WO2013146674A1 - Two-stage compression device - Google Patents

Two-stage compression device Download PDF

Info

Publication number
WO2013146674A1
WO2013146674A1 PCT/JP2013/058563 JP2013058563W WO2013146674A1 WO 2013146674 A1 WO2013146674 A1 WO 2013146674A1 JP 2013058563 W JP2013058563 W JP 2013058563W WO 2013146674 A1 WO2013146674 A1 WO 2013146674A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage compression
flow path
stage
compression section
volume
Prior art date
Application number
PCT/JP2013/058563
Other languages
French (fr)
Japanese (ja)
Inventor
吉村 省二
大祐 和田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2013146674A1 publication Critical patent/WO2013146674A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/02Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/21Pressure difference

Definitions

  • the present invention relates to a two-stage compression apparatus.
  • a pair of male and female screw rotors that mesh with each other is accommodated in a rotor chamber formed in the casing, and the space in the rotor chamber is divided by the screw rotor, and the volume decreases as the screw rotor rotates.
  • a screw compressor that forms a compression space, sucks gas from the suction flow path into the compression space, compresses the gas, and discharges the gas into the discharge flow path is widely used.
  • Such a screw compressor has a gas back flow from the discharge flow path to the compression space or a gas in the discharge flow path when the pressure of the compression space at the moment of being connected to the discharge flow path is different from the pressure of the discharge flow path. Negative work such as expansion of the water occurs and efficiency decreases.
  • the pressure of the compression space at the moment of being connected to the discharge flow path is the pressure of the compression space at the moment of being isolated from the suction flow path, that is, the pressure of the compression space at the moment of being isolated from the suction flow path to the pressure of the suction flow path. It is determined by the volume ratio that is the ratio of the volume and the volume of the compression space at the moment connected to the discharge flow path.
  • the ratio between the pressure in the compression space at the moment isolated from the suction flow path and the pressure in the compression space at the moment connected to the discharge flow path is called the internal compression ratio
  • the volume ratio of the screw compressor is changed according to the pressure of the suction flow path and the pressure of the discharge flow path, and the internal compression ratio is changed.
  • a mechanism such as a slide valve has been proposed for bringing the valve closer to the external compression ratio.
  • a two-stage compression device in which two screw compressors are connected in series via an intermediate flow path is also used. Even in such a two-stage compressor, it is desirable to improve the efficiency by adjusting the internal compression ratio according to the external compression ratio.
  • Adjusting the internal compression ratio of the stage-side compressor changes the pressure in the intermediate flow path, so the external compression ratio of the high-stage compressor also changes, and the internal compression ratio required for the high-stage compressor Will change. That is, when two screw compressors of Patent Document 1 are connected in series, the adjustment of the internal compression ratio of the two screw compressors interferes with each other, so that control is difficult.
  • an object of the present invention is to provide a two-stage compression device that can adjust the internal compression ratio according to the external compression ratio.
  • a two-stage compression apparatus compresses the gas sucked from the suction flow path and discharges it to the intermediate flow path, and compresses the gas sucked from the intermediate flow path.
  • a pair of male and female screw rotors that engage with each other in a rotor chamber formed in the casing. And forming a compression space in the rotor chamber that is separated from each other by the screw rotor and decreases in volume as the screw rotor rotates, and is one shaft of the screw rotor of the low-stage compression unit.
  • the high-stage compression section is a suction volume that is an instantaneous volume isolated from the intermediate flow path of the compression space and the discharge flow.
  • the volume ratio which is the ratio of the discharge volume, which is the instantaneous volume connected to the, is adjusted according to the ratio of the pressure of the intermediate flow path and the pressure of the discharge flow path by changing the discharge volume It is assumed that capacity adjusting means is provided.
  • the internal compression ratio of the low-stage compression unit is fixed and only the internal compression ratio of the high-stage compression unit is changed, so that control is easy and internal compression of the entire two-stage compression device High efficiency can be obtained by matching the ratio to the external compression ratio.
  • the pressure in the discharge flow path of the low-stage compression section may be calculated from the pressure in the suction flow path.
  • the capacity adjusting means forms a part of the wall surface of the rotor chamber of the high-stage compression section, and advances and retreats in the axial direction of the screw rotor. It may be a slide valve that can change the opening position with respect to the discharge flow path.
  • the capacity adjusting means may be a bypass mechanism that opens a part of the wall surface of the rotor chamber of the high-stage compression section and communicates with the discharge flow path.
  • the efficiency can be improved by selecting two internal compression ratios while the configuration is simple and inexpensive.
  • the screw rotors of the low-stage compression section and the high-stage compression section may be driven by a motor capable of controlling the rotation speed.
  • the discharge flow rate can be adjusted by controlling the rotation speed while substantially maintaining the internal compression ratio of the entire stage compression apparatus, it is possible to prevent pressure fluctuations in the suction flow path and the discharge flow path.
  • FIG. 1 shows a configuration of a two-stage compression apparatus 1 according to the first embodiment of the present invention.
  • the two-stage compression apparatus 1 includes a low-stage compression section 7 and a high-stage compression section 8 that house a pair of male and female screw rotors 5 and 6 that mesh with each other in rotor chambers 3 and 4 formed in a casing 2.
  • the shaft of one screw rotor 5 of the low-stage compression unit 7 is integrally connected to the shaft of one screw rotor 6 of the high-stage compression unit 8.
  • the low-stage compression section 7 and the high-stage compression section 8 divide the rotor chambers 3 and 4 by the screw rotors 5 and 6 to form a plurality of compression spaces isolated from each other.
  • the low-stage compression unit 7 sucks gas from the suction flow path 9 formed in the casing 2 in the compression space, compresses the gas by reducing the volume of the compression space with the rotation of the screw rotor 5, and The compressed gas is discharged into the formed intermediate flow path 10.
  • the high stage compression unit 8 sucks the gas from the intermediate flow path 10 into the compression space, compresses the gas by the rotation of the screw rotor 6, and discharges the gas to the discharge flow path 11 formed in the casing 2.
  • the screw rotors 5 and 6 are driven by a motor 13 that can adjust the rotation speed when electric power is supplied from the inverter 12.
  • the high-stage compression unit 8 includes a slide valve 14 that constitutes a part of the inner wall of the rotor chamber 4 and is movable in the axial direction of the screw rotor 6.
  • the slide valve 14 is driven by a hydraulic cylinder 15 and adjusts the position where the compression space of the high stage compression unit 8 communicates with the discharge flow path 11. That is, the slide valve 14 is a capacity adjusting means that can adjust the instantaneous volume when the compression space of the high-stage compression unit 8 is connected to the discharge flow path 11.
  • the two-stage compression device 1 has a hydraulic circuit 16 for driving the hydraulic cylinder 15.
  • the hydraulic circuit 16 includes a four-way switching control valve 18 and a four-way switching control valve for switching the flow path so that pressure oil is supplied to the space before and after the piston 17 of the hydraulic cylinder 15 or oil is discharged from either space.
  • two solenoid valves 19 and 20 for switching between supply and exhaust of compressed air for driving 18.
  • the two-stage compressor 1 includes a suction pressure detector 21 that detects a suction pressure Ps that is a pressure in the suction flow path 9, and a discharge pressure detector 22 that detects a discharge pressure Pd that is a pressure in the discharge flow path 11. And a positioner 23 for detecting the position of the piston 17 of the hydraulic cylinder 15. Further, the two-stage compressor 1 includes an intermediate pressure calculation unit 24 that calculates an intermediate pressure Pm that is a pressure in the intermediate flow path 10 based on the suction pressure Ps detected by the suction pressure detector 21, and an intermediate pressure calculation unit 24.
  • a target position of the slide valve 14 that is, a valve target position calculator 25 for calculating the position of the piston 17 to be detected by the positioner 23;
  • the valve position control unit 26 controls the electromagnetic valves 19 and 20 of the hydraulic circuit 16 so that the detected value of the positioner 23 approaches the position calculated by the valve target position calculation unit 25.
  • the stroke volume of the low-stage compression section 7 is Vt1
  • the stroke volume of the high-stage compression section 8 is Vt2
  • the volume efficiency of the low-stage compression section 7 is ⁇ 1
  • the volume efficiency of the high-stage compression section 8 is ⁇ 2
  • the gas in the suction passage 9 The suction temperature that is the temperature of the gas is Ts
  • the intermediate temperature that is the gas temperature in the intermediate flow path 8 is Tm.
  • the stroke volumes Vt1 and Vt2 depend on the shape and size of the screw rotors 5 and 6 and are proportional to the number of rotations of the motor 13, so (Vt1 / Vt2) is constant.
  • the volumetric efficiency ⁇ 1, ⁇ 2, the suction temperature Ts, and the intermediate temperature Tm may vary depending on external factors, but hardly change depending on the operation parameters of the two-stage compressor 1 itself. Therefore, the intermediate pressure Pm can be calculated based on the coefficient determined by the shape of the screw rotors 5 and 6 and the suction pressure Ps detected by the suction pressure detector 21 regardless of the discharge pressure Pd.
  • the suction volume that is the instantaneous volume isolated from the suction flow path 9 in the compression space of the low-stage compression unit 7 is Vs1
  • the discharge volume that is the instantaneous volume connected to the intermediate flow path 10 is Vd1
  • the low-stage compression When the volume ratio, which is the ratio between the suction volume Vs1 of the part 7 and the discharge volume Vd1, is Vi1
  • the low stage internal pressure Pd1 is the instantaneous pressure connected to the intermediate flow path 10 in the compression space of the low stage compression part 7,
  • the suction volume that is the instantaneous volume isolated from the middle of the compression space of the high-stage compression unit 8 is Vs2
  • the discharge volume that is the instantaneous volume connected to the discharge flow path 11 is Vd2
  • the discharge volume Vd2 of the high stage compression unit 8 to be set by the slide valve 14 can be calculated and detected by the positioner 23 in order to achieve this target volume ratio Via.
  • the position of the power piston 17 can be determined.
  • the valve position control unit 26 controls the hydraulic circuit 16 so that the volume ratio Vi2 of the high-stage compression unit 8 approaches the target value Via.
  • the discharge volume Vd ⁇ b> 2 of the high stage compression unit 8 changes in proportion to the position of the slide valve 14.
  • the volume ratio Vi2 of the high stage compression unit 8 is proportional to the position of the piston 15 detected by the positioner 21 because the suction volume Vs2 of the high stage compression unit 8 is constant. Therefore, when the volume ratio Vi2 calculated from the detection value of the positioner 21 is larger than the target value Via by a predetermined allowable deviation ⁇ , for example, greater than 0.1 (Vi2 ⁇ Via> ⁇ ).
  • the hydraulic cylinder 15 is extended to increase the opening of the slide valve 14 and to reduce the volume ratio Vi2.
  • the valve position control unit 26 reverses the solenoid valve 19. Is set to the compressed air supply position, and the electromagnetic valve 20 is set to the exhaust position, thereby shortening the hydraulic cylinder 15 and reducing the opening of the slide valve 14.
  • the two-stage compression device 1 adjusts the volume ratio Vi2 of the high-stage compression section 8 by changing the discharge capacity Vd2 of the high-stage compression section 8, thereby adjusting the internal compression ratio of the high-stage compression section 8.
  • the external compression ratio (Pd / Pm) of the high-stage compression unit 8 is substantially matched. That is, since the internal compression ratio of the entire two-stage compression device 1 is adjusted to the external compression ratio (Ps / Pd) of the entire two-stage compression device 1 by adjusting the volume ratio Vi2 of the high-stage compression unit 8, power loss is reduced. Less efficient.
  • the two-stage compressor 1 is driven by the motor 13 whose frequency is controlled by the inverter 12, the internal compression ratio of the low-stage compressor 7 and the high-stage compressor 8 is substantially maintained while meeting the demand.
  • the discharge amount of the compressed gas can be adjusted. For this reason, the pressure fluctuation of the suction flow path 9 and the discharge flow path 11 can be prevented.
  • FIG. 2 shows a two-stage compressor 1a which is a second embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the slide valve 14a is arranged at one of two positions on the suction side and the discharge side in the axial direction of the screw rotor 6 by a spring return type hydraulic cylinder 15a.
  • the slide valve 14 a has a communication hole 27, and moves to the discharge side to open a part of the outer wall of the rotor chamber 4 and communicate with the discharge flow path 11 through the communication hole 27. That is, the slide valve 14a is a capacity adjusting means that changes the volume ratio Vi2 of the high stage compression unit 8 in two stages.
  • the hydraulic circuit 16a is a simple one having only one solenoid valve 28 that can be switched between an oil supply position for supplying pressure oil to the hydraulic cylinder 15a and an oil discharge position for discharging oil from the hydraulic cylinder 15a. is there.
  • the two-stage compression apparatus 1a has an intermediate pressure detector 29 that directly detects the intermediate pressure Pm in the intermediate flow path 10. Therefore, the intermediate pressure detector 29 directly determines the position of the slide valve 14a from the detection value Pm and the detection value Pd of the discharge pressure detector 22, and the electromagnetic valve 28 of the hydraulic circuit 16 is set to the position of the slide valve 14a. It has a valve position determination unit 30 that switches to a corresponding oil supply position or oil discharge position.
  • FIG. 3 shows a change in the heat insulation efficiency with respect to the external compression ratio depending on the position of the slide valve 14a.
  • the capacity adjusting means can change the volume ratio Vi2 of the high-stage compression unit 8 in addition to the slide valve 14a having the slide valve 14 of the first embodiment and the communication hole 27 of the second embodiment. Anything may be used.
  • a valve mechanism such as a piston valve that can provide an opening in the axial end surface of the rotor chamber 4 and allow the opening to communicate with the discharge flow path 11 may be employed as the capacity adjusting means.
  • the intermediate pressure Pm may be detected by an intermediate pressure detector instead of being calculated from the suction pressure Ps.
  • the intermediate pressure Pm may be calculated from the suction pressure Ps instead of being detected by the intermediate pressure detector.

Abstract

Provided is a two-stage compression device which can adjust an internal compression ratio according to an external compression ratio. A two-stage compression device (1) has a low-stage compression unit (7) and a high-stage compression unit (8) and is configured in such a manner that the shaft of one of the screw rotors (5, 6) of the low-stage compression unit (7) and the high-stage compression unit (8) is connected thereto. A capacity adjustment means (14) is provided to the high-stage compression unit (8), and the volume ratio which is the ratio between a suction volume at the moment when a compression space is isolated from an intermediate flow passage (10) and a discharge volume at the moment when the compression space is connected to a discharge flow passage (11) is changed according to the ratio between the pressure in the intermediate flow passage (10) and the pressure in the discharge flow passage (11) by changing the discharge volume.

Description

2段圧縮装置Two-stage compressor
 本発明は、2段圧縮装置に関する。 The present invention relates to a two-stage compression apparatus.
 ケーシング内に形成したロータ室の中に互いに咬合する雌雄一対のスクリュロータを収容してなり、前記ロータ室内の空間を前記スクリュロータによって区分して、前記スクリュロータの回転にともなって容積が縮小する圧縮空間を形成し、吸込流路から前記圧縮空間に気体を吸い込んで圧縮して吐出流路に吐出するスクリュ圧縮機が広く利用されている。 A pair of male and female screw rotors that mesh with each other is accommodated in a rotor chamber formed in the casing, and the space in the rotor chamber is divided by the screw rotor, and the volume decreases as the screw rotor rotates. A screw compressor that forms a compression space, sucks gas from the suction flow path into the compression space, compresses the gas, and discharges the gas into the discharge flow path is widely used.
 そのようなスクリュ圧縮機は、吐出流路に接続される瞬間の圧縮空間の圧力が吐出流路の圧力と異なると、吐出流路から圧縮空間への気体の逆流や、吐出流路での気体の膨張のような負の仕事が発生し、効率が低下する。吐出流路に接続される瞬間の圧縮空間の圧力は、吸込流路から隔離される瞬間の圧縮空間の圧力、つまり、吸込流路の圧力に、吸込流路から隔離される瞬間の圧縮空間の容積と吐出流路に接続される瞬間の圧縮空間の容積との比である容積比によって決定される。 Such a screw compressor has a gas back flow from the discharge flow path to the compression space or a gas in the discharge flow path when the pressure of the compression space at the moment of being connected to the discharge flow path is different from the pressure of the discharge flow path. Negative work such as expansion of the water occurs and efficiency decreases. The pressure of the compression space at the moment of being connected to the discharge flow path is the pressure of the compression space at the moment of being isolated from the suction flow path, that is, the pressure of the compression space at the moment of being isolated from the suction flow path to the pressure of the suction flow path. It is determined by the volume ratio that is the ratio of the volume and the volume of the compression space at the moment connected to the discharge flow path.
 一般に、吸込流路から隔離される瞬間の圧縮空間の圧力と吐出流路に接続される瞬間の圧縮空間の圧力との比を内部圧縮比と呼び、吸込流路の圧力と吐出流路の圧力との比を外部圧縮比と呼ぶ。スクリュ圧縮機の効率を向上させるために、例えば特許文献1に記載されているように、スクリュ圧縮機の容積比を吸込流路の圧力および吐出流路の圧力に応じて変化させ、内部圧縮比を外部圧縮比に近づけるスライド弁のような機構が提案されている。 In general, the ratio between the pressure in the compression space at the moment isolated from the suction flow path and the pressure in the compression space at the moment connected to the discharge flow path is called the internal compression ratio, and the pressure in the suction flow path and the pressure in the discharge flow path Is called the external compression ratio. In order to improve the efficiency of the screw compressor, for example, as described in Patent Document 1, the volume ratio of the screw compressor is changed according to the pressure of the suction flow path and the pressure of the discharge flow path, and the internal compression ratio is changed. A mechanism such as a slide valve has been proposed for bringing the valve closer to the external compression ratio.
 また、2台のスクリュ圧縮機を中間流路を介して直列に接続した2段圧縮装置も利用されている。このような2段圧縮装置においても、外部圧縮比に応じて内部圧縮比を調節して、効率を向上させることが望ましいが、特許文献1のスクリュ圧縮機2台を直列に接続した場合、低段側の圧縮機の内部圧縮比を調節すると、中間流路の圧力が変化するため、高段側の圧縮機の外部圧縮比も変化し、高段側の圧縮機に要求される内部圧縮比が変化してしまう。つまり、特許文献1のスクリュ圧縮機2台を直列に接続すると、2つのスクリュ圧縮機の内部圧縮比の調整が互いに干渉し合うため、制御が困難である。 Also, a two-stage compression device in which two screw compressors are connected in series via an intermediate flow path is also used. Even in such a two-stage compressor, it is desirable to improve the efficiency by adjusting the internal compression ratio according to the external compression ratio. However, when two screw compressors of Patent Document 1 are connected in series, Adjusting the internal compression ratio of the stage-side compressor changes the pressure in the intermediate flow path, so the external compression ratio of the high-stage compressor also changes, and the internal compression ratio required for the high-stage compressor Will change. That is, when two screw compressors of Patent Document 1 are connected in series, the adjustment of the internal compression ratio of the two screw compressors interferes with each other, so that control is difficult.
特開昭62-121884号公報Japanese Unexamined Patent Publication No. Sho 62-121848
 前記問題点に鑑みて、本発明は、外部圧縮比に応じて内部圧縮比を調整できる2段圧縮装置を提供することを課題とする。 In view of the above problems, an object of the present invention is to provide a two-stage compression device that can adjust the internal compression ratio according to the external compression ratio.
 前記課題を解決するために、本発明による2段圧縮装置は、吸込流路から吸い込んだ気体を圧縮して中間流路に吐出する低段圧縮部と、前記中間流路から吸い込んだ気体を圧縮して吐出流路に吐出する高段圧縮部とを有し、前記低段圧縮部および前記高段圧縮部は、それぞれ、ケーシング内に形成したロータ室の中に互いに咬合する雌雄一対のスクリュロータを収容してなり、前記ロータ室内に、前記スクリュロータによって互いに隔離されて前記スクリュロータの回転にともなって容積が縮小する圧縮空間を形成し、前記低段圧縮部の前記スクリュロータの一方の軸と前記高段圧縮部の前記スクリュロータの一方の軸とが連結され、前記高段圧縮部は、前記圧縮空間の前記中間流路から隔離される瞬間の容積である吸込容積と前記吐出流路に接続される瞬間の容積である吐出容積との比である容積比を、前記吐出容積を変化させることによって、前記中間流路の圧力と前記吐出流路の圧力との比に応じて調整する容量調整手段を備えるものとする。 In order to solve the above problems, a two-stage compression apparatus according to the present invention compresses the gas sucked from the suction flow path and discharges it to the intermediate flow path, and compresses the gas sucked from the intermediate flow path. A pair of male and female screw rotors that engage with each other in a rotor chamber formed in the casing. And forming a compression space in the rotor chamber that is separated from each other by the screw rotor and decreases in volume as the screw rotor rotates, and is one shaft of the screw rotor of the low-stage compression unit. Are connected to one shaft of the screw rotor of the high-stage compression section, and the high-stage compression section is a suction volume that is an instantaneous volume isolated from the intermediate flow path of the compression space and the discharge flow. The volume ratio, which is the ratio of the discharge volume, which is the instantaneous volume connected to the, is adjusted according to the ratio of the pressure of the intermediate flow path and the pressure of the discharge flow path by changing the discharge volume It is assumed that capacity adjusting means is provided.
 この構成によれば、低段側の圧縮部の内部圧縮比を固定し、高段側の圧縮部の内部圧縮比のみを変化させるので、制御が容易であり、2段圧縮装置全体の内部圧縮比を外部圧縮比に一致させて高い効率を得ることができる。 According to this configuration, the internal compression ratio of the low-stage compression unit is fixed and only the internal compression ratio of the high-stage compression unit is changed, so that control is easy and internal compression of the entire two-stage compression device High efficiency can be obtained by matching the ratio to the external compression ratio.
 また、本発明の2段圧縮装置において、前記低段圧縮部の吐出流路の圧力は、前記吸込流路の圧力から算出してもよい。 In the two-stage compression device of the present invention, the pressure in the discharge flow path of the low-stage compression section may be calculated from the pressure in the suction flow path.
 この構成によれば、圧縮装置の内部で圧力を検出する必要がなく、前後の配管において圧力を検出できるので、構造が複雑にならない。 According to this configuration, it is not necessary to detect the pressure inside the compression device, and the pressure can be detected in the front and rear pipes, so that the structure is not complicated.
 また、本発明の2段圧縮装置において、前記容量調整手段は、前記高段圧縮部の前記ロータ室の壁面の一部を形成し、前記スクリュロータの軸方向に進退して前記ロータ室の前記吐出流路に対する開口位置を変化させられるスライド弁であってもよい。 Further, in the two-stage compression device of the present invention, the capacity adjusting means forms a part of the wall surface of the rotor chamber of the high-stage compression section, and advances and retreats in the axial direction of the screw rotor. It may be a slide valve that can change the opening position with respect to the discharge flow path.
 この構成によれば、連続的に内部圧縮比を変化させられるため、内部圧縮比を外部圧縮比に一致させることにより、高い効率を実現できる。 According to this configuration, since the internal compression ratio can be continuously changed, high efficiency can be realized by matching the internal compression ratio with the external compression ratio.
 また、本発明の2段圧縮装置において、前記容量調整手段は、前記高段圧縮部の前記ロータ室の壁面の一部を開口して前記吐出流路に連通させられるバイパス機構であってもよい。 Further, in the two-stage compression device of the present invention, the capacity adjusting means may be a bypass mechanism that opens a part of the wall surface of the rotor chamber of the high-stage compression section and communicates with the discharge flow path. .
 この構成によれば、構成が簡素であり、安価でありながら、2つの内部圧縮比を選択することにより、効率を向上させられる。 According to this configuration, the efficiency can be improved by selecting two internal compression ratios while the configuration is simple and inexpensive.
 また、本発明の2段圧縮装置において、前記低段圧縮部および前記高段圧縮部の前記スクリュロータは、回転数制御可能なモータにより駆動されてもよい。 Further, in the two-stage compression device of the present invention, the screw rotors of the low-stage compression section and the high-stage compression section may be driven by a motor capable of controlling the rotation speed.
 この構成によれば、回転数制御により、段圧縮装置全体の内部圧縮比を実質的に維持したまま、吐出流量を調整できるので、吸込流路や吐出流路の圧力変動を防止できる。 According to this configuration, since the discharge flow rate can be adjusted by controlling the rotation speed while substantially maintaining the internal compression ratio of the entire stage compression apparatus, it is possible to prevent pressure fluctuations in the suction flow path and the discharge flow path.
 以上のように、本発明によれば、2段圧縮装置において、高段側の圧縮部の内部圧縮比のみを変化させるので、制御が容易であり、2段圧縮装置全体の内部圧縮比を外部圧縮比に一致させて高い効率を得ることができる。 As described above, according to the present invention, since only the internal compression ratio of the compression unit on the high stage side is changed in the two-stage compressor, the control is easy and the internal compression ratio of the entire two-stage compressor is externally changed. High efficiency can be obtained by matching the compression ratio.
本発明の第1実施形態の2段圧縮装置の概略構成図である。It is a schematic block diagram of the two-stage compression apparatus of 1st Embodiment of this invention. 本発明の第2実施形態の2段圧縮装置の概略構成図である。It is a schematic block diagram of the two-stage compression apparatus of 2nd Embodiment of this invention. 図2の2段圧縮装置における断熱効率の変化を示す図である。It is a figure which shows the change of the heat insulation efficiency in the two-stage compression apparatus of FIG.
 これより、本発明の実施形態について、図面を参照しながら説明する。図1に、本発明の第1実施形態である2段圧縮装置1の構成を示す。2段圧縮装置1は、ケーシング2内に形成したロータ室3,4の中に互いに咬合する雌雄一対のスクリュロータ5,6を収容してなる低段圧縮部7および高段圧縮部8を有する。低段圧縮部7の一方のスクリュロータ5の軸は、高段圧縮部8の一方のスクリュロータ6の軸と一体に連結されている。 Now, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of a two-stage compression apparatus 1 according to the first embodiment of the present invention. The two-stage compression apparatus 1 includes a low-stage compression section 7 and a high-stage compression section 8 that house a pair of male and female screw rotors 5 and 6 that mesh with each other in rotor chambers 3 and 4 formed in a casing 2. . The shaft of one screw rotor 5 of the low-stage compression unit 7 is integrally connected to the shaft of one screw rotor 6 of the high-stage compression unit 8.
 低段圧縮部7および高段圧縮部8は、ロータ室3,4内をスクリュロータ5,6によって区分して、互いに隔離された複数の圧縮空間をそれぞれ形成する。低段圧縮部7は、圧縮空間内にケーシング2に形成した吸込流路9から気体を吸い込み、スクリュロータ5の回転にともなって圧縮空間の体積を小さくすることによって気体を圧縮し、ケーシング2に形成した中間流路10に圧縮した気体を吐出する。高段圧縮部8は、圧縮空間内に中間流路10から気体を吸い込んで、スクリュロータ6の回転によって気体を圧縮し、ケーシング2に形成した吐出流路11に吐出する。 The low-stage compression section 7 and the high-stage compression section 8 divide the rotor chambers 3 and 4 by the screw rotors 5 and 6 to form a plurality of compression spaces isolated from each other. The low-stage compression unit 7 sucks gas from the suction flow path 9 formed in the casing 2 in the compression space, compresses the gas by reducing the volume of the compression space with the rotation of the screw rotor 5, and The compressed gas is discharged into the formed intermediate flow path 10. The high stage compression unit 8 sucks the gas from the intermediate flow path 10 into the compression space, compresses the gas by the rotation of the screw rotor 6, and discharges the gas to the discharge flow path 11 formed in the casing 2.
 スクリュロータ5,6は、インバータ12から電力が供給されることで回転数を調節可能なモータ13によって駆動される。高段圧縮部8は、ロータ室4の内壁の一部分を構成し、スクリュロータ6の軸方向に移動可能なスライド弁14を備える。スライド弁14は、油圧シリンダ15によって駆動され、高段圧縮部8の圧縮空間が吐出流路11に連通する位置を調整する。つまり、スライド弁14は、高段圧縮部8の圧縮空間が吐出流路11に接続される瞬間の体積を調整できる容量調整手段である。 The screw rotors 5 and 6 are driven by a motor 13 that can adjust the rotation speed when electric power is supplied from the inverter 12. The high-stage compression unit 8 includes a slide valve 14 that constitutes a part of the inner wall of the rotor chamber 4 and is movable in the axial direction of the screw rotor 6. The slide valve 14 is driven by a hydraulic cylinder 15 and adjusts the position where the compression space of the high stage compression unit 8 communicates with the discharge flow path 11. That is, the slide valve 14 is a capacity adjusting means that can adjust the instantaneous volume when the compression space of the high-stage compression unit 8 is connected to the discharge flow path 11.
 この2段圧縮装置1は、油圧シリンダ15を駆動するための油圧回路16を有する。油圧回路16は、油圧シリンダ15のピストン17の前後の空間に圧油を供給または両空間のいずれかから油を排出するように流路を切り替える4方切り替え制御弁18と、4方切り替え制御弁18を駆動する圧空の給排気を切り替える2つの電磁弁19,20とを有する。 The two-stage compression device 1 has a hydraulic circuit 16 for driving the hydraulic cylinder 15. The hydraulic circuit 16 includes a four-way switching control valve 18 and a four-way switching control valve for switching the flow path so that pressure oil is supplied to the space before and after the piston 17 of the hydraulic cylinder 15 or oil is discharged from either space. And two solenoid valves 19 and 20 for switching between supply and exhaust of compressed air for driving 18.
 また、2段圧縮装置1は、吸込流路9の圧力である吸込圧力Psを検出する吸込圧力検出器21と、吐出流路11の圧力である吐出圧力Pdを検出する吐出圧力検出器22と、油圧シリンダ15のピストン17の位置を検出するポジショナ(positioner)23とを有する。さらに、2段圧縮装置1は、吸込圧力検出器21が検出した吸込圧力Psに基づいて中間流路10の圧力である中間圧力Pmを算出する中間圧力演算部24と、中間圧力演算部24が算出した中間圧力Pmおよび吐出圧力検出器22が検出した吐出圧力Pdに基づいて、スライド弁14の目標位置、つまり、ポジショナ23が検出すべきピストン17の位置を算出する弁目標位置演算部25と、ポジショナ23の検出値を弁目標位置演算部25が算出した位置に近づけるように、油圧回路16の電磁弁19,20を制御する弁位置制御部26とを有する。 The two-stage compressor 1 includes a suction pressure detector 21 that detects a suction pressure Ps that is a pressure in the suction flow path 9, and a discharge pressure detector 22 that detects a discharge pressure Pd that is a pressure in the discharge flow path 11. And a positioner 23 for detecting the position of the piston 17 of the hydraulic cylinder 15. Further, the two-stage compressor 1 includes an intermediate pressure calculation unit 24 that calculates an intermediate pressure Pm that is a pressure in the intermediate flow path 10 based on the suction pressure Ps detected by the suction pressure detector 21, and an intermediate pressure calculation unit 24. Based on the calculated intermediate pressure Pm and the discharge pressure Pd detected by the discharge pressure detector 22, a target position of the slide valve 14, that is, a valve target position calculator 25 for calculating the position of the piston 17 to be detected by the positioner 23; The valve position control unit 26 controls the electromagnetic valves 19 and 20 of the hydraulic circuit 16 so that the detected value of the positioner 23 approaches the position calculated by the valve target position calculation unit 25.
 ここで、中間圧力演算部24における、中間圧力Pmの算出方法について説明する。低段圧縮部7の行程体積をVt1、高段圧縮部8の行程体積をVt2、低段圧縮部7の体積効率をη1、高段圧縮部8の体積効率をη2、吸込流路9における気体の温度である吸込温度をTs、中間流路8における気体の温度である中間温度をTm、とする。すると、中間流路10における気体の圧力である中間圧力Pmは、Pm=Ps×(Vt1×η1/Ts)/(Vt2×η2/Tm)と表せる。従って、低段圧縮部7の外部圧縮比は、Pm/Ps=(Vt1×η1/Ts)/(Vt2×η2/Tm)=(Vt1/Vt2)×(η1/η2)×(Tm/Ts)となる。ここで、行程体積のVt1、Vt2は、スクリュロータ5,6の形状および大きさに依存し、モータ13の回転数に比例するため、(Vt1/Vt2)は一定である。また、体積効率η1,η2、吸込温度Tsおよび中間温度Tmは、外的要因によって変動することはあるが、2段圧縮装置1自体の運転パラメータによっては殆ど変化しない。このため、中間圧力Pmは、吐出圧力Pdとは無関係に、スクリュロータ5,6の形状によって定められる係数と吸込圧力検出器21が検出した吸込圧力Psとに基づいて算出できる。 Here, a method of calculating the intermediate pressure Pm in the intermediate pressure calculation unit 24 will be described. The stroke volume of the low-stage compression section 7 is Vt1, the stroke volume of the high-stage compression section 8 is Vt2, the volume efficiency of the low-stage compression section 7 is η1, the volume efficiency of the high-stage compression section 8 is η2, and the gas in the suction passage 9 The suction temperature that is the temperature of the gas is Ts, and the intermediate temperature that is the gas temperature in the intermediate flow path 8 is Tm. Then, the intermediate pressure Pm that is the pressure of the gas in the intermediate flow path 10 can be expressed as Pm = Ps × (Vt1 × η1 / Ts) / (Vt2 × η2 / Tm). Therefore, the external compression ratio of the low-stage compression unit 7 is Pm / Ps = (Vt1 × η1 / Ts) / (Vt2 × η2 / Tm) = (Vt1 / Vt2) × (η1 / η2) × (Tm / Ts) It becomes. Here, the stroke volumes Vt1 and Vt2 depend on the shape and size of the screw rotors 5 and 6 and are proportional to the number of rotations of the motor 13, so (Vt1 / Vt2) is constant. Further, the volumetric efficiency η1, η2, the suction temperature Ts, and the intermediate temperature Tm may vary depending on external factors, but hardly change depending on the operation parameters of the two-stage compressor 1 itself. Therefore, the intermediate pressure Pm can be calculated based on the coefficient determined by the shape of the screw rotors 5 and 6 and the suction pressure Ps detected by the suction pressure detector 21 regardless of the discharge pressure Pd.
 また、低段圧縮部7の圧縮空間の吸込流路9から隔離される瞬間の容積である吸込体積をVs1、中間流路10に接続される瞬間の容積である吐出体積をVd1、低段圧縮部7の吸込体積Vs1と吐出体積Vd1との比である容積比をVi1、低段圧縮部7の圧縮空間の中間流路10に接続される瞬間の圧力である低段内部圧力Pd1とすると、ポリトロープ変化の公式に基づき、比熱比κを用いて、Ps×Vs1κ=Pd1×(Vs1/Vi1)κの関係が成り立つ。従って、低段内部圧力Pd1=Ps×Vi1κと表すことができる。 Further, the suction volume that is the instantaneous volume isolated from the suction flow path 9 in the compression space of the low-stage compression unit 7 is Vs1, the discharge volume that is the instantaneous volume connected to the intermediate flow path 10 is Vd1, and the low-stage compression When the volume ratio, which is the ratio between the suction volume Vs1 of the part 7 and the discharge volume Vd1, is Vi1, and the low stage internal pressure Pd1 is the instantaneous pressure connected to the intermediate flow path 10 in the compression space of the low stage compression part 7, Based on the polytropic change formula, using the specific heat ratio κ, the relationship Ps × Vs1 κ = Pd1 × (Vs1 / Vi1) κ holds. Therefore, the low stage internal pressure Pd1 = Ps × Vi1 κ can be expressed.
 同様に、高段圧縮部8の圧縮空間の中間から隔離される瞬間の容積である吸込体積をVs2、吐出流路11に接続される瞬間の容積である吐出体積をVd2、高段圧縮部8の吸込体積Vs2と吐出体積Vd2との比である容積比をVi2、高段段圧縮部8の圧縮空間の吐出流路に接続される瞬間の圧力である高段内部圧力をPd2とすると、ポリトロープ変化の公式に基づき、Pm×Vs2κ=Pd2×Vd2κであるから、Vs2/Vd2=(Pd2/Pm)1/κ・・・(1)となる。 Similarly, the suction volume that is the instantaneous volume isolated from the middle of the compression space of the high-stage compression unit 8 is Vs2, the discharge volume that is the instantaneous volume connected to the discharge flow path 11 is Vd2, and the high-stage compression unit 8 If the volume ratio, which is the ratio between the suction volume Vs2 and the discharge volume Vd2, is Vi2, and the high stage internal pressure, which is the instantaneous pressure connected to the discharge flow path in the compression space of the high stage compression section 8, is Pd2, the polytropic change Since Pm × Vs2 κ = Pd2 × Vd2 κ , Vs2 / Vd2 = (Pd2 / Pm) 1 / κ (1).
 吐出圧力Pdと高段内部圧力Pd2とに差があると、吐出流路11から圧縮空間への気体の逆流や、圧縮空間において過剰に圧縮された気体が吐出空間において瞬間的な膨張が生じ、エネルギの損失を招く。そこで、2段圧縮装置1は、弁目標位置演算部25において、吐出圧力Pdと高段内部圧力Pd2とが等しくなるような高段圧縮部8の容積比Vi2の目標容積比Viaを算出する。具体的には、Via=Vi2=Vs2/Vd2とし、これに、前記ポリトロープ変化の式(1)を代入すると、目標容積比Via=(Pd2/Pm)1/κとなる。高段圧縮部8の吸込体積Vs2は一定であるから、この目標容積比Viaを達成するため、スライド弁14によって設定すべき高段圧縮部8の吐出体積Vd2が算出でき、ポジショナ23が検出すべきピストン17の位置を決定できる。 If there is a difference between the discharge pressure Pd and the high-stage internal pressure Pd2, the backflow of gas from the discharge flow path 11 to the compression space, or the gas compressed excessively in the compression space causes instantaneous expansion in the discharge space, Incurs energy loss. Therefore, the two-stage compressor 1 calculates the target volume ratio Via of the volume ratio Vi2 of the high-stage compression section 8 such that the discharge pressure Pd and the high-stage internal pressure Pd2 are equal in the valve target position calculation section 25. More specifically, when Via = Vi2 = Vs2 / Vd2 and the polytropic change equation (1) is substituted for this, the target volume ratio Via = (Pd2 / Pm) 1 / κ . Since the suction volume Vs2 of the high stage compression unit 8 is constant, the discharge volume Vd2 of the high stage compression unit 8 to be set by the slide valve 14 can be calculated and detected by the positioner 23 in order to achieve this target volume ratio Via. The position of the power piston 17 can be determined.
 弁位置制御部26は、高段圧縮部8の容積比Vi2を目標値Viaに近づけるように、油圧回路16を制御する。典型的には、高段圧縮部8の吐出体積Vd2は、スライド弁14の位置に比例して変化する。この場合、高段圧縮部8の容積比Vi2は、高段圧縮部8の吸込体積Vs2が一定であるので、ポジショナ21が検出したピストン15の位置に比例する。そこで、弁位置制御部26は、ポジショナ21の検出値から算出した容積比Vi2が目標値Viaよりも所定の許容偏差α、例えば0.1を超えて大きい場合(Vi2-Via>α)には、電磁弁19を排気位置とし、電磁弁20を圧空供給位置とすることにより、油圧シリンダ15を伸長させてスライド弁14の開度を大きくし、容積比Vi2を低下させる。逆に、弁位置制御部26は、検出した容積比Vi2が目標値Viaよりも所定の許容偏差α、例えば0.1を超えて小さい場合(Vi2-Via<-α)には、電磁弁19を圧空供給位置とし、電磁弁20を排気位置とすることにより、油圧シリンダ15を短縮させてスライド弁14の開度を小さくする。 The valve position control unit 26 controls the hydraulic circuit 16 so that the volume ratio Vi2 of the high-stage compression unit 8 approaches the target value Via. Typically, the discharge volume Vd <b> 2 of the high stage compression unit 8 changes in proportion to the position of the slide valve 14. In this case, the volume ratio Vi2 of the high stage compression unit 8 is proportional to the position of the piston 15 detected by the positioner 21 because the suction volume Vs2 of the high stage compression unit 8 is constant. Therefore, when the volume ratio Vi2 calculated from the detection value of the positioner 21 is larger than the target value Via by a predetermined allowable deviation α, for example, greater than 0.1 (Vi2−Via> α). By setting the solenoid valve 19 to the exhaust position and the solenoid valve 20 to the compressed air supply position, the hydraulic cylinder 15 is extended to increase the opening of the slide valve 14 and to reduce the volume ratio Vi2. Conversely, when the detected volume ratio Vi2 is smaller than the target value Via by a predetermined allowable deviation α, for example, more than 0.1 (Vi2−Via <−α), the valve position control unit 26 reverses the solenoid valve 19. Is set to the compressed air supply position, and the electromagnetic valve 20 is set to the exhaust position, thereby shortening the hydraulic cylinder 15 and reducing the opening of the slide valve 14.
 以上のように、2段圧縮装置1は、高段圧縮部8の吐出容量Vd2を変化させて高段圧縮部8の容積比Vi2を調整することによって、高段圧縮部8の内部圧縮比を高段圧縮部8の外部圧縮比(Pd/Pm)に略一致させる。つまり、2段圧縮装置1全体の内部圧縮比は、高段圧縮部8の容積比Vi2の調整によって、2段圧縮装置1全体の外部圧縮比(Ps/Pd)に合わせられるので、動力ロスが少なく、効率が高い。 As described above, the two-stage compression device 1 adjusts the volume ratio Vi2 of the high-stage compression section 8 by changing the discharge capacity Vd2 of the high-stage compression section 8, thereby adjusting the internal compression ratio of the high-stage compression section 8. The external compression ratio (Pd / Pm) of the high-stage compression unit 8 is substantially matched. That is, since the internal compression ratio of the entire two-stage compression device 1 is adjusted to the external compression ratio (Ps / Pd) of the entire two-stage compression device 1 by adjusting the volume ratio Vi2 of the high-stage compression unit 8, power loss is reduced. Less efficient.
 また、2段圧縮装置1は、インバータ12により周波数制御されるモータ13により駆動されるので、低段圧縮部7および高段圧縮部8の内部圧縮比を実質的に維持したまま、需要に応じて圧縮した気体の吐出量を調整できる。このため、吸込流路9や吐出流路11の圧力変動を防止できる。 In addition, since the two-stage compressor 1 is driven by the motor 13 whose frequency is controlled by the inverter 12, the internal compression ratio of the low-stage compressor 7 and the high-stage compressor 8 is substantially maintained while meeting the demand. The discharge amount of the compressed gas can be adjusted. For this reason, the pressure fluctuation of the suction flow path 9 and the discharge flow path 11 can be prevented.
 続いて、図2に、本発明の第2実施形態である2段圧縮装置1aを示す。尚、本実施形態において、第1実施形態と同じ構成要素には同じ符号を付して、重複する説明を省略する。 Subsequently, FIG. 2 shows a two-stage compressor 1a which is a second embodiment of the present invention. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態の2段圧縮装置1aにおいて、スライド弁14aは、スプリングリターン式の油圧シリンダ15aによってスクリュロータ6の軸方向に吸込側と吐出側の2つの位置のいずれかに配置される。このスライド弁14aは、連通孔27を有し、吐出側に移動することによって、ロータ室4の外壁の一部を開放し、連通孔27を介して吐出流路11に連通させる。つまり、スライド弁14aは、高段圧縮部8の容積比Vi2を2段階に変化させる容量調整手段である。このため、油圧回路16aは、油圧シリンダ15aに圧油を供給する給油位置と、油圧シリンダ15aから油を排出する排油位置との間で切り替えられる電磁弁28を1つだけ備える簡素なものである。 In the two-stage compression device 1a of the present embodiment, the slide valve 14a is arranged at one of two positions on the suction side and the discharge side in the axial direction of the screw rotor 6 by a spring return type hydraulic cylinder 15a. The slide valve 14 a has a communication hole 27, and moves to the discharge side to open a part of the outer wall of the rotor chamber 4 and communicate with the discharge flow path 11 through the communication hole 27. That is, the slide valve 14a is a capacity adjusting means that changes the volume ratio Vi2 of the high stage compression unit 8 in two stages. For this reason, the hydraulic circuit 16a is a simple one having only one solenoid valve 28 that can be switched between an oil supply position for supplying pressure oil to the hydraulic cylinder 15a and an oil discharge position for discharging oil from the hydraulic cylinder 15a. is there.
 また、2段圧縮装置1aは、中間流路10において中間圧力Pmを直接検出する中間圧力検出器29を有する。このため、中間圧力検出器29が検出値Pmと吐出圧力検出器22の検出値Pdとから、スライド弁14aの位置を直接決定し、油圧回路16の電磁弁28を、スライド弁14aの位置に対応する給油位置または排油位置に切り替える弁位置決定部30を有する。 Further, the two-stage compression apparatus 1a has an intermediate pressure detector 29 that directly detects the intermediate pressure Pm in the intermediate flow path 10. Therefore, the intermediate pressure detector 29 directly determines the position of the slide valve 14a from the detection value Pm and the detection value Pd of the discharge pressure detector 22, and the electromagnetic valve 28 of the hydraulic circuit 16 is set to the position of the slide valve 14a. It has a valve position determination unit 30 that switches to a corresponding oil supply position or oil discharge position.
 図3に、スライド弁14aの位置による、外部圧縮比に対する断熱効率の変化を示す。図示するように、スライド弁14aが吸込側に位置する場合と吐出側に位置する場合とで断熱効率が等しくなる外部圧縮比πaがある。よって、この断熱効率が等しくなる外部圧縮比πaを境に、スライド弁14aの位置を切り替えればよい。 FIG. 3 shows a change in the heat insulation efficiency with respect to the external compression ratio depending on the position of the slide valve 14a. As shown in the figure, there is an external compression ratio πa in which the heat insulation efficiency is the same when the slide valve 14a is located on the suction side and when it is located on the discharge side. Therefore, the position of the slide valve 14a may be switched with the external compression ratio πa at which the heat insulation efficiency becomes equal.
 本発明によれば、容量調整手段は、第1実施形態のスライド弁14や第2実施形態の連通孔27を有するスライド弁14aの他、高段圧縮部8の容積比Vi2を変化させられるものであれば、どのようなものであってもよい。例えば、ロータ室4の軸方向の端面に開口を設け、この開口を吐出流路11に連通させ得るピストンバルブのような弁機構を容量調整手段として採用してもよい。 According to the present invention, the capacity adjusting means can change the volume ratio Vi2 of the high-stage compression unit 8 in addition to the slide valve 14a having the slide valve 14 of the first embodiment and the communication hole 27 of the second embodiment. Anything may be used. For example, a valve mechanism such as a piston valve that can provide an opening in the axial end surface of the rotor chamber 4 and allow the opening to communicate with the discharge flow path 11 may be employed as the capacity adjusting means.
 第1実施形態において、中間圧力Pmを、吸込圧力Psから計算により求める代わりに、中間圧力検出器によって検出してもよい。第2実施形態において、中間圧力Pmを、中間圧力検出器によって検出する代わりに吸込圧力Psから計算して求めてもよい。 In the first embodiment, the intermediate pressure Pm may be detected by an intermediate pressure detector instead of being calculated from the suction pressure Ps. In the second embodiment, the intermediate pressure Pm may be calculated from the suction pressure Ps instead of being detected by the intermediate pressure detector.
  1,1a…2段圧縮装置
  2…ケーシング
  3,4…ロータ室
  5,6スクリュロータ
  7…低段圧縮部
  8…高段圧縮部
  9…吸込流路
  10…中間流路
  11…吐出流路
  12…インバータ
  13…モータ
  14,14a…スライド弁
  15,15a…油圧シリンダ
  16,16a…油圧回路
  21…吸込圧力検出器
  22…吐出圧力検出器
  23…ポジショナ
  24…中間圧力演算部
  25…弁目標位置演算部
  26…弁位置制御部
  27…連通孔
  29…中間圧力検出器
  30…弁位置決定部
DESCRIPTION OF SYMBOLS 1, 1a ... Two-stage compression apparatus 2 ... Casing 3, 4 ... Rotor chamber 5, 6 Screw rotor 7 ... Low stage compression part 8 ... High stage compression part 9 ... Suction flow path 10 ... Intermediate flow path 11 ... Discharge flow path 12 ... Inverter 13 ... Motor 14,14a ... Slide valve 15,15a ... Hydraulic cylinder 16,16a ... Hydraulic circuit 21 ... Suction pressure detector 22 ... Discharge pressure detector 23 ... Positioner 24 ... Intermediate pressure calculation unit 25 ... Valve target position calculation 26: Valve position control unit 27: Communication hole 29 ... Intermediate pressure detector 30 ... Valve position determination unit

Claims (12)

  1.  吸込流路から吸い込んだ気体を圧縮して中間流路に吐出する低段圧縮部と、前記中間流路から吸い込んだ気体を圧縮して吐出流路に吐出する高段圧縮部とを有し、
     前記低段圧縮部および前記高段圧縮部は、それぞれ、ケーシング内に形成したロータ室の中に互いに咬合する雌雄一対のスクリュロータを収容してなり、前記ロータ室内に、前記スクリュロータによって互いに隔離されて前記スクリュロータの回転にともなって容積が縮小する圧縮空間を形成し、
     前記低段圧縮部の前記スクリュロータの一方の軸と前記高段圧縮部の前記スクリュロータの一方の軸とが連結され、
     前記高段圧縮部は、前記圧縮空間の前記中間流路から隔離される瞬間の容積である吸込容積と前記吐出流路に接続される瞬間の容積である吐出容積との比である容積比を、前記吐出容積を変化させることによって、前記中間流路の圧力と前記吐出流路の圧力との比に応じて調整する容量調整手段を備えることを特徴とする2段圧縮装置。
    A low-stage compression section that compresses the gas sucked from the suction flow path and discharges it to the intermediate flow path, and a high-stage compression section that compresses the gas sucked from the intermediate flow path and discharges it to the discharge flow path,
    The low-stage compression section and the high-stage compression section each contain a pair of male and female screw rotors that mesh with each other in a rotor chamber formed in a casing, and are separated from each other by the screw rotor in the rotor chamber. To form a compression space whose volume is reduced as the screw rotor rotates,
    One shaft of the screw rotor of the low-stage compression unit and one shaft of the screw rotor of the high-stage compression unit are coupled,
    The high-stage compression unit has a volume ratio that is a ratio of a suction volume that is an instantaneous volume isolated from the intermediate flow path of the compression space and a discharge volume that is an instantaneous volume connected to the discharge flow path. A two-stage compression device comprising capacity adjusting means for adjusting the discharge volume according to a ratio between the pressure of the intermediate flow path and the pressure of the discharge flow path by changing the discharge volume.
  2.  前記低段圧縮部の吐出流路の圧力は、前記吸込流路の圧力から算出することを特徴とする請求項1に記載の2段圧縮装置。 2. The two-stage compression apparatus according to claim 1, wherein the pressure in the discharge flow path of the low-stage compression section is calculated from the pressure in the suction flow path.
  3.  前記容量調整手段は、前記高段圧縮部の前記ロータ室の壁面の一部を形成し、前記スクリュロータの軸方向に進退して前記ロータ室の前記吐出流路に対する開口位置を変化させられるスライド弁であることを特徴とする請求項1に記載の2段圧縮装置。 The capacity adjusting means forms a part of the wall surface of the rotor chamber of the high-stage compression portion, and slides to advance and retract in the axial direction of the screw rotor to change the opening position of the rotor chamber with respect to the discharge flow path. The two-stage compressor according to claim 1, wherein the two-stage compressor is a valve.
  4.  前記容量調整手段は、前記高段圧縮部の前記ロータ室の壁面の一部を形成し、前記スクリュロータの軸方向に進退して前記ロータ室の前記吐出流路に対する開口位置を変化させられるスライド弁であることを特徴とする請求項2に記載の2段圧縮装置。 The capacity adjusting means forms a part of the wall surface of the rotor chamber of the high-stage compression portion, and slides to advance and retract in the axial direction of the screw rotor to change the opening position of the rotor chamber with respect to the discharge flow path. The two-stage compression apparatus according to claim 2, wherein the two-stage compression apparatus is a valve.
  5.  前記容量調整手段は、前記高段圧縮部の前記ロータ室の壁面の一部を開口して前記吐出流路に連通させられるバイパス機構であることを特徴とする請求項1に記載の2段圧縮装置。 2. The two-stage compression according to claim 1, wherein the capacity adjusting means is a bypass mechanism that opens a part of a wall surface of the rotor chamber of the high-stage compression section and communicates with the discharge flow path. apparatus.
  6.  前記容量調整手段は、前記高段圧縮部の前記ロータ室の壁面の一部を開口して前記吐出流路に連通させられるバイパス機構であることを特徴とする請求項2に記載の2段圧縮装置。 3. The two-stage compression according to claim 2, wherein the capacity adjusting means is a bypass mechanism that opens a part of a wall surface of the rotor chamber of the high-stage compression section and communicates with the discharge passage. apparatus.
  7.  前記低段圧縮部および前記高段圧縮部の前記スクリュロータは、回転数制御可能なモータにより駆動されることを特徴とする請求項1に記載の2段圧縮装置。 2. The two-stage compression device according to claim 1, wherein the screw rotors of the low-stage compression section and the high-stage compression section are driven by a motor capable of controlling the rotation speed.
  8.  前記低段圧縮部および前記高段圧縮部の前記スクリュロータは、回転数制御可能なモータにより駆動されることを特徴とする請求項2に記載の2段圧縮装置。 The two-stage compression device according to claim 2, wherein the screw rotors of the low-stage compression section and the high-stage compression section are driven by a motor capable of controlling the rotation speed.
  9.  前記低段圧縮部および前記高段圧縮部の前記スクリュロータは、回転数制御可能なモータにより駆動されることを特徴とする請求項3に記載の2段圧縮装置。 The two-stage compression apparatus according to claim 3, wherein the screw rotors of the low-stage compression section and the high-stage compression section are driven by a motor capable of controlling the rotation speed.
  10.  前記低段圧縮部および前記高段圧縮部の前記スクリュロータは、回転数制御可能なモータにより駆動されることを特徴とする請求項4に記載の2段圧縮装置。 The two-stage compression apparatus according to claim 4, wherein the screw rotors of the low-stage compression section and the high-stage compression section are driven by a motor capable of controlling the rotation speed.
  11.  前記低段圧縮部および前記高段圧縮部の前記スクリュロータは、回転数制御可能なモータにより駆動されることを特徴とする請求項5に記載の2段圧縮装置。 The two-stage compression device according to claim 5, wherein the screw rotors of the low-stage compression section and the high-stage compression section are driven by a motor capable of controlling the rotation speed.
  12.  前記低段圧縮部および前記高段圧縮部の前記スクリュロータは、回転数制御可能なモータにより駆動されることを特徴とする請求項6に記載の2段圧縮装置。 The two-stage compression device according to claim 6, wherein the screw rotors of the low-stage compression section and the high-stage compression section are driven by a motor capable of controlling the rotation speed.
PCT/JP2013/058563 2012-03-30 2013-03-25 Two-stage compression device WO2013146674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012081312A JP2013209953A (en) 2012-03-30 2012-03-30 Two-stage compression device
JP2012-081312 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013146674A1 true WO2013146674A1 (en) 2013-10-03

Family

ID=49259925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058563 WO2013146674A1 (en) 2012-03-30 2013-03-25 Two-stage compression device

Country Status (2)

Country Link
JP (1) JP2013209953A (en)
WO (1) WO2013146674A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018017607A1 (en) * 2016-07-18 2018-01-25 Johnson Controls Technology Company Variable volume ratio compressor
CN107917077A (en) * 2017-12-21 2018-04-17 珠海格力电器股份有限公司 Compressor and control method, the apparatus of air conditioning
CN110617218A (en) * 2019-09-11 2019-12-27 珠海格力电器股份有限公司 Two-stage compressor, control method of two-stage compressor and air conditioning unit
CN110701047A (en) * 2018-07-10 2020-01-17 日立江森自控空调有限公司 Two-stage screw fluid machine
EP3623629A1 (en) * 2018-09-12 2020-03-18 Fu Sheng Industrial Co., Ltd. Fluid machine
EP3786453A1 (en) * 2019-09-02 2021-03-03 Allan McDiarmid Apparatus and method
CN114087190A (en) * 2021-11-12 2022-02-25 浙江科维节能技术股份有限公司 Sliding valve control method for screw compressor
US20220268280A1 (en) * 2019-09-11 2022-08-25 Gree Electric Appliances, Inc. Of Zhuhai Dual-Stage Compressor, Control Method Thereof and Air Conditioning Unit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6342821B2 (en) * 2015-01-14 2018-06-13 日立ジョンソンコントロールズ空調株式会社 Screw fluid machinery
TWI666387B (en) * 2017-10-17 2019-07-21 復盛股份有限公司 compressor
TWI681125B (en) * 2018-10-12 2020-01-01 復盛股份有限公司 Screw compressor and method for estimating exhaust volume ratio thereof
WO2020178895A1 (en) * 2019-03-01 2020-09-10 三菱電機株式会社 Screw compressor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626490U (en) * 1985-06-26 1987-01-16
JPS62121884A (en) * 1985-11-19 1987-06-03 Kobe Steel Ltd Slide valve type screw compressor
JPS63130687U (en) * 1987-02-18 1988-08-26
JPH01134791U (en) * 1988-03-08 1989-09-14
JPH03185293A (en) * 1989-12-15 1991-08-13 Hitachi Ltd Displacement compressor rotating screw
JP2007138919A (en) * 2005-10-17 2007-06-07 Kobe Steel Ltd Two-stage screw compressor and two-stage compression refrigerator using this compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626490U (en) * 1985-06-26 1987-01-16
JPS62121884A (en) * 1985-11-19 1987-06-03 Kobe Steel Ltd Slide valve type screw compressor
JPS63130687U (en) * 1987-02-18 1988-08-26
JPH01134791U (en) * 1988-03-08 1989-09-14
JPH03185293A (en) * 1989-12-15 1991-08-13 Hitachi Ltd Displacement compressor rotating screw
JP2007138919A (en) * 2005-10-17 2007-06-07 Kobe Steel Ltd Two-stage screw compressor and two-stage compression refrigerator using this compressor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10677246B2 (en) 2016-07-18 2020-06-09 Johnson Controls Technology Company Variable volume ratio compressor
WO2018017607A1 (en) * 2016-07-18 2018-01-25 Johnson Controls Technology Company Variable volume ratio compressor
CN107917077A (en) * 2017-12-21 2018-04-17 珠海格力电器股份有限公司 Compressor and control method, the apparatus of air conditioning
CN110701047B (en) * 2018-07-10 2021-06-22 日立江森自控空调有限公司 Two-stage screw fluid machine
CN110701047A (en) * 2018-07-10 2020-01-17 日立江森自控空调有限公司 Two-stage screw fluid machine
US11255327B2 (en) 2018-09-12 2022-02-22 Fu Sheng Industrial Co., Ltd Two-stage screw rotor machine with slide valves
EP3623629A1 (en) * 2018-09-12 2020-03-18 Fu Sheng Industrial Co., Ltd. Fluid machine
EP3786453A1 (en) * 2019-09-02 2021-03-03 Allan McDiarmid Apparatus and method
CN110617218A (en) * 2019-09-11 2019-12-27 珠海格力电器股份有限公司 Two-stage compressor, control method of two-stage compressor and air conditioning unit
US20220268280A1 (en) * 2019-09-11 2022-08-25 Gree Electric Appliances, Inc. Of Zhuhai Dual-Stage Compressor, Control Method Thereof and Air Conditioning Unit
CN110617218B (en) * 2019-09-11 2023-12-22 珠海格力电器股份有限公司 Control method of two-stage compressor and air conditioning unit
CN114087190A (en) * 2021-11-12 2022-02-25 浙江科维节能技术股份有限公司 Sliding valve control method for screw compressor
CN114087190B (en) * 2021-11-12 2022-10-04 浙江科维节能技术股份有限公司 Slide valve control method for screw compressor

Also Published As

Publication number Publication date
JP2013209953A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
WO2013146674A1 (en) Two-stage compression device
US11852145B2 (en) Rotary compressors with variable speed and volume control
EP1553300B1 (en) Variable inner volume ratio-type screw compressor controlled by a frequency converter
JP5881403B2 (en) Screw compressor
JP4946840B2 (en) Refrigeration equipment
JP4927468B2 (en) Two-stage screw compressor and two-stage compression refrigerator using the same
US9970440B2 (en) Screw compressor with adjustable internal volume ratio
TWI626380B (en) Screw compressor and refrigeration cycle device with screw compressor
EP2458217B1 (en) Temperature control through pulse width modulation
WO2007106090A1 (en) Slide valve with hot gas bypass port
EP2423508B1 (en) capacity control for a screw compressor
JP5355336B2 (en) Screw compressor and refrigerator
WO2021047247A1 (en) Two-stage compressor and control method of two-stage compressor, and air conditioning unit
WO2017094057A1 (en) Single-screw compressor and refrigeration cycle device
JP2010077897A (en) Screw compressor
JP2008106668A (en) Expander, expander-integrated compressor and refrigeration cycle device using same
CN107621100B (en) Variable economizer injection position
JP2005282986A (en) Internal combustion engine-driven heat pump type air conditioner
US9546659B2 (en) Rotary compressor
KR101504202B1 (en) Compressor and air conditioner comprising the compressor therein
CN212055114U (en) Scroll compressor and air conditioner with same
CN110617218B (en) Control method of two-stage compressor and air conditioning unit
JP7287022B2 (en) scroll expander
WO2013105319A1 (en) Expander
CN115898869A (en) Two-stage compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767734

Country of ref document: EP

Kind code of ref document: A1