JP2007092722A - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
JP2007092722A
JP2007092722A JP2005286596A JP2005286596A JP2007092722A JP 2007092722 A JP2007092722 A JP 2007092722A JP 2005286596 A JP2005286596 A JP 2005286596A JP 2005286596 A JP2005286596 A JP 2005286596A JP 2007092722 A JP2007092722 A JP 2007092722A
Authority
JP
Japan
Prior art keywords
compression chamber
bypass
scroll
volume
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005286596A
Other languages
Japanese (ja)
Inventor
Yasuhiro Sakakibara
泰弘 榊原
Naoya Morozumi
尚哉 両角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2005286596A priority Critical patent/JP2007092722A/en
Publication of JP2007092722A publication Critical patent/JP2007092722A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an asymmetrical scroll compressor having good operating efficiency. <P>SOLUTION: The scroll compressor has an outer compression chamber bypass port with a check valve, which is formed in an end plate of a fixed scroll and brings a tip portion of an outer compression chamber Y into communication with a discharge chamber when an orbiting scroll turns from an angular position of confining the outer compression chamber Y over a bypass turning angle θ<SB>out</SB>and a confined volume V<SB>out</SB>(0) of the outer compression chamber Y is decreased to a predetermined bypass volume V<SB>out</SB>(a), and an inner compression chamber bypass port with a check valve, which is formed in the end plate of the fixed scroll and brings a tip portion of an inner compression chamber X into communication with the discharge chamber when the orbiting scroll turns from an angular position of confining the inner compression chamber X over a bypass turning angle θ<SB>in</SB>and a confined volume V<SB>in</SB>(0) of the inner compression chamber X is decreased to a predetermined bypass volume V<SB>in</SB>(a). The bypass turning angles θ<SB>out</SB>and θ<SB>in</SB>are set so that V<SB>in</SB>(a)/V<SB>in</SB>(0)>V<SB>out</SB>(a)/V<SB>out</SB>(0) is satisfied. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷蔵庫、冷凍庫及び空気調和機等のガス(冷媒)圧縮機として用いられるスクロール圧縮機に関するものである。   The present invention relates to a scroll compressor used as a gas (refrigerant) compressor such as a refrigerator, a freezer, and an air conditioner.

従来のスクロール圧縮機として、鏡板に渦巻体(スクロールラップ)を突設した固定スクロールと旋回スクロールとを備えたスクロール圧縮機において、前記固定スクロールと旋回スクロールとの間に形成する圧縮室(内圧縮室X、外圧縮室Y)のうち、吐出口に開口する直前の圧縮室(X1、Y1)と前記ケーシング内とをリリーフポート(バイパスポート)により連通し、このリリーフポートに、前記圧縮室(X1、Y1)から前記ケーシング内への流れのみを許すリリーフ弁(逆止弁)を設け、前記吐出口に開口する直前の圧縮室(X1、Y1)内のそれぞれの流体が、各圧縮室(内圧縮室X、外圧縮室Y)への前記流体の閉じ込み時における各圧縮室(X、Y)の容積に対する各圧縮室(X1、Y1)の容積の比が同じ値となった段階〔すなわち、{X1の容積Vin(a)/閉じ込み時における内圧縮室Xの容積Vin(0)}={Y1の容積Vout(a)/閉じ込み時における外圧縮室Yの容積Vout(0)}となった段階〕で位相差をもって前記ケーシング内に順次リリーフされる位置に前記リリーフポートを開口させたものがある(例えば、特許文献1参照)。 As a conventional scroll compressor, in a scroll compressor provided with a fixed scroll having a spiral body (scroll wrap) projecting on an end plate and a turning scroll, a compression chamber (internal compression) formed between the fixed scroll and the turning scroll Among the chamber X and the outer compression chamber Y), the compression chamber (X1, Y1) immediately before opening to the discharge port and the inside of the casing communicate with each other by a relief port (bypass port), and the compression chamber (X X1, Y1) is provided with a relief valve (check valve) that allows only the flow into the casing, and each fluid in the compression chamber (X1, Y1) immediately before opening to the discharge port is transferred to each compression chamber (X1, Y1). A stage in which the ratio of the volume of each compression chamber (X1, Y1) to the volume of each compression chamber (X, Y1) when the fluid is closed in the inner compression chamber X and the outer compression chamber Y) is the same value. [That is, {the volume V in (0) of the inner compression chamber X in volume V in (a) / confining when X1} = {Y1 volume of the outer compression chamber Y when the volume V out (a) / confining the There is one in which the relief port is opened at a position where relief is sequentially performed in the casing with a phase difference at the stage where V out (0)} is reached (see, for example, Patent Document 1).

特開2005−098308号公報(請求項1、図4)Japanese Patent Laying-Open No. 2005-098308 (Claim 1, FIG. 4)

各圧縮室(内圧縮室X、外圧縮室Y)の容積減少による圧力上昇は、各圧縮室間で高圧ガス流体の漏れのない理想状態では、各圧縮室の容積減少と各圧縮室内の高圧ガス流体の温度上昇とにより決まる。しかしながら、隣り合う圧縮室間においては、各スクロールの加工精度や熱変形等により各圧縮室間に微小な隙間ができ、高圧側の圧縮室から低圧側の圧縮室へガス流体が漏れて流入するので、低圧側の圧縮室の圧力上昇は、漏れのない理想状態よりも大きくなる。   In an ideal state where there is no leakage of high-pressure gas fluid between the compression chambers, the pressure increase due to the volume reduction of each compression chamber (inner compression chamber X, outer compression chamber Y) is caused by the volume decrease of each compression chamber and the high pressure in each compression chamber. It depends on the temperature rise of the gas fluid. However, between adjacent compression chambers, there are minute gaps between the compression chambers due to the processing accuracy of each scroll, thermal deformation, etc., and the gas fluid leaks from the high-pressure side compression chamber to the low-pressure side compression chamber. Therefore, the pressure increase in the compression chamber on the low pressure side is larger than the ideal state without leakage.

図3は、閉じ込み時における外圧縮室Yの容積Vout(0)を20ccとし、閉じ込み時における内圧縮室Xの容積Vin(0)を16ccとしたときの外圧縮室Y及び内圧縮室Xの容積[cc]と圧力比との関係を示す図であり、図6は、外圧縮室Y及び内圧縮室Xそれぞれの圧縮容積比と、高圧ガス流体の漏れを考慮した圧力比との関係を示す図である。 FIG. 3 shows the outer compression chamber Y and the inner compression chamber when the volume V out (0) of the outer compression chamber Y when closed is 20 cc and the volume V in (0) of the inner compression chamber X when closed is 16 cc. FIG. 6 is a diagram showing the relationship between the volume [cc] of the compression chamber X and the pressure ratio. FIG. 6 shows the compression volume ratio of each of the outer compression chamber Y and the inner compression chamber X and the pressure ratio in consideration of leakage of the high-pressure gas fluid. It is a figure which shows the relationship.

図3に示すように、外圧縮室Yの閉じ込み容積Vout(0)が内圧縮室Xの閉じ込み容積Vin(0)より大きい(図3の例では、Vin(0)/Vout(0)=16cc/20cc=0.8)非対称型のスクロール圧縮機においては、同じ容積となったときの外圧縮室Yの圧力と内圧縮室Xの圧力とを比較すると、外圧縮室Yの方が高い圧力となる(図3では、吸入圧力を1として圧力比で示してある。)。従って、図6に示すように、隣接する外圧縮室Yから内圧縮室Xへのガス流体の流入により、同じ圧縮容積比における圧力は、外圧縮室Yよりも内圧縮室Xの方が高くなってしまう(漏れを考慮した内圧縮室Xの圧力が、漏れのない理想状態よりも高くなるのは、図2−4の矢印Mで示すように、隣接する高圧の外圧縮室Yから高圧ガス流体が流入するためである。)。 As shown in FIG. 3, the confining volume V out (0) of the outer compression chamber Y is larger than the confining volume V in (0) of the inner compression chamber X ( in the example of FIG. 3, V in (0) / V out (0) = 16 cc / 20 cc = 0.8) In the asymmetric scroll compressor, when the pressure in the outer compression chamber Y and the pressure in the inner compression chamber X at the same volume are compared, the outer compression chamber Y is a higher pressure (in FIG. 3, the suction pressure is 1 and is shown as a pressure ratio). Therefore, as shown in FIG. 6, the pressure in the same compression volume ratio is higher in the inner compression chamber X than in the outer compression chamber Y due to the inflow of the gas fluid from the adjacent outer compression chamber Y to the inner compression chamber X. (The pressure in the inner compression chamber X in consideration of leakage is higher than the ideal state without leakage as indicated by the arrow M in FIG. 2-4. This is because the gas fluid flows in.)

すなわち、図6に示すように、Vin(x)/Vin(0)=Vout(x)/Vout(0)となる内圧縮室Xの圧力と外圧縮室Yの圧力とを比較すると、内圧縮室Xの圧力の方が外圧縮室Yの圧力より高くなっている。つまり、同じ圧縮容積比であっても、高圧ガス流体の漏れのある実運転上の圧力は、内圧縮室Xの方が高くなっている。 That is, as shown in FIG. 6, the pressure in the inner compression chamber X and V in (x) / V in (0) = V out (x) / V out (0) are compared with the pressure in the outer compression chamber Y. Then, the pressure in the inner compression chamber X is higher than the pressure in the outer compression chamber Y. That is, even when the compression volume ratio is the same, the pressure in actual operation where the high-pressure gas fluid leaks is higher in the inner compression chamber X.

従って、上記の背景技術のように、内圧縮室Xと外圧縮室Yで圧縮容積比が同じとなる位置にバイパスポートを設けると、内圧縮室Xの方が、圧力が高い状態でバイパスポートと連通することになる。すなわち、バイパスを開始すべき所定の圧力に対し、少なくとも一方の圧縮室の圧力に差が発生することとなり、外圧縮室Yの圧力を所定の圧力とした場合、内圧縮室Xの圧力は過圧縮状態となり、スクロール圧縮機が無駄な過圧縮仕事を行うので、運転効率が低下する。   Therefore, when the bypass port is provided at a position where the compression volume ratio is the same in the inner compression chamber X and the outer compression chamber Y as in the background art described above, the inner compression chamber X has a higher pressure than the bypass port. It will communicate with. That is, a difference occurs in the pressure of at least one compression chamber with respect to the predetermined pressure at which bypass should be started. When the pressure in the outer compression chamber Y is set to the predetermined pressure, the pressure in the inner compression chamber X is excessive. Since the compressor is in a compressed state and the scroll compressor performs useless overcompression work, the operation efficiency is lowered.

本発明は、上記に鑑みてなされたものであって、運転効率のよい非対称型のスクロール圧縮機を得ることを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to obtain an asymmetric scroll compressor with high operating efficiency.

上述した課題を解決し、目的を達成するために、本発明は、固定スクロールのラップ溝内の、旋回スクロールラップの内側に形成される内圧縮室Xの閉じ込み容積Vin(0)が、前記旋回スクロールラップの外側に形成される外圧縮室Yの閉じ込み容積Vout(0)よりも小さい非対称型の圧縮室と、前記固定スクロールの鏡板に設けられ、前記旋回スクロールが前記外圧縮室Yの閉じ込み角度位置からバイパス旋回角θout旋回し、前記外圧縮室Yの閉じ込み容積Vout(0)が縮小して所定のバイパス容積Vout(a)となったときに前記外圧縮室Yの先端部を吐出室に連通する逆止弁付の外圧縮室バイパスポートと、前記固定スクロールの鏡板に設けられ、前記旋回スクロールが前記内圧縮室Xの閉じ込み角度位置からバイパス旋回角θin旋回し、前記内圧縮室Xの閉じ込み容積Vin(0)が縮小して所定のバイパス容積Vin(a)となったときに前記内圧縮室Xの先端部を前記吐出室に連通する逆止弁付の内圧縮室バイパスポートと、を備えたスクロール圧縮機において、Vin(a)/Vin(0)>Vout(a)/Vout(0)となるように、前記旋回スクロールの前記バイパス旋回角θout及びθinを設定したことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a closed volume V in (0) of the inner compression chamber X formed inside the orbiting scroll wrap in the wrap groove of the fixed scroll. An asymmetric type compression chamber smaller than the confining volume V out (0) of the outer compression chamber Y formed outside the orbiting scroll wrap, and a fixed scroll end plate, and the orbiting scroll is provided in the outer compression chamber When the bypass turning angle θ out turns from the closing angle position of Y and the closing volume V out (0) of the outer compression chamber Y is reduced to the predetermined bypass volume V out (a), the outer compression is performed. An outer compression chamber bypass port with a check valve that communicates the front end of the chamber Y with the discharge chamber, and an end plate of the fixed scroll, and the orbiting scroll bypasses the inner compression chamber X from the closed angle position. and θ in turning, the internal pressure The tip portion of the compression chamber X of the attached non-return valve communicating with the discharge chamber when the chamber was closed narrowing reduces the volume V in (0) of the X becomes a predetermined bypass volume V in (a) In the scroll compressor provided with a compression chamber bypass port, the bypass turning angle of the orbiting scroll so that V in (a) / V in (0)> V out (a) / V out (0) It is characterized in that θ out and θ in are set.

本発明にかかるスクロール圧縮機は、実運転上のバイパス圧力が内圧縮室Xと外圧縮室Yとで略同じとなり、運転効率が向上するという効果を奏する。   The scroll compressor according to the present invention has an effect that the bypass pressure in actual operation is substantially the same in the inner compression chamber X and the outer compression chamber Y, and the operation efficiency is improved.

以下に、本発明にかかるスクロール圧縮機の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Embodiments of a scroll compressor according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は、本発明にかかるスクロール圧縮機の実施例の縦断面図であり、図2−1は、外圧縮室Yの閉じ込み位置(旋回スクロール42の旋回角0°)における圧縮部4の横断面図であり、図2−2は、旋回角90°における圧縮部4の横断面図であり、図2−3は、旋回角180°(内圧縮室Xの閉じ込み位置)における圧縮部4の横断面図であり、図2−4は、旋回角258°(バイパス旋回角θout=258°)における圧縮部4の横断面図であり、図2−5は、旋回角373°(バイパス旋回角θin=373°−180°=193°)における圧縮部4の横断面図であり、図3は、外圧縮室Y及び内圧縮室Xの容積と圧力比との関係を示す図であり、図4は、旋回スクロールの旋回角と圧力比との関係を示す図であり、図5は、内圧縮室Xの圧縮旋回角と、圧縮容積比との関係を示す図である。 FIG. 1 is a longitudinal sectional view of an embodiment of a scroll compressor according to the present invention, and FIG. 2A is a plan view of the compression unit 4 in a closed position of the outer compression chamber Y (a turning angle of the turning scroll 42 is 0 °). Fig. 2-2 is a transverse sectional view, Fig. 2-2 is a transverse sectional view of the compression section 4 at a turning angle of 90 °, and Fig. 2-3 is a compression section at a turning angle of 180 ° (closed position of the inner compression chamber X). 4 is a cross-sectional view of the compression unit 4 at a turning angle of 258 ° (bypass turning angle θ out = 258 °), and FIG. 2-5 is a turning angle of 373 ° ( FIG. 3 is a cross-sectional view of the compression unit 4 at a bypass swirl angle θ in = 373 ° −180 ° = 193 °), and FIG. 3 is a diagram showing the relationship between the volume and pressure ratio of the outer compression chamber Y and the inner compression chamber X. 4 is a diagram showing the relationship between the turning angle of the orbiting scroll and the pressure ratio, and FIG. 5 shows the pressure in the inner compression chamber X. It is a figure which shows the relationship between a compression turning angle and a compression volume ratio.

図1に示すように、実施例のスクロール圧縮機1は、円筒状の密閉ケーシング2と、密閉ケーシング2の上部に設置されたメインフレーム3と、メインフレーム3の上方に設置された圧縮部4と、メインフレーム3の下方の電動機室24に設置され、圧縮部4を駆動する電動機5と、を備えている。   As shown in FIG. 1, a scroll compressor 1 according to an embodiment includes a cylindrical sealed casing 2, a main frame 3 installed on the upper part of the sealed casing 2, and a compression unit 4 installed above the main frame 3. And an electric motor 5 that is installed in an electric motor chamber 24 below the main frame 3 and that drives the compression unit 4.

メインフレーム3は、円盤状に形成され、外周部が密閉ケーシング2の内壁面に固定され、中央下部には、電動機5の回転軸6を支持する軸受31が設けられ、中央上部には、後述の旋回スクロール42を収容する円形の2段の凹部3aが形成されている。   The main frame 3 is formed in a disk shape, the outer peripheral portion is fixed to the inner wall surface of the hermetic casing 2, and a bearing 31 that supports the rotating shaft 6 of the electric motor 5 is provided in the lower center portion. A circular two-stage recess 3a for accommodating the orbiting scroll 42 is formed.

圧縮部4の上方の空間は、圧縮部4で圧縮された高圧冷媒(吐出ガス)が吐出される吐出室23とされ、吐出室23は、後述の固定スクロール41及びフレーム3に設けられた図示しない連通孔又は切欠き部を介して電動機室24に連通し、電動機室24は、密閉ケーシング2に固定された吐出管26に連通している。   The space above the compression unit 4 is a discharge chamber 23 into which the high-pressure refrigerant (discharge gas) compressed by the compression unit 4 is discharged. The discharge chamber 23 is provided in the fixed scroll 41 and the frame 3 described later. The motor chamber 24 communicates with a discharge pipe 26 fixed to the hermetic casing 2 through a communication hole or notch that is not connected.

円盤状に形成され、外周部がフレーム3の外周部にボルト締結された固定スクロール41には、外部の図示しない冷凍サイクルを終えた低圧冷媒(吸入ガス)を圧縮部4に吸込む吸込管25が、密閉ケーシング2を貫通して接続されている。圧縮部4は、外部の図示しない冷凍サイクルを終えた低圧冷媒を吸込管25を介して吸込み、低圧冷媒を圧縮して高圧冷媒として吐出室23へ吐出し、電動機室24及び吐出管26を介して冷凍サイクルへ送り出す。   The fixed scroll 41 which is formed in a disk shape and whose outer peripheral part is bolted to the outer peripheral part of the frame 3 is provided with a suction pipe 25 for sucking into the compression part 4 low-pressure refrigerant (intake gas) after an external refrigeration cycle (not shown). , And are connected through the sealed casing 2. The compression unit 4 sucks low-pressure refrigerant that has finished an external refrigeration cycle (not shown) through the suction pipe 25, compresses the low-pressure refrigerant, and discharges it as a high-pressure refrigerant to the discharge chamber 23, via the motor chamber 24 and the discharge pipe 26. To the refrigeration cycle.

実施例のスクロール圧縮機1において、電動機5は、通常の従来の電動機と変わるとこころがないので、詳細な説明は省略する。電動機5は、密閉ケーシング2の外周部に設置された端子台51から電力を供給される。   In the scroll compressor 1 according to the embodiment, since the electric motor 5 has no will if it is changed from a normal conventional electric motor, detailed description thereof is omitted. The electric motor 5 is supplied with electric power from a terminal block 51 installed on the outer peripheral portion of the hermetic casing 2.

図1及び図2−1に示すように、圧縮部4は、円盤状の鏡板41aの下面に渦巻状の固定スクロールラップ41b(及びラップ溝41c)が形成された固定スクロール41と、円盤状の鏡板42aの上面に破線で示す渦巻状の旋回スクロールラップ42b(及びラップ溝42c)が形成された旋回スクロール42とを備えている。   As shown in FIGS. 1 and 2-1, the compression section 4 includes a fixed scroll 41 having a spiral fixed scroll wrap 41b (and a wrap groove 41c) formed on the lower surface of a disk-shaped end plate 41a, And an orbiting scroll 42 in which a spiral orbiting scroll wrap 42b (and a wrap groove 42c) indicated by a broken line is formed on the upper surface of the end plate 42a.

図2−1に示すように、固定、旋回スクロールラップ41b、42b同士を互いに噛み合わることにより、ラップ溝41c内の旋回スクロールラップ42bの内側に内圧縮室Xが形成され、ラップ溝41c内の旋回スクロールラップ42bの外側に外圧縮室Yが形成される。   As shown in FIG. 2A, the fixed and orbiting scroll wraps 41b and 42b are meshed with each other, whereby an inner compression chamber X is formed inside the orbiting scroll wrap 42b in the wrap groove 41c. An outer compression chamber Y is formed outside the orbiting scroll wrap 42b.

固定スクロール41の鏡板41aには、その中央部に内圧縮室X及び外圧縮室Yにて圧縮された高圧冷媒を吐出室23へ吐出するための吐出口41dが設けられている。固定スクロール41の外周部には、固定スクロール41のラップ溝41cと吸込管25とを連通する有底の吸込孔41eが設けられている。吸込孔41eには、吸込管25方向への冷媒の逆流を防止する逆止弁45が設置されている。   The end plate 41 a of the fixed scroll 41 is provided with a discharge port 41 d for discharging the high-pressure refrigerant compressed in the inner compression chamber X and the outer compression chamber Y to the discharge chamber 23 at the center thereof. A bottomed suction hole 41 e that communicates the lap groove 41 c of the fixed scroll 41 and the suction pipe 25 is provided on the outer peripheral portion of the fixed scroll 41. A check valve 45 that prevents the refrigerant from flowing backward in the direction of the suction pipe 25 is installed in the suction hole 41e.

逆止弁45は、吸込孔41e内を摺動する弁体45aと、弁体45aを、吸込管25の下端に形成された弁座に押付けて逆止弁45を閉じる方向へ付勢するコイルバネ45bとを備えている。   The check valve 45 includes a valve body 45a that slides in the suction hole 41e, and a coil spring that presses the valve body 45a against a valve seat formed at the lower end of the suction pipe 25 and biases the check valve 45 in a closing direction. 45b.

電動機5の回転軸6の上端部には、回転軸6と偏心させた旋回軸6aが一体的に形成され、旋回軸6aは、旋回スクロール42の鏡板42aの下面側に形成された軸受部42dに挿入されている。回転軸6が回転すると、旋回軸6aが回転軸6周りを旋回し、オルダムリング43を介して旋回スクロール42を、固定スクロール41に対して自転させずに公転運動させ、内圧縮室X及び外圧縮室Yの容積を縮小させる。   A rotating shaft 6a that is eccentric with the rotating shaft 6 is formed integrally with the upper end portion of the rotating shaft 6 of the electric motor 5, and the rotating shaft 6a is a bearing portion 42d formed on the lower surface side of the end plate 42a of the orbiting scroll 42. Has been inserted. When the rotating shaft 6 rotates, the orbiting shaft 6 a revolves around the rotating shaft 6, and the orbiting scroll 42 revolves without rotating about the fixed scroll 41 via the Oldham ring 43. The volume of the compression chamber Y is reduced.

回転軸6及び旋回軸6aには、密閉ケーシング2の底部に貯留されている潤滑油Oを圧縮部4側へ供給するための油路6bが設けられている。密閉ケーシング2の底部に貯留されている潤滑油Oは、回転軸6により駆動されるトロコイド型ポンプ63によって吸引され、回転軸6を支持する下部軸受61に取付られた潤滑油管62を介して油路6bに流入し、圧縮部4側へ供給され、オルダムリング43を含む圧縮部4の摺動部及び軸受31等を潤滑する。   The rotating shaft 6 and the turning shaft 6a are provided with an oil passage 6b for supplying the lubricating oil O stored at the bottom of the hermetic casing 2 to the compression unit 4 side. Lubricating oil O stored at the bottom of the hermetic casing 2 is sucked by a trochoid pump 63 driven by the rotating shaft 6, and is supplied via a lubricating oil pipe 62 attached to a lower bearing 61 that supports the rotating shaft 6. It flows into the path 6b and is supplied to the compression part 4 side, and lubricates the sliding part of the compression part 4 including the Oldham ring 43, the bearing 31 and the like.

図2−1に示すように、旋回軸6aが図の左下45°方向へ偏心し、旋回スクロールラップ42bの巻終り端42eが、固定スクロール41のスクロール溝41cの外方壁面に接触している状態を旋回スクロール42の旋回角0°とすると、このとき、外圧縮室Yが閉じ込まれ、閉じ込み容積Vout(0)の状態となる。 As shown in FIG. 2A, the turning shaft 6 a is eccentric in the lower left 45 ° direction, and the winding end 42 e of the turning scroll wrap 42 b is in contact with the outer wall surface of the scroll groove 41 c of the fixed scroll 41. Assuming that the turning angle of the turning scroll 42 is 0 °, the outer compression chamber Y is closed at this time, and the closed volume V out (0) is obtained.

旋回スクロール42が、図2−1に示す旋回角0°の状態から、図2−2に示す旋回角90°の状態に反時計周りに旋回すると、外圧縮室Yも容積を縮小させながら90°旋回した位置に移動し、図3及び図4に示すように、Vout(x)/Vout(0)は0.90(=18cc/20cc)となり、漏れを考慮した圧力比は、およそ1.13となる。 When the orbiting scroll 42 is turned counterclockwise from the state of the turning angle 0 ° shown in FIG. 2-1 to the state of the turning angle 90 ° shown in FIG. 2-2, the outer compression chamber Y is also reduced in volume by 90. ° Moved to the swivel position, and as shown in FIGS. 3 and 4, V out (x) / V out (0) is 0.90 (= 18 cc / 20 cc), and the pressure ratio considering leakage is approximately 1.13.

図2−3に示すように、旋回スクロール42が180°旋回すると、外圧縮室Yは容積をさらに縮小させて180°旋回した位置に移動し、図3及び図4に示すように、Vout(x)/Vout(0)は0.80(=16cc/20cc)となり、漏れを考慮した圧力比は1.31となる。このとき、旋回スクロールラップ42bの巻終り端42eが、固定スクロール41のスクロール溝41cの内方壁面に接触し、内圧縮室Xが閉じ込まれ、閉じ込み容積Vin(0)の状態となり、Vout(x)/Vout(0)=Vin(0)/Vout(0)=0.80となっている。 As shown in Figure 2-3, when the orbiting scroll 42 is 180 ° pivot, the outer compression chamber Y is moved to a position 180 ° turns by further reducing the volume, as shown in FIGS. 3 and 4, V out (x) / V out (0) is 0.80 (= 16 cc / 20 cc), and the pressure ratio in consideration of leakage is 1.31. At this time, the winding end 42e of the orbiting scroll wrap 42b contacts the inner wall surface of the scroll groove 41c of the fixed scroll 41, the inner compression chamber X is closed, and the closed volume V in (0) is obtained. V out (x) / V out (0) = V in (0) / V out (0) = 0.80.

このように、実施例のスクロール圧縮機1は、外圧縮室Yの閉じ込み旋回角と内圧縮室Xの閉じ込み旋回角が180°位相が異なり、また、内圧縮室Xの閉じ込み容積Vin(0)が、外圧縮室Yの閉じ込み容積Vout(0)よりも小さい(Vin(0)/Vout(0)=0.80)非対称型のスクロール圧縮機となっている。 Thus, in the scroll compressor 1 of the embodiment, the closing swirl angle of the outer compression chamber Y and the closing swirl angle of the inner compression chamber X are 180 ° out of phase, and the confining volume V of the inner compression chamber X is different. in (0) is smaller than the confining volume V out (0) of the outer compression chamber Y (V in (0) / V out (0) = 0.80), which is an asymmetric scroll compressor.

図2−4及び図4に示すように、外圧縮室Yから内圧縮室X(矢印M方向)へ高圧冷媒を流入させながら旋回スクロール42が、バイパス旋回角θout=258°旋回し、図3に示すように、Vout(a)/Vout(0)が0.713(=14.26cc/20cc)となり、漏れを考慮した圧力比が1.5となったときに、外圧縮室Yの先端部Yaを吐出室23に連通する逆止弁46(図1参照)付のバイパスポート41fが設けられていて、圧力比が1.5となったときに高圧冷媒をバイパスさせる。 As shown in FIGS. 2-4 and 4, the orbiting scroll 42 orbits the bypass turning angle θ out = 258 ° while flowing the high-pressure refrigerant from the outer compression chamber Y to the inner compression chamber X (arrow M direction). As shown in FIG. 3, when V out (a) / V out (0) is 0.713 (= 14.26 cc / 20 cc) and the pressure ratio considering leakage is 1.5, the outer compression chamber A bypass port 41f with a check valve 46 (see FIG. 1) communicating the Y end portion Ya with the discharge chamber 23 is provided, and bypasses the high-pressure refrigerant when the pressure ratio becomes 1.5.

逆止弁46は、固定スクロール41の鏡板41aにねじ止めされバイパスポート41fを塞ぐばね板で構成され、吐出圧室23の圧力が圧縮部4の圧力よりも高いときは、バイパスポート41fを塞ぐようになっている。逆止弁押え47が、逆止弁46と共に鏡板41aにねじ止めされ、高圧冷媒の噴出により逆止弁46が開き過ぎて破損しないようにしている。   The check valve 46 is configured by a spring plate that is screwed to the end plate 41a of the fixed scroll 41 and closes the bypass port 41f. When the pressure in the discharge pressure chamber 23 is higher than the pressure of the compression unit 4, the check valve 46 closes the bypass port 41f. It is like that. The check valve presser 47 is screwed to the end plate 41a together with the check valve 46, so that the check valve 46 is not opened too much and is not damaged by the ejection of the high-pressure refrigerant.

図2−5及び図4に示すように、外圧縮室Yから内圧縮室X(矢印M方向)へ高圧冷媒を浸入させながら旋回スクロール42が、373°(内圧縮室Xの閉じ込み角度からバイパス旋回角θin=193°)旋回し、図3に示すように、Vin(a)/Vin(0)が0.732(=11.71cc/16cc)となり、漏れを考慮した圧力比が1.5となったときに、内圧縮室Xの先端部Xaを吐出室23に連通させ、高圧冷媒をバイパスさせる逆止弁46(図1参照)付のバイパスポート41gが設けられている。 As shown in FIGS. 2-5 and 4, while the high-pressure refrigerant enters from the outer compression chamber Y to the inner compression chamber X (in the direction of arrow M), the orbiting scroll 42 is 373 ° (from the closing angle of the inner compression chamber X). Bypass turning angle θ in = 193 °), and as shown in FIG. 3, V in (a) / V in (0) is 0.732 (= 11.71 cc / 16 cc), and the pressure ratio considering leakage Is provided with a bypass port 41g with a check valve 46 (see FIG. 1) for communicating the tip Xa of the inner compression chamber X with the discharge chamber 23 and bypassing the high-pressure refrigerant. .

バイパスポート41f、41gがそれぞれ外圧縮室Y、内圧縮室に連通している間にバイパスされなかった冷媒は、旋回スクロール42がさらに旋回し、各圧縮室Y、Xが圧縮部4の中心部まで移動する過程で再度圧縮され、中心部に到って吐出孔41dに連通して吐出室23に吐出される。   The refrigerant that has not been bypassed while the bypass ports 41f and 41g communicate with the outer compression chamber Y and the inner compression chamber, respectively, causes the orbiting scroll 42 to further rotate, and the compression chambers Y and X become the central portion of the compression section 4. Is compressed again in the process of moving to the center, reaches the center, communicates with the discharge hole 41d, and is discharged into the discharge chamber 23.

以上説明したように、実施例のスクロール圧縮機1においては、(Vin(a)/Vin(0)=0.732)>(Vout(a)/Vout(0)=0.713)となっていて、図5に示すように、内圧縮室Xのバイパス旋回角θin=193°は、Vin(a)/Vin(0)=Vout(a)/Vout(0)=0.713となる旋回角207°よりも14°小さくしている。 As described above, in the scroll compressor 1 of the embodiment, (V in (a) / V in (0) = 0.732)> (V out (a) / V out (0) = 0.713 As shown in FIG. 5, the bypass turning angle θ in = 193 ° of the inner compression chamber X is V in (a) / V in (0) = V out (a) / V out (0 ) = 0.713, which is 14 ° smaller than the turning angle 207 °.

内圧縮室Xのバイパス旋回角θin=193°を、Vin(a)/Vin(0)=Vout(a)/Vout(0)となる旋回角よりも、どの程度小さくするかは、スクロール圧縮機1の圧縮部4の加工精度、熱変形、旋回スクロールラップの巻数、外圧縮室Yの閉じ込み旋回角と内圧縮室Xの閉じ込み旋回角の位相差、冷媒圧力及び回転速度等により変化する高圧冷媒の漏れ量によって異なるが、小さくする角度を5°〜30°とすることにより、外圧縮室Yと内圧縮室Xの実運転上のバイパス圧力を略同じとすることができる。 How much smaller the bypass turning angle θ in = 193 ° of the inner compression chamber X than the turning angle at which V in (a) / V in (0) = V out (a) / V out (0) Is the processing accuracy of the compression section 4 of the scroll compressor 1, thermal deformation, the number of turns of the orbiting scroll wrap, the phase difference between the closed turning angle of the outer compression chamber Y and the closed turning angle of the inner compression chamber X, the refrigerant pressure and the rotation. Although it depends on the amount of high-pressure refrigerant leakage that varies depending on the speed, etc., the bypass pressure in actual operation of the outer compression chamber Y and the inner compression chamber X should be substantially the same by setting the angle to be reduced to 5 ° to 30 °. Can do.

なお、本実施例では、各圧縮室に一対のバイパスポートを設け、圧力比が1.5となったとき各圧縮室の高圧冷媒をバイパスさせる例を示したが、各圧縮室にバイパス圧力の異なる2対又は3対のバイパスポートを設け、異なるバイパス圧力で高圧冷媒をバイパスさせるようにしてもよい。また、外圧縮室Yの閉じ込み旋回角と内圧縮室Xの閉じ込み旋回角の位相差は、必ずしも180°とする必要はなく、90°程度であってもよい。   In the present embodiment, a pair of bypass ports are provided in each compression chamber, and when the pressure ratio becomes 1.5, the high pressure refrigerant in each compression chamber is bypassed. Two or three different bypass ports may be provided to bypass the high-pressure refrigerant at different bypass pressures. Further, the phase difference between the closing swirl angle of the outer compression chamber Y and the closing swirl angle of the inner compression chamber X is not necessarily 180 °, and may be approximately 90 °.

以上のように、本発明にかかるスクロール圧縮機は、静粛性と省エネ性が要求される冷蔵庫、冷凍庫及び空気調和機等のガス圧縮機に適している。   As described above, the scroll compressor according to the present invention is suitable for gas compressors such as refrigerators, freezers, and air conditioners that require quietness and energy saving.

本発明にかかるスクロール圧縮機の実施例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the Example of the scroll compressor concerning this invention. 外圧縮室の閉じ込み位置における圧縮部の横断面図である。It is a cross-sectional view of the compression part in the closed position of an outer compression chamber. 旋回角90°における圧縮部の横断面図である。It is a cross-sectional view of the compression part at a turning angle of 90 °. 旋回角180°における圧縮部の横断面図である。It is a cross-sectional view of the compression part at a turning angle of 180 °. 旋回角258°における圧縮部の横断面図である。It is a cross-sectional view of the compression part at a turning angle of 258 °. 旋回角373°における圧縮部の横断面図である。It is a cross-sectional view of the compression part at a turning angle of 373 °. 外圧縮室及び内圧縮室の圧縮容積と圧力比との関係を示す図である。It is a figure which shows the relationship between the compression volume of an outer compression chamber and an inner compression chamber, and a pressure ratio. 旋回スクロールの旋回角と圧力比との関係を示す図である。It is a figure which shows the relationship between the turning angle of a turning scroll, and a pressure ratio. 内圧縮室の圧縮旋回角と圧縮容積比との関係を示す図である。It is a figure which shows the relationship between the compression turning angle of an inner compression chamber, and compression volume ratio. 外圧縮室及び内圧縮室それぞれの圧縮容積比と、高圧ガス流体の漏れを考慮した圧力比との関係を示す図である。It is a figure which shows the relationship between the compression volume ratio of each of an outer compression chamber and an inner compression chamber, and the pressure ratio which considered the leak of the high pressure gas fluid.

符号の説明Explanation of symbols

1 スクロール圧縮機
2 密閉ケーシング
23 吐出室
24 電動機室
25 吸込管
26 吐出管
3 メインフレーム
4 圧縮部
41 固定スクロール
41b 固定スクロールラップ
41d 吐出口
41f 外圧縮室バイパスポート
41g 内圧縮室バイパスポート
42 旋回スクロール
42b 旋回スクロールラップ
42e 巻終り端
41a、42a 鏡板
41c、42c ラップ溝
43 オルダムリング
46 逆止弁
5 電動機
6 回転軸
6a 旋回軸
O 潤滑油
X 内圧縮室
Xa 内圧縮室の先端部
Y 外圧縮室
Ya 外圧縮室の先端部
in(0) 内圧縮室の閉じ込み容積
in(a) 内圧縮室のバイパス開始時の容積
out(0) 外圧縮室の閉じ込み容積
out(a) 外圧縮室のバイパス開始時の容積
θin 内圧縮室のバイパス旋回角
θout 外圧縮室のバイパス旋回角
DESCRIPTION OF SYMBOLS 1 Scroll compressor 2 Sealed casing 23 Discharge chamber 24 Electric motor chamber 25 Suction pipe 26 Discharge pipe 3 Main frame 4 Compression part 41 Fixed scroll 41b Fixed scroll wrap 41d Discharge port 41f Outer compression chamber bypass port 41g Inner compression chamber bypass port 42 Turning scroll 42b Orbiting scroll wrap 42e End of winding 41a, 42a End plate 41c, 42c Lap groove 43 Oldham ring 46 Check valve 5 Electric motor 6 Rotating shaft 6a Rotating shaft O Lubricating oil X Inner compression chamber Xa End of inner compression chamber Y Outer compression chamber Ya Outer compression chamber tip V in (0) Inner compression chamber confining volume V in (a) Inner compression chamber bypass start volume V out (0) Outer compression chamber confining volume V out (a) Volume of outer compression chamber at start of bypass θ in Bypass swivel angle of inner compression chamber θ out Bypass swirl angle of outer compression chamber

Claims (2)

固定スクロールのラップ溝内の、旋回スクロールラップの内側に形成される内圧縮室Xの閉じ込み容積Vin(0)が、前記旋回スクロールラップの外側に形成される外圧縮室Yの閉じ込み容積Vout(0)よりも小さい非対称型の圧縮室と、
前記固定スクロールの鏡板に設けられ、前記旋回スクロールが前記外圧縮室Yの閉じ込み角度位置からバイパス旋回角θout旋回し、前記外圧縮室Yの閉じ込み容積Vout(0)が縮小して所定のバイパス容積Vout(a)となったときに前記外圧縮室Yの先端部を吐出室に連通する逆止弁付の外圧縮室バイパスポートと、
前記固定スクロールの鏡板に設けられ、前記旋回スクロールが前記内圧縮室Xの閉じ込み角度位置からバイパス旋回角θin旋回し、前記内圧縮室Xの閉じ込み容積Vin(0)が縮小して所定のバイパス容積Vin(a)となったときに前記内圧縮室Xの先端部を前記吐出室に連通する逆止弁付の内圧縮室バイパスポートと、
を備えたスクロール圧縮機において、
in(a)/Vin(0)>Vout(a)/Vout(0)となるように、前記旋回スクロールの前記バイパス旋回角θout及びθinを設定したことを特徴とするスクロール圧縮機。
The confining volume V in (0) of the inner compression chamber X formed inside the orbiting scroll wrap in the wrap groove of the fixed scroll is the confining volume of the outer compression chamber Y formed outside the orbiting scroll wrap. An asymmetric compression chamber smaller than V out (0);
Provided on the end plate of the fixed scroll, the orbiting scroll turns by the bypass turning angle θ out from the closing angle position of the outer compression chamber Y, and the closing volume V out (0) of the outer compression chamber Y decreases. An outer compression chamber bypass port with a check valve that communicates the tip of the outer compression chamber Y with the discharge chamber when a predetermined bypass volume V out (a) is reached;
Provided on the end plate of the fixed scroll, the orbiting scroll orbits the bypass turning angle θ in from the closing angle position of the inner compression chamber X, and the closing volume V in (0) of the inner compression chamber X decreases. An inner compression chamber bypass port with a check valve that communicates the tip of the inner compression chamber X with the discharge chamber when a predetermined bypass volume V in (a) is reached;
In the scroll compressor with
The scroll characterized by setting the bypass turning angles θ out and θ in of the orbiting scroll so that V in (a) / V in (0)> V out (a) / V out (0). Compressor.
前記バイパス旋回角θinを、Vin(a)/Vin(0)=Vout(a)/Vout(0)となる旋回角よりも5°〜30°小さくしたことを特徴とする請求項1に記載のスクロール圧縮機。 Claims, characterized in that the bypass pivot angle theta in, and V in (a) / V in (0) = V out (a) / V out (0) and than turning angle becomes smaller 5 ° to 30 ° Item 2. The scroll compressor according to Item 1.
JP2005286596A 2005-09-30 2005-09-30 Scroll compressor Pending JP2007092722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005286596A JP2007092722A (en) 2005-09-30 2005-09-30 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005286596A JP2007092722A (en) 2005-09-30 2005-09-30 Scroll compressor

Publications (1)

Publication Number Publication Date
JP2007092722A true JP2007092722A (en) 2007-04-12

Family

ID=37978715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005286596A Pending JP2007092722A (en) 2005-09-30 2005-09-30 Scroll compressor

Country Status (1)

Country Link
JP (1) JP2007092722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234613A (en) * 2012-05-09 2013-11-21 Mitsubishi Electric Corp Scroll compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10148190A (en) * 1996-11-20 1998-06-02 Matsushita Electric Ind Co Ltd Scroll compressor
JP2004019620A (en) * 2002-06-20 2004-01-22 Hitachi Ltd Scroll compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10148190A (en) * 1996-11-20 1998-06-02 Matsushita Electric Ind Co Ltd Scroll compressor
JP2004019620A (en) * 2002-06-20 2004-01-22 Hitachi Ltd Scroll compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234613A (en) * 2012-05-09 2013-11-21 Mitsubishi Electric Corp Scroll compressor

Similar Documents

Publication Publication Date Title
US4545747A (en) Scroll-type compressor
AU2005240929B2 (en) Rotary compressor
US9617996B2 (en) Compressor
US9163632B2 (en) Injection port and orbiting-side wrap for a scroll compressor
US8172558B2 (en) Rotary expander with discharge and introduction passages for working fluid
JP2007154761A (en) Scroll compressor
WO2004053298A1 (en) Volume expander and fluid machine
JP2006177335A (en) Stair type capacity variable device for scroll compressor
JP2005083290A (en) Scroll compressor
JP2002266777A (en) Scroll fluid machine provided with multi-stage fluid compression part
KR20060030521A (en) Scroll-type fluid machine
JP2001323881A (en) Compressor
JP2018009565A (en) Multi-stage compressor
JP2010156244A (en) Compressor and refrigeration device
JP4529118B2 (en) Scroll compressor for helium
JP2007092722A (en) Scroll compressor
JP7154773B2 (en) scroll fluid machine
WO2019163516A1 (en) Scroll fluid machine
US10619635B2 (en) Scallop step for a scroll compressor
WO2018003431A1 (en) Multi-stage compressor
JP6943345B2 (en) Multi-stage compressor
JP7023739B2 (en) Scroll fluid machine
JP7023738B2 (en) Scroll fluid machine
JP2000009065A (en) Scroll type compressor
US20240328418A1 (en) Scroll compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071130

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A131 Notification of reasons for refusal

Effective date: 20100615

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20101109

Free format text: JAPANESE INTERMEDIATE CODE: A02