JP2004019620A - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
JP2004019620A
JP2004019620A JP2002179309A JP2002179309A JP2004019620A JP 2004019620 A JP2004019620 A JP 2004019620A JP 2002179309 A JP2002179309 A JP 2002179309A JP 2002179309 A JP2002179309 A JP 2002179309A JP 2004019620 A JP2004019620 A JP 2004019620A
Authority
JP
Japan
Prior art keywords
scroll
compression chamber
compression
wall surface
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002179309A
Other languages
Japanese (ja)
Other versions
JP4131561B2 (en
Inventor
Masaki Koyama
小山 昌喜
Kenichi Oshima
大島 健一
Koichi Sekiguchi
関口 浩一
Kazumi Tamura
田村 和巳
Yukichi Nakada
中田 裕吉
Takeshi Tsuchiya
土屋 豪
Isamu Tsubono
坪野 勇
Isao Hayase
早瀬 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Appliances Inc
Original Assignee
Hitachi Ltd
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Home and Life Solutions Inc filed Critical Hitachi Ltd
Priority to JP2002179309A priority Critical patent/JP4131561B2/en
Publication of JP2004019620A publication Critical patent/JP2004019620A/en
Application granted granted Critical
Publication of JP4131561B2 publication Critical patent/JP4131561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the impairing of efficiency caused by the difference in compression ratios caused by a pressure difference between compression chambers of two systems of a scroll compressor having the asymmetric shape, to obtain the ideal pressure characteristics. <P>SOLUTION: A ratio V<SB>AS</SB>/V<SB>AD</SB>of a maximum closed volume V<SB>AS</SB>and<SB></SB>a minimum closed volume V<SB>AD</SB>just before discharging, of the compression chamber A of large volume in completing the suction, is controlled to be larger than a ratio V<SB>BS</SB>/V<SB>BD</SB>of a maximum closed volume V<SB>BS</SB>and a minimum closed volume V<SB>BD</SB>just before discharging of the other compression chamber B, and smaller than V<SB>AS</SB>/V<SB>BD</SB>. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は冷蔵庫及び冷凍・空調用に用いられる冷媒圧縮機を始めとして空気圧縮機、真空ポンプ、ヘリウム圧縮機等のガス圧縮機に用いられるスクロール圧縮機に係る。
【0002】
【従来の技術】
従来技術において、非対称スクロール形状の容積比に関して特開昭56−20701号公報、特開平5−202871号公報および特開平8−21381号公報に開示がある。
【0003】
特開昭56−20701号公報に示されるスクロール圧縮機は、互いに噛み合うスクロール部材の一方のラップ巻き角を他方よりも大きくした非対称スクロールラップを備えている。非対称スクロール形状によって生じた容積が増大する圧縮室の容積比を他方の圧縮室と同一にするため、スクロール部材の巻き始め端部を削り取っている。
【0004】
特開平5−202871号公報に示されるスクロール圧縮機も非対称スクロール形状を採用している。特開昭56−20701号公報と同様に、容積が増大する圧縮室の容積比を他方の圧縮室と同一にするため、閉じ込んだときに容積が増大する圧縮室に先行して開放する先行開放部を吐出ポートに設けている。
【0005】
また、特開平8−21381号公報に示されるスクロール圧縮機も非対称スクロール形状を採用している。この公知文献には、他の公知文献と同様に、固定スクロール部材と旋回スクロール部材との間にできる二つの圧縮室の容積比を同一にするために一方のスクロール部材の巻き始め端を削り取っている。さらに二つの圧縮室の吐出ポートへの開放タイミングを合わせるために固定スクロール部材の巻き始め端の一部を切欠き、吐出ポートを拡大形状としている。
【0006】
【発明が解決しようとする課題】
スクロール圧縮機では2系統の圧縮室が形成されるが、2つの圧縮室の容積比が大きく異なる場合、圧縮行程での作動空間減少により圧縮されるガスの到達圧力と圧縮開始時の圧力(吸込圧力)と比(圧縮比という)が常に異なることになるため、どのような運転圧力条件においても、一方の圧縮室が必ず過圧縮あるいは不足圧縮となる。そのため、過圧縮による圧損または不足圧縮による逆流がどの条件においても必ず存在することになり、圧縮機効率の低下を招く。
【0007】
上記従来技術ではいずれも2系統形成される圧縮室の容積比を同一とすることについて記載されている。しかし、非対称スクロール形状を備えたスクロール圧縮機の場合、容積比を同一とした場合においても、2系統の圧縮室が異なるタイミングで形成されるため、同位相で形成される2系統の圧縮室間には必ず圧力差が生じ、一方の圧縮室からもう一方の圧縮室への漏れが発生する。そのため、図5に示すように、最大密閉容積の大きい圧縮室Aでは理論値に近い圧縮を行うものの、最大密閉容積の小さい圧縮室Bは圧縮室Aからの漏れ込みにより圧力が理論値より大きく上昇し、両圧縮室での実際の圧力上昇に差が生じてしまう。
【0008】
即ち、実際のガスの圧縮は圧縮室AとBとでは異なり、圧縮室Bでは圧縮室Aより圧力比が大きくなるという問題があった。ただし上記特開平8−21381号公報ではここで起こり得る過圧縮を低減するため、固定スクロール渦巻体巻き始め端側に吐出タイミング修正用切り欠きを設け、吐出時の通路面積を拡大することを行っている。しかしこれらの構成をもってしても吐出開始後の過圧縮を防止するのみであり、圧力上昇の差による圧力比のアンバランスについては解決されない。
【0009】
本発明は、前記従来技術の問題点を解決するためになされたものである。
【0010】
【課題を解決するための手段】
上記課題は、最大密閉容積の大きい圧縮室Aの容積比を、最大密閉容積の小さい圧縮室Bの容積比より大きくすることにより解決される。これにより、圧縮室Aと圧縮室Bの実際の圧力比を同等にすることができる。
【0011】
この圧力比のアンバランスは圧縮室Aから圧縮室Bへの漏れに起因するものであるため、両圧縮室の圧力、隙間の設定、シール方法、油シールを行う場合は両圧縮室への給油量等によって圧力上昇は異なる。したがって圧縮室Aの容積比を圧縮室Bの容積比よりどの程度大きくするかは圧縮機の形態によって異なる。非対称スクロール形状のスクロール圧縮機では、固定スクロール及び旋回スクロールの渦巻体巻角の違いによって両圧縮室の最大密閉容積に差が生じ、そのために圧力差が生じる。そのため、この圧力差以上のアンバランスは生じない。
【0012】
したがって圧縮室Aの最大密閉容積をVAS、吐出直前の最小密閉容積をVADとし、圧縮室Bの最大密閉容積をVBS、吐出直前の最小密閉容積をVBDとすると、圧縮室Aの容積比VAS/VADは圧縮室Bの容積比VBS/VBDより大きく、且つVAS/VBDより小さい範囲に、漏れの状況を考慮して決定すればよい。ただし、実際には圧縮室Bの吐出時の圧力上昇が両圧縮室間の理論圧力差の1/2倍を超えると、両圧縮室の吐出タイミングが近くなり、非対称形状にする利点が少なくなるため、この範囲内で容積比を調整することが望ましい。そのため、圧縮室Aの容積比VAS/VADは圧縮室Bの容積比VBS/VBDより大きく、且つ (VAS+VBS)/(2*VBD)より小さい範囲にはいる圧縮室Aと圧縮室Bを備える。
【0013】
この容積比の調整は旋回スクロール及び固定スクロールの、少なくともどちらか一方の渦巻体の巻き始め部分を調整する方法と、渦巻体の巻き終り部分を調整する方法との、いずれの方法を用いても良い。また、これらを同時に行ってもよい。
【0014】
これにより、先に圧縮を開始する圧縮室Aと後から圧縮を開始する圧縮室Bの実際の圧縮比をほぼ同等とすることができ、ほぼ理想の圧力特性を実現しつつ、過圧縮による動力損失および不足圧縮による逆流損失を低減することができる。
【0015】
【発明の実施の形態】
本発明を密閉形スクロール圧縮機に実施した第1の実施例を、図1乃至図3に基づいて説明する。図1は圧縮機の縦断面図、図2はスクロールの渦巻体の平面図、図3は図2の渦巻体の巻き始め部分の拡大図である。
【0016】
図1乃至図3において、旋回スクロール1は旋回側渦巻体1aと端板1bとから構成され、固定スクロール2は固定側渦巻体2aと端板2bとから構成されている。前記渦巻体は円のインボリュート曲線で形成されており、両スクロール1、2を互いに噛み合わせて旋回スクロールの巻き終り側ラップの外側で形成される圧縮室Aとその内側で形成される圧縮室Bとの大きさが異なり、軸の回転に対して位相が約180°ずれて形成される非対称スクロール形状である。
【0017】
まず、構造を説明する。旋回スクロール1は背面に旋回軸受1cを設け、フレーム5の主軸受5aにより支持されたクランクシャフト6の偏心部6aが挿入されている。また、旋回スクロール1とフレーム5との間にはオルダムリング7が配置されており、旋回スクロール1は前記オルダムリング7により自転運動が拘束され、旋回運動を行う。
【0018】
固定スクロール2は中央近くに吐出ポート8が開口している。また、固定側渦巻体2aの内側曲線の巻き終りは旋回側渦巻体1aの巻き終り付近まで約180°延長している。そのため、両スクロール1、2を組み合わせて圧縮室を形成するとき、旋回側渦巻体1aの外側曲線と固定側渦巻体2aの内側曲線によって閉じ込められて形成される圧縮室Aと、旋回側渦巻体1aの内側曲線と固定側渦巻体2aの外側曲線によって閉じ込められて形成される圧縮室Bは大きさが異なり、クランクシャフトの回転に対して位相が約180°ずれて形成される。
【0019】
圧縮室Aと圧縮室Bでは、圧縮室Aの方が先に圧縮を開始するため、同位相で比較した場合、圧縮室Aの圧力が圧縮室Bより高く、圧縮ガスの漏れは圧縮室Aから圧縮室Bの方向へ起こる。そのため、圧縮室Aの容積比は圧縮室Bの容積比より大きく設定しており、圧縮室Aの容積比は約2.7、圧縮室Bの容積比は約2.4としている。
【0020】
この容積比の調整は渦巻体の巻き始め部分で行っており、固定スクロール2の渦巻体内側壁面を約180°延長し、それに伴い、圧縮室Aでの最大密閉容積が大きくなった分、容積比を圧縮室Bと同一とするために必要な旋回スクロール1の渦巻体外側壁面の巻き始め角より、約37°延長する延長部1cを設けている。
【0021】
差圧制御機構9aは、固定スクロール2、旋回スクロール1およびフレーム5からなる背圧室9内の圧力を制御する。制御された背圧は旋回スクロール1を固定スクロール2に適切に押し付ける。
【0022】
モータ10はロータ10aとステータ10bからなり、前記フレーム5の下部でロータ10aは前記クランクシャフト6に取り付けられている。モータ10の下部には軸受支持板11があり、軸受支持板11に取り付けられた副軸受12が主軸受とともに前記クランクシャフト6を支持している。
【0023】
吸込みパイプ13は冷媒ガスなどの作動流体を取り入れるためのもので、固定スクロール2に連通している。また、吐出パイプ14は圧縮した作動流体を圧縮機外へ吐出するためのものである。密閉ケース15は、旋回スクロール1、固定スクロール2、モータ10を密閉して収納する。
【0024】
次に動作を説明する。モータ10を回転開始させることにより、クランクシャフト6が回転し旋回スクロール部材1が旋回運動を始める。この動作により、両スクロール渦巻体1a、2aが噛み合い、圧縮室A、Bを形成する。
【0025】
冷媒ガスなどの作動流体は吸込みパイプ13から流入し、圧縮室A、Bにて圧縮される。圧縮室A、Bはクランクシャフトの回転に従い、中央方向に容積を減少しながら圧縮動作を行い、吐出ポート8から密閉ケース15内に吐出され、最終的には吐出パイプ14を通って圧縮機外へ吐出される。
【0026】
背圧室9の圧力は主軸受5a等を潤滑した油に含まれるガスによって上昇し、差圧制御機構9aによって吸込圧力に対して一定の圧力差となるように制御される。この圧力は吸込み圧と吐出圧の中間の圧力となり、旋回スクロール1を固定スクロール2に押付け、漏れ損失の少ない圧縮を実現する。
【0027】
次に、このように構成されたスクロール圧縮機において、ほぼ理想の圧力特性を実現し、過圧縮による動力損失を低減することができる理由について説明する。
【0028】
圧縮室Aの最大密閉容積は圧縮室Bのそれよりも大きく形成され、圧縮室Aが形成されてからクランクシャフト6がクランク角で約180°回転した後に圧縮室Bが形成され、この時、圧縮室AとBの容積は同一であるが、先に圧縮を開始している圧縮室Aは圧縮室Bよりも圧力が高い。したがって夫々の圧縮室間にまたがって起きる圧縮ガスの漏れは、必ず圧縮室Aから圧縮室Bの方向に起こり、圧縮室Bの圧力は理想的な圧縮に比べ圧力が大きくなる。これに対し、圧縮室Aの圧力は漏れ込みが少ないためそれほど大きく上昇せず、ほぼ理想的な圧縮を行う。この時の圧縮室AおよびBの圧力変化を測定し、クランクシャフト6のクランク角に対して示したのが図6である。
【0029】
図6に示されているように、圧縮室AとBとでは容積比は異なるものの、実際の吐出開始時の圧力はほぼ同等となることがわかる。圧縮室AとBの容積比が同等である場合の圧力変化を示した図5に比べ、圧縮室Bでの圧力上昇に伴う過圧縮損失が低減し、両圧縮室でほぼ同等の圧縮を可能とすることができる。
【0030】
実際には圧縮室Bの吐出時の圧力上昇が両圧縮室間の理論圧力差の1/2倍を超えると、両圧縮室の吐出タイミングが近くなり、非対称形状にする利点が少なくなるため、この範囲内で容積比を決定することが望ましい。そのため、圧縮室Aの容積比VAS/VADは圧縮室Bの容積比VBS/VBDより大きく、且つ(VAS+VBS)/(2*VBD)より小さい範囲にはいる圧縮室Aと圧縮室Bとにすることで更に効果が高まる。
【0031】
以上の容積比の調整は旋回スクロール1の渦巻体1aの外側壁面を延長することによって行っているが、固定スクロール2の渦巻体2aの外側壁面を切り欠いても同様に調整を行える。また、旋回スクロール1の渦巻体1aの内側壁面を切り欠いてもよい。
【0032】
図4は本発明の第2の実施例を示した図であり、スクロール渦巻体の平面図である。図4において、旋回スクロール1は旋回側渦巻体1aと端板1bとから構成され、固定スクロール2は固定側渦巻体2aと端板2bとから構成されている。
【0033】
前記渦巻体は円のインボリュート曲線で形成されており、両スクロール1、2を互いに噛み合わせて旋回スクロールの巻き終り側ラップの外側で形成される圧縮室Aとその内側で形成される圧縮室Bとの大きさが異なり、軸の回転に対して位相がずれて形成される非対称スクロール形状である。
【0034】
圧縮室Aと圧縮室Bの容積比は前述の第1実施例に合わせて約2.7と約2.4としているが、本実施例では容積比の調整を固定スクロール渦巻体の巻き終り側で行っている。
【0035】
固定スクロール2の固定渦巻体2aの内側壁面を約180°延長した場合に容積比が両圧縮室で同等となるように旋回スクロール1の旋回渦巻体1aの巻き始め側を削っているスクロール形状に対して、圧縮室Bの容積比を小さくするために旋回スクロール1の渦巻体1aの内側壁面を約75°切り欠いている切り欠き部2dを設けている。これにより圧縮室Aと圧縮室Bの容積比をそれぞれ約2.7と約2.4にすることができ、第1の実施例に場合と同様の効果を発揮することができる。
【0036】
以上の容積比の調整は旋回スクロール1の渦巻体1aの内側壁面を切り欠くことによって行っているが、固定スクロール2の渦巻体2aの内側壁面および旋回スクロール1の渦巻体1aの外側壁面を延長しても同様に調整を行える。また実際には圧縮室Bの吐出時の圧力上昇が両圧縮室間の理論圧力差の1/2倍を超えると、両圧縮室の吐出タイミングが近くなり、非対称形状にする利点が少なくなるため、この範囲内で容積比を調整することが望ましい。
【0037】
以上、ここでは円のインボリュートにて形成した渦巻体を有するスクロール圧縮機の場合について述べたが、代数螺旋や円弧などを基本とした他の曲線にて形成された渦巻体を有するスクロール圧縮機の場合にも同様の効果を有する。
【0038】
さらに、以上の実施例では、本発明の説明を密閉形の高圧チャンバ方式スクロール圧縮機を例にして説明したが、低圧チャンバ方式スクロール圧縮機に適用した場合にもその効果は同様である。
【0039】
本発明の各実施例により、先に圧縮を開始する圧縮室Aの容積比を後から圧縮を開始する圧縮室Bの容積比に比べ大きくすることで、両圧縮室での実際の上昇圧力を同等にすることができ、ほぼ理想の圧力特性を実現し、圧縮室Bでの過圧縮による動力損失あるいは圧縮室Aでの不足圧縮による逆流損失を低減することができる。
【0040】
【発明の効果】
本発明によれば、圧縮効率を著しく高めた高性能なスクロール圧縮機を提供できる。
【図面の簡単な説明】
【図1】本発明の第一の実施例の縦断面図。
【図2】本発明の第一の実施例に係るスクロール渦巻体の平面図。
【図3】図2の渦巻体の巻き始め部の拡大図。
【図4】本発明の第二の実施例に係るスクロール渦巻体の平面図。
【図5】従来のスクロール圧縮機での圧力特性図。
【図6】本発明の実施例での圧力特性図。
【符号の説明】
1…旋回スクロ−ル、2…固定スクロ−ル、5…フレーム、6…クランクシャフト、8…吐出ポート、10…モータ、13…吸込みパイプ、14…吐出パイプ、15…密閉ケース。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a scroll compressor used for a gas compressor such as a refrigerator and a refrigerant compressor used for refrigeration and air conditioning, as well as an air compressor, a vacuum pump, and a helium compressor.
[0002]
[Prior art]
In the prior art, the volume ratio of the asymmetric scroll shape is disclosed in JP-A-56-20701, JP-A-5-202871, and JP-A-8-21381.
[0003]
The scroll compressor disclosed in Japanese Patent Application Laid-Open No. 56-20701 is provided with an asymmetric scroll wrap in which one wrap winding angle of scroll members meshing with each other is larger than the other. In order to make the volume ratio of the compression chamber, in which the volume generated by the asymmetric scroll shape increases, equal to that of the other compression chamber, the winding start end of the scroll member is cut off.
[0004]
The scroll compressor disclosed in Japanese Patent Application Laid-Open No. 5-202871 also employs an asymmetric scroll shape. Similarly to Japanese Patent Application Laid-Open No. 56-20701, in order to make the volume ratio of the compression chamber whose volume increases increase equal to that of the other compression chamber, the preceding compression chamber is opened prior to opening the compression chamber whose volume increases when closed. An opening is provided at the discharge port.
[0005]
The scroll compressor disclosed in Japanese Patent Application Laid-Open No. 8-21381 also employs an asymmetric scroll shape. In this known document, similarly to other known documents, in order to make the volume ratio of the two compression chambers formed between the fixed scroll member and the orbiting scroll member equal, the winding start end of one scroll member is cut off. I have. Furthermore, in order to match the opening timing of the two compression chambers to the discharge port, a part of the winding start end of the fixed scroll member is cut out to make the discharge port an enlarged shape.
[0006]
[Problems to be solved by the invention]
In a scroll compressor, two systems of compression chambers are formed. If the volume ratios of the two compression chambers are significantly different, the ultimate pressure of the gas to be compressed due to the decrease in the working space in the compression stroke and the pressure at the start of compression (suction Pressure) and the ratio (referred to as compression ratio) are always different, so that one compression chamber is always over-compressed or under-compressed under any operating pressure condition. Therefore, a pressure loss due to over-compression or a backflow due to under-compression always exists under any conditions, which causes a reduction in compressor efficiency.
[0007]
In the above-mentioned prior art, it is described that the volume ratio of the compression chambers formed in two systems is the same. However, in the case of a scroll compressor having an asymmetric scroll shape, even when the volume ratio is the same, the two systems of compression chambers are formed at different timings. Always generates a pressure difference, and leakage from one compression chamber to the other compression chamber occurs. Therefore, as shown in FIG. 5, the compression chamber A having a large maximum sealed volume performs compression close to the theoretical value, but the compression chamber B having a small maximum sealed volume has a pressure larger than the theoretical value due to leakage from the compression chamber A. And the actual pressure rise in both compression chambers will differ.
[0008]
That is, the actual compression of the gas is different between the compression chambers A and B, and there is a problem that the pressure ratio in the compression chamber B is larger than that in the compression chamber A. However, in the above-mentioned Japanese Patent Application Laid-Open No. Hei 8-21381, in order to reduce the overcompression that can occur here, a cutout for correcting the discharge timing is provided at the start end side of the fixed scroll spiral body to increase the passage area at the time of discharge. ing. However, these configurations only prevent over-compression after the start of discharge, and do not solve the imbalance in pressure ratio due to the difference in pressure rise.
[0009]
The present invention has been made to solve the above-mentioned problems of the prior art.
[0010]
[Means for Solving the Problems]
The above-mentioned problem is solved by making the volume ratio of the compression chamber A having a large maximum sealed volume larger than the volume ratio of the compression chamber B having a small maximum sealed volume. Thereby, the actual pressure ratio between the compression chamber A and the compression chamber B can be made equal.
[0011]
Since this pressure ratio imbalance is caused by leakage from the compression chambers A to the compression chambers B, the pressure of both the compression chambers, the setting of the gap, the sealing method, and the oil supply to both the compression chambers when performing oil sealing. The pressure rise differs depending on the amount and the like. Therefore, how much the volume ratio of the compression chamber A is made larger than the volume ratio of the compression chamber B differs depending on the form of the compressor. In a scroll compressor having an asymmetric scroll shape, a difference in the maximum sealed volume between the two compression chambers occurs due to a difference in the winding angle of the scroll between the fixed scroll and the orbiting scroll, and thus a pressure difference occurs. Therefore, no imbalance exceeding this pressure difference occurs.
[0012]
Thus the maximum enclosed volume of V AS of the compression chamber A, the minimum enclosed volume of the discharge just before a V AD, the maximum enclosed volume of V BS of the compression chamber B, and the minimum closed volume of the discharge just before a V BD, the compression chambers A The volume ratio VAS / VAD may be determined in consideration of the state of leakage in a range larger than the volume ratio VBS / VBD of the compression chamber B and smaller than VAS / VBD . However, in practice, when the pressure rise at the time of discharge of the compression chamber B exceeds 1 / times the theoretical pressure difference between the two compression chambers, the discharge timing of both compression chambers becomes close, and the advantage of the asymmetric shape is reduced. Therefore, it is desirable to adjust the volume ratio within this range. Therefore, the volume ratio V AS / V AD of the compression chamber A is greater than the volume ratio V BS / V BD of the compression chamber B, and (V AS + V BS) / (2 * V BD) compression chamber to enter the smaller range A and a compression chamber B are provided.
[0013]
This volume ratio can be adjusted by any one of the method of adjusting the winding start portion of at least one of the orbiting scroll and the fixed scroll, and the method of adjusting the winding end portion of the spiral body. good. These may be performed simultaneously.
[0014]
This makes it possible to make the actual compression ratios of the compression chamber A, which starts compression first, and the compression chamber B, which starts compression later, almost equal, and realizes almost ideal pressure characteristics, The backflow loss due to loss and insufficient compression can be reduced.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
First Embodiment A first embodiment in which the present invention is applied to a hermetic scroll compressor will be described with reference to FIGS. 1 is a longitudinal sectional view of a compressor, FIG. 2 is a plan view of a scroll spiral body, and FIG. 3 is an enlarged view of a winding start portion of the spiral body of FIG.
[0016]
1 to 3, the orbiting scroll 1 includes a orbiting scroll 1a and an end plate 1b, and the fixed scroll 2 includes a fixed scroll 2a and an end plate 2b. The spiral body is formed by a circular involute curve, and the two scrolls 1 and 2 are engaged with each other to form a compression chamber A formed outside the end wrap of the orbiting scroll and a compression chamber B formed inside the wrap. And asymmetrical scroll shapes formed with a phase shift of about 180 ° with respect to the rotation of the shaft.
[0017]
First, the structure will be described. The orbiting scroll 1 is provided with a orbiting bearing 1c on the back surface, and the eccentric part 6a of the crankshaft 6 supported by the main bearing 5a of the frame 5 is inserted. An Oldham ring 7 is disposed between the orbiting scroll 1 and the frame 5, and the orbiting scroll 1 performs a orbiting motion with its rotation being restricted by the Oldham ring 7.
[0018]
The fixed scroll 2 has a discharge port 8 opened near the center. Further, the winding end of the inner curve of the fixed-side spiral body 2a is extended by about 180 ° to near the winding end of the swirling-side spiral body 1a. Therefore, when the two scrolls 1 and 2 are combined to form a compression chamber, the compression chamber A formed by being confined by the outer curve of the orbiting spiral 1a and the inner curve of the fixed spiral 2a, and the orbiting spiral The compression chamber B formed by being confined by the inner curve 1a and the outer curve of the fixed spiral body 2a has different sizes, and is formed with a phase shift of about 180 ° with respect to the rotation of the crankshaft.
[0019]
In the compression chamber A and the compression chamber B, since the compression chamber A starts compression first, when compared in the same phase, the pressure of the compression chamber A is higher than that of the compression chamber B, and the leakage of the compressed gas is smaller than the compression chamber A. To the compression chamber B. Therefore, the volume ratio of the compression chamber A is set to be larger than the volume ratio of the compression chamber B, and the volume ratio of the compression chamber A is about 2.7 and the volume ratio of the compression chamber B is about 2.4.
[0020]
The adjustment of the volume ratio is performed at the beginning of the winding of the scroll, and the inner wall surface of the scroll of the fixed scroll 2 is extended by about 180 °, so that the maximum sealed volume in the compression chamber A is increased. An extension 1c is provided which extends approximately 37 ° from the winding start angle of the outer wall surface of the spiral scroll 1 necessary for making the ratio the same as that of the compression chamber B.
[0021]
The differential pressure control mechanism 9a controls the pressure in the back pressure chamber 9 including the fixed scroll 2, the orbiting scroll 1, and the frame 5. The controlled back pressure appropriately presses the orbiting scroll 1 against the fixed scroll 2.
[0022]
The motor 10 includes a rotor 10a and a stator 10b. The rotor 10a is attached to the crankshaft 6 below the frame 5. A bearing support plate 11 is provided below the motor 10, and an auxiliary bearing 12 attached to the bearing support plate 11 supports the crankshaft 6 together with a main bearing.
[0023]
The suction pipe 13 is for taking in a working fluid such as a refrigerant gas, and communicates with the fixed scroll 2. The discharge pipe 14 is for discharging the compressed working fluid to the outside of the compressor. The closed case 15 hermetically accommodates the orbiting scroll 1, the fixed scroll 2, and the motor 10.
[0024]
Next, the operation will be described. By starting rotation of the motor 10, the crankshaft 6 rotates and the orbiting scroll member 1 starts to orbit. By this operation, both scroll scrolls 1a, 2a mesh with each other to form compression chambers A, B.
[0025]
A working fluid such as a refrigerant gas flows from the suction pipe 13 and is compressed in the compression chambers A and B. The compression chambers A and B perform a compression operation while reducing the volume in the center direction according to the rotation of the crankshaft, and are discharged from the discharge port 8 into the sealed case 15 and finally passed through the discharge pipe 14 to the outside of the compressor. Is discharged to
[0026]
The pressure in the back pressure chamber 9 rises due to the gas contained in the oil lubricating the main bearing 5a and the like, and is controlled by the differential pressure control mechanism 9a so as to have a constant pressure difference with respect to the suction pressure. This pressure becomes an intermediate pressure between the suction pressure and the discharge pressure, and presses the orbiting scroll 1 against the fixed scroll 2 to realize compression with less leakage loss.
[0027]
Next, a description will be given of the reason why the scroll compressor configured as described above can achieve almost ideal pressure characteristics and reduce power loss due to overcompression.
[0028]
The maximum closed volume of the compression chamber A is formed larger than that of the compression chamber B. After the compression chamber A is formed, the compression chamber B is formed after the crankshaft 6 is rotated by about 180 ° at a crank angle. The compression chambers A and B have the same volume, but the compression chamber A that has started compression first has a higher pressure than the compression chamber B. Therefore, the leakage of the compressed gas that occurs between the compression chambers always occurs in the direction from the compression chamber A to the compression chamber B, and the pressure in the compression chamber B is higher than the ideal compression. On the other hand, the pressure in the compression chamber A does not increase so much because the leakage is small, and almost ideal compression is performed. FIG. 6 shows the pressure changes in the compression chambers A and B at this time, which are shown with respect to the crank angle of the crankshaft 6.
[0029]
As shown in FIG. 6, although the compression chambers A and B have different volume ratios, it can be seen that the actual pressures at the start of discharge are substantially equal. Compared to FIG. 5 showing the pressure change when the volume ratios of the compression chambers A and B are equal, the overcompression loss due to the pressure rise in the compression chamber B is reduced, and almost equal compression is possible in both compression chambers. It can be.
[0030]
Actually, when the pressure rise at the time of discharge of the compression chamber B exceeds 倍 times the theoretical pressure difference between the two compression chambers, the discharge timing of both compression chambers becomes close, and the advantage of forming an asymmetric shape is reduced. It is desirable to determine the volume ratio within this range. For this reason, the volume ratio V AS / V AD of the compression chamber A is larger than the volume ratio V BS / V BD of the compression chamber B, and is smaller than (V AS + V BS ) / (2 * V BD ). A and the compression chamber B further enhance the effect.
[0031]
Although the above adjustment of the volume ratio is performed by extending the outer wall surface of the scroll 1a of the orbiting scroll 1, the adjustment can be similarly performed by cutting out the outer wall surface of the scroll 2a of the fixed scroll 2. Further, the inner wall surface of the spiral body 1a of the orbiting scroll 1 may be cut off.
[0032]
FIG. 4 is a view showing a second embodiment of the present invention, and is a plan view of a scroll scroll. In FIG. 4, the orbiting scroll 1 is composed of a revolving scroll 1a and an end plate 1b, and the fixed scroll 2 is composed of a fixed scroll 2a and an end plate 2b.
[0033]
The spiral body is formed by a circular involute curve, and the two scrolls 1 and 2 are engaged with each other to form a compression chamber A formed outside the end wrap of the orbiting scroll and a compression chamber B formed inside the wrap. Is an asymmetric scroll shape that is formed out of phase with the rotation of the shaft.
[0034]
Although the volume ratio between the compression chamber A and the compression chamber B is set to about 2.7 and about 2.4 in accordance with the first embodiment described above, in this embodiment, the adjustment of the volume ratio is performed on the end side of the fixed scroll scroll. It is done in.
[0035]
A scroll shape in which the winding start side of the orbiting scroll 1a of the orbiting scroll 1 is cut so that the volume ratio becomes equal in both compression chambers when the inner wall surface of the fixed scroll 2a of the fixed scroll 2 is extended by about 180 °. On the other hand, in order to reduce the volume ratio of the compression chamber B, a notch 2d is formed by cutting the inner wall surface of the spiral 1a of the orbiting scroll 1 by about 75 °. As a result, the volume ratio between the compression chamber A and the compression chamber B can be set to about 2.7 and about 2.4, respectively, and the same effect as in the first embodiment can be exerted.
[0036]
The above adjustment of the volume ratio is performed by notching the inner wall surface of the spiral 1a of the orbiting scroll 1, but extending the inner wall surface of the spiral 2a of the fixed scroll 2 and the outer wall of the spiral 1a of the orbiting scroll 1. The adjustment can be made in the same manner. If the pressure rise during discharge of the compression chamber B exceeds 1/2 of the theoretical pressure difference between the two compression chambers, the discharge timing of the two compression chambers becomes closer and the advantage of the asymmetric shape is reduced. It is desirable to adjust the volume ratio within this range.
[0037]
As described above, the case of the scroll compressor having the spiral formed by the involute of the circle has been described. However, the scroll compressor having the spiral formed by the other curves based on the algebraic spiral or the arc is described. In this case, the same effect is obtained.
[0038]
Further, in the above embodiments, the description of the present invention has been made by taking a closed type high-pressure chamber type scroll compressor as an example. However, the effect is the same when applied to a low-pressure chamber type scroll compressor.
[0039]
According to each embodiment of the present invention, by increasing the volume ratio of the compression chamber A that starts compression first compared to the volume ratio of the compression chamber B that starts compression later, the actual rising pressure in both compression chambers can be reduced. The pressure characteristics can be made substantially equal to each other, and almost ideal pressure characteristics can be realized, and power loss due to overcompression in the compression chamber B or backflow loss due to insufficient compression in the compression chamber A can be reduced.
[0040]
【The invention's effect】
According to the present invention, it is possible to provide a high-performance scroll compressor having a significantly improved compression efficiency.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a first embodiment of the present invention.
FIG. 2 is a plan view of a scroll scroll according to the first embodiment of the present invention.
FIG. 3 is an enlarged view of a winding start portion of the spiral body of FIG. 2;
FIG. 4 is a plan view of a scroll scroll according to a second embodiment of the present invention.
FIG. 5 is a pressure characteristic diagram of a conventional scroll compressor.
FIG. 6 is a pressure characteristic diagram in the example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Revolving scroll, 2 ... Fixed scroll, 5 ... Frame, 6 ... Crankshaft, 8 ... Discharge port, 10 ... Motor, 13 ... Suction pipe, 14 ... Discharge pipe, 15 ... Sealed case.

Claims (4)

端板と、この端板に立設する渦巻体を有し、自転せずに公転運動する旋回スクロールと、端板と、この端板に立設する渦巻体を有する固定スクロールとが、両渦巻体がほぼ180度ずれた状態で互いに噛み合わされており、固定スクロールの渦巻体の巻角と旋回スクロールの渦巻体の巻角とが異なり、前記旋回スクロール端板及び渦巻体壁面と前記固定スクロール端板及び渦巻体壁面とで形成される2つの圧縮室の最大密閉容積が異なる非対称スクロール形状のスクロール圧縮機において、
前記旋回スクロール渦巻体外側壁面と前記固定スクロール内側壁面とで形成される圧縮室Aの最大密閉容積(VAS)と、吐出直前の最小密閉容積(VAD)との比VAS/VADが、前記旋回スクロール渦巻体内側壁面と前記固定スクロール外側壁面とで形成される圧縮室Bの最大密閉容積(VBS)と、吐出直前の最小密閉容積(VBD)との比VBS/VBDより大きく、且つ (VAS+VBS)/(2×VBD)より小さいことを特徴とするスクロール圧縮機。
An orbiting scroll having an end plate, a spiral body erected on the end plate and revolving without rotating, and a fixed scroll having an end plate and a spiral body erected on the end plate have two spirals. The spirals of the fixed scroll and the spiral of the orbiting scroll are different from each other in a state where the spirals are substantially 180 degrees apart from each other. In a scroll compressor having an asymmetric scroll shape in which a maximum sealed volume of two compression chambers formed by a plate and a spiral body wall is different,
The ratio V AS / V AD of the maximum sealed volume (V AS ) of the compression chamber A formed by the outer wall surface of the orbiting scroll scroll and the inner wall surface of the fixed scroll, and the minimum sealed volume (V AD ) immediately before discharge is obtained. The ratio V BS / V BD of the maximum sealed volume (V BS ) of the compression chamber B formed by the inner wall surface of the orbiting scroll spiral and the outer wall surface of the fixed scroll, and the minimum sealed volume (V BD ) immediately before discharge. A scroll compressor characterized by being larger and smaller than (V AS + V BS ) / (2 × V BD ).
端板と、この端板に立設する渦巻体を有し、自転せずに公転運動する旋回スクロールと、端板と、この端板に立設する渦巻体を有する固定スクロールとが、両渦巻体がほぼ180度ずれた状態で互いに噛み合わされており、固定スクロールの渦巻体の巻角が旋回スクロールの渦巻体の巻角より大きい非対称スクロール形状のスクロール圧縮機において、
前記旋回スクロール渦巻体外側壁面と前記固定スクロール内側壁面とで形成される圧縮室Aの最大密閉容積(VAS)と、吐出直前の最小密閉容積(VAD)との比VAS/VADが、前記旋回スクロール渦巻体内側壁面と前記固定スクロール外側壁面とで形成される圧縮室Bの最大密閉容積(VBS)と、吐出直前の最小密閉容積(VBD)との比VBS/VBDより大きく、且つ (VAS+VBS)/(2×VBD)より小さいことを特徴とするスクロール圧縮機。
An orbiting scroll having an end plate, a spiral body erected on the end plate and revolving without rotating, and a fixed scroll having an end plate and a spiral body erected on the end plate have two spirals. In a scroll compressor having an asymmetric scroll shape in which the bodies are meshed with each other in a state of being shifted by about 180 degrees, and the winding angle of the spiral body of the fixed scroll is larger than the winding angle of the spiral body of the orbiting scroll,
The ratio V AS / V AD of the maximum sealed volume (V AS ) of the compression chamber A formed by the outer wall surface of the orbiting scroll scroll and the inner wall surface of the fixed scroll, and the minimum sealed volume (V AD ) immediately before discharge is obtained. The ratio V BS / V BD of the maximum sealed volume (V BS ) of the compression chamber B formed by the inner wall surface of the orbiting scroll spiral and the outer wall surface of the fixed scroll, and the minimum sealed volume (V BD ) immediately before discharge. A scroll compressor characterized by being larger and smaller than (V AS + V BS ) / (2 × V BD ).
前記圧縮室Aの容積比を、前記旋回スクロール及び固定スクロールの少なくとも一方の巻き始め側を延長あるいは切り欠くことによって調節したことを特徴とする請求項2に記載のスクロール圧縮機。The scroll compressor according to claim 2, wherein a volume ratio of the compression chamber (A) is adjusted by extending or notching a winding start side of at least one of the orbiting scroll and the fixed scroll. 前記圧縮室Aの容積比を、前記旋回スクロール及び固定スクロールの少なくとも一方の巻き終わり側を延長あるいは切り欠くことによって調節したことを特徴とする請求項2に記載のスクロール圧縮機。The scroll compressor according to claim 2, wherein the volume ratio of the compression chamber (A) is adjusted by extending or notching at least one end of the orbiting scroll and the fixed scroll.
JP2002179309A 2002-06-20 2002-06-20 Scroll compressor Expired - Fee Related JP4131561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002179309A JP4131561B2 (en) 2002-06-20 2002-06-20 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002179309A JP4131561B2 (en) 2002-06-20 2002-06-20 Scroll compressor

Publications (2)

Publication Number Publication Date
JP2004019620A true JP2004019620A (en) 2004-01-22
JP4131561B2 JP4131561B2 (en) 2008-08-13

Family

ID=31176728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002179309A Expired - Fee Related JP4131561B2 (en) 2002-06-20 2002-06-20 Scroll compressor

Country Status (1)

Country Link
JP (1) JP4131561B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092722A (en) * 2005-09-30 2007-04-12 Fujitsu General Ltd Scroll compressor
JP2008506885A (en) * 2004-07-13 2008-03-06 タイアックス エルエルシー Refrigeration system and refrigeration method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045159B2 (en) 2007-03-12 2012-10-10 三菱電機株式会社 Control subunit and control main unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506885A (en) * 2004-07-13 2008-03-06 タイアックス エルエルシー Refrigeration system and refrigeration method
JP2007092722A (en) * 2005-09-30 2007-04-12 Fujitsu General Ltd Scroll compressor

Also Published As

Publication number Publication date
JP4131561B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
US6102671A (en) Scroll compressor
JP2003269346A (en) Scroll type fluid machine
AU2013400864B2 (en) Scroll compressor
KR102051095B1 (en) Scroll compressor
JP4519489B2 (en) Scroll compressor
JP2000329078A (en) Scroll compressor
US8672655B2 (en) Scroll compressor having a pass hole for preventing over-compression under a low load condition
JP5461313B2 (en) Scroll compressor and discharge port machining method thereof
JP2606388B2 (en) Scroll compressor
JP2001323881A (en) Compressor
JPH0821381A (en) Scroll compressor
JP4131561B2 (en) Scroll compressor
US20220220960A1 (en) Scroll compressor including end-plate side stepped portions of each of the scrolls corresponding to wall-portion side stepped portions of each of the scrolls
JP4410726B2 (en) Scroll compressor
WO2022230314A1 (en) Scroll compressor
JP6008516B2 (en) Scroll compressor
JP2000110749A (en) Scroll compressor
US8967987B2 (en) Scroll compressor having at least one bypass hole
JP2005163745A (en) Scroll compressor
JP2001173584A (en) Scroll compressor
JP4709402B2 (en) Scroll compressor
WO2019163537A1 (en) Scroll fluid machine
WO2019163536A1 (en) Scroll fluid machine
JP2000161260A (en) Scroll compressor
JP2001329974A (en) Scroll compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4131561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313135

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees