108 formed on the refrigerant connection cover 100 side, the structure on the housing 10 side is controlled. Can be changed without changing the volume of the intermediate-pressure refrigerant chamber 116 and the high-pressure refrigerant chamber 117.
  • the notch 140 provided in the refrigerant connection cover 100 is used for positioning when attaching the refrigerant connection cover 100.
  • the heat cycle system When heating is performed using the condenser 3 described above, the heat cycle system is a heat pump system, and when cooling is performed using the evaporator 8, the heat cycle system is a normal refrigeration system.
  • the scroll compressor 2 is a two-stage compressor having the outer compression unit 40 and the inner compression unit 41, but is not limited thereto, and may be a multi-stage compressor.

Abstract

The purpose of the invention is to provide a multiple-stage compressor in which numerous vales, openings, and pipes unique to two-stage compression are consolidated, and which can be maintained and made compact. To achieve this purpose, the compressor comprises: a plurality of compression chambers provided inside a casing; an intermediate-pressure refrigerant discharge port 123 that discharges intermediate-pressure refrigerant RM3 from a low-stage-side compression chamber of the plurality of compression chambers; an intermediate-pressure refrigerant intake port 122 that opens in the same direction as the intermediate-pressure refrigerant discharge port 123 and allows the intermediate-pressure refrigerant RM3 to be drawn into a high-stage side of the plurality of compression chambers; a high-pressure refrigerant discharge port 124 that opens in the same direction as the intermediate-pressure refrigerant discharge port 123 and discharges high-pressure refrigerant discharged from a high-stage-side compressor of the plurality of compression chambers; and a refrigerant connection cover that is removable attached to the casing and that forms an intermediate-pressure refrigerant chamber 116, which communicates with the intermediate-pressure refrigerant intake port 122 and the intermediate-pressure refrigerant discharge port 123 and which is provided with an external intermediate-pressure refrigerant connection inlet 126 opening to the exterior, and a high-pressure refrigerant chamber 117, which communicates with the high-pressure refrigerant discharge port 124 and which is provided with a high-pressure refrigerant outlet 125 opening to the exterior.

Description

多段圧縮機Multi-stage compressor
 本発明は、多段の圧縮機構をもち、低段の圧縮機構に導入される冷媒循環量と高段の圧縮機構に導入される冷媒循環量とが異なる場合であっても、簡易な構成で装置の小型化を実現することができる多段圧縮機に関する。 The present invention has a multi-stage compression mechanism, and has a simple configuration even when the amount of refrigerant circulated to a low-stage compression mechanism is different from the amount of refrigerant circulated to a high-stage compression mechanism. The present invention relates to a multi-stage compressor capable of realizing miniaturization of a compressor.
 従来から、1つのスクロール圧縮機内に2段の圧縮機構を設けたものがある。例えば、特許文献1には、固定スクロールの圧縮室を2段に区分するランド部を設け、このランド部によって区分された外周側の低段の圧縮機構と内周側の高段の圧縮機構とを形成し、低段の圧縮機構によって圧縮された空気を高段の圧縮機構に導入する2段圧縮のスクロール圧縮機が記載されている。 か ら Conventionally, there is a scroll compressor in which a two-stage compression mechanism is provided in one scroll compressor. For example, Patent Literature 1 discloses a land portion that divides a compression chamber of a fixed scroll into two stages, and a lower-stage compression mechanism on the outer periphery side and a higher-stage compression mechanism on the inner periphery side divided by the land portion. And a two-stage compression scroll compressor that introduces air compressed by a low-stage compression mechanism into a high-stage compression mechanism.
特開2004-332556号公報JP-A-2004-332556
 ところで、上述した2段圧縮のスクロール圧縮機は、低段の圧縮機構で圧縮した冷媒循環量をそのまま高段の圧縮機構で圧縮するものであった。ここで、2段圧縮のスクロール圧縮機を2段圧縮2段膨張サイクルの圧縮機に適用しようとする場合、高段の圧縮機構には高段の膨張弁で膨張された中間圧の冷媒が導入されるため、高段の圧縮機構に導入される冷媒循環量は、低段に導入される冷媒循環量よりも大きくなり、2段圧縮を実現することが困難であった。この2段圧縮2段膨張サイクルを実現するには、低段のスクロール圧縮機と高段のスクロール圧縮機とからなる一対のスクロール圧縮機を必要としていた。このため、2段圧縮2段膨張サイクルのスクロール圧縮機は、装置構成が大型化するとともに配管構成の複雑化を招いていた。 In the two-stage compression scroll compressor described above, the refrigerant circulation amount compressed by the low-stage compression mechanism is directly compressed by the high-stage compression mechanism. Here, when applying a two-stage compression scroll compressor to a two-stage compression, two-stage expansion cycle compressor, an intermediate-pressure refrigerant expanded by a high-stage expansion valve is introduced into a high-stage compression mechanism. Therefore, the amount of refrigerant circulating into the high-stage compression mechanism is larger than the amount of refrigerant circulating through the low-stage compression mechanism, and it has been difficult to achieve two-stage compression. In order to realize the two-stage compression and two-stage expansion cycle, a pair of scroll compressors including a low-stage scroll compressor and a high-stage scroll compressor were required. For this reason, the scroll compressor of the two-stage compression and two-stage expansion cycle has a large device configuration and a complicated piping configuration.
 本発明は、上記に鑑みてなされたものであって、2段圧縮特有の多数の弁や開口、配管を集約し、メンテナンス性及びコンパクト化を図ることができる多段圧縮機を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a multi-stage compressor capable of consolidating a large number of valves, openings, and pipes peculiar to two-stage compression and achieving maintenance and compactness. And
 上述した課題を解決し、目的を達成するために、本発明にかかる多段圧縮機は、筐体内に設けられる複数の圧縮室と、前記複数の圧縮室の低段側圧縮室から中間圧冷媒を吐出する中間圧冷媒吐出口と、前記中間圧冷媒吐出口と同一方向に開口し、前記中間圧冷媒を前記複数の圧縮室の高段側に吸入させる中間圧冷媒吸込口と、前記中間圧冷媒吐出口と同一方向に開口し、前記複数の圧縮室の高段側圧縮室から吐出した高圧冷媒を吐出する高圧冷媒吐出口と、前記筐体と取り外し可能に取り付けられ、前記中間圧冷媒吸込口と前記中間圧冷媒吐出口に連通し、外部に開口する外部中間圧冷媒接続導入口を備えた中間圧冷媒室と、前記高圧冷媒吐出口に連通し、外部に開口する高圧冷媒導出口を備えた高圧冷媒室と、を形成する冷媒接続カバーと、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, a multi-stage compressor according to the present invention includes a plurality of compression chambers provided in a housing and an intermediate-pressure refrigerant from a lower-stage compression chamber of the plurality of compression chambers. An intermediate-pressure refrigerant discharge port for discharging, an intermediate-pressure refrigerant suction port that opens in the same direction as the intermediate-pressure refrigerant discharge port, and allows the intermediate-pressure refrigerant to be sucked into a higher stage of the plurality of compression chambers; A high-pressure refrigerant discharge port that opens in the same direction as the discharge port and discharges high-pressure refrigerant discharged from a high-stage compression chamber of the plurality of compression chambers; and the intermediate-pressure refrigerant suction port detachably attached to the housing. And an intermediate-pressure refrigerant chamber that communicates with the intermediate-pressure refrigerant discharge port and has an external intermediate-pressure refrigerant connection introduction port that opens to the outside; and a high-pressure refrigerant outlet that communicates with the high-pressure refrigerant discharge port and opens to the outside. Refrigerant connection cover forming a high-pressure refrigerant chamber , Characterized in that it comprises a.
 また、本発明にかかる多段圧縮機は、上記の発明において、前記筐体には、前記中間圧冷媒吐出口と同一方向に開口し、前記筐体内のシールを介して中間圧冷媒を吐出する筐体中間圧冷媒吸入口が形成され、前記中間圧冷媒吸入口と前記外部中間圧冷媒接続導入口とは、配管で接続されることを特徴とする。 Further, in the multistage compressor according to the present invention, in the above invention, in the casing, the casing opens in the same direction as the intermediate-pressure refrigerant discharge port, and discharges the intermediate-pressure refrigerant via a seal in the casing. A body intermediate pressure refrigerant suction port is formed, and the intermediate pressure refrigerant suction port and the external intermediate pressure refrigerant connection introduction port are connected by a pipe.
 また、本発明にかかる多段圧縮機は、上記の発明において、前記高段側圧縮室の内部圧力が所定値以上になった場合に、該高段側圧縮室と前記高圧冷媒室とを連通させる高圧リリーフ手段を前記筐体の前記高圧冷媒室内に設けられていることを特徴とする。 Further, in the multistage compressor according to the present invention, in the above invention, when the internal pressure of the high-stage compression chamber becomes a predetermined value or more, the high-stage compression chamber communicates with the high-pressure refrigerant chamber. A high-pressure relief means is provided in the high-pressure refrigerant chamber of the housing.
 また、本発明にかかる多段圧縮機は、上記の発明において、前記低段側圧縮室の内部圧力が所定値以上になった場合に、該低段側圧縮室と前記中間圧冷媒室とを連通させる中間圧リリーフ手段を前記筐体の前記中間圧冷媒室内に設けられていることを特徴とする。 Further, in the multistage compressor according to the present invention, in the above invention, when the internal pressure of the low-stage compression chamber becomes a predetermined value or more, the low-stage compression chamber communicates with the intermediate-pressure refrigerant chamber. An intermediate-pressure relief means for causing the housing to be provided is provided in the intermediate-pressure refrigerant chamber of the housing.
 また、本発明にかかる多段圧縮機は、上記の発明において、前記中間圧冷媒吐出口から圧縮室に逆流するのを防止するための逆止弁が前記筐体の前記中間圧冷媒室内に設けられていることを特徴とする。 Further, in the multistage compressor according to the present invention, in the above invention, a check valve for preventing a backflow from the intermediate pressure refrigerant discharge port to the compression chamber is provided in the intermediate pressure refrigerant chamber of the housing. It is characterized by having.
 また、本発明にかかる多段圧縮機は、上記の発明において、前記高圧冷媒吐出口から圧縮室に逆流するのを防止するための逆止弁が前記筐体の前記高圧冷媒室内に設けられていることを特徴とする。 Further, in the multistage compressor according to the present invention, in the above invention, a check valve for preventing a backflow from the high-pressure refrigerant discharge port to the compression chamber is provided in the high-pressure refrigerant chamber of the housing. It is characterized by the following.
 また、本発明にかかる多段圧縮機は、上記の発明において、前記多段圧縮機は、旋回スクロールおよび固定スクロールを備えたスクロール圧縮機であって、前記固定スクロールは、前記筐体の一部を構成しており、前記冷媒接続カバーが取り付けられていることを特徴とする。 Further, in the multistage compressor according to the present invention, in the above invention, the multistage compressor is a scroll compressor including an orbiting scroll and a fixed scroll, and the fixed scroll forms a part of the housing. And the refrigerant connection cover is attached.
 また、本発明にかかる多段圧縮機は、上記の発明において、前記中間圧冷媒室の容積を前記高圧冷媒室の容積よりも大きくすることを特徴とする。 The multistage compressor according to the present invention is characterized in that, in the above invention, the volume of the intermediate-pressure refrigerant chamber is larger than the volume of the high-pressure refrigerant chamber.
 また、本発明にかかる多段圧縮機は、上記の発明において、前記冷媒接続カバーに、位置決め用の切り欠きを設けることを特徴とする。 In addition, the multistage compressor according to the present invention is characterized in that, in the above invention, a notch for positioning is provided in the refrigerant connection cover.
 また、本発明にかかる多段圧縮機は、上記の発明のいずれかに記載の多段圧縮機を2段圧縮2段膨張の熱サイクルシステムに用いることを特徴とする。 多 Further, a multi-stage compressor according to the present invention is characterized in that the multi-stage compressor according to any of the above-mentioned inventions is used in a heat cycle system of two-stage compression and two-stage expansion.
 本発明によれば、2段圧縮特有の多数の弁や開口、配管を集約し、メンテナンス性及びコンパクト化を図ることができる。 According to the present invention, a large number of valves, openings, and pipes peculiar to two-stage compression can be integrated, and maintenance performance and compactness can be achieved.
図1は、本発明の実施の形態1である多段圧縮機としてのスクロール圧縮機が適用される熱サイクルシステムの概要構成を示す回路図である。FIG. 1 is a circuit diagram showing a schematic configuration of a heat cycle system to which a scroll compressor as a multi-stage compressor according to Embodiment 1 of the present invention is applied. 図2は、図1に示した熱サイクルシステムのP-H線図である。FIG. 2 is a PH diagram of the heat cycle system shown in FIG. 図3は、スクロール圧縮機の構造を示す断面図である。FIG. 3 is a sectional view showing the structure of the scroll compressor. 図4は、図3に示したA-A線断面図である。FIG. 4 is a sectional view taken along the line AA shown in FIG. 図5は、図3に示した固定スクロールと旋回スクロールの断面図である。FIG. 5 is a sectional view of the fixed scroll and the orbiting scroll shown in FIG. 図6は、図4に示した固定スクロールを斜め下からみた斜視図である。FIG. 6 is a perspective view of the fixed scroll shown in FIG. 4 as viewed obliquely from below. 図7は、図4に示した旋回スクロールを斜め上からみた斜視図である。FIG. 7 is a perspective view of the orbiting scroll shown in FIG. 4 as viewed obliquely from above. 図8は、対称型スクロール圧縮機の圧縮動作を説明する説明図である。FIG. 8 is an explanatory diagram illustrating the compression operation of the symmetric scroll compressor. 図9は、非対称型スクロール圧縮機の圧縮動作を説明する説明図である。FIG. 9 is an explanatory diagram illustrating a compression operation of the asymmetric scroll compressor. 図10は、インボリュート曲線上の位置と伸開角との関係を示す説明図である。FIG. 10 is an explanatory diagram showing the relationship between the position on the involute curve and the spread angle. 図11は、対称型スクロール圧縮機と非対称型スクロール圧縮機との圧縮動作を比較した図である。FIG. 11 is a diagram comparing the compression operations of a symmetric scroll compressor and an asymmetric scroll compressor. 図12は、非対称型スクロール圧縮機の圧縮動作によって再圧縮損失の低減を説明する説明図である。FIG. 12 is an explanatory diagram illustrating reduction of recompression loss by the compression operation of the asymmetric scroll compressor. 図13は、旋回スクロールが傾斜した場合の状態を示す断面図である。FIG. 13 is a cross-sectional view showing a state where the orbiting scroll is inclined. 図14は、図13の状態のときにおける外側圧縮部の圧縮効率低下を説明する説明図である。FIG. 14 is an explanatory diagram illustrating a reduction in compression efficiency of the outer compression unit in the state of FIG. 図15は、図13の状態のときにおける内側圧縮部の体積効率低下を説明する説明図である。FIG. 15 is an explanatory diagram illustrating a decrease in volume efficiency of the inner compression section in the state of FIG. 図16は、リング状シールを固定スクロールの外壁の先端面に設けた状態を示す断面図である。FIG. 16 is a cross-sectional view showing a state in which a ring-shaped seal is provided on the distal end surface of the outer wall of the fixed scroll. 図17は、図3に示したスクロール圧縮機にリング状シールを設けた場合のB-B線断面図である。FIG. 17 is a sectional view taken along the line BB when a ring-shaped seal is provided in the scroll compressor shown in FIG. 図18は、リング状シールを旋回スクロールの台板上に設けた状態を示す断面図である。FIG. 18 is a cross-sectional view showing a state in which the ring-shaped seal is provided on the base plate of the orbiting scroll. 図19は、リング状シールに分割ギャップを設けた一例を示す図である。FIG. 19 is a diagram illustrating an example in which a division gap is provided in a ring-shaped seal. 図20は、リング状シールに分割ギャップを設けた一例を示す図である。FIG. 20 is a diagram illustrating an example in which a division gap is provided in a ring-shaped seal. 図21は、リング状シールに空間部を設けた一例を示す図である。FIG. 21 is a diagram illustrating an example in which a space is provided in a ring-shaped seal. 図22は、熱サイクルシステムの一例を示す回路図である。FIG. 22 is a circuit diagram illustrating an example of the heat cycle system. 図23は、図22に示した熱サイクルシステムのP-H線図である。FIG. 23 is a PH diagram of the heat cycle system shown in FIG. 図24は、熱サイクルシステムの一例を示す回路図である。FIG. 24 is a circuit diagram illustrating an example of the heat cycle system. 図25は、図24に示した熱サイクルシステムのP-H線図である。FIG. 25 is a PH diagram of the heat cycle system shown in FIG. 図26は、熱サイクルシステムの一例を示す回路図である。FIG. 26 is a circuit diagram illustrating an example of the heat cycle system. 図27は、図26に示した熱サイクルシステムのP-H線図である。FIG. 27 is a PH diagram of the heat cycle system shown in FIG. 図28は、熱サイクルシステムの一例を示す回路図である。FIG. 28 is a circuit diagram illustrating an example of the heat cycle system. 図29は、図28に示した熱サイクルシステムのP-H線図である。FIG. 29 is a PH diagram of the heat cycle system shown in FIG. 図30は、本実施の形態4であるスクロール圧縮機の構成を示す縦断面図である。FIG. 30 is a longitudinal sectional view showing the configuration of the scroll compressor according to the fourth embodiment. 図31は、図30に示したスクロール圧縮機を斜め右からみた斜視図である。FIG. 31 is a perspective view of the scroll compressor shown in FIG. 30 as viewed obliquely from the right. 図32は、図30に示したスクロール圧縮機を斜め左からみた斜視図である。FIG. 32 is a perspective view of the scroll compressor shown in FIG. 30 as viewed obliquely from the left. 図33は、図30に示した冷媒接続カバーを裏面側からみた斜視図である。FIG. 33 is a perspective view of the refrigerant connection cover shown in FIG. 30 as viewed from the back side. 図34は、冷媒接続カバーを取り付けた状態の正面図である。FIG. 34 is a front view in a state where the refrigerant connection cover is attached. 図35は、冷媒接続カバーを取り外した状態の正面図である。FIG. 35 is a front view in a state where the refrigerant connection cover is removed.
 以下、添付図面を参照してこの発明を実施するための形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[実施の形態1]
(適用システムの概要)
 図1は、本発明の実施の形態1である多段圧縮機としてのスクロール圧縮機2が適用される熱サイクルシステム1の概要構成を示す回路図である。また、図2は、図1に示した熱サイクルシステム1のP-H線図である。また、スクロール圧縮機2は、2段圧縮機であり、多段圧縮機の一例である。さらに、熱サイクルシステム1の熱サイクルは、2段圧縮2段膨張サイクルである。
[Embodiment 1]
(Overview of application system)
FIG. 1 is a circuit diagram showing a schematic configuration of a heat cycle system 1 to which a scroll compressor 2 as a multi-stage compressor according to Embodiment 1 of the present invention is applied. FIG. 2 is a PH diagram of the heat cycle system 1 shown in FIG. The scroll compressor 2 is a two-stage compressor, and is an example of a multi-stage compressor. Further, the heat cycle of the heat cycle system 1 is a two-stage compression and two-stage expansion cycle.
 スクロール圧縮機2の高段側圧縮室は、冷媒循環量GHの高圧冷媒RHを生成して凝縮器3に導入する(図2の点P2から点P3)。高圧冷媒RHは、凝縮器3によって放熱凝縮され、さらに、過冷却器4によって過冷却される(図2の点P3から点P4)。その後、高圧冷媒RHは、高段膨張弁5で減圧膨張されて(図2の点P4から点P5)中間圧冷媒RMとなって気液分離器6に導入される。中間圧冷媒RMのうちの蒸気である気体状態の中間圧冷媒RM1は、スクロール圧縮機2の高段側圧縮室に導入される(図2の点P2)。一方、中間圧冷媒RMのうちの液体状態の中間圧冷媒RM2は、低段膨張弁7で減圧膨張されて(図2の点P6から点P7)低圧冷媒RLとなって蒸発器8に導入される。蒸発器8は、低圧冷媒RLを蒸発させて(図2の点P7から点P1)、スクロール圧縮機2の低段側圧縮室に導入される(図2の点P1)。 (4) The high-stage compression chamber of the scroll compressor 2 generates the high-pressure refrigerant RH having the refrigerant circulation amount GH and introduces it into the condenser 3 (from point P2 to point P3 in FIG. 2). The high-pressure refrigerant RH is radiated and condensed by the condenser 3 and further supercooled by the subcooler 4 (from point P3 to point P4 in FIG. 2). Thereafter, the high-pressure refrigerant RH is decompressed and expanded by the high-stage expansion valve 5 (from the point P4 to the point P5 in FIG. 2), becomes the intermediate-pressure refrigerant RM, and is introduced into the gas-liquid separator 6. The gaseous intermediate-pressure refrigerant RM1, which is a vapor of the intermediate-pressure refrigerant RM, is introduced into the high-stage compression chamber of the scroll compressor 2 (point P2 in FIG. 2). On the other hand, the intermediate-pressure refrigerant RM2 in the liquid state of the intermediate-pressure refrigerant RM is decompressed and expanded by the low-stage expansion valve 7 (from the point P6 to the point P7 in FIG. 2), and is introduced into the evaporator 8 as the low-pressure refrigerant RL. You. The evaporator 8 evaporates the low-pressure refrigerant RL (from point P7 to point P1 in FIG. 2) and is introduced into the lower-stage compression chamber of the scroll compressor 2 (point P1 in FIG. 2).
 その後、スクロール圧縮機2の低段側圧縮室は、導入された低圧冷媒RLを中間圧冷媒RM3まで圧縮する。スクロール圧縮機2の高段側圧縮室は、中間圧冷媒RM1,RM3を高圧冷媒RHまで圧縮する。したがって、スクロール圧縮機2の低段側圧縮室には、気液分離器6によって分離された液体状態の冷媒循環量GLが導入される。一方、スクロール圧縮機2の高段側圧縮室には、気液分離器6によって分離された気体状態の冷媒循環量GMと、低段側圧縮室から導入される冷媒循環量GLとが加算された冷媒循環量GHが導入される。すなわち、高段側圧縮室に導入される冷媒循環量は、低段側圧縮室に導入される冷媒循環量よりも大きい。 Thereafter, the low-stage compression chamber of the scroll compressor 2 compresses the introduced low-pressure refrigerant RL to the intermediate-pressure refrigerant RM3. The high-stage compression chamber of the scroll compressor 2 compresses the intermediate-pressure refrigerants RM1 and RM3 to the high-pressure refrigerant RH. Therefore, the refrigerant circulation amount GL in the liquid state separated by the gas-liquid separator 6 is introduced into the low-stage compression chamber of the scroll compressor 2. On the other hand, the refrigerant circulation amount GM in the gaseous state separated by the gas-liquid separator 6 and the refrigerant circulation amount GL introduced from the low stage compression chamber are added to the high-stage compression chamber of the scroll compressor 2. The introduced refrigerant circulation amount GH is introduced. That is, the circulation amount of the refrigerant introduced into the high-stage compression chamber is larger than the circulation amount of the refrigerant introduced into the low-stage compression chamber.
(スクロール圧縮機)
 図3は、スクロール圧縮機2の構造を示す断面図である。また、図4は、図3に示したA-A線断面図である。さらに、図5は、図3に示した固定スクロール11と旋回スクロール12の断面図である。また、図6は、図4に示した固定スクロール11を斜め下からみた斜視図である。さらに、図7は、図4に示した旋回スクロール12を斜め上からみた斜視図である。
(Scroll compressor)
FIG. 3 is a sectional view showing the structure of the scroll compressor 2. FIG. 4 is a sectional view taken along the line AA shown in FIG. FIG. 5 is a sectional view of the fixed scroll 11 and the orbiting scroll 12 shown in FIG. FIG. 6 is a perspective view of the fixed scroll 11 shown in FIG. 4 as viewed obliquely from below. FIG. 7 is a perspective view of the orbiting scroll 12 shown in FIG. 4 as viewed obliquely from above.
 固定スクロール11および旋回スクロール12は、低圧側圧縮室として機能する後述する外側圧縮部40と高圧側圧縮室として機能する後述する内側圧縮部41とを形成して2段圧縮を行う。図3に示すように、固定スクロール11および旋回スクロール12は、筐体10a,10bによって形成された筐体10内に設けられる。2段圧縮は、旋回スクロール12が固定スクロール11に対して回転方向ALで公転運動することによって行われる。クランクシャフト13は、図示しない回転駆動源からの回転力を旋回スクロール12に伝達する。スラスト軸受14は、旋回スクロール12の回転に対してスラスト方向に軸支する。筐体10内には、中間圧室16と高圧室17とが形成される。なお、クランクシャフト13には、旋回スクロール12の公転運動に対する回転バランスをとるためのバランスウェイト15が設けられている。 (4) The fixed scroll 11 and the orbiting scroll 12 form an outer compression section 40, which functions as a low-pressure side compression chamber, and an inner compression section 41, which functions as a high-pressure side compression chamber, and perform two-stage compression. As shown in FIG. 3, the fixed scroll 11 and the orbiting scroll 12 are provided in a housing 10 formed by the housings 10a and 10b. The two-stage compression is performed by the orbiting scroll 12 orbiting in the rotational direction AL with respect to the fixed scroll 11. The crankshaft 13 transmits a rotational force from a rotary drive source (not shown) to the orbiting scroll 12. The thrust bearing 14 supports the rotation of the orbiting scroll 12 in the thrust direction. An intermediate pressure chamber 16 and a high pressure chamber 17 are formed in the housing 10. The crankshaft 13 is provided with a balance weight 15 for balancing the rotation of the orbiting scroll 12 with respect to the revolving motion.
 低圧冷媒吸込配管L1は、低圧冷媒RLを外側圧縮部40に導入する配管である。中間圧冷媒吸込配管L2は、中間圧冷媒RM1を中間圧室16に導入する配管である。高圧冷媒吐出配管L3は、内側圧縮部41から吐出弁18及び高圧室17を介して吐出された高圧冷媒RHを筐体10外に吐出する配管である。 The low-pressure refrigerant suction pipe L1 is a pipe for introducing the low-pressure refrigerant RL into the outer compression section 40. The intermediate-pressure refrigerant suction pipe L2 is a pipe that introduces the intermediate-pressure refrigerant RM1 into the intermediate-pressure chamber 16. The high-pressure refrigerant discharge pipe L3 is a pipe that discharges the high-pressure refrigerant RH discharged from the inner compression unit 41 through the discharge valve 18 and the high-pressure chamber 17 to the outside of the housing 10.
(2段圧縮機構)
 図4~図7に示すように、固定スクロール11は、台板11a上に立設した固定スクロール板状渦巻歯11bを有する。旋回スクロール12は、台板12a上に立設した旋回スクロール板状渦巻歯12bを有する。固定スクロール11と旋回スクロール12とは、固定スクロール板状渦巻歯11bの先端と旋回スクロール板状渦巻歯12bの先端とを互いに噛み合わせて、外側圧縮部40と内側圧縮部41とを形成する。そして、外側圧縮部40および内側圧縮部41内で、旋回スクロール12の外側および内側に圧縮室を形成し、旋回スクロール12に公転運動させることによって圧縮室の容積を減少して圧縮室を中心側に移動させ圧縮室の冷媒を圧縮する。
(Two-stage compression mechanism)
As shown in FIGS. 4 to 7, the fixed scroll 11 has fixed scroll plate-shaped spiral teeth 11b which stand on the base plate 11a. The orbiting scroll 12 has a orbiting scroll plate-shaped spiral tooth 12b that stands on a base plate 12a. The fixed scroll 11 and the orbiting scroll 12 mesh with each other at the tip of the fixed scroll plate-shaped spiral tooth 11b and the tip of the orbiting scroll plate-shaped spiral tooth 12b to form an outer compressed portion 40 and an inner compressed portion 41. A compression chamber is formed outside and inside the orbiting scroll 12 in the outer compression section 40 and the inner compression section 41, and the volume of the compression chamber is reduced by orbiting the orbiting scroll 12, so that the compression chamber is moved toward the center side. To compress the refrigerant in the compression chamber.
 図4に示すように、固定スクロール板状渦巻歯11bの中心側の巻始め位置PAと外側の巻終わり位置PBとの間で圧縮室を分割するように隣接する固定スクロール板状渦巻歯11b間を連接した分割壁20が設けられる。さらに、旋回スクロール板状渦巻歯12bは分割壁20に対応する位置で旋回スクロール12の公転運動に伴って分割壁20に干渉しないように分断された分断領域E(図7参照)が形成される。この分割壁20によって外側圧縮部40と内側圧縮部41とが形成される。また、図5~図7に示すように、この分断領域Eの形成によって旋回スクロール板状渦巻歯12bは、外側圧縮部40内で公転運動する旋回スクロール板状渦巻歯32と内側圧縮部41内で公転運動する旋回スクロール板状渦巻歯33とを有することになる。また、固定スクロール板状渦巻歯11bは、分割壁20によって外側圧縮部40を形成する固定スクロール板状渦巻歯30と内側圧縮部41を形成する固定スクロール板状渦巻歯31とを有することになる。 As shown in FIG. 4, between the fixed scroll plate-shaped spiral teeth 11b adjacent to each other so as to divide the compression chamber between the winding start position PA on the center side of the fixed scroll plate-shaped spiral teeth 11b and the outer winding end position PB. Is provided. Further, the orbiting scroll plate-shaped spiral teeth 12b are formed at a position corresponding to the dividing wall 20 so as to be divided so as not to interfere with the dividing wall 20 with the revolving motion of the orbiting scroll 12 (see FIG. 7). . The dividing wall 20 forms an outer compressed part 40 and an inner compressed part 41. As shown in FIGS. 5 to 7, the formation of the division region E causes the orbiting scroll plate-shaped spiral teeth 12 b to revolve in the outer compression section 40 and the orbiting scroll plate-shaped spiral teeth 32 and the inner compression section 41. And the orbiting scroll plate-shaped spiral teeth 33 that revolve. Further, the fixed scroll plate-shaped spiral teeth 11b have the fixed scroll plate-shaped spiral teeth 30 forming the outer compressed portion 40 by the dividing wall 20 and the fixed scroll plate-shaped spiral teeth 31 forming the inner compressed portion 41. .
 外側圧縮部40における旋回スクロール板状渦巻歯32の外側の巻終わり位置には、低圧冷媒吸込口21が形成され、低圧冷媒吸込配管L1に接続される。また、外側圧縮部40における旋回スクロール板状渦巻歯32の巻始め位置には、外側圧縮部40において圧縮された中間圧冷媒RM3を中間圧室16に吐出する中間圧冷媒吐出口23が形成される。さらに、内側圧縮部41における旋回スクロール板状渦巻歯33の外側の巻終わり位置には、中間圧室16に通じて中間圧冷媒RM1,RM3を吸い込む中間圧冷媒吸込口22が形成される。また、内側圧縮部41における旋回スクロール板状渦巻歯33の内側の巻始め位置、すなわち中心には、高圧冷媒吐出口24が形成される。高圧冷媒吐出口24は、吐出弁18を介して高圧室17に連通し、高圧冷媒吐出配管L3を介して、内側圧縮部41で圧縮された高圧冷媒RHを外部に吐出する。 低 A low-pressure refrigerant suction port 21 is formed at the outer end of the outer compression section 40 outside the orbiting scroll plate-shaped spiral teeth 32, and is connected to the low-pressure refrigerant suction pipe L1. An intermediate-pressure refrigerant discharge port 23 that discharges the intermediate-pressure refrigerant RM3 compressed in the outer compression unit 40 to the intermediate pressure chamber 16 is formed at the winding start position of the orbiting scroll plate-shaped spiral tooth 32 in the outer compression unit 40. You. Further, an intermediate-pressure refrigerant suction port 22 that forms the intermediate-pressure chamber 16 and sucks the intermediate-pressure refrigerants RM1 and RM3 is formed at an end position of the outer side of the orbiting scroll plate-shaped spiral teeth 33 in the inner compression portion 41. Further, a high-pressure refrigerant discharge port 24 is formed at a winding start position inside the orbiting scroll plate-shaped spiral teeth 33 in the inner compression section 41, that is, at the center. The high-pressure refrigerant discharge port 24 communicates with the high-pressure chamber 17 via the discharge valve 18, and discharges the high-pressure refrigerant RH compressed by the inner compression section 41 to the outside via the high-pressure refrigerant discharge pipe L3.
 ここで、内側圧縮部41に吸い込まれる冷媒循環量は、外側圧縮部40に吸い込まれる冷媒循環量よりも多いため、図5に示すように、内側圧縮部41を形成する固定スクロール板状渦巻歯31および旋回スクロール板状渦巻歯33の高さh2を、外側圧縮部40を形成する固定スクロール板状渦巻歯30および旋回スクロール板状渦巻歯32の高さh1よりも高くしている。高さh1,h2を調整することによって、内側圧縮部41の圧縮容積を外側圧縮部40の圧縮容積よりも大きくすることができる。これによって、高段の圧縮機構に高段の膨張弁で膨張された中間圧の冷媒が導入され、高段の圧縮機構に導入される冷媒循環量が低段に導入される冷媒循環量より大きくなっても、簡単な構成で装置の小型化を実現できる。 Here, since the amount of the refrigerant circulated into the inner compression section 41 is larger than the amount of the refrigerant circulated into the outer compression section 40, the fixed scroll plate-shaped spiral teeth forming the inner compression section 41 as shown in FIG. The height h2 of the spiral teeth 31 and the orbiting scroll plate-shaped spiral teeth 33 is higher than the height h1 of the fixed scroll plate-shaped spiral teeth 30 and the orbiting scroll plate-shaped spiral teeth 32 forming the outer compressed portion 40. By adjusting the heights h1 and h2, the compression volume of the inner compression portion 41 can be made larger than the compression volume of the outer compression portion 40. Thereby, the intermediate-pressure refrigerant expanded by the high-stage expansion valve is introduced into the high-stage compression mechanism, and the refrigerant circulation amount introduced into the high-stage compression mechanism is larger than the refrigerant circulation amount introduced into the low-stage compression mechanism. Even so, the size of the apparatus can be reduced with a simple configuration.
 なお、図5に示すように、固定スクロール板状渦巻歯11bの先端側および旋回スクロール板状渦巻歯12bの先端側には、それぞれチップシール51,52が設けられ、上述した外側圧縮部40および内側圧縮部41による圧縮時に、固定スクロール板状渦巻歯11bの外側と内側との間の冷媒漏れ、および旋回スクロール板状渦巻歯12bの外側と内側との間の冷媒漏れを防止している。 As shown in FIG. 5, tip seals 51 and 52 are provided on the distal end side of the fixed scroll plate-shaped spiral teeth 11b and the distal end side of the orbiting scroll plate-shaped spiral teeth 12b, respectively. During compression by the inner compression portion 41, refrigerant leakage between the outside and the inside of the fixed scroll plate-shaped spiral teeth 11b and refrigerant leakage between the outside and the inside of the orbiting scroll plate-shaped spiral teeth 12b are prevented.
[実施の形態2]
(非対称型スクロール圧縮機構造の適用)
 ところで、図8に示すように、実施の形態2のスクロール圧縮機2は、固定スクロール11の巻終わり位置PB10と旋回スクロール12の巻終わり位置PB11とが、中心(高圧冷媒吐出口24の位置)に対して対称に配置されている。
[Embodiment 2]
(Application of asymmetric scroll compressor structure)
As shown in FIG. 8, in the scroll compressor 2 according to the second embodiment, the winding end position PB10 of the fixed scroll 11 and the winding end position PB11 of the orbiting scroll 12 are centered (the position of the high-pressure refrigerant discharge port 24). Are arranged symmetrically with respect to.
 このため、図8(a)に示すように、外側圧縮部40において、低圧冷媒RLは、最初、旋回スクロール12の内側の第1内側圧縮室60-1と旋回スクロール12の外側の第1外側圧縮室61-1とを形成する。一方、旋回スクロール12の1回転(360°)後は、第1内側圧縮室60-1は圧縮された第2内側圧縮室60-2となり、第1外側圧縮室61-1は圧縮された第2外側圧縮室61-2となる。すなわち、第1内側圧縮室60-1および第1外側圧縮室61-1は、それぞれ第2内側圧縮室60-2および第2外側圧縮室61-2の1回転前の状態を示している。 For this reason, as shown in FIG. 8A, in the outer compression section 40, the low-pressure refrigerant RL is first supplied to the first inner compression chamber 60-1 inside the orbiting scroll 12 and the first outer compression chamber 60-1 outside the orbiting scroll 12. A compression chamber 61-1 is formed. On the other hand, after one rotation (360 °) of the orbiting scroll 12, the first inner compression chamber 60-1 becomes the compressed second inner compression chamber 60-2, and the first outer compression chamber 61-1 becomes the compressed second inner compression chamber 61-1. Two outer compression chambers 61-2 are formed. That is, the first inner compression chamber 60-1 and the first outer compression chamber 61-1 show a state before one rotation of the second inner compression chamber 60-2 and the second outer compression chamber 61-2, respectively.
 図8(b)は、図8(a)の状態から、第2内側圧縮室60-2が中間圧冷媒吐出口23に連通する連通角θA分、旋回スクロール12が回転した状態である。この場合、第2内側圧縮室60-2の中間圧冷媒が中間圧冷媒吐出口23に連通して吐出すると同時に、第1外側圧縮室61-1に通じ、矢印A1に示すように、第1外側圧縮室61-1に比して相対的に圧力が高い第2内側圧縮室60-2の圧縮された中間圧冷媒が第1外側圧縮室61-1に漏れてしまう。この結果、再圧縮損失が生じ、圧縮効率が低下することになる。 FIG. 8B shows a state in which the orbiting scroll 12 has been rotated from the state of FIG. 8A by a communication angle θA at which the second inner compression chamber 60-2 communicates with the intermediate-pressure refrigerant discharge port 23. In this case, the intermediate-pressure refrigerant in the second inner compression chamber 60-2 communicates with and discharges to the intermediate-pressure refrigerant discharge port 23, and at the same time, communicates with the first outer compression chamber 61-1 and, as shown by the arrow A1, the first refrigerant The intermediate-pressure refrigerant compressed in the second inner compression chamber 60-2 having a relatively higher pressure than the outer compression chamber 61-1 leaks to the first outer compression chamber 61-1. As a result, a recompression loss occurs, and the compression efficiency is reduced.
 そこで、図9に示すように、固定スクロール11の巻終わり位置PB20と旋回スクロール12の巻終わり位置PB21とが、中心(高圧冷媒吐出口24の位置)に対して非対称に配置することが好ましい。ここで、非対称型スクロール圧縮機は、図9に示すように、対称型スクロール圧縮機における固定スクロール11の巻終わり位置PB10を、巻終わり位置PB10からの伸開角θaを0°<θa≦180°で延伸したものである。図9では、伸開角θaを180°とする巻終わり位置PB20にしている。 Therefore, as shown in FIG. 9, it is preferable that the winding end position PB20 of the fixed scroll 11 and the winding end position PB21 of the orbiting scroll 12 are arranged asymmetrically with respect to the center (the position of the high-pressure refrigerant discharge port 24). Here, in the asymmetric scroll compressor, as shown in FIG. 9, the end-of-winding position PB10 of the fixed scroll 11 in the symmetrical scroll compressor is determined by setting the expansion angle θa from the end-of-winding position PB10 to 0 ° <θa ≦ 180. ° stretched. In FIG. 9, the winding end position PB20 is set to the opening angle θa of 180 °.
 ここで、固定スクロール11および旋回スクロール12の各内壁及び各外壁は、インボリュート曲線LIを形成している。インボリュート曲線LIは、その法線が常に一定の円(基礎円C)に接する平面曲線である。図10に示すように、インボリュート曲線LIの伸開角をθ(°)、基礎円Cの半径をRとすると、インボリュート曲線L1上の位置PB(θ)={PBx(θ),PBy(θ)}は、次式で表せる。
 PBx(θ)=R{cosθ+(θ×π/180)sinθ}
 PBy(θ)=R{sinθ-(θ×π/180)cosθ}
したがって、上述した伸開角θaは、巻終わり位置PB10の伸開角をθ1とし、巻終わり位置PB20の伸開角をθ2とすると、θa=θ2-θ1となる。換言すれば、巻終わり位置PB20は、巻終わり位置PB10から伸開角θaに対応する分、延伸されている。
Here, each inner wall and each outer wall of the fixed scroll 11 and the orbiting scroll 12 form an involute curve LI. The involute curve LI is a plane curve whose normal is always in contact with a fixed circle (base circle C). As shown in FIG. 10, assuming that the angle of extension of the involute curve LI is θ (°) and the radius of the base circle C is R, the position PB (θ) on the involute curve L1 = {PBx (θ), PBy (θ )} Can be expressed by the following equation.
PBx (θ) = R {cos θ + (θ × π / 180) sin θ}
PBy (θ) = R {sin θ− (θ × π / 180) cos θ}
Therefore, assuming that the opening angle of the winding end position PB10 is θ1 and the opening angle of the winding end position PB20 is θ2, the above-mentioned opening angle θa is θa = θ2−θ1. In other words, the winding end position PB20 extends from the winding end position PB10 by an amount corresponding to the opening angle θa.
 図9は、図8(a)に示した対称型スクロール圧縮機に対して、固定スクロール11の巻終わり位置PB20と旋回スクロール12の巻終わり位置PB21とを同じ角度位置に配置した非対称型スクロール圧縮機にしたものである。この非対称型スクロール圧縮機の配置では、図8(a)に示した第1内側圧縮室60-1と第1外側圧縮室61-1とが形成されたとき、半回転前の外側圧縮室61-0が既に形成されている。この外側圧縮室61-0は、1回転後には、第1外側圧縮室61-1となる。すなわち、第1内側圧縮室60-1が形成されたとき、第1外側圧縮室61-1は、既に半周期前から圧縮されていることになる。したがって、図8(b)に示した連通角θAとなった場合、第1外側圧縮室61-1の圧力は、第2内側圧縮室60-2の圧力とほぼ同じになり、第2内側圧縮室60-2で圧縮された中間圧冷媒が第1外側圧縮室61-1に漏れる量が低減する。この結果、再圧縮損失が小さくなり、圧縮効率の低下を防止することができる。 FIG. 9 shows an asymmetric scroll compressor in which the winding end position PB20 of the fixed scroll 11 and the winding end position PB21 of the orbiting scroll 12 are arranged at the same angle position with respect to the symmetric scroll compressor shown in FIG. It is the opportunity. In this arrangement of the asymmetric scroll compressor, when the first inner compression chamber 60-1 and the first outer compression chamber 61-1 shown in FIG. 8A are formed, the outer compression chamber 61 before a half rotation is formed. −0 has already been formed. The outer compression chamber 61-0 becomes the first outer compression chamber 61-1 after one rotation. That is, when the first inner compression chamber 60-1 is formed, the first outer compression chamber 61-1 has already been compressed half a cycle before. Therefore, when the communication angle θA shown in FIG. 8B is reached, the pressure in the first outer compression chamber 61-1 is substantially the same as the pressure in the second inner compression chamber 60-2, and the second inner compression chamber 60-2 is compressed. The amount of the intermediate-pressure refrigerant compressed in the chamber 60-2 leaking to the first outer compression chamber 61-1 is reduced. As a result, the recompression loss is reduced, and a decrease in compression efficiency can be prevented.
 図11は、図8に示した対称型スクロール圧縮機と図9に示した非対称型スクロール圧縮機とによる内側圧縮室と外側圧縮室の圧力変化および連通角θAでの圧力差を比較した図である。特性曲線L60-1,L60-2,L61-0,L61-1,L61-2は、それぞれ第1内側圧縮室60-1,第2内側圧縮室60-2,外側圧縮室61-0,第1外側圧縮室61-1,第2外側圧縮室61-2の圧力変化を示している。図11(b)に示すように、非対称型スクロール圧縮機では、回転角が0°となる1回転前の回転角θ1のときから、第1外側圧縮室61-1となる外側圧縮室61-0を圧縮しているので、第1外側圧縮室61-1の最初(回転角0°)のときの圧力は底上げされて高くなり、連通角θAでの圧力差PR2は、図11(a)に示す対称型スクロール圧縮機の圧力差PR1に比して圧力差ΔPR分、小さくなる。 FIG. 11 is a diagram comparing pressure changes in the inner compression chamber and the outer compression chamber and the pressure difference at the communication angle θA between the symmetric scroll compressor shown in FIG. 8 and the asymmetric scroll compressor shown in FIG. 9. is there. The characteristic curves L60-1, L60-2, L61-0, L61-1, and L61-2 correspond to the first inner compression chamber 60-1, the second inner compression chamber 60-2, the outer compression chamber 61-0, and the The pressure changes in the first outer compression chamber 61-1 and the second outer compression chamber 61-2 are shown. As shown in FIG. 11 (b), in the asymmetric scroll compressor, from the rotation angle θ1 one rotation before the rotation angle becomes 0 °, the first outer compression chamber 61-1 becomes the first outer compression chamber 61-1. 0, the pressure at the beginning of the first outer compression chamber 61-1 (at a rotation angle of 0 °) is raised to a higher level, and the pressure difference PR2 at the communication angle θA is as shown in FIG. Is smaller by the pressure difference ΔPR than the pressure difference PR1 of the symmetric scroll compressor shown in FIG.
 この結果、図12に示すように、非対称型スクロール圧縮機の再圧縮損失S2は、対称型スクロール圧縮機の再圧力損失S1に比して小さくなる。 As a result, as shown in FIG. 12, the re-compression loss S2 of the asymmetric scroll compressor is smaller than the re-pressure loss S1 of the symmetric scroll compressor.
 なお、非対称型スクロール圧縮機の構成は、実施の形態1に示した2段圧縮2段膨張サイクルのみならず、2段圧縮1段膨張サイクルにも適用できる。具体的には、内側圧縮部41を形成する固定スクロール板状渦巻歯31および旋回スクロール板状渦巻歯33の高さh2を、外側圧縮部40を形成する固定スクロール板状渦巻歯30および旋回スクロール板状渦巻歯32の高さh1よりも高くする構成を採用しなくてもよい。 The configuration of the asymmetric scroll compressor can be applied not only to the two-stage compression two-stage expansion cycle shown in the first embodiment but also to the two-stage compression one-stage expansion cycle. Specifically, the height h2 of the fixed scroll plate-shaped spiral teeth 31 and the orbiting scroll plate-shaped spiral teeth 33 forming the inner compression section 41 is changed by the fixed scroll plate-shaped spiral teeth 30 and the orbited scroll forming the outer compression section 40. It is not necessary to adopt a configuration in which the height is higher than the height h1 of the plate-shaped spiral teeth 32.
[実施の形態3]
(冷媒漏れ防止機構)
 ところで、筐体10内は中間圧室16が中間圧PMとなっている。筐体10内の圧力を中間圧PMにすると、旋回スクロール12の背面に中間圧PMが印加されるため、旋回スクロール12のスラスト荷重が低減し、機械損失の低減とスラスト軸受14の摩耗抑制によってスクロール圧縮機2の信頼性を高めることができる。
[Embodiment 3]
(Refrigerant leakage prevention mechanism)
By the way, in the housing 10, the intermediate pressure chamber 16 has an intermediate pressure PM. When the pressure in the housing 10 is set to the intermediate pressure PM, the intermediate pressure PM is applied to the back surface of the orbiting scroll 12, so that the thrust load of the orbiting scroll 12 is reduced, and the mechanical loss and the wear of the thrust bearing 14 are reduced. The reliability of the scroll compressor 2 can be improved.
 しかし、図13に示すように、旋回スクロール12の旋回スクロール板状渦巻歯12bは、ラジアル方向A2の荷重を受けるため、旋回スクロール12は、少しの傾斜を伴った公転によって揺動する運動状態となる場合がある。この場合、固定スクロール11の外周部の旋回スクロール12側の先端面と、旋回スクロール12の台板12aの上面との間に隙間dが発生する。この隙間dが発生すると、中間圧室16の中間圧冷媒RMが、低圧冷媒RLを圧縮する外側圧縮部40に漏れてしまう。この中間圧冷媒RMの外側圧縮部40への漏れは、外側圧縮部40の圧縮効率を低下させる。 However, as shown in FIG. 13, the orbiting scroll plate-shaped spiral teeth 12b of the orbiting scroll 12 receive a load in the radial direction A2. May be. In this case, a gap d is generated between the front end surface of the outer peripheral portion of the fixed scroll 11 on the orbiting scroll 12 side and the upper surface of the base plate 12a of the orbiting scroll 12. When the gap d occurs, the intermediate-pressure refrigerant RM in the intermediate-pressure chamber 16 leaks to the outer compression section 40 that compresses the low-pressure refrigerant RL. The leakage of the intermediate-pressure refrigerant RM to the outer compression section 40 reduces the compression efficiency of the outer compression section 40.
 外側圧縮部40の圧縮効率低下は、図14に示すように、外側圧縮部40における中間圧冷媒RMの増大によって、外側圧縮部40の圧力が上昇し、領域E10分の圧縮動力が増大するからである。また、図15に示すように、外側圧縮部40の低圧冷媒よりも高温の中間圧冷媒が外側圧縮部40に漏れることにより、矢印A10のように低圧冷媒が加熱され、外側圧縮部40で圧縮された中間圧冷媒が矢印A11に示すように理想的な中間圧冷媒よりも高温化する。この高温化した中間圧冷媒が内側圧縮部41に導入されると内側圧縮部41の中間圧冷媒の密度が低下するため、内側圧縮部41の体積効率が低下する。 As shown in FIG. 14, the compression efficiency of the outer compression section 40 decreases because the pressure of the outer compression section 40 increases due to the increase of the intermediate-pressure refrigerant RM in the outer compression section 40, and the compression power for the region E10 increases. It is. Further, as shown in FIG. 15, the intermediate-pressure refrigerant having a higher temperature than the low-pressure refrigerant in the outer compression section 40 leaks to the outer compression section 40, so that the low-pressure refrigerant is heated as indicated by an arrow A10 and compressed in the outer compression section 40. The obtained intermediate-pressure refrigerant has a higher temperature than the ideal intermediate-pressure refrigerant as indicated by an arrow A11. When the high-pressure intermediate-pressure refrigerant is introduced into the inner compression section 41, the density of the intermediate-pressure refrigerant in the inner compression section 41 decreases, so that the volume efficiency of the inner compression section 41 decreases.
 このため、本実施の形態3では、図13に示すように、固定スクロール11に、旋回スクロール12の軸方向断面がコの字型となる外壁11cを形成し、外壁11cの先端面と旋回スクロール12の台板12aとの摺動面に、リング状シールを設けるようにしている。図16および図17では、リング状シール70が外壁11cの先端面側に設けられている。 For this reason, in the third embodiment, as shown in FIG. 13, the fixed scroll 11 is formed with the outer wall 11 c having the U-shaped cross section in the axial direction of the orbiting scroll 12, and the distal end face of the outer wall 11 c and the orbiting scroll are formed. A ring-shaped seal is provided on the sliding surface of the base 12 with the base plate 12a. 16 and 17, a ring-shaped seal 70 is provided on the distal end surface side of the outer wall 11c.
 リング状シール70は、図18に示すように、旋回スクロール12の台板12a側に設けてもよい。また、リング状シール70の形状は円形に限定されず、使用形態に合わせて楕円形や多角形などとしてもよい。 The ring-shaped seal 70 may be provided on the base plate 12a side of the orbiting scroll 12, as shown in FIG. Further, the shape of the ring-shaped seal 70 is not limited to a circle, but may be an ellipse, a polygon, or the like according to a use mode.
(リング状シールの熱膨張吸収部)
 ところで、リング状シール70は、例えば樹脂や金属によって形成される。しかし、リング状シール70は、スクロール圧縮機2の運転に伴う温度上昇によって熱膨張が発生する。特に、リング状シール70は、幅や厚さに比して周長が長く、熱膨張時は円周方向の伸びが溝内に設置されて拘束されるため熱応力が生じ、さらに軸方向への変形による齧りが発生して破損する場合がある。
(Thermal expansion absorption part of the ring-shaped seal)
Incidentally, the ring-shaped seal 70 is formed of, for example, resin or metal. However, thermal expansion occurs in the ring-shaped seal 70 due to a temperature rise accompanying the operation of the scroll compressor 2. In particular, the ring-shaped seal 70 has a longer circumferential length than the width and thickness, and during thermal expansion, the circumferential elongation is set in the groove and restrained, so that thermal stress is generated, and furthermore, the axial direction is increased. May be damaged due to deformation.
 このため、リング状シール70に、熱膨張時における熱膨張を吸収する熱膨張吸収部を設けることが好ましい。例えば、図19に示すように、リング状シール70の一部に熱膨張時の逃げ代として分割ギャップ71を設ける。図19の分割ギャップ71は、旋回スクロール12の軸方向に対して傾斜する。ここで、分割ギャップ71の周方向幅d10は、熱膨張時の熱膨張量に応じた値となる。また、分割ギャップ71は、溝に拘束されるため、周方向に複数設けることが好ましい。分割ギャップ71を設けることによって、熱膨張時の齧りを回避することができるとともに、冷媒漏れを確実に遮断することができる。 For this reason, it is preferable to provide the ring-shaped seal 70 with a thermal expansion absorbing portion that absorbs thermal expansion during thermal expansion. For example, as shown in FIG. 19, a division gap 71 is provided in a part of the ring-shaped seal 70 as a clearance for thermal expansion. The division gap 71 in FIG. 19 is inclined with respect to the axial direction of the orbiting scroll 12. Here, the circumferential width d10 of the division gap 71 is a value corresponding to the amount of thermal expansion during thermal expansion. Further, since the division gap 71 is restricted by the groove, it is preferable to provide a plurality of division gaps in the circumferential direction. By providing the division gap 71, sticking during thermal expansion can be avoided and refrigerant leakage can be reliably shut off.
 また、図20に示すように、分割ギャップ71に替えて分割ギャップ72を設けるようにしてもよい。分割ギャップ72は、旋回スクロール12または固定スクロール11の周方向に対して傾斜する。ここで、分割ギャップ72の周方向幅d20は、熱膨張時の熱膨張量に応じた値となる。また、分割ギャップ72は、溝に拘束されるため、周方向に複数設けることが好ましい。分割ギャップ72を設けることによって、熱膨張時の齧りを回避することができるとともに、冷媒漏れを確実に遮断することができる。 Also, as shown in FIG. 20, a division gap 72 may be provided instead of the division gap 71. The division gap 72 is inclined with respect to the circumferential direction of the orbiting scroll 12 or the fixed scroll 11. Here, the circumferential width d20 of the split gap 72 is a value corresponding to the amount of thermal expansion during thermal expansion. Further, since the division gap 72 is restricted by the groove, it is preferable to provide a plurality of division gaps in the circumferential direction. By providing the division gap 72, it is possible to avoid sticking at the time of thermal expansion and to reliably shut off refrigerant leakage.
 さらに、図21に示すように、分割ギャップ71,72ではなく、リング状シール70の外周面70aおよび内周面70bに挟まれ、外周面70aおよび内周面70bを含まない領域に形成された1以上の空間部73を設けるようにしてもよい。この空間部73は、熱膨張時に空間部73がつぶれることによって熱膨張を吸収し、リング状シール70の外形の変形が抑えられ、分割ギャップを有するリング状シールと比べ、冷媒漏れをより確実に遮断することができる。 Further, as shown in FIG. 21, instead of the divided gaps 71 and 72, the outer peripheral surface 70a and the inner peripheral surface 70b of the ring-shaped seal 70 are interposed and formed in a region not including the outer peripheral surface 70a and the inner peripheral surface 70b. One or more spaces 73 may be provided. The space portion 73 absorbs thermal expansion by crushing the space portion 73 during thermal expansion, suppressing deformation of the outer shape of the ring-shaped seal 70, and more reliably preventing refrigerant leakage as compared with a ring-shaped seal having a division gap. Can be shut off.
 本実施の形態3は、上述した実施の形態1に示した2段圧縮のスクロール圧縮機以外の一般のスクロール圧縮機にも適用できる。例えば、1段圧縮のスクロール圧縮機にも適用することができる。 The third embodiment can be applied to general scroll compressors other than the two-stage compression scroll compressor described in the first embodiment. For example, the present invention can be applied to a scroll compressor of one-stage compression.
(適用熱サイクル例)
 上述した実施の形態1~3では、2段圧縮2段膨張サイクルを採用する熱サイクルシステムの一例として図1,2に示した熱サイクルシステムを示した。しかし、図1,2に示した熱サイクルシステム以外の熱サイクルシステムにも実施の形態1~3に示したスクロール圧縮機2は適用できる。
(Example of applied heat cycle)
In the above-described first to third embodiments, the heat cycle system shown in FIGS. 1 and 2 is shown as an example of the heat cycle system employing the two-stage compression and two-stage expansion cycle. However, the scroll compressor 2 shown in the first to third embodiments can be applied to a heat cycle system other than the heat cycle system shown in FIGS.
 例えば、図22および図23に示すように、図1に示した熱サイクルシステム1から過冷却器4を削除した構成としてもよい。 For example, as shown in FIGS. 22 and 23, the supercooler 4 may be removed from the heat cycle system 1 shown in FIG.
 また、図24および図25に示すように、図22および図23の熱サイクルシステムにおいて、気液分離器6で分離された中間圧冷媒RM2と蒸発器8から導出される低圧冷媒RLとの間で熱交換を行う内部熱交換器9を設けるようにしてもよい。 In addition, as shown in FIGS. 24 and 25, in the heat cycle system of FIGS. 22 and 23, between the intermediate-pressure refrigerant RM2 separated by the gas-liquid separator 6 and the low-pressure refrigerant RL derived from the evaporator 8. May be provided with an internal heat exchanger 9 for performing heat exchange.
 さらに、図26および図27に示すように、図1および図2の熱サイクルシステムにおいて、高段膨張弁5に導入される直前の高圧冷媒RHと、蒸発器8から導出された低圧冷媒RLとの間で熱交換を行う内部熱交換器9aを設けるようにしてもよい。 Further, as shown in FIGS. 26 and 27, in the heat cycle system of FIGS. 1 and 2, the high-pressure refrigerant RH immediately before being introduced into the high-stage expansion valve 5 and the low-pressure refrigerant RL derived from the evaporator 8 An internal heat exchanger 9a that performs heat exchange between the two may be provided.
 また、図28および図29に示すように、図1に示した熱サイクルシステム1の気液分離器6を削除し、過冷却器4から導出された高圧冷媒RHを分岐点PSで分岐し、分岐された一方の高圧冷媒RHを中間膨張弁5aに導入して減圧膨張し、この減圧膨張された中間圧冷媒と、減圧膨張されない他方の高圧冷媒との間で熱交換を行う内部熱交換器9bを設ける。内部熱交換器9bは、減圧膨張されない他方の高圧冷媒の熱を用いて、断熱膨張された中間圧冷媒を加熱する。この中間圧冷媒はそのままスクロール圧縮機2の高段側圧縮室に導入される。一方、内部熱交換器9bを介した、断熱膨張されない高圧冷媒は、低段膨張弁7に導入され、減圧膨張されて中間圧冷媒となる。 Further, as shown in FIGS. 28 and 29, the gas-liquid separator 6 of the heat cycle system 1 shown in FIG. 1 is deleted, and the high-pressure refrigerant RH derived from the subcooler 4 is branched at a branch point PS, An internal heat exchanger that introduces one of the branched high-pressure refrigerants RH into the intermediate expansion valve 5a, expands and reduces the pressure, and performs heat exchange between the intermediate-pressure refrigerant that has been reduced and expanded and the other high-pressure refrigerant that is not reduced and expanded. 9b is provided. The internal heat exchanger 9b heats the adiabatic expanded intermediate-pressure refrigerant using the heat of the other high-pressure refrigerant that is not decompressed and expanded. This intermediate-pressure refrigerant is directly introduced into the high-stage compression chamber of the scroll compressor 2. On the other hand, the high-pressure refrigerant that is not adiabatically expanded through the internal heat exchanger 9b is introduced into the low-stage expansion valve 7, and is decompressed and expanded into an intermediate-pressure refrigerant.
[実施の形態4]
 次に、実施の形態4について説明する。図30は、本実施の形態4であるスクロール圧縮機102の構成を示す縦断面図である。また、図31は、図30に示したスクロール圧縮機102を斜め右からみた斜視図である。さらに、図32は、図30に示したスクロール圧縮機102を斜め左からみた斜視図である。また、図33は、図30に示した冷媒接続カバー100を裏面側(Y方向)からみた斜視図である。さらに、図34は、冷媒接続カバー100を取り付けた状態の正面図である。また、図35は、冷媒接続カバー100を取り外した状態の正面図である。
[Embodiment 4]
Next, a fourth embodiment will be described. FIG. 30 is a longitudinal sectional view showing the configuration of the scroll compressor 102 according to the fourth embodiment. FIG. 31 is a perspective view of the scroll compressor 102 shown in FIG. 30 as viewed obliquely from the right. FIG. 32 is a perspective view of the scroll compressor 102 shown in FIG. 30 as viewed obliquely from the left. FIG. 33 is a perspective view of the refrigerant connection cover 100 shown in FIG. 30 as viewed from the back side (Y direction). FIG. 34 is a front view of a state where the refrigerant connection cover 100 is attached. FIG. 35 is a front view in a state where the refrigerant connection cover 100 is removed.
 上記の実施の形態1~3では、固定スクロール11の外側の裏面に、中間圧室16及び高圧室17を形成する筐体10aが覆われ、筐体10bに接続されていた。これに対し、図30~図35に示すように、本実施の形態4では、固定スクロール11の外側(Y方向)に向いた裏面に、中間圧冷媒RM1,RM3の吸入、及び中間圧冷媒RM1,RM3を合流させた中間圧冷媒RM4の吐出を行う中間圧冷媒室116と、高圧冷媒RHの吸入及び吐出を行う高圧冷媒室117とを形成する冷媒接続カバー100を直接取り付けるようにしている。なお、冷媒接続カバー100と固定スクロール11との間に形成される中間圧冷媒室116と高圧冷媒室117とは、それぞれOリングなどによってシールされる。なお、スラスト軸受機構114は、スラスト軸受機構と旋回スクロール12の自転抑制機構とを有し、XZ平面に3つ設けられている。冷媒接続カバー100は、筐体10と取り外し可能に取り付けられる。 In the first to third embodiments, the casing 10a forming the intermediate pressure chamber 16 and the high pressure chamber 17 is covered on the back surface outside the fixed scroll 11, and is connected to the casing 10b. On the other hand, as shown in FIGS. 30 to 35, in the fourth embodiment, the suction of the intermediate-pressure refrigerants RM1 and RM3 and the intermediate-pressure refrigerant RM1 are provided on the back surface of the fixed scroll 11 facing the outside (Y direction). , RM3, and a refrigerant connection cover 100 that forms an intermediate-pressure refrigerant chamber 116 that discharges the intermediate-pressure refrigerant RM4 and a high-pressure refrigerant chamber 117 that suctions and discharges the high-pressure refrigerant RH. The intermediate-pressure refrigerant chamber 116 and the high-pressure refrigerant chamber 117 formed between the refrigerant connection cover 100 and the fixed scroll 11 are sealed by an O-ring or the like. In addition, the thrust bearing mechanism 114 has a thrust bearing mechanism and a rotation suppressing mechanism of the orbiting scroll 12, and is provided three in the XZ plane. The refrigerant connection cover 100 is detachably attached to the housing 10.
 冷媒接続カバー100を直接、固定スクロール11に取り付けることによって、冷媒接続カバー100は、筐体10c、10dからなる筐体10(筐体10c)に影響されず、筐体10とは無関係に取り外すことができ、メンテナンス性及びコンパクト化を図ることができる。なお、図30に示すように、筐体10cは、固定スクロール11に固定され、固定スクロール11は、筐体10の一部を構成することになる。また、しかも、冷媒接続カバー100は、筐体の機能を有する必要がないので、2段圧縮特有の多数の弁や開口、配管を集約することができる。 By directly attaching the refrigerant connection cover 100 to the fixed scroll 11, the refrigerant connection cover 100 is not affected by the casing 10 (the casing 10c) including the casings 10c and 10d, and can be detached independently of the casing 10. And maintainability and compactness can be achieved. In addition, as shown in FIG. 30, the casing 10c is fixed to the fixed scroll 11, and the fixed scroll 11 forms a part of the casing 10. Moreover, since the refrigerant connection cover 100 does not need to have the function of a housing, a large number of valves, openings, and pipes unique to two-stage compression can be integrated.
 中間圧冷媒室116は、固定スクロール11側の凹部105と冷媒接続カバー100側の凹部106とが向かい合って形成される。同様に、高圧冷媒室117は、固定スクロール11側の凹部107と冷媒接続カバー100側の凹部108とが向かい合って形成される。なお、中間圧冷媒室116と高圧冷媒室117とは隔壁101によって仕切られている。 The intermediate-pressure refrigerant chamber 116 is formed such that the concave portion 105 on the fixed scroll 11 side and the concave portion 106 on the refrigerant connection cover 100 face each other. Similarly, the high-pressure refrigerant chamber 117 is formed such that the concave portion 107 on the fixed scroll 11 side and the concave portion 108 on the refrigerant connection cover 100 face each other. The intermediate-pressure refrigerant chamber 116 and the high-pressure refrigerant chamber 117 are separated by a partition 101.
 凹部105には、外側圧縮部40に連通する中間圧冷媒吐出口23に対応する中間圧冷媒吐出口123、内側圧縮部41に連通する中間圧冷媒吸込口22に対応する中間圧冷媒吸込口122、及び外側圧縮部40に連通する中間圧リリーフ孔141の出口開口151が形成されている。一方、凹部106には、外部の気液分離器6から吸入される気体状態の中間圧冷媒RM1を吸入する外部中間圧冷媒接続吸入口126が形成されている。 The recess 105 has an intermediate-pressure refrigerant discharge port 123 corresponding to the intermediate-pressure refrigerant discharge port 23 communicating with the outer compression section 40, and an intermediate-pressure refrigerant suction port 122 corresponding to the intermediate-pressure refrigerant suction port 22 communicating with the inner compression section 41. , And an outlet opening 151 of the intermediate pressure relief hole 141 communicating with the outer compression portion 40. On the other hand, the concave portion 106 is formed with an external intermediate-pressure refrigerant connection suction port 126 for sucking the gaseous intermediate-pressure refrigerant RM1 sucked from the external gas-liquid separator 6.
 中間圧冷媒RM1は、図30~図32に示すように、油とともに、外部中間圧冷媒吸入口130から筐体10d内に導入され、筐体10内のシールを介して筐体中間圧冷媒吸入口131に達する。筐体中間圧冷媒吸入口131と外部中間圧冷媒接続吸入口126との間は、中間配管LMで接続されている。したがって、筐体中間圧冷媒吸入口131から吸入される中間圧冷媒RM1は、外部中間圧冷媒接続吸入口126を介して中間圧冷媒室116に導入される。なお、中間配管LMは、気液分離器6で分離された気相の中間圧冷媒RM1を中間圧冷媒室116に導入する配管(図1参照)であり、一部、筐体10を介在させた配管である。 As shown in FIGS. 30 to 32, the intermediate-pressure refrigerant RM1 is introduced into the housing 10d from the external intermediate-pressure refrigerant suction port 130 together with oil, and is sucked into the housing intermediate-pressure refrigerant via a seal in the housing 10. The mouth 131 is reached. An intermediate pipe LM is connected between the casing intermediate-pressure refrigerant suction port 131 and the external intermediate-pressure refrigerant connection suction port 126. Therefore, the intermediate-pressure refrigerant RM1 drawn from the casing intermediate-pressure refrigerant suction port 131 is introduced into the intermediate-pressure refrigerant chamber 116 through the external intermediate-pressure refrigerant connection suction port 126. The intermediate pipe LM is a pipe (see FIG. 1) for introducing the gas-phase intermediate-pressure refrigerant RM1 separated by the gas-liquid separator 6 into the intermediate-pressure refrigerant chamber 116, and partially has the housing 10 interposed therebetween. Pipe.
 中間圧冷媒室116に導入された中間圧冷媒RM1と中間圧冷媒吐出口123から吐出された中間圧冷媒RM3とは、中間圧冷媒室116内で合流し、中間圧冷媒RM4として中間圧冷媒吸込口122から内側圧縮部41に吐出される。 The intermediate-pressure refrigerant RM1 introduced into the intermediate-pressure refrigerant chamber 116 and the intermediate-pressure refrigerant RM3 discharged from the intermediate-pressure refrigerant discharge port 123 merge in the intermediate-pressure refrigerant chamber 116, and the intermediate-pressure refrigerant RM4 is sucked as the intermediate-pressure refrigerant RM4. It is discharged from the mouth 122 to the inner compression section 41.
 なお、固定スクロール11には、低圧冷媒吸込口21に対応する低圧冷媒吸込口121が設けられ、低圧冷媒RLは、低圧冷媒吸込口121を介して外側圧縮部40に吸い込まれる。 The fixed scroll 11 is provided with a low-pressure refrigerant suction port 121 corresponding to the low-pressure refrigerant suction port 21, and the low-pressure refrigerant RL is sucked into the outer compression section 40 through the low-pressure refrigerant suction port 121.
 一方、凹部107には、高圧冷媒吐出口24に対応する高圧冷媒吐出口124、及び外側圧縮部40に連通する高圧リリーフ孔151の出口開口152が形成されている。また、凹部108には、高圧冷媒室117の高圧冷媒RHを外部に吐出する高圧冷媒外部吐出口125が形成されている。 On the other hand, the recess 107 is formed with a high-pressure refrigerant discharge port 124 corresponding to the high-pressure refrigerant discharge port 24 and an outlet opening 152 of a high-pressure relief hole 151 communicating with the outer compression section 40. In the recess 108, a high-pressure refrigerant external discharge port 125 for discharging the high-pressure refrigerant RH in the high-pressure refrigerant chamber 117 to the outside is formed.
 なお、中間圧冷媒室116の凹部105には、中間圧冷媒RM3が中間圧冷媒吐出口123から外側圧縮部40に逆流するのを防止するための逆止弁V1が設けられている。また、高圧冷媒室117の凹部107には、高圧冷媒RHが高圧冷媒吐出口124から内側圧縮部41に逆流するのを防止するための逆止弁V2が設けられている。 In the recess 105 of the intermediate-pressure refrigerant chamber 116, a check valve V1 for preventing the intermediate-pressure refrigerant RM3 from flowing backward from the intermediate-pressure refrigerant discharge port 123 to the outer compression section 40 is provided. In the recess 107 of the high-pressure refrigerant chamber 117, a check valve V2 for preventing the high-pressure refrigerant RH from flowing backward from the high-pressure refrigerant discharge port 124 to the inner compression section 41 is provided.
 また、中間圧冷媒室116の凹部105には、外側圧縮部40の冷媒圧力を第1所定圧以下に抑えるため、中間圧リリーフ孔141(図6及び図35参照)の出口開口151に中間圧リリーフ手段である中間圧リリーフ弁V11が設けられている。また、高圧冷媒室117の凹部107には、内側圧縮部41の冷媒圧力を第2所定圧以下に抑えるため、高圧リリーフ孔142(図6及び図35参照)の出口開口152に高圧リリーフ手段である高圧リリーフ弁V12が設けられている。 Further, in the recess 105 of the intermediate-pressure refrigerant chamber 116, the intermediate pressure is inserted into the outlet opening 151 of the intermediate-pressure relief hole 141 (see FIGS. 6 and 35) in order to suppress the refrigerant pressure of the outer compression section 40 to a first predetermined pressure or less. An intermediate pressure relief valve V11, which is a relief means, is provided. In addition, in the recess 107 of the high-pressure refrigerant chamber 117, the high-pressure relief means is provided to the outlet opening 152 of the high-pressure relief hole 142 (see FIGS. 6 and 35) in order to suppress the refrigerant pressure of the inner compression section 41 to a second predetermined pressure or less. A certain high pressure relief valve V12 is provided.
 中間圧冷媒吐出口123、中間圧冷媒吸込口122及び高圧冷媒吐出口124は筐体10側に形成され、外部中間圧冷媒接続導入口126及び高圧冷媒導出口125を備えた冷媒接続カバー110が筐体10に取り付けられることで、中間圧冷媒室116及び高圧冷媒室117が形成される。 The intermediate-pressure refrigerant outlet 123, the intermediate-pressure refrigerant inlet 122, and the high-pressure refrigerant outlet 124 are formed on the housing 10 side, and the refrigerant connection cover 110 having an external intermediate-pressure refrigerant connection inlet 126 and a high-pressure refrigerant outlet 125 is provided. By being attached to the housing 10, an intermediate-pressure refrigerant chamber 116 and a high-pressure refrigerant chamber 117 are formed.
 また、中間圧冷媒吸込口122、中間圧冷媒吐出口123及び外部中間圧冷媒接続導入口126は中間圧冷媒室116に連通しており、高圧冷媒吐出口124及び高圧冷媒導出口125は高圧冷媒室127に連通している。中間圧冷媒吸込口122及び高圧冷媒吐出口124は、中間圧冷媒吐出口123と同一方向に開口している。筐体中間圧冷媒吸入口131は、中間圧冷媒吐出口123と同一方向に開口し、筐体10内のシールを介して中間圧冷媒を吐出する。 The intermediate-pressure refrigerant suction port 122, the intermediate-pressure refrigerant discharge port 123, and the external intermediate-pressure refrigerant connection inlet 126 are connected to the intermediate-pressure refrigerant chamber 116, and the high-pressure refrigerant discharge port 124 and the high-pressure refrigerant outlet 125 are connected to the high-pressure refrigerant. It communicates with the chamber 127. The intermediate pressure refrigerant suction port 122 and the high pressure refrigerant discharge port 124 open in the same direction as the intermediate pressure refrigerant discharge port 123. The casing intermediate-pressure refrigerant suction port 131 opens in the same direction as the intermediate-pressure refrigerant discharge port 123, and discharges the intermediate-pressure refrigerant via a seal in the casing 10.
 なお、上記の中間圧リリーフ弁V11、高圧リリーフ弁V12、逆止弁V1、逆止弁V2は、冷媒接続カバー100を取り除いたとき、筐体10の表面に現れるので、メンテナンス性を向上させることができる。 When the refrigerant connection cover 100 is removed, the intermediate pressure relief valve V11, the high pressure relief valve V12, the check valve V1, and the check valve V2 appear on the surface of the housing 10, so that the maintainability is improved. Can be.
 ここで、中間圧冷媒室116の容積は、高圧冷媒室117の容積よりも大きくしている。すなわち、中間圧冷媒RM1,RM3,RM4が高圧冷媒RHよりも密度が低く圧力損失が生じやすいことから、中間圧冷媒室116の容積を大きくすることにより、圧力損失を低減している。 Here, the capacity of the intermediate-pressure refrigerant chamber 116 is larger than the capacity of the high-pressure refrigerant chamber 117. That is, since the intermediate-pressure refrigerants RM1, RM3, and RM4 have a lower density and a higher pressure loss than the high-pressure refrigerant RH, the pressure loss is reduced by increasing the volume of the intermediate-pressure refrigerant chamber 116.
 なお、図30~図35では、中間圧冷媒室116の深さd1と高圧冷媒室117の深さd2とを同じにして、中間圧冷媒室116の断面積を高圧冷媒室117の断面積に比して大きくすることによって、中間圧冷媒室116の容積を大きくしている。なお、これに限らず、中間圧冷媒室116の深さd1を高圧冷媒室117の深さd2よりも深くすることによって、中間圧冷媒室116の容積を大きくするようにしてもよい。この場合、中間圧冷媒の圧力は、高圧冷媒の圧力に比して小さいため、中間圧冷媒室116の周囲の冷媒接続カバー100の肉厚を薄くすることができるため、深さd2を深くすることは容易である。 30 to 35, the depth d1 of the intermediate-pressure refrigerant chamber 116 and the depth d2 of the high-pressure refrigerant chamber 117 are the same, and the cross-sectional area of the intermediate-pressure refrigerant chamber 116 is changed to the cross-sectional area of the high-pressure refrigerant chamber 117. By increasing the size, the capacity of the intermediate-pressure refrigerant chamber 116 is increased. The volume of the intermediate-pressure refrigerant chamber 116 may be increased by making the depth d1 of the intermediate-pressure refrigerant chamber 116 greater than the depth d2 of the high-pressure refrigerant chamber 117. In this case, since the pressure of the intermediate-pressure refrigerant is smaller than the pressure of the high-pressure refrigerant, the thickness of the refrigerant connection cover 100 around the intermediate-pressure refrigerant chamber 116 can be reduced, and the depth d2 is increased. It is easy.
 また、中間圧冷媒室116または高圧冷媒室117の容積を変える場合、冷媒接続カバー100側に形成された凹部106または凹部108の容積(深さ)をコントロールすることによって、筐体10側の構造を変化させることなく、中間圧冷媒室116、高圧冷媒室117の容積を変更することができる。 When the volume of the intermediate-pressure refrigerant chamber 116 or the high-pressure refrigerant chamber 117 is changed, by controlling the volume (depth) of the concave portion 106 or the concave portion 108 formed on the refrigerant connection cover 100 side, the structure on the housing 10 side is controlled. Can be changed without changing the volume of the intermediate-pressure refrigerant chamber 116 and the high-pressure refrigerant chamber 117.
 なお、冷媒接続カバー100に設けられた切り欠き140は、冷媒接続カバー100の取り付け時の位置決めに用いられる。 The notch 140 provided in the refrigerant connection cover 100 is used for positioning when attaching the refrigerant connection cover 100.
 なお、上述した凝縮器3を用いて加熱する場合、熱サイクルシステムはヒートポンプシステムとなり、蒸発器8を用いて冷却する場合、熱サイクルシステムは、通常の冷凍システムとなる。 When heating is performed using the condenser 3 described above, the heat cycle system is a heat pump system, and when cooling is performed using the evaporator 8, the heat cycle system is a normal refrigeration system.
 また、上述したスクロール圧縮機2は、外側圧縮部40と内側圧縮部41とを有する2段圧縮機であったが、これに限らず、多段圧縮機としてもよい。 The scroll compressor 2 is a two-stage compressor having the outer compression unit 40 and the inner compression unit 41, but is not limited thereto, and may be a multi-stage compressor.
  1 熱サイクルシステム
  2,102 スクロール圧縮機
  3 凝縮器
  4 過冷却器
  5 高段膨張弁
  5a 中間膨張弁
  6 気液分離器
  7 低段膨張弁
  8 蒸発器
  9,9a,9b 内部熱交換器
  10,10a,10b,10c,10d 筐体
  11 固定スクロール
  11a,12a 台板
  11b 固定スクロール板状渦巻歯
  11c 外壁
  12 旋回スクロール
  12b 旋回スクロール板状渦巻歯
  13 クランクシャフト
  14 スラスト軸受
  15 バランスウェイト
  16 中間圧室
  17 高圧室
  18 吐出弁
  20 分割壁
  21,121 低圧冷媒吸込口
  22,122 中間圧冷媒吸込口(中間圧冷媒導出口)
  23,123 中間圧冷媒吐出口(中間圧冷媒導入口)
  24,124 高圧冷媒吐出口(高圧冷媒導入口)
  30,31 固定スクロール板状渦巻歯
  32,33 旋回スクロール板状渦巻歯
  40 外側圧縮部
  41 内側圧縮部
  51,52 チップシール
  60-1 第1内側圧縮室
  60-2 第2内側圧縮室
  61-0 外側圧縮室
  61-1 第1外側圧縮室
  61-2 第2外側圧縮室
  70 リング状シール
  70a 外周面
  70b 内周面
  71,72 分割ギャップ
  73 空間部
  100 冷媒接続カバー
  101 隔壁
  105~108 凹部
  116 中間圧冷媒室
  117 高圧冷媒室
  114 スラスト軸受機構
  125 高圧冷媒導出口
  126 外部中間圧冷媒接続導入口
  130 外部中間圧冷媒吸入口
  131 筐体中間圧冷媒吸入口
  141 中間圧リリーフ孔
  142 高圧リリーフ孔
  151,152 出口開口
  AL 回転方向
  d 隙間
  E 分断領域
  GH,GL,GM 冷媒循環量
  L1 低圧冷媒吸込配管
  L2 中間圧冷媒吸込配管
  L3 高圧冷媒吐出配管
  LM 中間配管
  V1,V2 逆止弁
  V11 中間圧リリーフ弁(中間圧リリーフ手段)
  V12 高圧リリーフ弁(高圧リリーフ手段)
  θA 連通角
DESCRIPTION OF SYMBOLS 1 Heat cycle system 2,102 Scroll compressor 3 Condenser 4 Subcooler 5 High-stage expansion valve 5a Intermediate expansion valve 6 Gas-liquid separator 7 Low-stage expansion valve 8 Evaporator 9,9a, 9b Internal heat exchanger 10, 10a, 10b, 10c, 10d Case 11 Fixed scroll 11a, 12a Base plate 11b Fixed scroll plate-shaped spiral tooth 11c Outer wall 12 Orbiting scroll 12b Orbiting scroll plate-shaped spiral tooth 13 Crankshaft 14 Thrust bearing 15 Balance weight 16 Intermediate pressure chamber 17 High pressure chamber 18 Discharge valve 20 Partition wall 21, 121 Low pressure refrigerant suction port 22, 122 Intermediate pressure refrigerant suction port (Intermediate pressure refrigerant outlet)
23,123 Intermediate pressure refrigerant discharge port (Intermediate pressure refrigerant introduction port)
24,124 high-pressure refrigerant discharge port (high-pressure refrigerant introduction port)
30, 31 Fixed scroll plate-shaped spiral teeth 32, 33 Orbiting scroll plate-shaped spiral teeth 40 Outer compression section 41 Inner compression section 51, 52 Tip seal 60-1 First inner compression chamber 60-2 Second inner compression chamber 61-0 Outer compression chamber 61-1 First outer compression chamber 61-2 Second outer compression chamber 70 Ring-shaped seal 70a Outer peripheral surface 70b Inner peripheral surface 71,72 Divided gap 73 Space 100 100 Refrigerant connection cover 101 Partition 105-108 Recess 116 Middle High-pressure refrigerant chamber 117 High-pressure refrigerant chamber 114 Thrust bearing mechanism 125 High-pressure refrigerant outlet 126 External intermediate-pressure refrigerant connection introduction port 130 External intermediate-pressure refrigerant suction port 131 Housing intermediate-pressure refrigerant suction port 141 Intermediate-pressure relief hole 142 High-pressure relief hole 151 152 Outlet opening AL Rotation direction d Gap E Separation area GH, G , GM refrigerant circulation amount L1 low-pressure refrigerant suction pipe L2 intermediate-pressure refrigerant suction pipe L3 pressure refrigerant discharge pipe LM intermediate pipe V1, V2 check valve V11 intermediate pressure relief valve (intermediate pressure relief means)
V12 High pressure relief valve (High pressure relief means)
θA Communication angle

Claims (10)

  1.  筐体内に設けられる複数の圧縮室と、
     前記複数の圧縮室の低段側圧縮室から中間圧冷媒を吐出する中間圧冷媒吐出口と、
     前記中間圧冷媒吐出口と同一方向に開口し、前記中間圧冷媒を前記複数の圧縮室の高段側に吸入させる中間圧冷媒吸込口と、
     前記中間圧冷媒吐出口と同一方向に開口し、前記複数の圧縮室の高段側圧縮室から吐出した高圧冷媒を吐出する高圧冷媒吐出口と、
     前記筐体と取り外し可能に取り付けられ、前記中間圧冷媒吸込口と前記中間圧冷媒吐出口に連通し、外部に開口する外部中間圧冷媒接続導入口を備えた中間圧冷媒室と、前記高圧冷媒吐出口に連通し、外部に開口する高圧冷媒導出口を備えた高圧冷媒室と、を形成する冷媒接続カバーと、
     を備えることを特徴とする多段圧縮機。
    A plurality of compression chambers provided in the housing;
    An intermediate-pressure refrigerant discharge port that discharges intermediate-pressure refrigerant from the lower-stage compression chambers of the plurality of compression chambers,
    An intermediate-pressure refrigerant suction port that opens in the same direction as the intermediate-pressure refrigerant discharge port and allows the intermediate-pressure refrigerant to be sucked into a higher stage of the plurality of compression chambers,
    A high-pressure refrigerant discharge port that opens in the same direction as the intermediate-pressure refrigerant discharge port and discharges high-pressure refrigerant discharged from a high-stage compression chamber of the plurality of compression chambers,
    An intermediate-pressure refrigerant chamber detachably attached to the housing, communicating with the intermediate-pressure refrigerant suction port and the intermediate-pressure refrigerant discharge port, and having an external intermediate-pressure refrigerant connection introduction port opened to the outside; A high-pressure refrigerant chamber provided with a high-pressure refrigerant outlet opening to the outside, communicating with the discharge port, and a refrigerant connection cover,
    A multi-stage compressor comprising:
  2.  前記筐体には、前記中間圧冷媒吐出口と同一方向に開口し、前記筐体内のシールを介して中間圧冷媒を吐出する筐体中間圧冷媒吸入口が形成され、
     前記中間圧冷媒吸入口と前記外部中間圧冷媒接続導入口とは、配管で接続されることを特徴とする請求項1に記載の多段圧縮機。
    The casing has a casing intermediate-pressure refrigerant suction port that opens in the same direction as the intermediate-pressure refrigerant discharge port and discharges the intermediate-pressure refrigerant through a seal in the casing.
    The multi-stage compressor according to claim 1, wherein the intermediate-pressure refrigerant suction port and the external intermediate-pressure refrigerant connection introduction port are connected by a pipe.
  3.  前記高段側圧縮室の内部圧力が所定値以上になった場合に、該高段側圧縮室と前記高圧冷媒室とを連通させる高圧リリーフ手段を前記筐体の前記高圧冷媒室内に設けられていることを特徴とする請求項1に記載の多段圧縮機。 When the internal pressure of the high-stage compression chamber becomes equal to or higher than a predetermined value, high-pressure relief means for communicating the high-stage compression chamber and the high-pressure refrigerant chamber is provided in the high-pressure refrigerant chamber of the housing. The multi-stage compressor according to claim 1, wherein:
  4.  前記低段側圧縮室の内部圧力が所定値以上になった場合に、該低段側圧縮室と前記中間圧冷媒室とを連通させる中間圧リリーフ手段を前記筐体の前記中間圧冷媒室内に設けられていることを特徴とする請求項1に記載の多段圧縮機。 When the internal pressure of the low-stage compression chamber becomes equal to or higher than a predetermined value, an intermediate-pressure relief means for communicating the low-stage compression chamber with the intermediate-pressure refrigerant chamber is provided in the intermediate-pressure refrigerant chamber of the housing. The multi-stage compressor according to claim 1, wherein the compressor is provided.
  5.  前記中間圧冷媒吐出口から圧縮室に逆流するのを防止するための逆止弁が前記筐体の前記中間圧冷媒室内に設けられていることを特徴とする請求項1に記載の多段圧縮機。 2. The multi-stage compressor according to claim 1, wherein a check valve for preventing backflow from the intermediate-pressure refrigerant discharge port to the compression chamber is provided in the intermediate-pressure refrigerant chamber of the housing. 3. .
  6.  前記高圧冷媒吐出口から圧縮室に逆流するのを防止するための逆止弁が前記筐体の前記高圧冷媒室内に設けられていることを特徴とする請求項1に記載の多段圧縮機。 2. The multi-stage compressor according to claim 1, wherein a check valve for preventing a backflow from the high-pressure refrigerant discharge port to the compression chamber is provided in the high-pressure refrigerant chamber of the housing. 3.
  7.  前記多段圧縮機は、旋回スクロールおよび固定スクロールを備えたスクロール圧縮機であって、
     前記固定スクロールは、前記筐体の一部を構成しており、前記冷媒接続カバーが取り付けられていることを特徴とする請求項1に記載の多段圧縮機。
    The multi-stage compressor is a scroll compressor having an orbiting scroll and a fixed scroll,
    2. The multi-stage compressor according to claim 1, wherein the fixed scroll forms a part of the housing, and the refrigerant connection cover is attached to the fixed scroll. 3.
  8.  前記中間圧冷媒室の容積を前記高圧冷媒室の容積よりも大きくすることを特徴とする請求項1に記載の多段圧縮機。 The multi-stage compressor according to claim 1, wherein the volume of the intermediate-pressure refrigerant chamber is larger than the volume of the high-pressure refrigerant chamber.
  9.  前記冷媒接続カバーに、位置決め用の切り欠きを設けることを特徴とする請求項1に記載の多段圧縮機。 The multistage compressor according to claim 1, wherein a positioning notch is provided in the refrigerant connection cover.
  10.  請求項1~9のいずれか一項に記載の多段圧縮機を2段圧縮2段膨張の熱サイクルシステムに用いることを特徴とする多段圧縮機。 多 A multi-stage compressor, wherein the multi-stage compressor according to any one of claims 1 to 9 is used in a heat cycle system of two-stage compression and two-stage expansion.
PCT/JP2019/035772 2018-09-18 2019-09-11 Multiple-stage compressor WO2020059608A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980016332.XA CN111868384B (en) 2018-09-18 2019-09-11 Multistage compressor
JP2020548408A JP6943345B2 (en) 2018-09-18 2019-09-11 Multi-stage compressor
EP19863099.8A EP3842640B1 (en) 2018-09-18 2019-09-11 Multi-stage compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018034517 2018-09-18
JPPCT/JP2018/034517 2018-09-18

Publications (1)

Publication Number Publication Date
WO2020059608A1 true WO2020059608A1 (en) 2020-03-26

Family

ID=69887654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035772 WO2020059608A1 (en) 2018-09-18 2019-09-11 Multiple-stage compressor

Country Status (4)

Country Link
EP (1) EP3842640B1 (en)
JP (1) JP6943345B2 (en)
CN (1) CN111868384B (en)
WO (1) WO2020059608A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159278A (en) * 1992-04-01 1994-06-07 Nippon Soken Inc Rolling piston type compressor
JP2004332556A (en) 2003-04-30 2004-11-25 Tokico Ltd Multistage compressor
JP2007009772A (en) * 2005-06-29 2007-01-18 Keihin Corp Scroll compressor
WO2011055444A1 (en) * 2009-11-06 2011-05-12 三菱電機株式会社 Heat pump device, two-stage compressor, and method of operating heat pump device
JP2018009565A (en) * 2016-06-30 2018-01-18 株式会社デンソー Multi-stage compressor
JP2018127903A (en) * 2017-02-06 2018-08-16 株式会社Soken Compressor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911620A (en) * 1988-05-12 1990-03-27 Tecumseh Products Company Scroll compressor top cover plate
JP4031223B2 (en) * 2001-09-27 2008-01-09 アネスト岩田株式会社 Scroll type fluid machine
FR2947308B1 (en) * 2009-06-30 2014-04-18 Danfoss Commercial Compressors MULTI-STAGE VOLUME MACHINE
JP6661916B2 (en) * 2015-07-31 2020-03-11 富士電機株式会社 Scroll compressor and heat cycle system
JP6926635B2 (en) * 2016-08-16 2021-08-25 富士電機株式会社 Scroll compressor
CN107044416A (en) * 2017-03-07 2017-08-15 无锡五洋川普涡旋科技有限公司 A kind of water-cooled three stage compression oil-free vortex air compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159278A (en) * 1992-04-01 1994-06-07 Nippon Soken Inc Rolling piston type compressor
JP2004332556A (en) 2003-04-30 2004-11-25 Tokico Ltd Multistage compressor
JP2007009772A (en) * 2005-06-29 2007-01-18 Keihin Corp Scroll compressor
WO2011055444A1 (en) * 2009-11-06 2011-05-12 三菱電機株式会社 Heat pump device, two-stage compressor, and method of operating heat pump device
JP2018009565A (en) * 2016-06-30 2018-01-18 株式会社デンソー Multi-stage compressor
JP2018127903A (en) * 2017-02-06 2018-08-16 株式会社Soken Compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3842640A4

Also Published As

Publication number Publication date
CN111868384B (en) 2022-06-03
CN111868384A (en) 2020-10-30
EP3842640B1 (en) 2024-03-20
JPWO2020059608A1 (en) 2021-02-15
JP6943345B2 (en) 2021-09-29
EP3842640A4 (en) 2021-10-27
EP3842640A1 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
JP4875484B2 (en) Multistage compressor
JP6661916B2 (en) Scroll compressor and heat cycle system
US7775783B2 (en) Refrigeration system including a scroll expander
JP2015113817A (en) Scroll type compressor
JP2007064005A (en) Scroll compressor and air conditioner
US10563891B2 (en) Variable displacement scroll compressor
JP5338314B2 (en) Compressor and refrigeration equipment
US20220325715A1 (en) Scroll compressor with economizer injection
WO2020059608A1 (en) Multiple-stage compressor
EP3273060B1 (en) Scallop step for a scroll compressor
JP6926635B2 (en) Scroll compressor
JP4948557B2 (en) Multistage compressor and refrigeration air conditioner
JP6926637B2 (en) Scroll compressor
WO2023182457A1 (en) Screw compressor and freezer
JP2020008009A (en) Scroll compressor
JP7317462B2 (en) scroll compressor
WO2022230314A1 (en) Scroll compressor
JP6996267B2 (en) Scroll compressor
JP2008014227A (en) Gas compressor
JP5404100B2 (en) Scroll compressor and air conditioner
JP3615364B2 (en) Multistage compression refrigeration equipment
JP2019085912A (en) Multistage scroll compressor
JP2007092722A (en) Scroll compressor
JP2019143544A (en) Scroll fluid machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863099

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548408

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019863099

Country of ref document: EP

Effective date: 20210324