JP5538061B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP5538061B2
JP5538061B2 JP2010109232A JP2010109232A JP5538061B2 JP 5538061 B2 JP5538061 B2 JP 5538061B2 JP 2010109232 A JP2010109232 A JP 2010109232A JP 2010109232 A JP2010109232 A JP 2010109232A JP 5538061 B2 JP5538061 B2 JP 5538061B2
Authority
JP
Japan
Prior art keywords
motor
refrigerant
flow path
pressure stage
compression mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010109232A
Other languages
Japanese (ja)
Other versions
JP2011237127A (en
Inventor
聡一 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010109232A priority Critical patent/JP5538061B2/en
Publication of JP2011237127A publication Critical patent/JP2011237127A/en
Application granted granted Critical
Publication of JP5538061B2 publication Critical patent/JP5538061B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

この発明は、冷凍サイクルの一構成要素として二段スクリュー圧縮機を搭載した冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus equipped with a two-stage screw compressor as one component of a refrigeration cycle.

従来から、冷凍サイクルの一構成要素としてスクリュー圧縮機を搭載した冷凍装置が存在している。そのようなものとして、「1段或は複数段のスクリュ式圧縮機の他に、少なくとも凝縮器,第一膨張弁,蒸発器を含む冷媒の循環閉流路を備えるとともに、上記スクリュ圧縮機を駆動するモータを上記冷媒で冷却する冷却用流路を備えたスクリュ式冷凍機において、上記冷却用流路を、上記第一膨張弁の入口側にて上記循環閉流路から分岐させ、第二膨張弁を経て上記モータに至らせ、上記モータ内を通過させ、上記凝縮器に冷媒を送り出すスクリュ圧縮機の吸込口および吐出口に連通することのないガス閉込み空間に連通させて形成した」スクリュー式冷凍装置が提案されている(たとえば、特許文献1参照)。   Conventionally, there is a refrigeration apparatus equipped with a screw compressor as one component of the refrigeration cycle. As such, “in addition to a single-stage or multi-stage screw compressor, a refrigerant circulation closed passage including at least a condenser, a first expansion valve, and an evaporator is provided. In a screw type refrigerator having a cooling flow path for cooling a driving motor with the refrigerant, the cooling flow path is branched from the circulation closed flow path on the inlet side of the first expansion valve, It was formed by communicating with a gas confined space that does not communicate with the suction port and the discharge port of the screw compressor that passes through the motor through the expansion valve, passes through the motor, and sends the refrigerant to the condenser. '' A screw-type refrigeration apparatus has been proposed (see, for example, Patent Document 1).

二段スクリュー式冷凍装置は、特許文献1の図1に示されているスクリュー式冷凍装置のように、二段スクリュー圧縮機の他に、少なくとも凝縮器、第一膨張弁、蒸発器を含む冷媒の循環閉流路を備えるとともに、上記二段スクリュー圧縮機を駆動するモーターを高圧の冷媒を用いて冷却する流路を備えた構成が一般的となっている。また、この二段スクリュー式冷凍装置のように、二段スクリュー圧縮機のモーター冷却に使用した冷媒をモーター冷却後、高圧段の圧縮室に注入、もしくは、高圧段吸入部に注入するように構成するのが一般的となっている。   The two-stage screw refrigeration apparatus is a refrigerant including at least a condenser, a first expansion valve, and an evaporator in addition to the two-stage screw compressor, like the screw refrigeration apparatus shown in FIG. In general, a configuration is provided that includes a closed flow path and a flow path for cooling a motor that drives the two-stage screw compressor using a high-pressure refrigerant. In addition, like this two-stage screw refrigeration system, the refrigerant used for cooling the motor of the two-stage screw compressor is cooled and injected into the high-pressure stage compression chamber or into the high-pressure stage suction section. It has become common to do.

特開平07−180917号公報(第2、3頁、第1図等)Japanese Patent Application Laid-Open No. 07-180917 (pages 2, 3 and 1)

特許文献1に記載されているような二段スクリュー式冷凍装置にあっては、モーター冷却に用いた冷媒を高圧段の圧縮室に注入、もしくは、高圧段吸入部に注入する構成としているので、高圧と低圧の差圧が小さい低差圧運転条件で二段スクリュー圧縮機が運転される場合には、過圧縮状態となってしまう。すなわち、高段吸入部圧力が高段吐出部の高圧より高くなる。このような運転条件では、モーター冷却用の冷媒が流れなくなり、モーターが過熱して、運転が継続できなくなる。   In the two-stage screw refrigeration apparatus as described in Patent Document 1, the refrigerant used for motor cooling is injected into the compression chamber of the high-pressure stage, or is injected into the high-pressure stage suction section. When the two-stage screw compressor is operated under a low differential pressure operating condition where the differential pressure between the high pressure and the low pressure is small, an overcompressed state occurs. That is, the high stage suction part pressure becomes higher than the high pressure of the high stage discharge part. Under such operating conditions, the motor cooling refrigerant does not flow, the motor overheats, and the operation cannot be continued.

そのため、このような運転条件で運転するには低圧段側の圧縮機をアンローダーにしてモーター冷却用冷媒の注入位置圧力を低くする運転制御を行なうことが行なわれている。しかしながら、このような運転制御を行なうと、低差圧運転条件での冷凍機能力が小さくなってしまうという問題があった。   Therefore, in order to operate under such operating conditions, operation control is performed to lower the injection position pressure of the refrigerant for cooling the motor by using the low-pressure stage compressor as an unloader. However, when such operation control is performed, there is a problem in that the refrigeration function force under low differential pressure operation conditions is reduced.

この発明は、以上のような問題を解決するためになされたもので、モーターの冷却が十分に行なえていないと判断される運転条件でもモーター冷却を十分に実行でき、そのような運転条件においても冷凍機能力を小さくすることなく運転が継続できる二段スクリュー圧縮機を搭載した冷凍装置を提供することを目的としている。   The present invention has been made to solve the above problems, and can sufficiently perform motor cooling even under operating conditions in which it is determined that the motor has not been sufficiently cooled. An object of the present invention is to provide a refrigeration apparatus equipped with a two-stage screw compressor capable of continuing operation without reducing the refrigeration function.

本発明に係る冷凍装置は、低圧段側のスクリュー圧縮機構部及び高圧段側のスクリュー圧縮機構部を有する二段スクリュー圧縮機、前記二段スクリュー圧縮機を駆動するモーターの収納ケーシング、前記二段スクリュー圧縮機から吐出された冷媒が流入する凝縮器、前記凝縮器から流出した冷媒を減圧する第一膨張弁、及び、前記第一膨張弁で減圧された冷媒が流入する蒸発器を配管接続した循環閉回路と、前記凝縮器と前記第一膨張弁との間と前記モーターの収納ケーシングとを第二膨張弁を介して接続した第1流路と、前記モーターの収納ケーシングと前記高圧段側のスクリュー圧縮機構部の圧縮室とを接続した第2流路と、前記モーターの収納ケーシングと前記低圧段側のスクリュー圧縮機構部の吸入部とを接続した第3流路と、を備え、前記第2流路及び前記第3流路のそれぞれに電磁弁を設け、前記循環閉回路の高圧と低圧との差圧に基づいて、各電磁弁の開閉を制御することにより、前記モーターを冷却した冷媒の流れを前記高圧段側のスクリュー圧縮機構部の圧縮室、又は、前記低圧段側のスクリュー圧縮機構部の吸入部に切り替えことを特徴とする。 The refrigeration apparatus according to the present invention includes a two-stage screw compressor having a low-pressure stage-side screw compression mechanism section and a high-pressure stage-side screw compression mechanism section, a housing casing for a motor that drives the two-stage screw compressor, and the two-stage A condenser into which refrigerant discharged from the screw compressor flows in, a first expansion valve that decompresses the refrigerant that flows out from the condenser, and an evaporator into which the refrigerant decompressed by the first expansion valve flows in are connected by piping. A closed circuit, a first flow path connecting the condenser and the first expansion valve, and a storage casing of the motor via a second expansion valve; a storage casing of the motor and the high pressure stage side A second flow path that connects the compression chamber of the screw compression mechanism section of the motor, and a third flow path that connects the housing casing of the motor and the suction section of the screw compression mechanism section on the low-pressure stage side. The solenoid valve provided in each of the second flow path and the third flow path, based on a differential pressure between high pressure and low pressure of the circulating closed circuit, by controlling the opening and closing of the electromagnetic valves, the motor wherein the flow of the cooling refrigerant high pressure stage side of the screw compression unit of compression chambers, or, characterized in that you switch the suction portion of the screw compressor mechanism section of the low pressure stage.

本発明に係る冷凍装置によれば、モーターの冷却が十分に行なえていないと判断される運転条件では低圧段側スクリュー圧縮機構部に注入するような冷媒回路を構成し、冷媒の流れを制御するので、そのような条件であってもモーター冷却用の冷媒が十分にモーターに注入され、モーターの冷却が十分に行なえる。したがって、本発明に係る冷凍装置によれば、冷凍能力を小さくすることなく運転が継続できる。   According to the refrigeration apparatus according to the present invention, a refrigerant circuit that injects into the low-pressure stage side screw compression mechanism is configured under an operating condition in which it is determined that the motor is not sufficiently cooled, and the flow of the refrigerant is controlled. Therefore, even under such conditions, the motor cooling refrigerant is sufficiently injected into the motor, and the motor can be sufficiently cooled. Therefore, according to the refrigeration apparatus according to the present invention, the operation can be continued without reducing the refrigeration capacity.

この発明の実施の形態1に係る冷凍装置の冷媒回路構成を示す概略回路構成図である。It is a schematic circuit block diagram which shows the refrigerant circuit structure of the freezing apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る冷凍装置の冷媒回路構成を示す概略回路構成図である。It is a schematic circuit block diagram which shows the refrigerant circuit structure of the freezing apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る冷凍装置の冷媒回路構成を示す概略回路構成図である。It is a schematic circuit block diagram which shows the refrigerant circuit structure of the freezing apparatus which concerns on Embodiment 3 of this invention.

以下、この発明の実施の形態を図面に基づいて説明する。
実施の形態1.
図1は、この発明の実施の形態1に係る冷凍装置100の冷媒回路構成を示す概略回路構成図である。図1に基づいて、冷凍装置100の構成及び動作について説明する。実施の形態1に係る冷凍装置100は、冷凍サイクルの一構成要素として二段スクリュー圧縮機50を搭載したスクリュー冷凍装置である。この冷凍装置100は、たとえば冷蔵倉庫や冷凍倉庫、フリーザー等として利用されるものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1.
FIG. 1 is a schematic circuit configuration diagram showing a refrigerant circuit configuration of a refrigeration apparatus 100 according to Embodiment 1 of the present invention. Based on FIG. 1, the structure and operation | movement of the freezing apparatus 100 are demonstrated. The refrigeration apparatus 100 according to Embodiment 1 is a screw refrigeration apparatus equipped with a two-stage screw compressor 50 as one component of the refrigeration cycle. The refrigeration apparatus 100 is used as, for example, a refrigerated warehouse, a frozen warehouse, a freezer, or the like. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.

冷凍装置100は、要素機器として、低圧段側のスクリュー圧縮機構部1、高圧段側のスクリュー圧縮機構部2、凝縮器3、第一膨張弁4、蒸発器5、第二膨張弁7、モーター8、電磁弁11、及び、電磁弁13を備えている。また、冷凍装置100には、循環閉回路(冷媒回路)6と、冷却用流路(第1流路)9と、冷却用流路(第2流路)10と、冷却用流路(第3流路)12が形成されている。なお、低圧段側のスクリュー圧縮機構部1、及び、高圧段側のスクリュー圧縮機構部2で、二段スクリュー圧縮機を構成している。また、実施の形態1では二段スクリュー圧縮機50及びモーター8が半密閉型のケーシングに一体的に設けられているものである。   The refrigeration apparatus 100 includes, as component devices, a low-pressure stage screw compression mechanism 1, a high-pressure stage screw compression mechanism 2, a condenser 3, a first expansion valve 4, an evaporator 5, a second expansion valve 7, and a motor. 8, a solenoid valve 11 and a solenoid valve 13 are provided. Further, the refrigeration apparatus 100 includes a closed circulation circuit (refrigerant circuit) 6, a cooling flow path (first flow path) 9, a cooling flow path (second flow path) 10, and a cooling flow path (first flow path). 3 flow paths) 12 are formed. The low-pressure stage screw compression mechanism 1 and the high-pressure stage screw compression mechanism 2 constitute a two-stage screw compressor. In the first embodiment, the two-stage screw compressor 50 and the motor 8 are integrally provided in a semi-sealed casing.

循環閉回路6は、低圧段側のスクリュー圧縮機構部1、高圧段側のスクリュー圧縮機構部2、凝縮器3、第一膨張弁4、および、蒸発器5を配管接続することで冷媒を循環可能なように構成されている。冷却用流路9は、第一膨張弁4の入口側(凝縮器3と第一膨張弁4との間)で循環閉回路6から分岐させ、第二膨張弁7を経て、モーター8(詳しくはモーター8の収納ケーシング)に至らせるように構成されている。冷却用流路10は、モーター8を通過させた冷媒を高圧段側のスクリュー圧縮機構部2の圧縮室に連通させるように構成されている。冷却用流路12は、冷却用流路10から分岐させ、モーター8を通過させた冷媒を低圧段側のスクリュー圧縮機構部1の吸入部に連通させるように構成されている。   The circulation closed circuit 6 circulates the refrigerant by connecting the low pressure stage screw compression mechanism 1, the high pressure stage screw compression mechanism 2, the condenser 3, the first expansion valve 4, and the evaporator 5 by piping. It is configured as possible. The cooling channel 9 is branched from the circulation closed circuit 6 on the inlet side of the first expansion valve 4 (between the condenser 3 and the first expansion valve 4), passes through the second expansion valve 7, and passes through the motor 8 (details). Is configured to reach the storage casing of the motor 8. The cooling flow path 10 is configured to allow the refrigerant that has passed through the motor 8 to communicate with the compression chamber of the screw compression mechanism 2 on the high-pressure stage side. The cooling flow path 12 is configured to allow the refrigerant branched from the cooling flow path 10 to pass through the motor 8 to communicate with the suction portion of the screw compression mechanism portion 1 on the low pressure stage side.

低圧段側のスクリュー圧縮機構部1は、低圧の冷媒を吸入し、その冷媒を圧縮して高圧段側のスクリュー圧縮機構部2に搬送するものである。高圧段側のスクリュー圧縮機構部2は、低圧段側のスクリュー圧縮機構部1から吐出された冷媒を吸入し、その冷媒を圧縮して凝縮器3に搬送するものである。凝縮器3は、図示省略の熱媒体(たとえば、空気や水、ブライン等)と循環閉回路6を流れる冷媒との間で熱交換を行なうものである。第一膨張弁4は、循環閉回路6を流れる冷媒を減圧して膨張させるものであり、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。   The low-pressure stage side screw compression mechanism 1 sucks low-pressure refrigerant, compresses the refrigerant, and conveys the refrigerant to the high-pressure stage screw compression mechanism 2. The high-pressure stage-side screw compression mechanism 2 sucks the refrigerant discharged from the low-pressure stage-side screw compression mechanism 1, compresses the refrigerant, and conveys the refrigerant to the condenser 3. The condenser 3 performs heat exchange between a heat medium (not shown) (for example, air, water, brine, and the like) and a refrigerant flowing in the circulation closed circuit 6. The first expansion valve 4 is for decompressing and expanding the refrigerant flowing through the circulation closed circuit 6, and may be constituted by a valve whose opening degree can be variably controlled, for example, an electronic expansion valve.

蒸発器5は、図示省略の熱媒体(たとえば、空気や水、ブライン等)と循環閉回路6を流れる冷媒との間で熱交換を行なうものである。第二膨張弁7は、冷却用流路9に設けられ、冷却用流路9を流れる冷媒を減圧して膨張させるものであり、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。モーター8は、低圧段側のスクリュー圧縮機構部1及び高圧段側のスクリュー圧縮機構部2を駆動するものである。モーター8は、上述したように二段スクリュー圧縮機50と一体的に半密閉型のケーシング(収納ケーシング)に設けられている。   The evaporator 5 performs heat exchange between a heat medium (not shown) (for example, air, water, brine, and the like) and a refrigerant flowing in the circulation closed circuit 6. The second expansion valve 7 is provided in the cooling flow path 9 and expands the refrigerant flowing through the cooling flow path 9 by depressurizing it. The opening degree of the second expansion valve 7 can be controlled variably, such as an electronic expansion valve. It is good to comprise. The motor 8 drives the screw compression mechanism 1 on the low pressure stage side and the screw compression mechanism 2 on the high pressure stage side. As described above, the motor 8 is provided in a semi-sealed casing (storage casing) integrally with the two-stage screw compressor 50.

電磁弁11は、冷却用流路10に設けられ、開閉が制御されることで冷却用流路10の開閉を行なうものである。電磁弁13は、冷却用流路12に設けられ、開閉が制御されることで冷却用流路12の開閉を行なうものである。電磁弁11及び電磁弁13の開閉は、冷凍装置100の動作を統括制御する図示省略の制御装置が行なうようになっている。   The electromagnetic valve 11 is provided in the cooling flow path 10 and opens and closes the cooling flow path 10 by controlling opening and closing. The electromagnetic valve 13 is provided in the cooling flow path 12 and opens and closes the cooling flow path 12 by controlling the opening and closing thereof. The electromagnetic valve 11 and the electromagnetic valve 13 are opened and closed by a control device (not shown) that performs overall control of the operation of the refrigeration apparatus 100.

なお、図示省略の制御装置は、マイコン等で構成されており、リモコン等からの指示に基づいて、各種アクチュエーター(たとえば、モーター8、凝縮器3や蒸発器5の近傍に送風機が設けられている場合にはその送風機、電磁弁11、電磁弁13等)を制御し、冷媒の流れを調節するようになっている。   The control device (not shown) is configured by a microcomputer or the like, and a blower is provided in the vicinity of various actuators (for example, the motor 8, the condenser 3, and the evaporator 5) based on instructions from a remote controller or the like. In that case, the blower, the electromagnetic valve 11, the electromagnetic valve 13, etc.) are controlled to adjust the flow of the refrigerant.

また、冷凍装置100には、感温筒14及び感温筒15が設けられている。感温筒14は、蒸発器5の出口側(蒸発器5と低圧段側のスクリュー圧縮機構部1との間)の循環閉回路6に設けられ、その箇所の温度、圧力を検出して検出部での過熱度が一定になるように第一膨張弁4の開度を調節するものである。感温筒15は、モーター8と二段スクリュー圧縮機50との間の冷却用流路10に設けられ、その箇所の温度、圧力を検出して検出部での過熱度が一定になるように第二膨張弁7の開度を調節するものである。   The refrigeration apparatus 100 is provided with a temperature sensing cylinder 14 and a temperature sensing cylinder 15. The temperature sensing cylinder 14 is provided in the circulation closed circuit 6 on the outlet side of the evaporator 5 (between the evaporator 5 and the screw compression mechanism 1 on the low pressure stage side), and detects the temperature and pressure at that location. The opening degree of the first expansion valve 4 is adjusted so that the degree of superheat in the section becomes constant. The temperature sensing cylinder 15 is provided in the cooling flow path 10 between the motor 8 and the two-stage screw compressor 50, and detects the temperature and pressure at that location so that the degree of superheat at the detection unit becomes constant. The opening degree of the second expansion valve 7 is adjusted.

冷凍装置100の動作について説明する。
モーター8に電力が供給されると、二段スクリュー圧縮機50が運転を開始する。二段スクリュー圧縮機50が運転を開始すると、循環閉回路6を流れる冷媒が低圧段側のスクリュー圧縮機構部1に吸入される。この冷媒は、低圧段側のスクリュー圧縮機構部1で圧縮されてから吐出される。低圧段側のスクリュー圧縮機構部1から吐出された冷媒は、高圧段側のスクリュー圧縮機構部2に吸入される。この冷媒は、高圧段側のスクリュー圧縮機構部2で圧縮されてから吐出される。
The operation of the refrigeration apparatus 100 will be described.
When electric power is supplied to the motor 8, the two-stage screw compressor 50 starts operation. When the two-stage screw compressor 50 starts operation, the refrigerant flowing through the closed circuit 6 is sucked into the low-pressure stage-side screw compression mechanism 1. This refrigerant is discharged after being compressed by the screw compression mechanism 1 on the low-pressure stage side. The refrigerant discharged from the low-pressure stage screw compression mechanism 1 is sucked into the high-pressure stage screw compression mechanism 2. This refrigerant is discharged after being compressed by the screw compression mechanism 2 on the high-pressure stage side.

高圧段側のスクリュー圧縮機構部2から吐出された冷媒は、凝縮器3に流入する。凝縮器3に流入した冷媒は、熱媒体に放熱しながら凝縮される。凝縮器3から流出した冷媒の一部は、第一膨張弁4で減圧される。第一膨張弁4から流出した冷媒は、蒸発器5に流入し、熱媒体から吸熱しながら蒸発される。蒸発器5から流出した冷媒は、二段スクリュー圧縮機50に再度吸入される。一方、凝縮器3から流出した冷媒の残りの一部は、冷却用流路9に流入して第二膨張弁7で減圧される。第二膨張弁7から流出した冷媒は、モーター8の収納ケーシングに流入し、モーター8を冷却した後、モーター8の収納ケーシングから流出する。   The refrigerant discharged from the high-pressure stage side screw compression mechanism 2 flows into the condenser 3. The refrigerant flowing into the condenser 3 is condensed while releasing heat to the heat medium. A part of the refrigerant flowing out of the condenser 3 is decompressed by the first expansion valve 4. The refrigerant flowing out of the first expansion valve 4 flows into the evaporator 5 and is evaporated while absorbing heat from the heat medium. The refrigerant that has flowed out of the evaporator 5 is again sucked into the two-stage screw compressor 50. On the other hand, the remaining part of the refrigerant flowing out of the condenser 3 flows into the cooling flow path 9 and is decompressed by the second expansion valve 7. The refrigerant that has flowed out of the second expansion valve 7 flows into the storage casing of the motor 8, cools the motor 8, and then flows out of the storage casing of the motor 8.

モーター8の収納ケーシングから流出した冷媒は、冷却用流路10に流入し、モーター8の冷却に応じて冷却用流路12を流れる冷媒と、冷却用流路10をそのまま流れる冷媒と、に分流される。冷凍装置100では、通常運転時においては、電磁弁11が開、電磁弁13が閉に制御されている。しかしながら、モーター8の冷却が十分に行なえない低差圧条件(高圧と低圧の差圧が小さい条件)での運転時においては、冷凍装置100では、電磁弁11が閉、電磁弁13が開に制御される。すなわち、冷凍装置100は、通常運転時では電磁弁11を開、電磁弁13を閉に制御するが、高圧と低圧の差圧がモーター8の冷却が十分に行なえないと想定する所定の値より小さくなった場合には電磁弁11を閉、電磁弁13を開に制御することで冷媒の流れを切り替えるようにしている。   The refrigerant that has flowed out of the housing casing of the motor 8 flows into the cooling flow path 10 and is divided into a refrigerant that flows through the cooling flow path 12 according to the cooling of the motor 8 and a refrigerant that flows through the cooling flow path 10 as it is. Is done. In the refrigeration apparatus 100, during normal operation, the electromagnetic valve 11 is controlled to be open and the electromagnetic valve 13 is closed. However, during operation under a low differential pressure condition where the motor 8 cannot be sufficiently cooled (a condition where the differential pressure between the high pressure and the low pressure is small), in the refrigeration apparatus 100, the electromagnetic valve 11 is closed and the electromagnetic valve 13 is opened. Be controlled. That is, the refrigeration apparatus 100 controls the solenoid valve 11 to be opened and the solenoid valve 13 to be closed during normal operation, but the differential pressure between the high pressure and the low pressure is more than a predetermined value that assumes that the motor 8 cannot be sufficiently cooled. When it becomes smaller, the flow of the refrigerant is switched by closing the electromagnetic valve 11 and opening the electromagnetic valve 13.

以上のように、冷凍装置100は、モーター8を冷却した冷媒を従来位置に注入する流路(第2流路)に加え、低圧段側のスクリュー圧縮機構部1の吸入部に注入する流路(第3流路)を追設し、モーター8の冷却が十分に行なえない低差圧条件においてモーター8の冷却に用いた冷媒の注入先を従来位置から低圧段側のスクリュー圧縮機構部1の吸入部に切り替えて運転できるようにしている。   As described above, the refrigeration apparatus 100 has a flow path for injecting into the suction section of the screw compression mechanism section 1 on the low pressure stage side in addition to the flow path (second flow path) for injecting the refrigerant that has cooled the motor 8 into the conventional position. (Third flow path) is additionally provided, and the refrigerant injection destination used for cooling the motor 8 under the low differential pressure condition where the motor 8 cannot be sufficiently cooled is changed from the conventional position to the screw compression mechanism 1 on the low pressure stage side. It is possible to switch to the suction part and operate.

したがって、冷凍装置100では、モーター8の冷却用に用いた冷媒を低差圧条件では低圧段側のスクリュー圧縮機構部1に注入するような冷媒回路を構成し、冷媒の流れを制御するので、低差圧条件であってもモーター8冷却用の冷媒が十分にモーター8に注入され、モーター8の冷却が十分に行なえる。これにより、冷凍装置100においては、低差圧条件であっても低圧段側のスクリュー圧縮機構部1をアンローダーせずに、冷凍能力を小さくすることなく、二段スクリュー圧縮機50の運転が継続できる。   Therefore, in the refrigeration apparatus 100, a refrigerant circuit that injects the refrigerant used for cooling the motor 8 into the screw compression mechanism 1 on the low-pressure stage side under the low differential pressure condition and controls the flow of the refrigerant. Even under the low differential pressure condition, the refrigerant for cooling the motor 8 is sufficiently injected into the motor 8, and the motor 8 can be sufficiently cooled. Thereby, in the refrigeration apparatus 100, the operation of the two-stage screw compressor 50 can be performed without unloading the screw compression mechanism 1 on the low-pressure stage side and reducing the refrigeration capacity even under a low differential pressure condition. Can continue.

実施の形態2.
図2は、この発明の実施の形態2に係る冷凍装置100aの冷媒回路構成を示す概略回路構成図である。図2に基づいて、冷凍装置100aの構成及び動作について説明する。実施の形態2に係る冷凍装置100aは、冷凍サイクルの一構成要素として二段スクリュー圧縮機50を搭載したスクリュー冷凍装置である。この冷凍装置100aは、たとえば冷蔵倉庫や冷凍倉庫、フリーザー等として利用されるものである。なお、実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には、同一符号を付して説明を省略するものとする。
Embodiment 2. FIG.
FIG. 2 is a schematic circuit configuration diagram showing a refrigerant circuit configuration of a refrigeration apparatus 100a according to Embodiment 2 of the present invention. Based on FIG. 2, the structure and operation | movement of the freezing apparatus 100a are demonstrated. The refrigeration apparatus 100a according to Embodiment 2 is a screw refrigeration apparatus equipped with a two-stage screw compressor 50 as one component of the refrigeration cycle. This refrigeration apparatus 100a is used, for example, as a refrigerated warehouse, a frozen warehouse, a freezer, or the like. In the second embodiment, differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.

冷凍装置100aには、モーター8の冷却状態を検出するための温度センサー16が設けられている。温度センサー16は、モーター8の温度を検出できる位置に取り付けられている。この温度センサー16で検出された温度は、冷凍装置100の動作を統括制御する図示省略の制御装置に送られるようになっている。制御装置は、温度センサー16から送られた温度情報に基づいて電磁弁11及び電磁弁13の開閉を制御するようになっている。   The refrigeration apparatus 100 a is provided with a temperature sensor 16 for detecting the cooling state of the motor 8. The temperature sensor 16 is attached at a position where the temperature of the motor 8 can be detected. The temperature detected by the temperature sensor 16 is sent to a control device (not shown) that performs overall control of the operation of the refrigeration apparatus 100. The control device controls the opening and closing of the solenoid valve 11 and the solenoid valve 13 based on the temperature information sent from the temperature sensor 16.

冷凍装置100aでは、通常運転時においては、電磁弁11が開、電磁弁13が閉に制御されている。しかしながら、モーター8の冷却が十分に行なえない条件(温度センサー16での検出温度が予め設定されている所定値よりも大きい条件)での運転時においては、冷凍装置100では、電磁弁11が閉、電磁弁13が開に制御される。すなわち、冷凍装置100は、通常運転時では電磁弁11を開、電磁弁13を閉に制御するが、温度センサー16での検出温度がモーター8の冷却が十分に行なえないと想定する所定値よりも大きくなった場合には電磁弁11を閉、電磁弁13を開に制御することで冷媒の流れを切り替えるようにしている。   In the refrigeration apparatus 100a, the solenoid valve 11 is controlled to be opened and the solenoid valve 13 is controlled to be closed during normal operation. However, during operation under conditions where the motor 8 cannot be sufficiently cooled (conditions where the temperature detected by the temperature sensor 16 is greater than a predetermined value set in advance), the refrigeration apparatus 100 closes the solenoid valve 11. The electromagnetic valve 13 is controlled to open. That is, the refrigeration apparatus 100 controls the solenoid valve 11 to open and the solenoid valve 13 to be closed during normal operation, but the temperature detected by the temperature sensor 16 is higher than a predetermined value that assumes that the motor 8 cannot be sufficiently cooled. In the case where the pressure increases, the flow of the refrigerant is switched by closing the electromagnetic valve 11 and controlling the electromagnetic valve 13 to open.

以上のように、冷凍装置100aは、モーター8を冷却した冷媒を従来位置に注入する流路(第2流路)に加え、低圧段側のスクリュー圧縮機構部1の吸入部に注入する流路(第3流路)を追設し、モーター8の冷却が十分に行なえない低差圧条件においてモーター8の冷却に用いた冷媒の注入先を従来位置から低圧段側のスクリュー圧縮機構部1の吸入部に切り替えて運転できるようにしている。   As described above, the refrigeration apparatus 100a has a flow path for injecting the refrigerant having cooled the motor 8 into the suction section of the screw compression mechanism 1 on the low pressure stage side in addition to the flow path (second flow path) for injecting the refrigerant into the conventional position. (Third flow path) is additionally provided, and the refrigerant injection destination used for cooling the motor 8 under the low differential pressure condition where the motor 8 cannot be sufficiently cooled is changed from the conventional position to the screw compression mechanism 1 on the low pressure stage side. It is possible to switch to the suction part and operate.

したがって、冷凍装置100aでは、モーター8の冷却が十分に行なえていないと判断される運転条件では低圧段側のスクリュー圧縮機構部1に注入するような冷媒回路を構成し、冷媒の流れを制御するので、そのような条件であってもモーター8冷却用の冷媒が十分にモーター8に注入され、モーター8の冷却が十分に行なえる。これにより、冷凍装置100aにおいては、モーター8の冷却が十分に行なえていない条件、つまりモーター8の温度が所定値よりも大きくなった条件であっても低圧段側のスクリュー圧縮機構部1をアンローダーせずに、冷凍能力を小さくすることなく、二段スクリュー圧縮機50の運転が継続できる。   Therefore, in the refrigeration apparatus 100a, a refrigerant circuit that injects into the screw compression mechanism unit 1 on the low-pressure stage side is configured under an operating condition in which it is determined that the motor 8 is not sufficiently cooled, and the refrigerant flow is controlled. Therefore, even under such conditions, the coolant for cooling the motor 8 is sufficiently injected into the motor 8, and the motor 8 can be sufficiently cooled. As a result, in the refrigeration apparatus 100a, the screw compression mechanism 1 on the low-pressure stage side is unloaded even under conditions where the motor 8 is not sufficiently cooled, that is, under conditions where the temperature of the motor 8 exceeds a predetermined value. The operation of the two-stage screw compressor 50 can be continued without reducing the refrigerating capacity without using a loader.

実施の形態3.
図3は、この発明の実施の形態3に係る冷凍装置100bの冷媒回路構成を示す概略回路構成図である。図3に基づいて、冷凍装置100bの構成及び動作について説明する。実施の形態3に係る冷凍装置100bは、冷凍サイクルの一構成要素として二段スクリュー圧縮機50を搭載したスクリュー冷凍装置である。この冷凍装置100bは、たとえば冷蔵倉庫や冷凍倉庫、フリーザー等として利用されるものである。なお、実施の形態3では実施の形態1及び実施の形態2との相違点を中心に説明し、実施の形態1及び実施の形態2と同一部分には、同一符号を付して説明を省略するものとする。
Embodiment 3 FIG.
FIG. 3 is a schematic circuit configuration diagram showing a refrigerant circuit configuration of a refrigeration apparatus 100b according to Embodiment 3 of the present invention. The configuration and operation of the refrigeration apparatus 100b will be described based on FIG. The refrigeration apparatus 100b according to Embodiment 3 is a screw refrigeration apparatus equipped with a two-stage screw compressor 50 as one component of the refrigeration cycle. This refrigeration apparatus 100b is used, for example, as a refrigerated warehouse, a frozen warehouse, a freezer, or the like. In the third embodiment, differences from the first and second embodiments will be mainly described, and the same parts as those in the first and second embodiments will be denoted by the same reference numerals and the description thereof will be omitted. It shall be.

実施の形態1及び実施の形態2では、2つの電磁弁(電磁弁11及び電磁弁13)を用いてモーター8の冷却に用いた冷媒の注入先を切り替えるようにした例を説明したが、実施の形態3で、1つの三方電磁弁17を用いてモーター8の冷却に用いた冷媒の注入先を切り替えるようにした例を説明する。つまり、冷凍装置100bには、電磁弁11及び電磁弁13を設けずに、三方電磁弁17を設けているのである。三方電磁弁17は、冷却用流路10と冷却用流路12との接続部分に設けられている。   In the first embodiment and the second embodiment, the example in which the refrigerant injection destination used for cooling the motor 8 is switched using two electromagnetic valves (the electromagnetic valve 11 and the electromagnetic valve 13) has been described. In the third embodiment, an example in which the injection destination of the refrigerant used for cooling the motor 8 is switched using one three-way electromagnetic valve 17 will be described. That is, the refrigeration apparatus 100 b is provided with the three-way electromagnetic valve 17 without providing the electromagnetic valve 11 and the electromagnetic valve 13. The three-way solenoid valve 17 is provided at a connection portion between the cooling flow path 10 and the cooling flow path 12.

三方電磁弁17は、三方のうちの一つが冷却用流路10を介してモーター8の収納ケーシングに、三方のうちの一つが冷却用流路10を介して高圧段側のスクリュー圧縮機構部2の圧縮室に、三方のうちの一つが冷却用流路12を介して低圧段側のスクリュー圧縮機構部1の吸入部に、それぞれ接続されている。したがって、三方電磁弁17は、冷媒流路が切り替え制御されることで、モーター8の冷却に用いた冷媒を冷却用流路10を介して高圧段側のスクリュー圧縮機構部2に注入させたり、モーター8の冷却に用いた冷媒を冷却用流路12を介して低圧段側のスクリュー圧縮機構部1に注入させたりするようになっている。   In the three-way solenoid valve 17, one of the three sides is connected to the housing casing of the motor 8 via the cooling flow path 10, and one of the three directions is connected to the screw compression mechanism portion 2 on the high-pressure stage side via the cooling flow path 10. One of the three sides is connected to the suction portion of the screw compression mechanism portion 1 on the low pressure stage side via the cooling flow path 12. Therefore, the three-way solenoid valve 17 allows the refrigerant used for cooling the motor 8 to be injected into the screw compression mechanism unit 2 on the high-pressure stage side via the cooling channel 10 by switching the refrigerant channel. The refrigerant used for cooling the motor 8 is injected into the screw compression mechanism 1 on the low pressure stage side through the cooling flow path 12.

冷凍装置100bでは、通常運転時においては、三方電磁弁17がモーター8の冷却に用いた冷媒が高圧段側のスクリュー圧縮機構部2に注入されるよう操作される。しかしながら、モーター8の冷却が十分に行なえない条件(低差圧条件や温度センサー16での検出温度が予め設定されている所定値よりも大きい条件)での運転時においては、冷凍装置100では、三方電磁弁17がモーター8の冷却に用いた冷媒が低圧段側のスクリュー圧縮機構部1の吸入側に注入されるように操作される。   In the refrigeration apparatus 100b, during normal operation, the three-way solenoid valve 17 is operated so that the refrigerant used for cooling the motor 8 is injected into the screw compression mechanism unit 2 on the high-pressure stage side. However, during operation under conditions in which the motor 8 cannot be sufficiently cooled (low differential pressure conditions or conditions in which the temperature detected by the temperature sensor 16 is greater than a predetermined value set in advance) The three-way solenoid valve 17 is operated so that the refrigerant used for cooling the motor 8 is injected into the suction side of the screw compression mechanism 1 on the low pressure stage side.

以上のように、冷凍装置100bは、モーター8を冷却した冷媒を従来位置に注入する流路(第2流路)に加え、低圧段側のスクリュー圧縮機構部1の吸入部に注入する流路(第3流路)を追設し、モーター8の冷却が十分に行なえない低差圧条件においてモーター8の冷却に用いた冷媒の注入先を従来位置から低圧段側のスクリュー圧縮機構部1の吸入部に切り替えて運転できるようにしている。   As described above, the refrigeration apparatus 100b has a flow path for injecting into the suction portion of the screw compression mechanism section 1 on the low pressure stage side in addition to the flow path (second flow path) for injecting the refrigerant that has cooled the motor 8 into the conventional position. (Third flow path) is additionally provided, and the refrigerant injection destination used for cooling the motor 8 under the low differential pressure condition where the motor 8 cannot be sufficiently cooled is changed from the conventional position to the screw compression mechanism 1 on the low pressure stage side. It is possible to switch to the suction part and operate.

したがって、冷凍装置100bでは、モーター8の冷却が十分に行なえていないと判断される運転条件では低圧段側のスクリュー圧縮機構部1に注入するような冷媒回路を構成し、冷媒の流れを制御するので、そのような条件であってもモーター8冷却用の冷媒が十分にモーター8に注入され、モーター8の冷却が十分に行なえる。これにより、冷凍装置100bにおいては、モーター8の冷却が十分に行なえていない条件(たとえば、低差圧条件やモーター8の温度が所定値よりも大きくなった条件)であっても低圧段側のスクリュー圧縮機構部1をアンローダーせずに、冷凍能力を小さくすることなく、二段スクリュー圧縮機50の運転が継続できる。   Therefore, in the refrigeration apparatus 100b, a refrigerant circuit that injects into the screw compression mechanism unit 1 on the low-pressure stage side is configured under an operating condition in which it is determined that the motor 8 is not sufficiently cooled, and the refrigerant flow is controlled. Therefore, even under such conditions, the coolant for cooling the motor 8 is sufficiently injected into the motor 8, and the motor 8 can be sufficiently cooled. Thereby, in the refrigeration apparatus 100b, even if the motor 8 is not sufficiently cooled (for example, a low differential pressure condition or a condition in which the temperature of the motor 8 is higher than a predetermined value), The operation of the two-stage screw compressor 50 can be continued without unloading the screw compression mechanism 1 and without reducing the refrigeration capacity.

また、実施の形態1及び実施の形態2に係る冷凍装置に比べ、実施の形態3に係る冷凍装置100bでは電磁弁の数が2個から1個に減ることにより部品点数が削減でき、その分のコストが低減できる。   Further, in comparison with the refrigeration apparatus according to the first and second embodiments, in the refrigeration apparatus 100b according to the third embodiment, the number of parts can be reduced by reducing the number of solenoid valves from two to one. Cost can be reduced.

なお、本発明に係る冷凍装置の実施の形態を構成の違いに分けて説明したが、各実施の形態の特徴事項を適宜組み合わせて冷凍装置を構成するようにしてもよい。各実施の形態を適宜組み合わせるようにすれば、各実施の形態の特徴事項による効果を重畳的に得ることができる。   Although the embodiments of the refrigeration apparatus according to the present invention have been described with different configurations, the refrigeration apparatus may be configured by appropriately combining the features of the embodiments. If the embodiments are appropriately combined, the effects of the features of the embodiments can be obtained in a superimposed manner.

1 低圧段側のスクリュー圧縮機構部、2 高圧段側のスクリュー圧縮機構部、3 凝縮器、4 第一膨張弁、5 蒸発器、6 循環閉回路、7 第二膨張弁、8 モーター、9 冷却用流路(第1流路)、10 冷却用流路(第2流路)、11 電磁弁、12 冷却用流路(第3流路)、13 電磁弁、14 感温筒、15 感温筒、16 温度センサー、17 三方電磁弁、50 二段スクリュー圧縮機、100 冷凍装置、100a 冷凍装置、100b 冷凍装置。   DESCRIPTION OF SYMBOLS 1 Screw compression mechanism part of low pressure stage side 2 Screw compression mechanism part of high pressure stage side 3 Condenser, 4 First expansion valve, 5 Evaporator, 6 Circulation closed circuit, 7 Second expansion valve, 8 Motor, 9 Cooling Flow path (first flow path), 10 Cooling flow path (second flow path), 11 Solenoid valve, 12 Cooling flow path (third flow path), 13 Solenoid valve, 14 Temperature sensing cylinder, 15 Temperature sensing Cylinder, 16 temperature sensor, 17 three-way solenoid valve, 50 two-stage screw compressor, 100 refrigeration apparatus, 100a refrigeration apparatus, 100b refrigeration apparatus.

Claims (2)

低圧段側のスクリュー圧縮機構部及び高圧段側のスクリュー圧縮機構部を有する二段スクリュー圧縮機、前記二段スクリュー圧縮機を駆動するモーターの収納ケーシング、前記二段スクリュー圧縮機から吐出された冷媒が流入する凝縮器、前記凝縮器から流出した冷媒を減圧する第一膨張弁、及び、前記第一膨張弁で減圧された冷媒が流入する蒸発器を配管接続した循環閉回路と、
前記凝縮器と前記第一膨張弁との間と前記モーターの収納ケーシングとを第二膨張弁を介して接続した第1流路と、
前記モーターの収納ケーシングと前記高圧段側のスクリュー圧縮機構部の圧縮室とを接続した第2流路と、
前記モーターの収納ケーシングと前記低圧段側のスクリュー圧縮機構部の吸入部とを接続した第3流路と、を備え、
前記第2流路及び前記第3流路のそれぞれに電磁弁を設け、
前記循環閉回路の高圧と低圧との差圧に基づいて、各電磁弁の開閉を制御することにより、前記モーターを冷却した冷媒の流れを前記高圧段側のスクリュー圧縮機構部の圧縮室、又は、前記低圧段側のスクリュー圧縮機構部の吸入部に切り替え
ことを特徴とする冷凍装置。
A two-stage screw compressor having a low-pressure stage screw compression mechanism and a high-pressure stage screw compression mechanism, a housing casing for a motor that drives the two-stage screw compressor, and a refrigerant discharged from the two-stage screw compressor A condenser into which the refrigerant flows out, a first expansion valve that depressurizes the refrigerant that has flowed out of the condenser, and a closed circuit that pipes an evaporator into which the refrigerant decompressed by the first expansion valve flows, and
A first flow path connecting the condenser and the first expansion valve and a housing casing of the motor via a second expansion valve;
A second flow path connecting the housing casing of the motor and the compression chamber of the high-pressure stage side screw compression mechanism;
A third flow path connecting the housing casing of the motor and the suction portion of the screw compression mechanism on the low-pressure stage side,
An electromagnetic valve is provided in each of the second flow path and the third flow path,
Based on the differential pressure between the high pressure and the low pressure of the closed circuit, the flow of the refrigerant that has cooled the motor is controlled by opening and closing each solenoid valve, or the compression chamber of the screw compression mechanism section on the high-pressure stage side, or the refrigeration system, characterized in that you switch the suction portion of the screw compressor mechanism section of the low pressure stage.
前記第2流路と前記第3流路とを三方電磁弁を介して接続し、
前記三方電磁弁を制御することにより、前記モーターを冷却した冷媒の流れを前記高圧段側のスクリュー圧縮機構部の圧縮室、又は、前記低圧段側のスクリュー圧縮機構部の吸入部に切り替え
ことを特徴とする請求項1に記載の冷凍装置。
Connecting the second flow path and the third flow path via a three-way solenoid valve;
By controlling the three-way solenoid valve, the flow of refrigerant to cool the motor high pressure stage side of the screw compression unit of compression chambers, or, it you switch the suction portion of the screw compressor mechanism section of the low pressure stage side The refrigeration apparatus according to claim 1 .
JP2010109232A 2010-05-11 2010-05-11 Refrigeration equipment Expired - Fee Related JP5538061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010109232A JP5538061B2 (en) 2010-05-11 2010-05-11 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109232A JP5538061B2 (en) 2010-05-11 2010-05-11 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2011237127A JP2011237127A (en) 2011-11-24
JP5538061B2 true JP5538061B2 (en) 2014-07-02

Family

ID=45325304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010109232A Expired - Fee Related JP5538061B2 (en) 2010-05-11 2010-05-11 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5538061B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6373034B2 (en) * 2014-03-31 2018-08-15 三菱電機株式会社 refrigerator
KR101728404B1 (en) * 2015-08-06 2017-04-19 한국에너지기술연구원 Multi-stage compression system and control method of the same
CN106705519B (en) * 2015-11-12 2019-04-19 新特能源股份有限公司 Multistage refrigerating plant and its control method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138449U (en) * 1976-04-13 1977-10-20
JPS5330057A (en) * 1976-09-01 1978-03-20 Hitachi Ltd Refrigerator
JPS5434158A (en) * 1977-07-15 1979-03-13 Hitachi Ltd Refrigerating cycle
JPS62175556A (en) * 1986-01-29 1987-08-01 株式会社東芝 Refrigeration cycle
JP3443443B2 (en) * 1993-12-24 2003-09-02 株式会社神戸製鋼所 Screw refrigerator
JP3541110B2 (en) * 1997-02-17 2004-07-07 株式会社神戸製鋼所 Screw refrigerator
JP2002242833A (en) * 2001-02-15 2002-08-28 Toshiba Kyaria Kk Refrigerating cycle device
JP2006329557A (en) * 2005-05-27 2006-12-07 Kobe Steel Ltd Screw refrigerating device
JP5244470B2 (en) * 2008-06-13 2013-07-24 三菱重工業株式会社 refrigerator

Also Published As

Publication number Publication date
JP2011237127A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5287831B2 (en) Two-stage boost refrigeration cycle
KR100711176B1 (en) Refrigerator and Air Conditioner
JP7116346B2 (en) Heat source unit and refrigerator
JP2020165585A (en) Unit for refrigerating device, heat source unit, and refrigerating device
JP2007010220A (en) Refrigerating unit and refrigerator comprising the same
JP5538061B2 (en) Refrigeration equipment
JP2020165647A (en) Refrigeration cycle apparatus
CN109579332B (en) Refrigeration system
JP3847499B2 (en) Two-stage compression refrigeration system
JP2013064573A (en) Refrigerating apparatus for container
CN111919073B (en) Refrigerating device
JP2021009014A (en) Refrigerator
JP2010060181A (en) Refrigeration system
JP2021055917A (en) Heat source unit and refrigeration unit
JP2012102970A (en) Refrigerating cycle device
JP2010078257A (en) Refrigerating device
WO2021100234A1 (en) Intermediate unit for refrigeration device, and refrigeration device
WO2021065114A1 (en) Heat source unit and refrigeration device
JP2012215309A (en) Cooling device, and refrigerating cycle apparatus
JP2015028423A (en) Chiller and refrigerating cycle device
US20240011671A1 (en) Heat source unit and refrigeration apparatus
JP6069179B2 (en) Turbo refrigerator
US20230251003A1 (en) Refrigeration apparatus
JPS63172863A (en) Compressore capacity controller for refrigerator
KR20070107858A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5538061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees