WO2023182457A1 - Screw compressor and freezer - Google Patents

Screw compressor and freezer Download PDF

Info

Publication number
WO2023182457A1
WO2023182457A1 PCT/JP2023/011627 JP2023011627W WO2023182457A1 WO 2023182457 A1 WO2023182457 A1 WO 2023182457A1 JP 2023011627 W JP2023011627 W JP 2023011627W WO 2023182457 A1 WO2023182457 A1 WO 2023182457A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression chamber
rotor
screw
screw compressor
refrigerant
Prior art date
Application number
PCT/JP2023/011627
Other languages
French (fr)
Japanese (ja)
Inventor
純幸 植村
貴司 井上
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2023182457A1 publication Critical patent/WO2023182457A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/50Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
    • F04C18/52Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present disclosure relates to a screw compressor and a refrigeration device.
  • Patent Document 1 discloses a screw compressor that includes a screw rotor and a gate rotor.
  • the screw rotor is inserted into the cylinder, and a compression chamber is formed by meshing the gate of the gate rotor with the screw groove of the screw rotor.
  • the pressure difference generated between the space near the suction side end in the compression chamber and the space outside the compression chamber adjacent to the suction side end creates a gap between the suction side end and the inner surface of the cylinder.
  • refrigerant may flow through the gaps. For example, if intermediate-pressure refrigerant in a space outside the compression chamber adjacent to the suction side end leaks into the suction side of the compression chamber, the suction pressure will increase and compression efficiency will decrease.
  • An object of the present disclosure is to suppress the flow of refrigerant at the suction side end of the compression chamber of a screw compressor.
  • a first aspect of the present disclosure includes: a casing (11) having a cylinder part (16) therein; an electric motor (13) disposed within the casing (11); a drive shaft (19) connected to the electric motor (13) and driven to rotate; a screw rotor (40) disposed within the cylinder portion (16) and connected to the drive shaft (19); a gate rotor (50) having a gate (53) that meshes with the screw groove (41) of the screw rotor (40); A screw compressor in which a compression chamber is formed by the screw rotor (40) and the gate (53) inside the cylinder part (16),
  • the suction side end (42) of the screw rotor (40) is formed in a cylindrical shape so that the outer peripheral surface (42a) follows the inner peripheral surface of the cylinder part (16), A first surface (F) opposite to the outer circumferential surface (42a) of the suction side end (42) or the first axial end surface (42b) of the suction side end (42) is configured to allow fluid to flow therethrough.
  • the space near the suction side end (42) of the compression chamber (25) has a low pressure due to the suction refrigerant. Therefore, if the space adjacent to the compression chamber (25) via the suction side end (42) has an intermediate pressure, the refrigerant will flow between the first surface (F) and the suction side due to the pressure difference (differential pressure) of the refrigerant. It attempts to flow into the compression chamber (25) through the gap with the end (42).
  • the seal portion (80) provided on the first surface (F) can suppress the refrigerant from flowing through the gap between the first surface (F) and the suction side end (42). . As a result, it is possible to sufficiently ensure the pressure difference between high and low levels within the compression chamber (25), and it is possible to suppress a decrease in the capacity of the screw compressor.
  • a second aspect of the present disclosure provides, in the first aspect, a bearing part (21) fixed within the cylinder part (16) and supporting the drive shaft (19);
  • the bearing part (21) is arranged adjacent to the suction side end part (42),
  • the seal portion (80) is provided on the bearing portion (21).
  • the first surface (F) facing the suction side end (42) is located on the bearing portion (21).
  • the seal portion (80) formed on the first surface (F) of the bearing portion (21) can suppress the refrigerant from flowing between the suction side end portion (42) and the bearing portion (21). In this way, the bearing portion (21) has a bearing function and a sealing function.
  • a third aspect of the present disclosure provides, in the second aspect, The seal portion (80) is provided on the first surface (F) of the bearing portion (21) opposite to the axial end surface of the suction side end portion (42).
  • the seal portion (80) can be provided on the end surface of the bearing portion (21).
  • a fourth aspect of the present disclosure is, in the second or third aspect,
  • the bearing portion (21) has a flange portion (21c) disposed between the inner surface of the cylinder portion (16) and the outer peripheral surface (42a) of the suction side end portion (42),
  • the seal portion (80) is provided on the collar portion (21c).
  • the seal portion (80) is provided on the inner circumferential surface of the brim (21c), with the inner circumferential surface of the brim (21c) serving as the first surface (F). In this way, the seal portion (80) can also be provided in the bearing portion (21) having the flange portion (21c).
  • a fifth aspect of the present disclosure provides, in any one of the first to fourth aspects,
  • the gate rotor (50) has a first gate rotor (50a) and a second gate rotor (50b),
  • the compression chamber (25) is a first compression chamber (23) formed by the first gate rotor (50a) and the screw rotor (40) and compressing fluid at suction pressure introduced into the casing (11) to an intermediate pressure;
  • a second compression chamber (24) is formed by the second gate rotor (50b) and the screw rotor (40) and compresses the fluid at the intermediate pressure to the discharge pressure.
  • the screw compressor is configured as a two-stage compression type. While the intermediate pressure refrigerant discharged from the first compression chamber (23) moves to the suction port of the second compression chamber (24), there is a gap between the first surface (F) and the suction side end (42). It is possible to prevent the air from passing through the air and being sucked into the first compression chamber (23) again.
  • a sixth aspect of the present disclosure provides, in any one of the first to fifth aspects,
  • the seal portion (80) is composed of a labyrinth seal.
  • a seventh aspect of the present disclosure provides, in any one of the first to fifth aspects,
  • the seal portion (80) is configured with a surface texture.
  • An eighth aspect of the present disclosure is the screw compressor according to any one of the first to seventh aspects.
  • FIG. 1 is a schematic piping system diagram of a refrigeration system according to an embodiment.
  • FIG. 2 is a vertical cross-sectional view showing a main part of the schematic configuration of the screw compressor according to the embodiment.
  • FIG. 3 is a cross-sectional view taken along the line III--III in FIG. 2.
  • FIG. 4 is a perspective view showing the state of engagement between the screw rotor and the gate rotor.
  • FIG. 5 is a schematic plan view showing the suction process, compression process, and discharge process of the screw compressor.
  • FIG. 6 is a perspective view showing the flow of low-stage compression refrigerant.
  • FIG. 7 is a perspective view showing the flow of high-stage compression refrigerant.
  • FIG. 8 is a side sectional view illustrating the flow of refrigerant in the compression mechanism.
  • FIG. 9 is an enlarged side cross section illustrating the flow of refrigerant around the first end of the compression mechanism.
  • FIG. 10 is a side sectional view and an enlarged view of a part of the compression mechanism for explaining the seal portion of this embodiment.
  • FIG. 11 corresponds to an enlarged view of FIG. 10 of a screw compressor according to modification 2.
  • FIG. 12 is a diagram corresponding to an enlarged view of FIG. 10 of a screw compressor according to modification 3.
  • FIG. 13 is a diagram corresponding to FIG. 10 of a screw compressor according to modification 4.
  • FIG. 14 is a piping system diagram of a refrigerant circuit to which a screw compressor according to modification 5 is connected.
  • Air conditioner As shown in FIG. 1, the screw compressor (10) of this embodiment is provided in an air conditioner (1) that air-conditions indoor space.
  • the air conditioner (1) is an example of the refrigeration device (1) of the present disclosure.
  • the air conditioner (1) has a refrigerant circuit (2) filled with refrigerant.
  • the refrigerant circuit (2) has a screw compressor (10), a condenser (3), an expansion valve (4), and an evaporator (5).
  • the refrigerant circuit (2) performs a vapor compression type refrigeration cycle.
  • the arrows in FIG. 1 indicate the direction in which the refrigerant flows.
  • heat is radiated from the refrigerant compressed by the screw compressor (10) in the condenser (3).
  • the heat radiated refrigerant is depressurized by the expansion valve (4), evaporated by the evaporator (5), and then sucked into the screw compressor (10).
  • Screw Compressor The screw compressor (10) compresses refrigerant.
  • the screw compressor (10) sucks in low-pressure gas refrigerant and compresses the sucked gas refrigerant.
  • the screw compressor (10) discharges compressed high-pressure gas refrigerant.
  • the screw compressor (10) of this embodiment is configured to compress refrigerant in two stages.
  • the screw compressor (10) includes a casing (11), an electric motor (13), a drive shaft (19), and a compression mechanism (30).
  • “upper”, “lower”, “right”, and “left” refer to directions when the side of the screw compressor (10) shown in FIG. 2 is viewed from the front.
  • the casing (11) is formed into a horizontally long cylindrical shape.
  • a suction port and a discharge port (not shown) are formed in the casing (11).
  • a low pressure space (S1) and a high pressure space (S2) are formed inside the casing (11).
  • the low-pressure space (S1) is a space through which low-pressure gas refrigerant is sucked into the compression mechanism (30) through the suction port.
  • the high pressure space (S2) is a space into which the high pressure gas refrigerant discharged from the compression mechanism (30) flows.
  • the refrigerant in the high pressure space (S2) flows out of the screw compressor (10) from the discharge port.
  • a cylinder portion (16) is formed within the casing (11).
  • the cylinder portion (16) is formed into a horizontally elongated substantially cylindrical shape.
  • a screw rotor (40), which will be described later, is disposed within the cylinder portion (16).
  • the electric motor (13) is housed within the casing (11).
  • the electric motor (13) is arranged at one end inside the casing (11).
  • the electric motor (13) has a stator (14) and a rotor (15).
  • the stator (14) is fixed to the inner wall of the casing (11).
  • the rotor (15) is arranged inside the stator (14).
  • a drive shaft (19) is fixed inside the rotor (15).
  • the rotation speed of the electric motor (13) can be changed.
  • the electric motor (13) is an inverter-driven electric motor.
  • the drive shaft (19) is arranged inside the casing (11).
  • the drive shaft (19) extends along the longitudinal direction of the casing (11).
  • the drive shaft (19) extends substantially horizontally.
  • the drive shaft (19) is inserted into the cylinder portion (16) along the cylinder axis direction.
  • the drive shaft (19) is arranged so that its axial center coincides with the cylindrical axis center of the cylinder portion (16).
  • the drive shaft (19) is driven by an electric motor (13).
  • the rotation speed of the drive shaft (19) changes as the rotation speed of the electric motor (13) changes. In other words, the rotation speed of the drive shaft (19) can be changed.
  • the drive shaft (19) connects the electric motor (13) and the compression mechanism (30).
  • the drive shaft (19) is rotatably supported by a first bearing part (21) and a second bearing part (22) that are fixed within the cylinder part (16).
  • the first bearing portion (21) is arranged at an intermediate portion of the drive shaft (19).
  • the second bearing portion (22) is arranged at the discharge side end of the drive shaft (19) (the end opposite to the electric motor (13)).
  • the first bearing part (21) is composed of a first bearing (21a) and a first bearing holder (21b).
  • the second bearing portion (22) includes a second bearing (22a) and a second bearing holder (22b).
  • the drive shaft (19) is supported by each bearing holder (21b, 22b) via each bearing (21a, 22a).
  • the first bearing (21a) and the second bearing (22a) may be collectively referred to simply as bearings (21a, 22a).
  • the first bearing holder (21b) and the second bearing holder (22b) may be collectively referred to simply as bearing holders (21b, 22b).
  • the bearing holder (21b, 22b) is formed into a substantially cylindrical shape that surrounds the entire circumference of the bearing (21a, 22a).
  • the outer peripheral surface of the bearing holder is fixed to the inner peripheral surface of the cylinder portion (16).
  • the first bearing holder (21b) and the second bearing holder (22b) are arranged to sandwich the screw rotor (40).
  • Each of the bearing parts (21) has a cylindrical peripheral wall (21c, 22c).
  • the peripheral wall (21c, 22c) is provided at the outer peripheral edge of the axial end surface of the bearing holder (21b, 22b).
  • the peripheral walls (21c, 22c) are formed along the inner circumferential surface of the cylinder portion (16). Specifically, the peripheral wall (21c, 22c) is arranged between the inner peripheral surface of the cylinder portion (16) and the outer peripheral surface of the end portion (42, 43) of the screw rotor (40). The outer peripheral surface of the peripheral wall (21c, 22c) is fixed to the inner peripheral surface of the cylinder part (16).
  • the inner peripheral surface of the peripheral wall (21c, 22c) is close to the outer peripheral surface of the end portion (42, 43) of the screw rotor (40).
  • the peripheral walls (21c, 22c) of the first bearing part (21) are referred to as first peripheral walls (21c), and the peripheral walls (21c, 22c) of the second bearing part (22) are referred to as second peripheral walls (22c).
  • the first peripheral wall (21c) is an example of the collar (21c) of the present disclosure.
  • the compression mechanism (30) has one cylinder part (16), one screw rotor (40), two gate rotors (50), and two slide valves (65).
  • the cylinder section (16) accommodates the screw rotor (40).
  • a first slit (16a) and a second slit (16b) are formed in the cylinder portion (16).
  • the first slit (16a) and the second slit (16b) are elongated openings extending in the cylinder axis direction.
  • the first slit (16a) and the second slit (16b) are arranged adjacent to each other in the circumferential direction.
  • a gate rotor (50) passes through each of the first slit (16a) and the second slit (16b). Details of the first slit (16a) and the second slit (16b) will be described later.
  • the cylinder portion (16) is provided with a valve accommodating portion (66) in which the slide valve (65) is accommodated.
  • Two valve housing portions (66) are provided in the circumferential direction of the cylinder portion (16). Each valve housing portion (66) is formed to bulge radially outward from the cylinder portion (16).
  • the outer peripheral wall of the valve accommodating part (66) is a partition wall (66a) that partitions the low pressure space (S1) and the high pressure space (S2), and a partition wall (66a) that extends from the widthwise center position of the partition wall (66a) toward the high pressure space (S2) side. It has a guide wall (66b) extending in the axial direction.
  • Screw rotor The screw rotor (40) is arranged inside the cylinder part (16).
  • the screw rotor (40) is a metal member formed into a generally cylindrical shape.
  • the screw rotor (40) is fixed to the drive shaft (19).
  • the screw rotor (40) rotates as the drive shaft (19) rotates.
  • the outer circumferential surface of the screw rotor (40) is close to the inner circumferential surface of the cylinder portion (16).
  • first end (42) Of both ends of the screw rotor (40) in the cylinder axis direction, one end is called a first end (42), and the other end is called a second end (43). Both the first end (42) and the second end (43) are formed into a cylindrical shape.
  • the first end (42) is an end on the suction side of the compression chamber (25), which will be described later.
  • the first end (42) is the suction side end (42) of the present disclosure.
  • the second end (43) is the discharge side end of the compression chamber (25).
  • the first end (42) is arranged adjacent to the first bearing part (21).
  • the second end (43) is arranged adjacent to the second bearing part (22).
  • the outer circumferential surface of the first end (42) will be referred to as a first outer circumferential surface (42a), and the end surface of the first end (42) will be referred to as a first end surface (42b).
  • the outer circumferential surface of the second end (43) is referred to as a second outer circumferential surface (43a), and the end surface of the second end (43) is referred to as a second end surface (43b).
  • the first outer circumferential surface (42a) and the second outer circumferential surface (43a) are along the inner circumferential surface of the cylinder portion (16). Specifically, the first outer circumferential surface (42a) is close to the inner surface of the first circumferential wall (21c) of the first bearing section (21), and the second outer circumferential surface (43a) is close to the inner surface of the first circumferential wall (21c) of the second bearing section (22). 2 Close to the inner surface of the peripheral wall (22c).
  • the first end surface (42b) and the second end surface (43b) are formed as flat surfaces perpendicular to the cylinder axis direction.
  • the first end surface (42b) faces the end surface of the first bearing holder (21b).
  • the second end surface (43b) faces the end surface of the second bearing holder (22b). Specifically, the first end surface (42b) is close to the end surface of the first bearing holder (21b), and the second end surface (43b) is close to the end surface of the second bearing holder (22b).
  • a plurality of screw grooves (41) extending spirally are formed on the outer peripheral surface of the screw rotor (40).
  • the screw groove (41) extends from the first end (42) to the second end (43) in the axial direction of the screw rotor (40).
  • the gate rotor (50) includes a first gate rotor (50a) and a second gate rotor (50b). Each gate rotor (50) has a plurality of gates (53) arranged radially. The gate (53) is inserted through the slits (16a, 16b) of the cylinder portion (16) and engages with the screw groove (41).
  • Each gate rotor (50) is supported by a gate rotor shaft (58).
  • the gate rotor shaft (58) extends in a direction perpendicular to the axial direction of the drive shaft (19).
  • the gate rotor shaft (58) is housed in a bearing housing (55) defined within the casing (11).
  • the gate rotor shaft (58) is rotatably supported via a ball bearing (56) provided within the bearing housing (55).
  • the gate rotor (50) and the gate rotor shaft (58) are arranged in the gate rotor chamber (18).
  • the gate rotor chamber (18) is defined within the casing (11) and adjacent to the cylinder portion (16).
  • the gate rotor chamber (18) includes a first gate rotor chamber (18a) and a second gate rotor chamber (18b).
  • a first gate rotor (50a) is arranged in the first gate rotor chamber (18a).
  • a second gate rotor (50b) is arranged in the second gate rotor chamber (18b).
  • the first gate rotor chamber (18a) is configured to supply refrigerant to a first compression chamber (23), which will be described later.
  • the second gate rotor chamber (18b) is configured to supply refrigerant flowing out from the first compression chamber (23) to a second compression chamber (24), which will be described later.
  • the slide valve (65) is housed in the valve housing section (66).
  • the slide valve (65) is configured to be slidable in the axial direction of the cylinder portion (16) by a drive mechanism (71) to be described later.
  • the slide valve (65) faces the outer peripheral surface of the screw rotor (40) while being inserted into the valve accommodating portion (66).
  • the drive mechanism (71) includes a cylinder portion (16), a piston (73), a piston rod (74), an arm (75), a connecting rod (76), and a spring (77).
  • the cylinder portion (16) is formed on the right side wall surface of the fixed plate (29).
  • the piston (73) is loaded into the cylinder section (16).
  • the piston rod (74) has one end fixed to the center of the piston (73) and extends to the left.
  • the arm (75) is connected to the other end of the piston rod (74).
  • the connecting rod (76) connects the arm (75) and the slide valve (65).
  • the spring (77) is provided on the connecting rod (76) so as to bias the arm (75) to the right.
  • the drive mechanism (71) controls the movement of the piston (73) by adjusting the gas pressure acting on the left and right end surfaces of the piston (73), and adjusts the position of the slide valve (65).
  • the slide valve (65) is a valve that can adjust the position of the screw rotor (40) in the axial direction.
  • This slide valve (65) can be used as an unloading mechanism that changes the operating capacity by returning the refrigerant that is being compressed in the compression chamber (25) to the suction side.
  • the slide valve (65) can be used as a compression ratio adjustment mechanism that adjusts the compression ratio (internal volume ratio) by adjusting the timing of discharging refrigerant from the compression chamber (25).
  • a fixed discharge port (not shown) is formed in the cylinder portion (16), which always communicates with the compression chamber (25) regardless of the position of the slide valve (65). This fixed port is provided to prevent the compression chamber (25) from being in a sealed state so as to avoid liquid compression when the screw compressor (10) is started up or under low load.
  • the compression chamber (25) includes a first compression chamber (23), which is the lower stage side of two-stage compression, and a second compression chamber (24), which is the higher stage side.
  • the first compression chamber (23) and the second compression chamber (24) are formed by a screw rotor (40) and a gate rotor (50) inside the cylinder part (16).
  • the first compression chamber (23) compresses the refrigerant at the suction pressure introduced into the casing (11) to an intermediate pressure higher than the suction pressure.
  • the second compression chamber (24) compresses the intermediate pressure refrigerant to a discharge pressure (high pressure) higher than the intermediate pressure.
  • the low pressure space (S1) communicates with the first compression chamber (23) via the first gate rotor chamber (18a).
  • Low pressure space (S1), first gate rotor chamber (18a), first compression chamber (23), second gate rotor chamber (18b) which is intermediate pressure space, second compression chamber (24), and high pressure space (S2 ) are connected in order from the side with lower refrigerant pressure to the side with higher refrigerant pressure.
  • the first slit (16a) communicates the low pressure space (S1) and the first gate rotor chamber (18a) with the first compression chamber (23).
  • the second slit (16b) communicates the second gate rotor chamber (18b), which is an intermediate pressure space, with the second compression chamber (24).
  • the first slit (16a) constitutes a first suction port that introduces the low-pressure refrigerant in the low-pressure space (S1) into the first compression chamber (23).
  • the second slit (16b) constitutes a second suction port that introduces the refrigerant in the intermediate pressure space into the second compression chamber (24).
  • the compression stroke shown in FIG. 5 is performed.
  • the shaded compression chamber (25) is completely closed. That is, the screw groove (41) corresponding to this compression chamber (25) is partitioned off from the suction side space by the gate (53).
  • the gate (53) approaches the end of the screw groove (41) as the screw rotor (40) rotates, the volume of the compression chamber (25) gradually decreases. As a result, the refrigerant in the compression chamber (25) is compressed.
  • the discharge stroke shown in FIG. 5 is performed.
  • the shaded compression chamber (25) (strictly speaking, the discharge chamber) communicates with the fixed discharge port via the discharge side end.
  • the gate (53) approaches the end of the screw groove (41)
  • the compressed refrigerant is pushed out from the compression chamber (25) through the fixed discharge port and into the discharge side space. It goes down.
  • the low-pressure refrigerant in the first gate rotor chamber (18a) is sucked into the first compression chamber (23) through the first slit (16a).
  • the intermediate pressure refrigerant compressed in the first compression chamber (23) flows out of the first compression chamber (23) and flows into the second gate rotor chamber (18b), which is an intermediate pressure space.
  • the intermediate pressure refrigerant in the second gate rotor chamber (18b) is sucked into the second compression chamber (24) through the second slit (16b).
  • the high-pressure refrigerant compressed in the second compression chamber (24) flows out of the second compression chamber (24) and flows into the high-pressure space (S2), which is the second space.
  • the oil in the refrigerant that has flowed into the high-pressure space (S2) is separated by an oil separator (not shown) and flows out of the casing (11) through the discharge port (10b).
  • the screw rotor The suction side end is required to have a suction cutless structure that seals the inner peripheral surface of the cylinder part and the outer peripheral surface of the screw rotor (corresponding to the first end (42) in this example).
  • the refrigerant sucked into such a screw compressor is sent to a low pressure space (S1), a first gate rotor chamber (18a), a first compression chamber (23), and a second intermediate pressure space. It flows in the order of the gate rotor chamber (18b), the second compression chamber (24), and the high pressure space (S2).
  • the intermediate pressure discharged refrigerant compressed in the first compression chamber (23) flows into the screw rotor (40) before flowing into the second gate rotor chamber (18b). It passes outside the first end (42), which is the suction side end. Since the inside of the first end (42) is at a low pressure due to the refrigerant sucked into the first compression chamber (23), a pressure difference occurs between the outside and inside of the first end (42). Therefore, the intermediate pressure refrigerant outside the first end (42) may flow through the gap between the first end (42) and the cylinder part (16) and flow into the first compression chamber (23) (Fig. 9 dashed line). When the intermediate pressure refrigerant flows into the suction side of the first compression chamber (23), the pressure difference between the suction pressure and the discharge pressure of the refrigerant becomes small in the first compression chamber (23), resulting in a decrease in compression efficiency.
  • the outer circumferential surface (42a) at the first end (42) that is the suction side end or the axial direction at the suction side end (42) A seal portion (80) for suppressing the flow of refrigerant is provided on the first surface (F) facing the first end surface (42b).
  • the seal portion (80) will be specifically explained below.
  • the seal portion (80) of this embodiment is provided in the first bearing portion (21). Specifically, the seal portion (80) is provided on the inner peripheral surface (F) of the first peripheral wall (21c).
  • the inner peripheral surface (F) of the first peripheral wall (21c) is an example of the first surface (F) facing the first end (42) of the present disclosure.
  • the seal portion (80) of this embodiment is a labyrinth seal.
  • the first circumferential wall (21c) has a plurality of grooves (81) formed along the entire circumference of its inner circumferential surface (F), which are lined up at regular intervals in the axial direction. be done.
  • the plurality of grooves (81) form an expansion chamber.
  • the intermediate pressure refrigerant flows into the gap (flow path) between the first end (42) and the first bearing holder (21b) and flows toward the first compression chamber (23). ) and expands (depressurizes), then flows into the flow path.
  • This refrigerant flows into the next groove (81) and is expanded (depressurized), and then flows into the flow path.
  • the intermediate pressure refrigerant repeatedly flows into the flow path from the expansion chamber multiple times.
  • the refrigerant flows from the expansion chamber to the flow path, its ease of flow is suddenly inhibited, resulting in flow resistance and pressure loss.
  • the occurrence of pressure loss can suppress the intermediate refrigerant from flowing into the first compression chamber (23).
  • the first end (42) (suction side end) of the screw rotor (40) has a first outer circumferential surface (42a) that is the inner circumferential surface of the cylinder portion (16). It is formed into a cylindrical shape along the A seal portion (80) for suppressing the flow of refrigerant is provided on the first surface (F) facing the first end portion (42).
  • the intermediate pressure refrigerant discharged from the first compression chamber (23) flows through the space outside the first end (42) when moving to the inlet of the second compression chamber (24).
  • the space inside the first end (42) is the first compression chamber (23) and forms a space into which low-pressure refrigerant is sucked, so a pressure difference is generated across the first end (42).
  • the seal portion (80) is provided on the first surface (F) that the first end (42) faces, so that the intermediate pressure refrigerant can flow between the first end (42) and the first surface. (F) can be suppressed from being distributed between. As a result, a sufficient level differential pressure within the compression chamber can be ensured, and a decrease in the capacity of the screw compressor can be suppressed.
  • the screw compressor (10) of this embodiment includes a first bearing part (21) fixed within the cylinder part (16) and supporting the drive shaft (19).
  • the first bearing portion (21) is arranged adjacent to the first end portion (42), and the seal portion (80) is provided on the first bearing portion (21).
  • the first surface (F) of the first end (42) is located on the first bearing holder (21b), and the seal portion (80) is provided on the first bearing holder (21b).
  • the first bearing portion (21) has a bearing function for the drive shaft (19) and a sealing function for suppressing the flow of refrigerant.
  • the seal part (80) can be provided before installing the first bearing holder (21b) into the cylinder part (16), it is easier to install the seal part (80) than if the seal part (80) is provided inside the cylinder part (16).
  • the seal portion (80) can be easily formed.
  • the first bearing portion (21) has a first peripheral wall (21c) disposed between the inner surface of the cylinder portion (16) and the outer peripheral surface of the first end portion (42). ) (flange portion), and the seal portion (80) is provided on the first peripheral wall (21c).
  • the seal portion (80) can be provided on the inner peripheral surface of the first peripheral wall (21c). Moreover, the inner peripheral surface of the first peripheral wall (21c) and the first end surface (42b) can increase the contact area between the first bearing holder (21b) and the first end (42). By increasing this area, the flow path through which the refrigerant flows, which is the gap between the first bearing holder (21b) and the first end (42), can be lengthened. The effect of suppressing the flow of refrigerant can be increased.
  • the compression chamber (25) includes a first compression chamber (23) that compresses the suction pressure fluid introduced into the casing (11) to an intermediate pressure, and a first compression chamber (23) that compresses the fluid at the suction pressure introduced into the casing (11) to an intermediate pressure. and a second compression chamber (24) for compressing the fluid to the discharge pressure.
  • a part of the intermediate pressure fluid discharged from the first compression chamber (23) passes through the suction side end (42) again during the process of moving to the second compression chamber (24). Inhalation into the first compression chamber (23) can be suppressed.
  • the seal portion (80) is configured with a labyrinth seal. Thereby, the seal portion (80) can be configured relatively easily.
  • the above embodiment may have the following configuration. Below, configurations different from those of the above embodiment will be explained.
  • the seal portion (80) in this example has a surface texture (surface texturing).
  • the surface texture is formed on the inner peripheral surface of the first peripheral wall (21c).
  • Rayleigh steps that generate positive pressure and reverse Rayleigh steps that generate negative pressure are formed as appropriate.
  • the Rayleigh step can suppress friction between the inner peripheral surface of the first peripheral wall (21c) and the outer peripheral surface of the first end (42).
  • the reverse Rayleigh step the refrigerant flowing into the gap between the inner peripheral surface of the first peripheral wall (21c) and the outer peripheral surface of the first end (42) can be sucked back.
  • a reverse Rayleigh step may be adopted so that the intermediate pressure refrigerant does not flow into the first compression chamber (23).
  • the seal portion (80) of this example is formed on the surface facing the first end surface (42b) of the first bearing holder (21b).
  • the surface facing the first end surface (42b) is an example of the first surface (F) of the present disclosure.
  • a plurality of concave grooves (81) are formed on the first end surface (42b) concentrically around the cylindrical axis of the first bearing holder (21b). are formed at intervals of .
  • the seal portion (80) of this example is formed on the inner peripheral surface of the first peripheral wall (21c) and the first end surface (42b) of the first bearing holder (21b).
  • the seal portions (80) are provided on both surfaces facing the first end (42) in this manner, the refrigerant is prevented from flowing into the gap between the first end (42) and the bearing holder (21b, 22b). It can definitely be suppressed.
  • the first bearing part (21) of this example does not have the first bearing holder (21b).
  • the first bearing (21a) is embedded inside the cylinder part (16), and a cylinder end face (26) facing the first end face (42b) is formed inside the cylinder part (16).
  • the first surface (F) of the present disclosure is the inner peripheral surface of the cylinder part (16) facing the first outer peripheral surface (42a), and the cylinder end surface (26) facing the first end surface (42b).
  • the seal portion (80) is provided on the inner circumferential surface of the cylinder portion (16) facing the first outer circumferential surface (42a).
  • the seal portion (80) may be provided on the cylinder end surface (26) opposite to the end surface of the first end (42). Further, the seal portion (80) is attached to both the inner peripheral surface of the cylinder portion (16) facing the first outer peripheral surface (42a) and the cylinder end surface (26) facing the end surface of the first end portion (42). may be provided.
  • the refrigerant circuit (2) of this example includes an economizer circuit (90).
  • the economizer circuit (90) of this example supplies intermediate pressure refrigerant to the compression chamber (25).
  • the arrows in FIG. 14 indicate the direction in which the refrigerant flows.
  • a gas-liquid separation space (S3) in which the refrigerant is separated into gas and liquid is formed within the casing (11) of this example.
  • the gas-liquid separation space (S3) is adjacent to the suction side of the compression chamber (25).
  • the high pressure space (S2) within the casing (11) is adjacent to the discharge side of the compression chamber (25).
  • a refrigerant suction port is provided on the suction side of the compression chamber (25).
  • the screw compressor (10) of this example is configured in a single stage.
  • the inflow side of the condenser (3) communicates with the high pressure space of the screw compressor (10).
  • the outflow side of the condenser (3) communicates with the gas-liquid separation space (S3) of the screw compressor (10).
  • a first expansion valve (4a) is provided between the condenser (3) and the gas-liquid separation space (S3).
  • the inflow side of the evaporator (5) communicates with the gas-liquid separation space (S3) of the screw compressor (10).
  • the outflow side of the evaporator (5) communicates with the suction side of the compression chamber (25) of the screw compressor (10).
  • a second expansion valve (4b) is provided between the gas-liquid separation space (S3) and the evaporator (5).
  • the economizer circuit (90) communicates the gas-liquid separation space (S3) and the compression chamber (25). In the economizer circuit (90), the gas phase intermediate pressure refrigerant in the gas-liquid separation space (S3) flows into the intermediate pressure space in the compression chamber (25).
  • a flow rate control valve (91) is connected to the economizer circuit (90). The flow control valve (91) adjusts the flow rate of refrigerant flowing into the economizer circuit (90).
  • the compression chamber (25) is adjacent to the gas-liquid separation space (S3) on its suction side. Therefore, the seal part (80) allows the intermediate pressure refrigerant in the gas-liquid separation space (S3) to flow through the gap between the first end (42) of the screw rotor (40) and the cylinder part (16) into the compression chamber. (25).
  • the seal portion (80) may also be provided on the second bearing holder (22b).
  • the seal portion (80) may also be provided on the inner peripheral surface of the second peripheral wall (22c).
  • the first bearing holder (21b) does not need to have the first peripheral wall (21c).
  • the first surface (F) of the present disclosure includes the inner peripheral surface of the cylinder part (16) facing the first outer peripheral surface (42a) and the end surface of the bearing holder (21b, 22b) facing the first end surface (42b). It is.
  • the seal portion (80) is attached to the inner peripheral surface of the cylinder portion (16) facing the first outer peripheral surface (42a), the end surface of the bearing holder (21b, 22b) facing the first end surface (42b), or both. provided.
  • the seal portion (80) only needs to be able to suppress the flow between the inside (compression chamber) of the first end (42) and the space outside the first end (42); It may be configured to suppress the distribution of either one.
  • the labyrinth of the seal portion (80) may be an axial labyrinth, a radial labyrinth, an aligned labyrinth, or the like.
  • the refrigeration device (1) may be applied to a water heater, a chiller unit, or a cooling device that cools the air inside the refrigerator.
  • the present disclosure is useful for screw compressors and refrigeration equipment.
  • Air conditioner (refrigeration equipment) 10 Screw compressor 11 Casing 13 Electric motor 16 Cylinder section 19 Drive shaft 21 First bearing section (bearing section) 21c 1st peripheral wall (brim part) 23 Compression chamber 24 First compression chamber 25 Second compression chamber 40 Screw rotor 41 Screw groove 42 First end (suction side end) 50 Gate rotor 53 Gate 80 Seal part F 1st surface (inner peripheral surface)

Abstract

The present invention provides a screw compressor in which a compression chamber (25) is formed inside a cylinder part (16) by a screw rotor (40) and a gate (53), wherein an intake-side end part (42) of the screw rotor (40) is formed into a cylindrical shape such that an outer peripheral surface (42a) of said end part conforms to the inner peripheral surface of the cylinder part (16), and a seal part (80) that minimizes the flow of a fluid is provided in a first surface (F) toward which the outer peripheral surface (42a) of the intake-side end part (42) or an axial-direction first end surface (42b) of the intake-side end part (42) faces.

Description

スクリュー圧縮機、および冷凍装置Screw compressor and refrigeration equipment
 本開示は、スクリュー圧縮機および冷凍装置に関するものである。 The present disclosure relates to a screw compressor and a refrigeration device.
 特許文献1には、スクリューロータとゲートロータとを備えたスクリュー圧縮機が開示されている。スクリューロータはシリンダに挿通され、スクリューロータのスクリュー溝にゲートロータのゲートが噛み合うことにより圧縮室が形成される。 Patent Document 1 discloses a screw compressor that includes a screw rotor and a gate rotor. The screw rotor is inserted into the cylinder, and a compression chamber is formed by meshing the gate of the gate rotor with the screw groove of the screw rotor.
特開2009-197794号公報Japanese Patent Application Publication No. 2009-197794
 ところで、スクリューロータの吸入側端部が圧縮室を閉塞する吸入カットレスとなっているスクリュー圧縮機がある。このような吸入側端部は、その外周面がシリンダ部内周面に沿うように円筒形に形成されている。 By the way, there is a screw compressor in which the suction side end of the screw rotor has no suction cut that closes the compression chamber. Such a suction side end portion is formed into a cylindrical shape so that its outer circumferential surface follows the inner circumferential surface of the cylinder portion.
 このような吸入カットレス形状により、圧縮室内における吸入側端部寄りの空間と、該吸入側端部と隣り合う圧縮室外の空間との間に生じる差圧により、吸入側端部とシリンダ内面との隙間を冷媒が流通するおそれがある。例えば、吸入側端部と隣り合う圧縮室外の空間の中間圧の冷媒が、圧縮室の吸入側に漏れ込むと吸入圧が上昇して、圧縮効率が低下してしまう。 Due to this suction cutless shape, the pressure difference generated between the space near the suction side end in the compression chamber and the space outside the compression chamber adjacent to the suction side end creates a gap between the suction side end and the inner surface of the cylinder. There is a risk that refrigerant may flow through the gaps. For example, if intermediate-pressure refrigerant in a space outside the compression chamber adjacent to the suction side end leaks into the suction side of the compression chamber, the suction pressure will increase and compression efficiency will decrease.
 本開示の目的は、スクリュー圧縮機の圧縮室の吸入側端部における冷媒の流通を抑制することにある。 An object of the present disclosure is to suppress the flow of refrigerant at the suction side end of the compression chamber of a screw compressor.
 本開示の第1の態様は、
 シリンダ部(16)を内部に有するケーシング(11)と、
 前記ケーシング(11)内に配置される電動機(13)と、
 前記電動機(13)に接続され、軸回転するように駆動される駆動軸(19)と、
 前記シリンダ部(16)内に配置され、前記駆動軸(19)に接続されるスクリューロータ(40)と、
 前記スクリューロータ(40)のスクリュー溝(41)に噛合するゲート(53)を有するゲートロータ(50)とを備え、
 前記シリンダ部(16)の内部で、前記スクリューロータ(40)とゲート(53)とで圧縮室が形成されるスクリュー圧縮機であって、
 前記スクリューロータ(40)の吸入側端部(42)は、外周面(42a)が前記シリンダ部(16)の内周面に沿うように円筒形に形成され、
 前記吸入側端部(42)における前記外周面(42a)または前記吸入側端部(42)における軸方向の第1端面(42b)が対向する第1面(F)には、流体の流通を抑制するシール部(80)が設けられるスクリュー圧縮機である。
A first aspect of the present disclosure includes:
a casing (11) having a cylinder part (16) therein;
an electric motor (13) disposed within the casing (11);
a drive shaft (19) connected to the electric motor (13) and driven to rotate;
a screw rotor (40) disposed within the cylinder portion (16) and connected to the drive shaft (19);
a gate rotor (50) having a gate (53) that meshes with the screw groove (41) of the screw rotor (40);
A screw compressor in which a compression chamber is formed by the screw rotor (40) and the gate (53) inside the cylinder part (16),
The suction side end (42) of the screw rotor (40) is formed in a cylindrical shape so that the outer peripheral surface (42a) follows the inner peripheral surface of the cylinder part (16),
A first surface (F) opposite to the outer circumferential surface (42a) of the suction side end (42) or the first axial end surface (42b) of the suction side end (42) is configured to allow fluid to flow therethrough. This is a screw compressor provided with a sealing part (80) for suppressing the pressure.
 圧縮室(25)のうち吸入側端部(42)寄りの空間は吸入冷媒により低圧となっている。そのため、吸入側端部(42)を介して圧縮室(25)に隣り合う空間が中間圧となる場合、冷媒の圧力差(差圧)により、冷媒は、第1面(F)と吸入側端部(42)との隙間を通って圧縮室(25)に流入しようとする。しかし、第1の態様では、第1面(F)に設けられたシール部(80)により第1面(F)と吸入側端部(42)との隙間を冷媒が流通することを抑制できる。その結果、圧縮室(25)内の高低差圧を十分に確保でき、スクリュー圧縮機の能力低下を抑制できる。 The space near the suction side end (42) of the compression chamber (25) has a low pressure due to the suction refrigerant. Therefore, if the space adjacent to the compression chamber (25) via the suction side end (42) has an intermediate pressure, the refrigerant will flow between the first surface (F) and the suction side due to the pressure difference (differential pressure) of the refrigerant. It attempts to flow into the compression chamber (25) through the gap with the end (42). However, in the first aspect, the seal portion (80) provided on the first surface (F) can suppress the refrigerant from flowing through the gap between the first surface (F) and the suction side end (42). . As a result, it is possible to sufficiently ensure the pressure difference between high and low levels within the compression chamber (25), and it is possible to suppress a decrease in the capacity of the screw compressor.
 本開示の第2の態様は、第1の態様において、
 前記シリンダ部(16)内に固定され、前記駆動軸(19)を支持する軸受部(21)を備え、
 前記軸受部(21)は、前記吸入側端部(42)に隣接して配置され、
 前記シール部(80)は、前記軸受部(21)に設けられる。
A second aspect of the present disclosure provides, in the first aspect,
a bearing part (21) fixed within the cylinder part (16) and supporting the drive shaft (19);
The bearing part (21) is arranged adjacent to the suction side end part (42),
The seal portion (80) is provided on the bearing portion (21).
 第2の態様では、吸入側端部(42)に対向する第1面(F)が軸受部(21)にある。軸受部(21)の第1面(F)に形成されるシール部(80)により、吸入側端部(42)と軸受部(21)との間を冷媒が流通することを抑制できる。このように軸受部(21)は、軸受け機能とシール機能とを有する。 In the second aspect, the first surface (F) facing the suction side end (42) is located on the bearing portion (21). The seal portion (80) formed on the first surface (F) of the bearing portion (21) can suppress the refrigerant from flowing between the suction side end portion (42) and the bearing portion (21). In this way, the bearing portion (21) has a bearing function and a sealing function.
 本開示の第3の態様は、第2の態様において、
 前記シール部(80)は、前記吸入側端部(42)の軸方向端面に対向する前記軸受部(21)の前記第1面(F)に設けられる。
A third aspect of the present disclosure provides, in the second aspect,
The seal portion (80) is provided on the first surface (F) of the bearing portion (21) opposite to the axial end surface of the suction side end portion (42).
 第3の態様では、シール部(80)を軸受部(21)の端面に設けることができる。 In the third aspect, the seal portion (80) can be provided on the end surface of the bearing portion (21).
 本開示の第4の態様は、第2または第3の態様において、
 前記軸受部(21)は、前記シリンダ部(16)内面と、前記吸入側端部(42)の前記外周面(42a)との間に配置されるつば部(21c)を有し、
 前記シール部(80)は、前記つば部(21c)に設けられる。
A fourth aspect of the present disclosure is, in the second or third aspect,
The bearing portion (21) has a flange portion (21c) disposed between the inner surface of the cylinder portion (16) and the outer peripheral surface (42a) of the suction side end portion (42),
The seal portion (80) is provided on the collar portion (21c).
 第4の態様では、つば部(21c)の内周面を第1面(F)として、該つば部(21c)内周面にシール部(80)が設けられる。このように、つば部(21c)を有する軸受部(21)においても、シール部(80)を設けることができる。 In the fourth aspect, the seal portion (80) is provided on the inner circumferential surface of the brim (21c), with the inner circumferential surface of the brim (21c) serving as the first surface (F). In this way, the seal portion (80) can also be provided in the bearing portion (21) having the flange portion (21c).
 本開示の第5の態様は、第1~第4の態様のいずれか1つにおいて、
 前記ゲートロータ(50)は、第1ゲートロータ(50a)および第2ゲートロータ(50b)を有し、
 前記圧縮室(25)は、
 前記第1ゲートロータ(50a)と前記スクリューロータ(40)とにより形成され、前記ケーシング(11)内に導入される吸入圧力の流体を中間圧力まで圧縮する第1圧縮室(23)と、
 前記第2ゲートロータ(50b)と前記スクリューロータ(40)とにより形成され、前記中間圧力の流体を吐出圧力まで圧縮する第2圧縮室(24)とを備える。
A fifth aspect of the present disclosure provides, in any one of the first to fourth aspects,
The gate rotor (50) has a first gate rotor (50a) and a second gate rotor (50b),
The compression chamber (25) is
a first compression chamber (23) formed by the first gate rotor (50a) and the screw rotor (40) and compressing fluid at suction pressure introduced into the casing (11) to an intermediate pressure;
A second compression chamber (24) is formed by the second gate rotor (50b) and the screw rotor (40) and compresses the fluid at the intermediate pressure to the discharge pressure.
 第5の態様では、スクリュー圧縮機は、二段階圧縮式に構成される。第1圧縮室(23)から吐出された中間圧の冷媒が、第2圧縮室(24)の吸入口に移動する途中で、第1面(F)と吸入側端部(42)との隙間を通って再び第1圧縮室(23)に吸入されることを抑制できる。 In the fifth aspect, the screw compressor is configured as a two-stage compression type. While the intermediate pressure refrigerant discharged from the first compression chamber (23) moves to the suction port of the second compression chamber (24), there is a gap between the first surface (F) and the suction side end (42). It is possible to prevent the air from passing through the air and being sucked into the first compression chamber (23) again.
 本開示の第6の態様は、第1~第5の態様のいずれか1つにおいて、
 前記シール部(80)は、ラビリンスシールで構成される。
A sixth aspect of the present disclosure provides, in any one of the first to fifth aspects,
The seal portion (80) is composed of a labyrinth seal.
 本開示の第7の態様は、第1~第5の態様のいずれか1つにおいて、
 前記シール部(80)は、表面テクスチャで構成される。
A seventh aspect of the present disclosure provides, in any one of the first to fifth aspects,
The seal portion (80) is configured with a surface texture.
 本開示の第8の態様は、第1~第7の態様いずれか1つに記載のスクリュー圧縮機である。 An eighth aspect of the present disclosure is the screw compressor according to any one of the first to seventh aspects.
図1は、実施形態に係る冷凍装置の概略の配管系統図である。FIG. 1 is a schematic piping system diagram of a refrigeration system according to an embodiment. 図2は、実施形態に係るスクリュー圧縮機の概略構成の要部を示す縦断面図である。FIG. 2 is a vertical cross-sectional view showing a main part of the schematic configuration of the screw compressor according to the embodiment. 図3は、図2のIII-III線断面を示す図である。FIG. 3 is a cross-sectional view taken along the line III--III in FIG. 2. 図4は、スクリューロータとゲートロータとの噛み合いの状態を示す斜視図である。FIG. 4 is a perspective view showing the state of engagement between the screw rotor and the gate rotor. 図5は、スクリュー圧縮機の吸込工程、圧縮工程、及び吐出工程を示す概略の平面図である。FIG. 5 is a schematic plan view showing the suction process, compression process, and discharge process of the screw compressor. 図6は、低段圧縮の冷媒の流れを示す斜視図である。FIG. 6 is a perspective view showing the flow of low-stage compression refrigerant. 図7は、高段圧縮の冷媒の流れを示す斜視図である。FIG. 7 is a perspective view showing the flow of high-stage compression refrigerant. 図8は、圧縮機構における冷媒の流れを説明する側面断面図である。FIG. 8 is a side sectional view illustrating the flow of refrigerant in the compression mechanism. 図9は、圧縮機構における第1端部周辺の冷媒の流れを説明する側面断面を拡大したである。FIG. 9 is an enlarged side cross section illustrating the flow of refrigerant around the first end of the compression mechanism. 図10は、本実施形態のシール部を説明するための圧縮機構の一部の側面断面図とその拡大図である。FIG. 10 is a side sectional view and an enlarged view of a part of the compression mechanism for explaining the seal portion of this embodiment. 図11は、変形例2に係るスクリュー圧縮機の図10の拡大図に相当するである。FIG. 11 corresponds to an enlarged view of FIG. 10 of a screw compressor according to modification 2. 図12は、変形例3に係るスクリュー圧縮機の図10の拡大図に相当する図である。FIG. 12 is a diagram corresponding to an enlarged view of FIG. 10 of a screw compressor according to modification 3. 図13は、変形例4に係るスクリュー圧縮機の図10に相当する図である。FIG. 13 is a diagram corresponding to FIG. 10 of a screw compressor according to modification 4. 図14は、変形例5に係るスクリュー圧縮機が接続される冷媒回路の配管系統図である。FIG. 14 is a piping system diagram of a refrigerant circuit to which a screw compressor according to modification 5 is connected.
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。また、以下に説明する実施形態、各変形例、その他の実施形態等の各構成は、本発明を実施可能な範囲において、組み合わせたり、一部を置換したりできる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its applications, or its uses. In addition, the configurations of the embodiments, modifications, and other embodiments described below can be combined or partially replaced within the scope of implementing the present invention.
 (1)空気調和機
 図1に示すように、本実施形態のスクリュー圧縮機(10)は、室内空間を空調する空気調和機(1)に設けられる。空気調和機(1)は、本開示の冷凍装置(1)の一例である。空気調和機(1)は、冷媒が充填される冷媒回路(2)を有する。
(1) Air conditioner As shown in FIG. 1, the screw compressor (10) of this embodiment is provided in an air conditioner (1) that air-conditions indoor space. The air conditioner (1) is an example of the refrigeration device (1) of the present disclosure. The air conditioner (1) has a refrigerant circuit (2) filled with refrigerant.
 冷媒回路(2)は、スクリュー圧縮機(10)、凝縮器(3)、膨張弁(4)、および蒸発器(5)を有する。冷媒回路(2)は、蒸気圧縮式の冷凍サイクルを行う。図1中の矢印は冷媒が流れる向きを示す。冷凍サイクルでは、スクリュー圧縮機(10)で圧縮された冷媒は、凝縮器(3)で放熱される。放熱された冷媒は、膨張弁(4)で減圧され、蒸発器(5)で蒸発した後、スクリュー圧縮機(10)に吸入される。 The refrigerant circuit (2) has a screw compressor (10), a condenser (3), an expansion valve (4), and an evaporator (5). The refrigerant circuit (2) performs a vapor compression type refrigeration cycle. The arrows in FIG. 1 indicate the direction in which the refrigerant flows. In the refrigeration cycle, heat is radiated from the refrigerant compressed by the screw compressor (10) in the condenser (3). The heat radiated refrigerant is depressurized by the expansion valve (4), evaporated by the evaporator (5), and then sucked into the screw compressor (10).
 (2)スクリュー圧縮機
 スクリュー圧縮機(10)は、冷媒を圧縮する。スクリュー圧縮機(10)は、低圧のガス冷媒を吸入し、吸入したガス冷媒を圧縮する。スクリュー圧縮機(10)は、圧縮した後の高圧のガス冷媒を吐出する。本実施形態のスクリュー圧縮機(10)は、冷媒を二段圧縮するように構成されている。
(2) Screw Compressor The screw compressor (10) compresses refrigerant. The screw compressor (10) sucks in low-pressure gas refrigerant and compresses the sucked gas refrigerant. The screw compressor (10) discharges compressed high-pressure gas refrigerant. The screw compressor (10) of this embodiment is configured to compress refrigerant in two stages.
 図2~図4に示すように、スクリュー圧縮機(10)は、ケーシング(11)、電動機(13)、駆動軸(19)、および圧縮機構(30)を備える。以下では、「上」「下」「右」「左」は、図2に示すスクリュー圧縮機(10)側面を正面から見たときの方向を示す。 As shown in FIGS. 2 to 4, the screw compressor (10) includes a casing (11), an electric motor (13), a drive shaft (19), and a compression mechanism (30). In the following, "upper", "lower", "right", and "left" refer to directions when the side of the screw compressor (10) shown in FIG. 2 is viewed from the front.
 (2-1)ケーシング
 ケーシング(11)は、横長の筒状に形成される。ケーシング(11)には、図示しない吸入口と吐出口とが形成される。ケーシング(11)の内部には、低圧空間(S1)と高圧空間(S2)とが形成される。低圧空間(S1)は、吸入口を介して圧縮機構(30)に吸入される低圧のガス冷媒が流れる空間である。高圧空間(S2)は、圧縮機構(30)から吐出された高圧のガス冷媒が流入する空間である。高圧空間(S2)の冷媒は吐出口からスクリュー圧縮機(10)外へ流出する。ケーシング(11)内には、シリンダ部(16)が形成される。シリンダ部(16)は、横長の略円筒形に形成される。シリンダ部(16)内には、後述するスクリューロータ(40)が配置される。
(2-1) Casing The casing (11) is formed into a horizontally long cylindrical shape. A suction port and a discharge port (not shown) are formed in the casing (11). A low pressure space (S1) and a high pressure space (S2) are formed inside the casing (11). The low-pressure space (S1) is a space through which low-pressure gas refrigerant is sucked into the compression mechanism (30) through the suction port. The high pressure space (S2) is a space into which the high pressure gas refrigerant discharged from the compression mechanism (30) flows. The refrigerant in the high pressure space (S2) flows out of the screw compressor (10) from the discharge port. A cylinder portion (16) is formed within the casing (11). The cylinder portion (16) is formed into a horizontally elongated substantially cylindrical shape. A screw rotor (40), which will be described later, is disposed within the cylinder portion (16).
 (2-2)電動機
 電動機(13)は、ケーシング(11)内に収容される。電動機(13)は、ケーシング(11)内の一端側に配置される。電動機(13)は、ステータ(14)とロータ(15)とを有する。ステータ(14)は、ケーシング(11)の内壁に固定される。ロータ(15)は、ステータ(14)の内部に配置される。ロータ(15)の内部には駆動軸(19)が固定される。電動機(13)は、回転速度が変更可能である。本例では、電動機(13)は、インバータ駆動式の電動機である。
(2-2) Electric motor The electric motor (13) is housed within the casing (11). The electric motor (13) is arranged at one end inside the casing (11). The electric motor (13) has a stator (14) and a rotor (15). The stator (14) is fixed to the inner wall of the casing (11). The rotor (15) is arranged inside the stator (14). A drive shaft (19) is fixed inside the rotor (15). The rotation speed of the electric motor (13) can be changed. In this example, the electric motor (13) is an inverter-driven electric motor.
 (2-3)駆動軸
 駆動軸(19)は、ケーシング(11)内に配置される。駆動軸(19)は、ケーシング(11)の長手方向に沿って延びる。駆動軸(19)は、略水平方向に延びる。駆動軸(19)は、シリンダ部(16)内を筒軸方向に沿って挿通される。駆動軸(19)は、その軸中心がシリンダ部(16)の筒軸中心と一致するように配置される。
(2-3) Drive shaft The drive shaft (19) is arranged inside the casing (11). The drive shaft (19) extends along the longitudinal direction of the casing (11). The drive shaft (19) extends substantially horizontally. The drive shaft (19) is inserted into the cylinder portion (16) along the cylinder axis direction. The drive shaft (19) is arranged so that its axial center coincides with the cylindrical axis center of the cylinder portion (16).
 駆動軸(19)は、電動機(13)によって駆動される。駆動軸(19)の回転速度は、電動機(13)の回転速度の変化に伴って変化する。言い換えると、駆動軸(19)は、回転速度が変更可能である。駆動軸(19)は、電動機(13)と圧縮機構(30)とを連結する。 The drive shaft (19) is driven by an electric motor (13). The rotation speed of the drive shaft (19) changes as the rotation speed of the electric motor (13) changes. In other words, the rotation speed of the drive shaft (19) can be changed. The drive shaft (19) connects the electric motor (13) and the compression mechanism (30).
 駆動軸(19)は、シリンダ部(16)内に固定される第1軸受部(21)及び第2軸受部(22)に回転自在に支持される。第1軸受部(21)は、駆動軸(19)の中間部に配置される。第2軸受部(22)は、駆動軸(19)の吐出側の端部(電動機(13)と逆側の端部)に配置される。 The drive shaft (19) is rotatably supported by a first bearing part (21) and a second bearing part (22) that are fixed within the cylinder part (16). The first bearing portion (21) is arranged at an intermediate portion of the drive shaft (19). The second bearing portion (22) is arranged at the discharge side end of the drive shaft (19) (the end opposite to the electric motor (13)).
 第1軸受部(21)は、第1軸受(21a)および第1軸受ホルダ(21b)で構成される。第2軸受部(22)は、第2軸受(22a)および第2軸受ホルダ(22b)で構成される。駆動軸(19)は、各軸受(21a,22a)を介してそれぞれの軸受ホルダ(21b,22b)に支持される。以下の説明において、第1軸受(21a)および第2軸受(22a)を総称して、単に軸受(21a,22a)と呼ぶ場合がある。また、第1軸受ホルダ(21b)および第2軸受ホルダ(22b)を総称して、単に軸受ホルダ(21b,22b)と呼ぶ場合がある。 The first bearing part (21) is composed of a first bearing (21a) and a first bearing holder (21b). The second bearing portion (22) includes a second bearing (22a) and a second bearing holder (22b). The drive shaft (19) is supported by each bearing holder (21b, 22b) via each bearing (21a, 22a). In the following description, the first bearing (21a) and the second bearing (22a) may be collectively referred to simply as bearings (21a, 22a). Further, the first bearing holder (21b) and the second bearing holder (22b) may be collectively referred to simply as bearing holders (21b, 22b).
 軸受ホルダ(21b,22b)は、軸受(21a,22a)の全周を囲む略円筒状に形成される。軸受ホルダの外周面は、シリンダ部(16)の内周面に固定される。第1軸受ホルダ(21b)および第2軸受ホルダ(22b)は、スクリューロータ(40)を挟むように配置される。 The bearing holder (21b, 22b) is formed into a substantially cylindrical shape that surrounds the entire circumference of the bearing (21a, 22a). The outer peripheral surface of the bearing holder is fixed to the inner peripheral surface of the cylinder portion (16). The first bearing holder (21b) and the second bearing holder (22b) are arranged to sandwich the screw rotor (40).
 軸受部(21)のそれぞれは、筒状の周壁(21c,22c)を有する。周壁(21c,22c)は、軸受ホルダ(21b,22b)の軸方向端面の外周縁に設けられる。周壁(21c,22c)はシリンダ部(16)内周面に沿うように形成される。具体的に、周壁(21c,22c)は、シリンダ部(16)の内周面と、スクリューロータ(40)の端部(42,43)の外周面との間に配置される。周壁(21c,22c)の外周面は、シリンダ部(16)内周面に固定される。周壁(21c,22c)の内周面は、スクリューロータ(40)の端部(42,43)の外周面に近接する。第1軸受部(21)が有する周壁(21c,22c)を第1周壁(21c)とし、第2軸受部(22)が有する周壁(21c,22c)を第2周壁(22c)とする。第1周壁(21c)は、本開示のつば部(21c)の一例である。 Each of the bearing parts (21) has a cylindrical peripheral wall (21c, 22c). The peripheral wall (21c, 22c) is provided at the outer peripheral edge of the axial end surface of the bearing holder (21b, 22b). The peripheral walls (21c, 22c) are formed along the inner circumferential surface of the cylinder portion (16). Specifically, the peripheral wall (21c, 22c) is arranged between the inner peripheral surface of the cylinder portion (16) and the outer peripheral surface of the end portion (42, 43) of the screw rotor (40). The outer peripheral surface of the peripheral wall (21c, 22c) is fixed to the inner peripheral surface of the cylinder part (16). The inner peripheral surface of the peripheral wall (21c, 22c) is close to the outer peripheral surface of the end portion (42, 43) of the screw rotor (40). The peripheral walls (21c, 22c) of the first bearing part (21) are referred to as first peripheral walls (21c), and the peripheral walls (21c, 22c) of the second bearing part (22) are referred to as second peripheral walls (22c). The first peripheral wall (21c) is an example of the collar (21c) of the present disclosure.
 (2-4)圧縮機構
 圧縮機構(30)は、1つのシリンダ部(16)、1つのスクリューロータ(40)、2つのゲートロータ(50)、および2つのスライドバルブ(65)を有する。
(2-4) Compression mechanism The compression mechanism (30) has one cylinder part (16), one screw rotor (40), two gate rotors (50), and two slide valves (65).
 (2-4-1)シリンダ部
 シリンダ部(16)は、スクリューロータ(40)を収容する。シリンダ部(16)には、第1スリット(16a)および第2スリット(16b)が形成される。第1スリット(16a)および第2スリット(16b)は、筒軸方向に伸びる細長の開口である。第1スリット(16a)および第2スリット(16b)は周方向に隣り合って配置される。第1スリット(16a)および第2スリット(16b)のそれぞれには、ゲートロータ(50)が貫通する。第1スリット(16a)および第2スリット(16b)の詳細は後述する。
(2-4-1) Cylinder section The cylinder section (16) accommodates the screw rotor (40). A first slit (16a) and a second slit (16b) are formed in the cylinder portion (16). The first slit (16a) and the second slit (16b) are elongated openings extending in the cylinder axis direction. The first slit (16a) and the second slit (16b) are arranged adjacent to each other in the circumferential direction. A gate rotor (50) passes through each of the first slit (16a) and the second slit (16b). Details of the first slit (16a) and the second slit (16b) will be described later.
 シリンダ部(16)には、スライドバルブ(65)が収容されるバルブ収容部(66)が設けられる。バルブ収容部(66)は、シリンダ部(16)の周方向に2つ設けられる。各バルブ収容部(66)は、シリンダ部(16)から径方向外側に膨出するように形成される。バルブ収容部(66)の外周壁は、低圧空間(S1)と高圧空間(S2)とを仕切る仕切壁(66a)と、仕切壁(66a)の幅方向中央位置から高圧空間(S2)側に向かって軸方向に延びるガイド壁(66b)とを有する。 The cylinder portion (16) is provided with a valve accommodating portion (66) in which the slide valve (65) is accommodated. Two valve housing portions (66) are provided in the circumferential direction of the cylinder portion (16). Each valve housing portion (66) is formed to bulge radially outward from the cylinder portion (16). The outer peripheral wall of the valve accommodating part (66) is a partition wall (66a) that partitions the low pressure space (S1) and the high pressure space (S2), and a partition wall (66a) that extends from the widthwise center position of the partition wall (66a) toward the high pressure space (S2) side. It has a guide wall (66b) extending in the axial direction.
 (2-4-2)スクリューロータ
 スクリューロータ(40)は、シリンダ部(16)の内部に配置される。スクリューロータ(40)は、概ね円柱状に形成された金属製の部材である。スクリューロータ(40)は、駆動軸(19)に固定される。スクリューロータ(40)は、駆動軸(19)の回転に伴って回転する。スクリューロータ(40)の外周面は、シリンダ部(16)の内周面と近接する。
(2-4-2) Screw rotor The screw rotor (40) is arranged inside the cylinder part (16). The screw rotor (40) is a metal member formed into a generally cylindrical shape. The screw rotor (40) is fixed to the drive shaft (19). The screw rotor (40) rotates as the drive shaft (19) rotates. The outer circumferential surface of the screw rotor (40) is close to the inner circumferential surface of the cylinder portion (16).
 スクリューロータ(40)の筒軸方向の両端部のうち一方の端部を第1端部(42)、他方の端部を第2端部(43)と呼ぶ。第1端部(42)および第2端部(43)は、共に円筒形に形成される。第1端部(42)は、後述する圧縮室(25)の吸入側の端部である。第1端部(42)は、本開示の吸入側端部(42)である。第2端部(43)は圧縮室(25)の吐出側の端部である。 Of both ends of the screw rotor (40) in the cylinder axis direction, one end is called a first end (42), and the other end is called a second end (43). Both the first end (42) and the second end (43) are formed into a cylindrical shape. The first end (42) is an end on the suction side of the compression chamber (25), which will be described later. The first end (42) is the suction side end (42) of the present disclosure. The second end (43) is the discharge side end of the compression chamber (25).
 第1端部(42)は、第1軸受部(21)に隣接して配置される。第2端部(43)は、第2軸受部(22)に隣接して配置される。以下では、第1端部(42)の外周面を第1外周面(42a)と呼び、第1端部(42)の端面を第1端面(42b)と呼ぶ。また、第2端部(43)の外周面を第2外周面(43a)と呼び、第2端部(43)の端面を第2端面(43b)と呼ぶ。 The first end (42) is arranged adjacent to the first bearing part (21). The second end (43) is arranged adjacent to the second bearing part (22). Hereinafter, the outer circumferential surface of the first end (42) will be referred to as a first outer circumferential surface (42a), and the end surface of the first end (42) will be referred to as a first end surface (42b). Further, the outer circumferential surface of the second end (43) is referred to as a second outer circumferential surface (43a), and the end surface of the second end (43) is referred to as a second end surface (43b).
 第1外周面(42a)および第2外周面(43a)は、シリンダ部(16)の内周面に沿う。具体的に、第1外周面(42a)は、第1軸受部(21)の第1周壁(21c)内面に近接し、第2外周面(43a)は、第2軸受部(22)の第2周壁(22c)内面に近接する。 The first outer circumferential surface (42a) and the second outer circumferential surface (43a) are along the inner circumferential surface of the cylinder portion (16). Specifically, the first outer circumferential surface (42a) is close to the inner surface of the first circumferential wall (21c) of the first bearing section (21), and the second outer circumferential surface (43a) is close to the inner surface of the first circumferential wall (21c) of the second bearing section (22). 2 Close to the inner surface of the peripheral wall (22c).
 第1端面(42b)および第2端面(43b)は、筒軸方向に直交する平坦な面に形成される。第1端面(42b)は、第1軸受ホルダ(21b)の端面に対向する。第2端面(43b)は、第2軸受ホルダ(22b)の端面に対向する。具体的に、第1端面(42b)は、第1軸受ホルダ(21b)の端面に近接し、第2端面(43b)は、第2軸受ホルダ(22b)の端面に近接する。 The first end surface (42b) and the second end surface (43b) are formed as flat surfaces perpendicular to the cylinder axis direction. The first end surface (42b) faces the end surface of the first bearing holder (21b). The second end surface (43b) faces the end surface of the second bearing holder (22b). Specifically, the first end surface (42b) is close to the end surface of the first bearing holder (21b), and the second end surface (43b) is close to the end surface of the second bearing holder (22b).
 スクリューロータ(40)の外周面には、螺旋状に伸びる複数のスクリュー溝(41)が形成される。スクリュー溝(41)は、スクリューロータ(40)の軸方向の第1端部(42)から第2端部(43)にわたって伸びる。 A plurality of screw grooves (41) extending spirally are formed on the outer peripheral surface of the screw rotor (40). The screw groove (41) extends from the first end (42) to the second end (43) in the axial direction of the screw rotor (40).
 (2-4-3)ゲートロータ
 ゲートロータ(50)は、第1ゲートロータ(50a)および第2ゲートロータ(50b)を含む。各ゲートロータ(50)は、放射状に配置された複数のゲート(53)を有する。ゲート(53)は、シリンダ部(16)のスリット(16a,16b)を挿通して、スクリュー溝(41)に噛み合う。
(2-4-3) Gate rotor The gate rotor (50) includes a first gate rotor (50a) and a second gate rotor (50b). Each gate rotor (50) has a plurality of gates (53) arranged radially. The gate (53) is inserted through the slits (16a, 16b) of the cylinder portion (16) and engages with the screw groove (41).
 各ゲートロータ(50)は、ゲートロータ軸(58)により支持される。ゲートロータ軸(58)は、駆動軸(19)の軸方向に直交する向きにのびる。ゲートロータ軸(58)は、ケーシング(11)内に区画された軸受ハウジング(55)に収容される。ゲートロータ軸(58)は、軸受ハウジング(55)内に設けられた玉軸受(56)を介して回転自在に支持される。ゲートロータ(50)およびゲートロータ軸(58)は、ゲートロータ室(18)に配置される。 Each gate rotor (50) is supported by a gate rotor shaft (58). The gate rotor shaft (58) extends in a direction perpendicular to the axial direction of the drive shaft (19). The gate rotor shaft (58) is housed in a bearing housing (55) defined within the casing (11). The gate rotor shaft (58) is rotatably supported via a ball bearing (56) provided within the bearing housing (55). The gate rotor (50) and the gate rotor shaft (58) are arranged in the gate rotor chamber (18).
 ゲートロータ室(18)は、ケーシング(11)内に区画形成され、シリンダ部(16)に隣接する。ゲートロータ室(18)は、第1ゲートロータ室(18a)と第2ゲートロータ室(18b)とを含む。第1ゲートロータ室(18a)には第1ゲートロータ(50a)が配置される。第2ゲートロータ室(18b)には第2ゲートロータ(50b)が配置される。第1ゲートロータ室(18a)は、後述する第1圧縮室(23)へ冷媒を供給するように構成される。第2ゲートロータ室(18b)は、第1圧縮室(23)から流出した冷媒を後述する第2圧縮室(24)へ供給するように構成される。 The gate rotor chamber (18) is defined within the casing (11) and adjacent to the cylinder portion (16). The gate rotor chamber (18) includes a first gate rotor chamber (18a) and a second gate rotor chamber (18b). A first gate rotor (50a) is arranged in the first gate rotor chamber (18a). A second gate rotor (50b) is arranged in the second gate rotor chamber (18b). The first gate rotor chamber (18a) is configured to supply refrigerant to a first compression chamber (23), which will be described later. The second gate rotor chamber (18b) is configured to supply refrigerant flowing out from the first compression chamber (23) to a second compression chamber (24), which will be described later.
 (2-4-4)スライドバルブ
 スライドバルブ(65)は、バルブ収容部(66)内に収納される。スライドバルブ(65)は、後述の駆動機構(71)によりシリンダ部(16)の軸心方向へスライド可能に構成される。スライドバルブ(65)は、バルブ収容部(66)に挿入された状態でスクリューロータ(40)の外周面と向かい合う。
(2-4-4) Slide Valve The slide valve (65) is housed in the valve housing section (66). The slide valve (65) is configured to be slidable in the axial direction of the cylinder portion (16) by a drive mechanism (71) to be described later. The slide valve (65) faces the outer peripheral surface of the screw rotor (40) while being inserted into the valve accommodating portion (66).
 駆動機構(71)は、シリンダ部(16)、ピストン(73)、ピストンロッド(74)、アーム(75)、連結ロッド(76)およびスプリング(77)を有する。シリンダ部(16)は、固定板(29)の右側壁面に形成される。ピストン(73)は、シリンダ部(16)内に装填される。ピストンロッド(74)は、一端がピストン(73)中央に固定され、左方へ伸びる。アーム(75)は、ピストンロッド(74)の他端に連結される。連結ロッド(76)は、アーム(75)とスライドバルブ(65)とを連結する。スプリング(77)は、アーム(75)を右方向に付勢するように連結ロッド(76)に設けられる。駆動機構(71)は、ピストン(73)の左右の端面に作用するガス圧を調節することによってピストン(73)の動きを制御し、スライドバルブ(65)の位置を調整する。 The drive mechanism (71) includes a cylinder portion (16), a piston (73), a piston rod (74), an arm (75), a connecting rod (76), and a spring (77). The cylinder portion (16) is formed on the right side wall surface of the fixed plate (29). The piston (73) is loaded into the cylinder section (16). The piston rod (74) has one end fixed to the center of the piston (73) and extends to the left. The arm (75) is connected to the other end of the piston rod (74). The connecting rod (76) connects the arm (75) and the slide valve (65). The spring (77) is provided on the connecting rod (76) so as to bias the arm (75) to the right. The drive mechanism (71) controls the movement of the piston (73) by adjusting the gas pressure acting on the left and right end surfaces of the piston (73), and adjusts the position of the slide valve (65).
 スライドバルブ(65)は、スクリューロータ(40)の軸方向への位置を調整することが可能なバルブである。このスライドバルブ(65)は、圧縮室(25)で圧縮途中の冷媒を吸入側へ戻して運転容量を変化させるアンロード機構として用いることができる。また、スライドバルブ(65)は、圧縮室(25)から冷媒を吐出するタイミングを調整することにより、圧縮比(内部容積比)を調節する圧縮比調節機構として用いることができる。 The slide valve (65) is a valve that can adjust the position of the screw rotor (40) in the axial direction. This slide valve (65) can be used as an unloading mechanism that changes the operating capacity by returning the refrigerant that is being compressed in the compression chamber (25) to the suction side. Furthermore, the slide valve (65) can be used as a compression ratio adjustment mechanism that adjusts the compression ratio (internal volume ratio) by adjusting the timing of discharging refrigerant from the compression chamber (25).
 (2-4-5)圧縮室
 本実施形態の圧縮機構(30)では、シリンダ部(16)の内周面と、スクリューロータ(40)のスクリュー溝(41)と、2つのゲートロータ(50)とによって囲まれた圧縮室(25)が形成される。
(2-4-5) Compression chamber In the compression mechanism (30) of this embodiment, the inner peripheral surface of the cylinder part (16), the screw groove (41) of the screw rotor (40), and the two gate rotors (50) ) A compression chamber (25) is formed.
 シリンダ部(16)には、スライドバルブ(65)の位置に拘わらず常に圧縮室(25)に連通する固定吐出ポート(図示せず)が形成される。この固定ポートは、スクリュー圧縮機(10)の起動時や低負荷時において液圧縮を回避するように、圧縮室(25)が密閉状態にならないように設けられる。 A fixed discharge port (not shown) is formed in the cylinder portion (16), which always communicates with the compression chamber (25) regardless of the position of the slide valve (65). This fixed port is provided to prevent the compression chamber (25) from being in a sealed state so as to avoid liquid compression when the screw compressor (10) is started up or under low load.
 圧縮室(25)は、二段圧縮の低段側となる第1圧縮室(23)と、高段側となる第2圧縮室(24)とを含む。第1圧縮室(23)および第2圧縮室(24)は、シリンダ部(16)の内側にスクリューロータ(40)とゲートロータ(50)とで形成される。第1圧縮室(23)は、ケーシング(11)内に導入される吸入圧力の冷媒を、その吸入圧力よりも高圧の中間圧力まで圧縮する。第2圧縮室(24)は、中間圧力の冷媒を、その中間圧力よりも高圧の吐出圧力(高圧圧力)まで圧縮する。 The compression chamber (25) includes a first compression chamber (23), which is the lower stage side of two-stage compression, and a second compression chamber (24), which is the higher stage side. The first compression chamber (23) and the second compression chamber (24) are formed by a screw rotor (40) and a gate rotor (50) inside the cylinder part (16). The first compression chamber (23) compresses the refrigerant at the suction pressure introduced into the casing (11) to an intermediate pressure higher than the suction pressure. The second compression chamber (24) compresses the intermediate pressure refrigerant to a discharge pressure (high pressure) higher than the intermediate pressure.
 本実施形態では、低圧空間(S1)は、第1ゲートロータ室(18a)を介して第1圧縮室(23)と連通する。低圧空間(S1)、第1ゲートロータ室(18a)、第1圧縮室(23)、中間圧空間である第2ゲートロータ室(18b)、第2圧縮室(24)、および高圧空間(S2)は、冷媒の圧力が低い側から高い側へ向かって順に繋がっている。 In this embodiment, the low pressure space (S1) communicates with the first compression chamber (23) via the first gate rotor chamber (18a). Low pressure space (S1), first gate rotor chamber (18a), first compression chamber (23), second gate rotor chamber (18b) which is intermediate pressure space, second compression chamber (24), and high pressure space (S2 ) are connected in order from the side with lower refrigerant pressure to the side with higher refrigerant pressure.
 第1スリット(16a)は、低圧空間(S1)および第1ゲートロータ室(18a)と、第1圧縮室(23)とを連通させる。第2スリット(16b)、中間圧空間である第2ゲートロータ室(18b)と第2圧縮室(24)とを連通させる。第1スリット(16a)は、低圧空間(S1)の低圧の冷媒を第1圧縮室(23)へ導入する第1吸入口を構成する。第2スリット(16b)は、中間圧空間の冷媒を第2圧縮室(24)へ導入する第2吸入口を構成する。 The first slit (16a) communicates the low pressure space (S1) and the first gate rotor chamber (18a) with the first compression chamber (23). The second slit (16b) communicates the second gate rotor chamber (18b), which is an intermediate pressure space, with the second compression chamber (24). The first slit (16a) constitutes a first suction port that introduces the low-pressure refrigerant in the low-pressure space (S1) into the first compression chamber (23). The second slit (16b) constitutes a second suction port that introduces the refrigerant in the intermediate pressure space into the second compression chamber (24).
 (3)圧縮機構の動作
 図5に示す吸込行程では、網掛けを付した圧縮室(25)(厳密には吸込室)が吸入側の空間に連通する。この圧縮室(25)に対応するスクリュー溝(41)は、ゲートロータ(50)のゲート(53)と歯合している。スクリューロータ(40)が回転すると、ゲート(53)がスクリュー溝(41)の終端へ向かって相対的に移動し、それに伴って圧縮室(25)の容積が拡大する。その結果、冷媒が圧縮室(25)へ吸い込まれる。
(3) Operation of the compression mechanism In the suction stroke shown in FIG. 5, the shaded compression chamber (25) (strictly speaking, the suction chamber) communicates with the suction side space. The screw groove (41) corresponding to this compression chamber (25) meshes with the gate (53) of the gate rotor (50). When the screw rotor (40) rotates, the gate (53) moves relatively toward the end of the screw groove (41), and the volume of the compression chamber (25) expands accordingly. As a result, refrigerant is sucked into the compression chamber (25).
 スクリューロータ(40)が更に回転すると、図5に示す圧縮行程が行われる。圧縮行程では、網掛けを付した圧縮室(25)が閉じきり状態となる。つまり、この圧縮室(25)に対応するスクリュー溝(41)は、ゲート(53)によって吸入側の空間から仕切られる。スクリューロータ(40)の回転に伴いゲート(53)がスクリュー溝(41)の終端へ近づいていくと、圧縮室(25)の容積が徐々に小さくなっていく。その結果、圧縮室(25)内の冷媒が圧縮される。 When the screw rotor (40) further rotates, the compression stroke shown in FIG. 5 is performed. In the compression stroke, the shaded compression chamber (25) is completely closed. That is, the screw groove (41) corresponding to this compression chamber (25) is partitioned off from the suction side space by the gate (53). As the gate (53) approaches the end of the screw groove (41) as the screw rotor (40) rotates, the volume of the compression chamber (25) gradually decreases. As a result, the refrigerant in the compression chamber (25) is compressed.
 スクリューロータ(40)が更に回転すると、図5に示す吐出行程が行われる。吐出行程では、網掛けを付した圧縮室(25)(厳密には吐出室)が吐出側の端部を介して固定吐出ポートと連通する。スクリューロータ(40)が回転に伴いゲート(53)がスクリュー溝(41)の終端へ近づいていくと、圧縮された冷媒が圧縮室(25)から固定吐出ポートを通って吐出側の空間へ押し出されていく。 When the screw rotor (40) further rotates, the discharge stroke shown in FIG. 5 is performed. In the discharge stroke, the shaded compression chamber (25) (strictly speaking, the discharge chamber) communicates with the fixed discharge port via the discharge side end. As the screw rotor (40) rotates and the gate (53) approaches the end of the screw groove (41), the compressed refrigerant is pushed out from the compression chamber (25) through the fixed discharge port and into the discharge side space. It goes down.
 (3-1)二段圧縮
 次に、二段圧縮の動作について図6及び図7を用いて説明する。ケーシング(11)内へ吸入される冷媒は、低圧空間(S1)へ流入し、この低圧空間(S1)から第1ゲートロータ室(18a)へ導入される。
(3-1) Two-stage compression Next, the operation of two-stage compression will be explained using FIGS. 6 and 7. The refrigerant sucked into the casing (11) flows into the low pressure space (S1), and is introduced from the low pressure space (S1) into the first gate rotor chamber (18a).
 第1ゲートロータ室(18a)の低圧の冷媒は、第1スリット(16a)を通って第1圧縮室(23)へ吸入される。第1圧縮室(23)で圧縮された中間圧の冷媒は、第1圧縮室(23)から流出し、中間圧空間である第2ゲートロータ室(18b)へ流入する。 The low-pressure refrigerant in the first gate rotor chamber (18a) is sucked into the first compression chamber (23) through the first slit (16a). The intermediate pressure refrigerant compressed in the first compression chamber (23) flows out of the first compression chamber (23) and flows into the second gate rotor chamber (18b), which is an intermediate pressure space.
 第2ゲートロータ室(18b)の中間圧の冷媒は、第2スリット(16b)を通って第2圧縮室(24)へ吸入される。第2圧縮室(24)で圧縮された高圧の冷媒は、第2圧縮室(24)から流出し、第2空間である高圧空間(S2)へ流入する。高圧空間(S2)に流入した冷媒は、油分離器(図示省略)で油が分離され、吐出口(10b)を介してケーシング(11)の外部へ流出する。 The intermediate pressure refrigerant in the second gate rotor chamber (18b) is sucked into the second compression chamber (24) through the second slit (16b). The high-pressure refrigerant compressed in the second compression chamber (24) flows out of the second compression chamber (24) and flows into the high-pressure space (S2), which is the second space. The oil in the refrigerant that has flowed into the high-pressure space (S2) is separated by an oil separator (not shown) and flows out of the casing (11) through the discharge port (10b).
 (4)圧縮室内外の差圧による課題
 本実施形態のように第1圧縮室(23)と第2圧縮室(24)とで二段圧縮を行う構造を有するスクリュー圧縮機では、スクリューロータの吸入側端部は、シリンダ部内周面とスクリューロータ外周面とをシールするような吸入カットレスの構造が要求される(本例の第1端部(42)に相当)。
(4) Problems caused by differential pressure between the outside and outside of the compression chamber In a screw compressor having a structure in which two-stage compression is performed in the first compression chamber (23) and the second compression chamber (24) as in this embodiment, the screw rotor The suction side end is required to have a suction cutless structure that seals the inner peripheral surface of the cylinder part and the outer peripheral surface of the screw rotor (corresponding to the first end (42) in this example).
 図8に示すように、このようなスクリュー圧縮機に吸入された冷媒は、低圧空間(S1)、第1ゲートロータ室(18a)、第1圧縮室(23)、中間圧空間である第2ゲートロータ室(18b)、第2圧縮室(24)、および高圧空間(S2)の順に流れる。 As shown in FIG. 8, the refrigerant sucked into such a screw compressor is sent to a low pressure space (S1), a first gate rotor chamber (18a), a first compression chamber (23), and a second intermediate pressure space. It flows in the order of the gate rotor chamber (18b), the second compression chamber (24), and the high pressure space (S2).
 ここで、図9に示すように、第1圧縮室(23)で圧縮された中間圧の吐出冷媒は、第2ゲートロータ室(18b)に流入するまでの間に、スクリューロータ(40)の吸入側端部である第1端部(42)の外側を通過する。該第1端部(42)の内側は、第1圧縮室(23)に吸入された冷媒により低圧になっているため、第1端部(42)の外側と内側とで差圧が生じる。そのため、第1端部(42)外側の中間圧冷媒が第1端部(42)とシリンダ部(16)とのすき間を流通し、第1圧縮室(23)に流入する恐れがある(図9の破線)。中間圧冷媒が第1圧縮室(23)の吸入側に流入すると、第1圧縮室(23)内において冷媒の吸入圧と吐出圧とに差圧が小さくなり、圧縮効率が低下してしまう。 Here, as shown in FIG. 9, the intermediate pressure discharged refrigerant compressed in the first compression chamber (23) flows into the screw rotor (40) before flowing into the second gate rotor chamber (18b). It passes outside the first end (42), which is the suction side end. Since the inside of the first end (42) is at a low pressure due to the refrigerant sucked into the first compression chamber (23), a pressure difference occurs between the outside and inside of the first end (42). Therefore, the intermediate pressure refrigerant outside the first end (42) may flow through the gap between the first end (42) and the cylinder part (16) and flow into the first compression chamber (23) (Fig. 9 dashed line). When the intermediate pressure refrigerant flows into the suction side of the first compression chamber (23), the pressure difference between the suction pressure and the discharge pressure of the refrigerant becomes small in the first compression chamber (23), resulting in a decrease in compression efficiency.
 このことに対して本実施形態のスクリュー圧縮機(10)では、吸入側端部である第1端部(42)における前記外周面(42a)または前記吸入側端部(42)における軸方向の第1端面(42b)が対向する第1面(F)に、冷媒の流通を抑制するシール部(80)を設けるように構成した。以下、シール部(80)について具体的に説明する。 In contrast, in the screw compressor (10) of the present embodiment, the outer circumferential surface (42a) at the first end (42) that is the suction side end or the axial direction at the suction side end (42) A seal portion (80) for suppressing the flow of refrigerant is provided on the first surface (F) facing the first end surface (42b). The seal portion (80) will be specifically explained below.
 (5)シール部
 図10に示すように、本実施形態のシール部(80)は、第1軸受部(21)に設けられる。具体的に、シール部(80)は、第1周壁(21c)の内周面(F)に設けられる。第1周壁(21c)の内周面(F)は、本開示の第1端部(42)が向かい合う第1面(F)の一例である。
(5) Seal portion As shown in FIG. 10, the seal portion (80) of this embodiment is provided in the first bearing portion (21). Specifically, the seal portion (80) is provided on the inner peripheral surface (F) of the first peripheral wall (21c). The inner peripheral surface (F) of the first peripheral wall (21c) is an example of the first surface (F) facing the first end (42) of the present disclosure.
 本実施形態のシール部(80)は、ラビリンスシールである。具体的に、第1周壁(21c)には、その内周面(F)の全周に亘って形成される複数の凹溝(81)が、軸方向に一定の間隔をおいて並んで形成される。この複数の凹溝(81)は、膨張室を形成する。例えば、第1端部(42)と第1軸受ホルダ(21b)との間の隙間(流路)に流入して第1圧縮室(23)に向かって流れる中間圧冷媒は、凹溝(81)に流入することで膨張(減圧される)した後、流路に流入する。この冷媒は、次の凹溝(81)に流入することで膨張(減圧される)した後、流路に流入する。このように、中間圧冷媒は、膨張室から流路への流入が複数回繰り返される。冷媒が膨張室から流路へ流れると、急にその流れやすさが阻害されることで流れの抵抗が生じ、圧力損失が発生する。圧力損失が発生することで、中間冷媒の第1圧縮室(23)への流入を抑制できる。 The seal portion (80) of this embodiment is a labyrinth seal. Specifically, the first circumferential wall (21c) has a plurality of grooves (81) formed along the entire circumference of its inner circumferential surface (F), which are lined up at regular intervals in the axial direction. be done. The plurality of grooves (81) form an expansion chamber. For example, the intermediate pressure refrigerant flows into the gap (flow path) between the first end (42) and the first bearing holder (21b) and flows toward the first compression chamber (23). ) and expands (depressurizes), then flows into the flow path. This refrigerant flows into the next groove (81) and is expanded (depressurized), and then flows into the flow path. In this way, the intermediate pressure refrigerant repeatedly flows into the flow path from the expansion chamber multiple times. When the refrigerant flows from the expansion chamber to the flow path, its ease of flow is suddenly inhibited, resulting in flow resistance and pressure loss. The occurrence of pressure loss can suppress the intermediate refrigerant from flowing into the first compression chamber (23).
 (6)特徴
 (6-1)特徴1
 本実施形態のスクリュー圧縮機(10)では、スクリューロータ(40)の第1端部(42)(吸入側端部)は、第1外周面(42a)がシリンダ部(16)の内周面に沿うように円筒形に形成される。第1端部(42)が対向する第1面(F)には、冷媒の流通を抑制するシール部(80)が設けられる。
(6) Features (6-1) Feature 1
In the screw compressor (10) of the present embodiment, the first end (42) (suction side end) of the screw rotor (40) has a first outer circumferential surface (42a) that is the inner circumferential surface of the cylinder portion (16). It is formed into a cylindrical shape along the A seal portion (80) for suppressing the flow of refrigerant is provided on the first surface (F) facing the first end portion (42).
 第1圧縮室(23)から吐出された中間圧冷媒は、第2圧縮室(24)に流入口に移動する際に第1端部(42)の外側の空間を流通する。第1端部(42)の内側の空間は第1圧縮室(23)であり低圧の冷媒が吸入される空間を形成するため、第1端部(42)を介して差圧が発生する。本実施形態によると、第1端部(42)が対向する第1面(F)にシール部(80)が設けられることにより、中間圧冷媒が第1端部(42)と該第1面(F)との間を流通することを抑制できる。その結果、圧縮室内の高低差圧を十分に確保でき、スクリュー圧縮機の能力低下を抑制できる。 The intermediate pressure refrigerant discharged from the first compression chamber (23) flows through the space outside the first end (42) when moving to the inlet of the second compression chamber (24). The space inside the first end (42) is the first compression chamber (23) and forms a space into which low-pressure refrigerant is sucked, so a pressure difference is generated across the first end (42). According to the present embodiment, the seal portion (80) is provided on the first surface (F) that the first end (42) faces, so that the intermediate pressure refrigerant can flow between the first end (42) and the first surface. (F) can be suppressed from being distributed between. As a result, a sufficient level differential pressure within the compression chamber can be ensured, and a decrease in the capacity of the screw compressor can be suppressed.
 (6-2)特徴2
 本実施形態のスクリュー圧縮機(10)では、シリンダ部(16)内に固定され、駆動軸(19)を支持する第1軸受部(21)を備える。第1軸受部(21)は、第1端部(42)に隣接して配置され、シール部(80)は、第1軸受部(21)に設けられる。
(6-2) Feature 2
The screw compressor (10) of this embodiment includes a first bearing part (21) fixed within the cylinder part (16) and supporting the drive shaft (19). The first bearing portion (21) is arranged adjacent to the first end portion (42), and the seal portion (80) is provided on the first bearing portion (21).
 本実施形態によると、第1端部(42)の第1面(F)は、第1軸受ホルダ(21b)にあり、シール部(80)は、第1軸受ホルダ(21b)に設けられる。このことで、第1軸受ホルダ(21b)と第1端部(42)との間を冷媒が流通することを抑制できる。このように、第1軸受部(21)は、駆動軸(19)の軸受け機能と冷媒の流通を抑制するシール機能とを有する。加えて、第1軸受ホルダ(21b)をシリンダ部(16)内に取り付ける前にシール部(80)を設けることができるため、シリンダ部(16)内にシール部(80)を設ける場合よりも簡便にシール部(80)を形成できる。 According to this embodiment, the first surface (F) of the first end (42) is located on the first bearing holder (21b), and the seal portion (80) is provided on the first bearing holder (21b). This can suppress the refrigerant from flowing between the first bearing holder (21b) and the first end (42). In this way, the first bearing portion (21) has a bearing function for the drive shaft (19) and a sealing function for suppressing the flow of refrigerant. In addition, since the seal part (80) can be provided before installing the first bearing holder (21b) into the cylinder part (16), it is easier to install the seal part (80) than if the seal part (80) is provided inside the cylinder part (16). The seal portion (80) can be easily formed.
 (6-3)特徴3
 本実施形態のスクリュー圧縮機(10)では、第1軸受部(21)は、シリンダ部(16)内面と、第1端部(42)外周面との間に配置される第1周壁(21c)(つば部)を有し、シール部(80)は、第1周壁(21c)に設けられる。
(6-3) Feature 3
In the screw compressor (10) of the present embodiment, the first bearing portion (21) has a first peripheral wall (21c) disposed between the inner surface of the cylinder portion (16) and the outer peripheral surface of the first end portion (42). ) (flange portion), and the seal portion (80) is provided on the first peripheral wall (21c).
 本実施形態によると、第1周壁(21c)の内周面にシール部(80)を設けることができる。また、第1周壁(21c)の内周面と第1端面(42b)とにより、第1軸受ホルダ(21b)と第1端部(42)とが接する面積を大きくできる。この面積を大きくすることで、第1軸受ホルダ(21b)と第1端部(42)との隙間である冷媒の流通する流路を長くすることができ、シール部(80)に加えて、冷媒の流通抑制効果を大きくできる。 According to this embodiment, the seal portion (80) can be provided on the inner peripheral surface of the first peripheral wall (21c). Moreover, the inner peripheral surface of the first peripheral wall (21c) and the first end surface (42b) can increase the contact area between the first bearing holder (21b) and the first end (42). By increasing this area, the flow path through which the refrigerant flows, which is the gap between the first bearing holder (21b) and the first end (42), can be lengthened. The effect of suppressing the flow of refrigerant can be increased.
 (6-4)特徴4
 本実施形態のスクリュー圧縮機(10)では、圧縮室(25)は、ケーシング(11)内に導入される吸入圧力の流体を中間圧力まで圧縮する第1圧縮室(23)と、前記中間圧力の流体を吐出圧力まで圧縮する第2圧縮室(24)とを備える。
(6-4) Feature 4
In the screw compressor (10) of the present embodiment, the compression chamber (25) includes a first compression chamber (23) that compresses the suction pressure fluid introduced into the casing (11) to an intermediate pressure, and a first compression chamber (23) that compresses the fluid at the suction pressure introduced into the casing (11) to an intermediate pressure. and a second compression chamber (24) for compressing the fluid to the discharge pressure.
 本実施形態によると、第1圧縮室(23)から吐出された中間圧の流体の一部が、第2圧縮室(24)に移動する過程で吸入側端部(42)を介して再び第1圧縮室(23)に吸入されることを抑制できる。 According to this embodiment, a part of the intermediate pressure fluid discharged from the first compression chamber (23) passes through the suction side end (42) again during the process of moving to the second compression chamber (24). Inhalation into the first compression chamber (23) can be suppressed.
 (6-5)特徴5
 本実施形態のスクリュー圧縮機(10)では、シール部(80)は、ラビリンスシールで構成される。このことにより、比較的簡便にシール部(80)を構成できる。
(6-5) Feature 5
In the screw compressor (10) of this embodiment, the seal portion (80) is configured with a labyrinth seal. Thereby, the seal portion (80) can be configured relatively easily.
 (7)変形例
 上記実施形態は、以下の構成としてもよい。以下では、上記実施形態と異なる構成について説明する。
(7) Modification The above embodiment may have the following configuration. Below, configurations different from those of the above embodiment will be explained.
 (7-1)変形例1
 本例のシール部(80)は表面テクスチャ(表面テクスチャリング)である。表面テクスチャは、第1周壁(21c)の内周面に形成される。表面テクスチャでは、正圧を発生させるレイリーステップ、および負圧を発生させる逆レイリーステップが適宜形成される。レイリーステップでは、第1周壁(21c)の内周面と第1端部(42)の外周面との摩擦を抑えることができる。逆レイリーステップでは、第1周壁(21c)の内周面と第1端部(42)の外周面との隙間に流入する冷媒を吸い戻すことができる。本例では、中間圧力冷媒が第1圧縮室(23)に流入しないように逆レイリーステップが採用されてもよい。 
(7-1) Modification example 1
The seal portion (80) in this example has a surface texture (surface texturing). The surface texture is formed on the inner peripheral surface of the first peripheral wall (21c). In the surface texture, Rayleigh steps that generate positive pressure and reverse Rayleigh steps that generate negative pressure are formed as appropriate. The Rayleigh step can suppress friction between the inner peripheral surface of the first peripheral wall (21c) and the outer peripheral surface of the first end (42). In the reverse Rayleigh step, the refrigerant flowing into the gap between the inner peripheral surface of the first peripheral wall (21c) and the outer peripheral surface of the first end (42) can be sucked back. In this example, a reverse Rayleigh step may be adopted so that the intermediate pressure refrigerant does not flow into the first compression chamber (23).
 (7-2)変形例2
 図11に示すように、本例のシール部(80)は、第1軸受ホルダ(21b)の第1端面(42b)に対向する面に形成される。第1端面(42b)に対向する面は、本開示の第1面(F)の一例である。例えば、シール部(80)がラビリンスシールである場合、第1端面(42b)上には、第1軸受ホルダ(21b)の筒軸を中心とする同心円状に複数の凹溝(81)が一定の間隔をおいて形成される。
(7-2) Modification example 2
As shown in FIG. 11, the seal portion (80) of this example is formed on the surface facing the first end surface (42b) of the first bearing holder (21b). The surface facing the first end surface (42b) is an example of the first surface (F) of the present disclosure. For example, when the seal portion (80) is a labyrinth seal, a plurality of concave grooves (81) are formed on the first end surface (42b) concentrically around the cylindrical axis of the first bearing holder (21b). are formed at intervals of .
 (7-3)変形例3
 図12に示すように、本例のシール部(80)は、第1周壁(21c)の内周面および第1軸受ホルダ(21b)の第1端面(42b)に形成される。このように第1端部(42)に対向する両面においてシール部(80)を設けることにより、第1端部(42)と軸受ホルダ(21b,22b)との隙間に冷媒が流通することを確実に抑制できる。
(7-3) Modification example 3
As shown in FIG. 12, the seal portion (80) of this example is formed on the inner peripheral surface of the first peripheral wall (21c) and the first end surface (42b) of the first bearing holder (21b). By providing the seal portions (80) on both surfaces facing the first end (42) in this manner, the refrigerant is prevented from flowing into the gap between the first end (42) and the bearing holder (21b, 22b). It can definitely be suppressed.
 (7-4)変形例4
 図13に示すように、本例の第1軸受部(21)は、第1軸受ホルダ(21b)を有さない。この場合、第1軸受(21a)は、シリンダ部(16)内部に埋め込まれており、シリンダ部(16)の内側には、第1端面(42b)に向かい合うシリンダ端面(26)が形成されている。本例において、本開示の第1面(F)は、第1外周面(42a)に対向するシリンダ部(16)内周面、および第1端面(42b)に対向するシリンダ端面(26)である。本例では、シール部(80)は、第1外周面(42a)と対向するシリンダ部(16)の内周面に設けられる。シール部(80)は、第1端部(42)の端面に対向するシリンダ端面(26)に設けられてもよい。また、シール部(80)は、第1外周面(42a)と対向するシリンダ部(16)の内周面、および、第1端部(42)の端面に対向するシリンダ端面(26)の両方に設けられてもよい。
(7-4) Modification example 4
As shown in FIG. 13, the first bearing part (21) of this example does not have the first bearing holder (21b). In this case, the first bearing (21a) is embedded inside the cylinder part (16), and a cylinder end face (26) facing the first end face (42b) is formed inside the cylinder part (16). There is. In this example, the first surface (F) of the present disclosure is the inner peripheral surface of the cylinder part (16) facing the first outer peripheral surface (42a), and the cylinder end surface (26) facing the first end surface (42b). be. In this example, the seal portion (80) is provided on the inner circumferential surface of the cylinder portion (16) facing the first outer circumferential surface (42a). The seal portion (80) may be provided on the cylinder end surface (26) opposite to the end surface of the first end (42). Further, the seal portion (80) is attached to both the inner peripheral surface of the cylinder portion (16) facing the first outer peripheral surface (42a) and the cylinder end surface (26) facing the end surface of the first end portion (42). may be provided.
 (7-5)変形例5
 図14に示すように、本例の冷媒回路(2)は、エコノマイザ回路(90)を有する。本例のエコノマイザ回路(90)は、中間圧の冷媒を圧縮室(25)に供給する。図14中の矢印は冷媒が流れる向きを示す。
(7-5) Modification example 5
As shown in FIG. 14, the refrigerant circuit (2) of this example includes an economizer circuit (90). The economizer circuit (90) of this example supplies intermediate pressure refrigerant to the compression chamber (25). The arrows in FIG. 14 indicate the direction in which the refrigerant flows.
 本例のケーシング(11)内には、冷媒が気液分離される気液分離空間(S3)が形成される。気液分離空間(S3)は圧縮室(25)の吸入側に隣り合う。ケーシング(11)内の高圧空間(S2)は、圧縮室(25)の吐出側に隣り合う。冷媒の吸入口は、圧縮室(25)に吸入側に設けられる。本例のスクリュー圧縮機(10)は、単段に構成される。 A gas-liquid separation space (S3) in which the refrigerant is separated into gas and liquid is formed within the casing (11) of this example. The gas-liquid separation space (S3) is adjacent to the suction side of the compression chamber (25). The high pressure space (S2) within the casing (11) is adjacent to the discharge side of the compression chamber (25). A refrigerant suction port is provided on the suction side of the compression chamber (25). The screw compressor (10) of this example is configured in a single stage.
 本例の冷媒回路(2)において、凝縮器(3)の流入側は、スクリュー圧縮機(10)の高圧空間に連通する。凝縮器(3)の流出側は、スクリュー圧縮機(10)の気液分離空間(S3)に連通する。凝縮器(3)と気液分離空間(S3)との間には、第1膨張弁(4a)が設けられる。 In the refrigerant circuit (2) of this example, the inflow side of the condenser (3) communicates with the high pressure space of the screw compressor (10). The outflow side of the condenser (3) communicates with the gas-liquid separation space (S3) of the screw compressor (10). A first expansion valve (4a) is provided between the condenser (3) and the gas-liquid separation space (S3).
 蒸発器(5)の流入側は、スクリュー圧縮機(10)の気液分離空間(S3)に連通する。蒸発器(5)の流出側は、スクリュー圧縮機(10)の圧縮室(25)の吸入側に連通する。気液分離空間(S3)と蒸発器(5)との間には、第2膨張弁(4b)が設けられる。 The inflow side of the evaporator (5) communicates with the gas-liquid separation space (S3) of the screw compressor (10). The outflow side of the evaporator (5) communicates with the suction side of the compression chamber (25) of the screw compressor (10). A second expansion valve (4b) is provided between the gas-liquid separation space (S3) and the evaporator (5).
 エコノマイザ回路(90)は、気液分離空間(S3)と圧縮室(25)とを連通する。エコノマイザ回路(90)では、気液分離空間(S3)の気相の中間圧冷媒が、圧縮室(25)の中間圧空間に流入する。エコノマイザ回路(90)には、流量調節弁(91)が接続される。流量調節弁(91)は、エコノマイザ回路(90)に流れる冷媒流量を調節する。 The economizer circuit (90) communicates the gas-liquid separation space (S3) and the compression chamber (25). In the economizer circuit (90), the gas phase intermediate pressure refrigerant in the gas-liquid separation space (S3) flows into the intermediate pressure space in the compression chamber (25). A flow rate control valve (91) is connected to the economizer circuit (90). The flow control valve (91) adjusts the flow rate of refrigerant flowing into the economizer circuit (90).
 本例のスクリュー圧縮機(10)の構成では、圧縮室(25)は、その吸入側において気液分離空間(S3)と隣接している。そのため、シール部(80)により、気液分離空間(S3)の中間圧冷媒が、スクリューロータ(40)の第1端部(42)とシリンダ部(16)との隙間を流通して圧縮室(25)に流入することを抑制できる。 In the configuration of the screw compressor (10) of this example, the compression chamber (25) is adjacent to the gas-liquid separation space (S3) on its suction side. Therefore, the seal part (80) allows the intermediate pressure refrigerant in the gas-liquid separation space (S3) to flow through the gap between the first end (42) of the screw rotor (40) and the cylinder part (16) into the compression chamber. (25).
 (8)その他の実施形態
 上記実施形態および各変形例において、シール部(80)は、第2軸受ホルダ(22b)にも設けられてもよい。例えば、シール部(80)は、第2周壁(22c)の内周面にも設けられてもよい。
(8) Other Embodiments In the above embodiment and each modification, the seal portion (80) may also be provided on the second bearing holder (22b). For example, the seal portion (80) may also be provided on the inner peripheral surface of the second peripheral wall (22c).
 上記実施形態において、第1軸受ホルダ(21b)は、第1周壁(21c)を有さなくてもよい。この場合、本開示の第1面(F)は、第1外周面(42a)に向かい合うシリンダ部(16)内周面、および第1端面(42b)に向かう軸受ホルダ(21b,22b)の端面である。この場合、シール部(80)は、第1外周面(42a)に向かい合うシリンダ部(16)内周面、第1端面(42b)に向かう軸受ホルダ(21b,22b)の端面、またはそれら両方に設けられる。 In the above embodiment, the first bearing holder (21b) does not need to have the first peripheral wall (21c). In this case, the first surface (F) of the present disclosure includes the inner peripheral surface of the cylinder part (16) facing the first outer peripheral surface (42a) and the end surface of the bearing holder (21b, 22b) facing the first end surface (42b). It is. In this case, the seal portion (80) is attached to the inner peripheral surface of the cylinder portion (16) facing the first outer peripheral surface (42a), the end surface of the bearing holder (21b, 22b) facing the first end surface (42b), or both. provided.
 上記実施形態および上記各変形例において、シール部(80)は、第1端部(42)の内側(圧縮室)と第1端部(42)の外側の空間との流通を抑制できればよく、いずれか一方の流通を抑制するように構成されてもよい。 In the above embodiment and each modification, the seal portion (80) only needs to be able to suppress the flow between the inside (compression chamber) of the first end (42) and the space outside the first end (42); It may be configured to suppress the distribution of either one.
 シール部(80)のラビリンスの構造に特定に限定はない。ラビリンスは、アキシアルラビリンス、ラジアルラビリンス、調心形ラビリンス等であってもよい。 There is no particular limitation on the structure of the labyrinth of the seal portion (80). The labyrinth may be an axial labyrinth, a radial labyrinth, an aligned labyrinth, or the like.
 冷凍装置(1)は、給湯器、チラーユニット、庫内の空気を冷却する冷却装置に適用されてもよい。 The refrigeration device (1) may be applied to a water heater, a chiller unit, or a cooling device that cools the air inside the refrigerator.
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。以上に述べた「第1」、「第2」、…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。 Although the embodiments and modifications have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the claims. Furthermore, the above embodiments and modifications may be combined or replaced as appropriate, as long as the functionality of the object of the present disclosure is not impaired. The descriptions of "first", "second", etc. mentioned above are used to distinguish the words to which these descriptions are given, and do not limit the number or order of the words. .
 以上説明したように、本開示は、スクリュー圧縮機および冷凍装置について有用である。 As explained above, the present disclosure is useful for screw compressors and refrigeration equipment.
  1   空気調和機(冷凍装置)
  10  スクリュー圧縮機
  11  ケーシング
  13  電動機
  16  シリンダ部
  19  駆動軸
  21  第1軸受部(軸受部)
  21c 第1周壁(つば部)
  23  圧縮室
  24  第1圧縮室
  25  第2圧縮室
  40  スクリューロータ
  41  スクリュー溝
  42  第1端部(吸入側端部)
  50  ゲートロータ
  53  ゲート
  80  シール部
  F   第1面(内周面)
1 Air conditioner (refrigeration equipment)
10 Screw compressor 11 Casing 13 Electric motor 16 Cylinder section 19 Drive shaft 21 First bearing section (bearing section)
21c 1st peripheral wall (brim part)
23 Compression chamber 24 First compression chamber 25 Second compression chamber 40 Screw rotor 41 Screw groove 42 First end (suction side end)
50 Gate rotor 53 Gate 80 Seal part F 1st surface (inner peripheral surface)

Claims (8)

  1.  シリンダ部(16)を内部に有するケーシング(11)と、
     前記ケーシング(11)内に配置される電動機(13)と、
     前記電動機(13)に接続され、軸回転するように駆動される駆動軸(19)と、
     前記シリンダ部(16)内に配置され、前記駆動軸(19)に接続されるスクリューロータ(40)と、
     前記スクリューロータ(40)のスクリュー溝(41)に噛合するゲート(53)を有するゲートロータ(50)とを備え、
     前記シリンダ部(16)の内部で、前記スクリューロータ(40)とゲート(53)とで圧縮室が形成されるスクリュー圧縮機であって、
     前記スクリューロータ(40)の吸入側端部(42)は、外周面(42a)が前記シリンダ部(16)の内周面に沿うように円筒形に形成され、
     前記吸入側端部(42)における前記外周面(42a)または前記吸入側端部(42)における軸方向の第1端面(42b)が対向する第1面(F)には、流体の流通を抑制するシール部(80)が設けられる
     ことを特徴とするスクリュー圧縮機。
    a casing (11) having a cylinder part (16) therein;
    an electric motor (13) disposed within the casing (11);
    a drive shaft (19) connected to the electric motor (13) and driven to rotate;
    a screw rotor (40) disposed within the cylinder portion (16) and connected to the drive shaft (19);
    a gate rotor (50) having a gate (53) that meshes with the screw groove (41) of the screw rotor (40);
    A screw compressor in which a compression chamber is formed by the screw rotor (40) and the gate (53) inside the cylinder part (16),
    The suction side end (42) of the screw rotor (40) is formed in a cylindrical shape so that the outer peripheral surface (42a) follows the inner peripheral surface of the cylinder part (16),
    A first surface (F) opposite to the outer circumferential surface (42a) of the suction side end (42) or the first axial end surface (42b) of the suction side end (42) is configured to allow fluid to flow therethrough. A screw compressor characterized by being provided with a sealing part (80) for suppressing.
  2.  前記シリンダ部(16)内に固定され、前記駆動軸(19)を支持する軸受部(21)を備え、
     前記軸受部(21)は、前記吸入側端部(42)に隣接して配置され、
     前記シール部(80)は、前記軸受部(21)に設けられる
     ことを特徴とする請求項1に記載のスクリュー圧縮機。
    a bearing part (21) fixed within the cylinder part (16) and supporting the drive shaft (19);
    The bearing part (21) is arranged adjacent to the suction side end part (42),
    The screw compressor according to claim 1, wherein the seal portion (80) is provided in the bearing portion (21).
  3.  前記シール部(80)は、前記吸入側端部(42)の軸方向端面に対向する前記軸受部(21)の前記第1面(F)に設けられることを特徴とする請求項2に記載のスクリュー圧縮機。 3. The seal portion (80) is provided on the first surface (F) of the bearing portion (21) opposite to the axial end surface of the suction side end portion (42). screw compressor.
  4.  前記軸受部(21)は、前記シリンダ部(16)内面と、前記吸入側端部(42)の前記外周面(42a)との間に配置されるつば部(21c)を有し、
     前記シール部(80)は、前記つば部(21c)に設けられる請求項2または3に記載のスクリュー圧縮機。
    The bearing portion (21) has a flange portion (21c) disposed between the inner surface of the cylinder portion (16) and the outer circumferential surface (42a) of the suction side end portion (42),
    The screw compressor according to claim 2 or 3, wherein the seal portion (80) is provided in the collar portion (21c).
  5.  前記ゲートロータ(50)は、第1ゲートロータ(50a)および第2ゲートロータ(50b)を有し、
     前記圧縮室(25)は、
     前記第1ゲートロータ(50a)と前記スクリューロータ(40)とにより形成され、前記ケーシング(11)内に導入される吸入圧力の流体を中間圧力まで圧縮する第1圧縮室(23)と、
     前記第2ゲートロータ(50b)と前記スクリューロータ(40)とにより形成され、前記中間圧力の流体を吐出圧力まで圧縮する第2圧縮室(24)とを備える
     ことを特徴とする請求項1~4のいずれか1つに記載のスクリュー圧縮機。
    The gate rotor (50) has a first gate rotor (50a) and a second gate rotor (50b),
    The compression chamber (25) is
    a first compression chamber (23) formed by the first gate rotor (50a) and the screw rotor (40) and compressing fluid at suction pressure introduced into the casing (11) to an intermediate pressure;
    Claims 1 to 3, further comprising a second compression chamber (24) formed by the second gate rotor (50b) and the screw rotor (40) and compressing the fluid at the intermediate pressure to a discharge pressure. 4. The screw compressor according to any one of 4.
  6.  前記シール部(80)は、ラビリンスシールで構成されることを特徴とする請求項1~5のいずれか1つに記載のスクリュー圧縮機。 The screw compressor according to any one of claims 1 to 5, wherein the seal portion (80) is comprised of a labyrinth seal.
  7.  前記シール部(80)は、表面テクスチャで構成されることを特徴とする請求項1~5のいずれか1つに記載のスクリュー圧縮機。 The screw compressor according to any one of claims 1 to 5, wherein the seal portion (80) is configured with a surface texture.
  8.  請求項1~7のいずれか1つに記載のスクリュー圧縮機を備えた冷凍装置。 A refrigeration system comprising the screw compressor according to any one of claims 1 to 7.
PCT/JP2023/011627 2022-03-23 2023-03-23 Screw compressor and freezer WO2023182457A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022047041 2022-03-23
JP2022-047041 2022-03-23

Publications (1)

Publication Number Publication Date
WO2023182457A1 true WO2023182457A1 (en) 2023-09-28

Family

ID=88101680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011627 WO2023182457A1 (en) 2022-03-23 2023-03-23 Screw compressor and freezer

Country Status (2)

Country Link
JP (1) JP2023143865A (en)
WO (1) WO2023182457A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286986A (en) * 2002-03-27 2003-10-10 Mitsubishi Electric Corp Single screw compressor
JP2009275567A (en) * 2008-05-14 2009-11-26 Mitsubishi Electric Corp Screw compressor
JP2010249047A (en) * 2009-04-16 2010-11-04 Mitsubishi Electric Corp Screw compressor
JP2010249046A (en) * 2009-04-16 2010-11-04 Mitsubishi Electric Corp Screw compressor
JP2010249045A (en) * 2009-04-16 2010-11-04 Mitsubishi Electric Corp Screw compressor
JP2013536916A (en) * 2010-08-30 2013-09-26 オスコンプ システムズ インク Compressor for cooling by liquid injection
WO2018051867A1 (en) * 2016-09-14 2018-03-22 イーグル工業株式会社 Mechanical seal
US20200300244A1 (en) * 2019-03-22 2020-09-24 Vilter Manufacturing Llc Seal assembly for high pressure single screw compressor
JP2021162021A (en) * 2020-03-31 2021-10-11 ダイキン工業株式会社 Screw compressor and refrigeration device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286986A (en) * 2002-03-27 2003-10-10 Mitsubishi Electric Corp Single screw compressor
JP2009275567A (en) * 2008-05-14 2009-11-26 Mitsubishi Electric Corp Screw compressor
JP2010249047A (en) * 2009-04-16 2010-11-04 Mitsubishi Electric Corp Screw compressor
JP2010249046A (en) * 2009-04-16 2010-11-04 Mitsubishi Electric Corp Screw compressor
JP2010249045A (en) * 2009-04-16 2010-11-04 Mitsubishi Electric Corp Screw compressor
JP2013536916A (en) * 2010-08-30 2013-09-26 オスコンプ システムズ インク Compressor for cooling by liquid injection
WO2018051867A1 (en) * 2016-09-14 2018-03-22 イーグル工業株式会社 Mechanical seal
US20200300244A1 (en) * 2019-03-22 2020-09-24 Vilter Manufacturing Llc Seal assembly for high pressure single screw compressor
JP2021162021A (en) * 2020-03-31 2021-10-11 ダイキン工業株式会社 Screw compressor and refrigeration device

Also Published As

Publication number Publication date
JP2023143865A (en) 2023-10-06

Similar Documents

Publication Publication Date Title
US10378539B2 (en) System including high-side and low-side compressors
US10962008B2 (en) Variable volume ratio compressor
EP3358193B1 (en) Co-rotating compressor with multiple compression mechanisms and system having same
JP2008524515A (en) Variable capacity rotary compressor
JP5228905B2 (en) Refrigeration equipment
US7722341B2 (en) Scroll compressor having variable height scroll
JP6568841B2 (en) Hermetic rotary compressor and refrigeration air conditioner
WO2013005568A1 (en) Multi-cylinder rotary compressor and refrigeration cycle device
JP5338314B2 (en) Compressor and refrigeration equipment
KR100724452B1 (en) Modulation type rotary compressor
CN108361195A (en) Variable displacement screw compressor
WO2023182457A1 (en) Screw compressor and freezer
CN107642487B (en) Sector step for scroll compressor
CN111868384B (en) Multistage compressor
WO2010013375A1 (en) Rotary compressor
CN112412789B (en) Compressor and refrigeration cycle device
JP7213382B1 (en) Scroll compressor and refrigeration cycle device
US20240003348A1 (en) Compressor with Oil Pump
WO2023162744A1 (en) Screw compressor and refrigeration device
JP5738030B2 (en) Rotary compressor and refrigeration cycle apparatus
WO2016088207A1 (en) Refrigeration cycle circuit
JP2000009065A (en) Scroll type compressor
KR100724451B1 (en) Modulation type rotary compressor
KR101176951B1 (en) Modulation type rotary compressor
KR20230013200A (en) Rotary compressor and home appliance including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23775051

Country of ref document: EP

Kind code of ref document: A1