WO2020178895A1 - Screw compressor - Google Patents

Screw compressor Download PDF

Info

Publication number
WO2020178895A1
WO2020178895A1 PCT/JP2019/008079 JP2019008079W WO2020178895A1 WO 2020178895 A1 WO2020178895 A1 WO 2020178895A1 JP 2019008079 W JP2019008079 W JP 2019008079W WO 2020178895 A1 WO2020178895 A1 WO 2020178895A1
Authority
WO
WIPO (PCT)
Prior art keywords
variable
valve
value
screw compressor
internal volume
Prior art date
Application number
PCT/JP2019/008079
Other languages
French (fr)
Japanese (ja)
Inventor
駿 岡田
雅章 上川
雅浩 神田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021503251A priority Critical patent/JP7112031B2/en
Priority to EP19918120.7A priority patent/EP3933204A4/en
Priority to PCT/JP2019/008079 priority patent/WO2020178895A1/en
Priority to US17/419,356 priority patent/US20220082099A1/en
Publication of WO2020178895A1 publication Critical patent/WO2020178895A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/50Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
    • F04C18/52Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing

Definitions

  • the present invention relates to a screw compressor used for refrigerant compression such as a refrigerator or an air conditioner.
  • the screw compressor is equipped with a variable internal volume ratio valve (hereinafter referred to as a variable Vi valve), which is a slide valve that adjusts the discharge start timing to make the internal volume ratio Vi variable, and is provided from the drive device according to the operating compression ratio.
  • a variable Vi valve which is a slide valve that adjusts the discharge start timing to make the internal volume ratio Vi variable, and is provided from the drive device according to the operating compression ratio.
  • the internal volume ratio in the screw compressor is the ratio of the tooth groove space volume at the time of suction to the tooth groove space volume just before discharge, and represents the ratio between the volume when suction is completed and the volume when the discharge port is opened. ing.
  • the variable Vi valve of Patent Document 1 has an optimum Vi value calculated from a discharge pressure HP and a suction pressure LP, and a current Vi value obtained from a position detecting means. Is controlled so that the difference between Further, in order to approach the optimum Vi value during actual operation, the opening degree of the variable Vi valve is adjusted so that the motor drive power becomes the minimum.
  • the screw compressor has an appropriate compression ratio commensurate with the internal volume ratio, and under operating conditions in which the compression ratio during actual operation is the appropriate compression ratio, inadequate compression loss does not occur.
  • the operation is performed at a low compression ratio lower than the proper compression ratio, the gas is over-compressed to the pressure equal to or higher than the discharge pressure before the discharge port is opened, and extra compression work is performed.
  • the operation is performed at a compression ratio higher than the proper compression ratio, the discharge port opens before the discharge pressure is reached, resulting in an insufficient compression state in which a reverse gas flow occurs. All of these cause a loss of power and reduce efficiency.
  • the position of the variable Vi valve is steplessly set so as to have an internal volume ratio that can obtain high compressor efficiency with respect to the compression ratio (discharge pressure / suction pressure) according to the operating load.
  • a technique has been proposed in which the internal volume ratio is made variable by adjusting to.
  • Patent Document 1 the position control of the variable Vi valve is performed steplessly, and the control amount of the variable Vi valve is calculated from the detection results of the discharge pressure, the suction pressure, and the rotation frequency.
  • the position control of the variable Vi valve is stepless control, which complicates the configuration and control.
  • the present invention has been made to solve the above problems, and an object thereof is to obtain a screw compressor capable of simplifying the configuration and control while varying the internal volume ratio. ..
  • the screw compressor according to the present invention is a screw compressor provided with an internal volume ratio variable mechanism including a variable Vi valve that changes the Vi value, which is the internal volume ratio, and controls the position of the variable Vi valve in two stages.
  • the position of the variable Vi valve when the Vi value is large is such that the compressor efficiency during operation under a predetermined high load condition or high compression ratio condition is equal to or higher than the preset set efficiency. It is set to be a Vi value.
  • the position control of the variable Vi valve is set to two stages, the configuration and control can be simplified while the internal volume ratio is variable.
  • FIG. 1 is a schematic diagram of an internal volume ratio variable mechanism including a drive device for a screw compressor according to Embodiment 1 of the present invention. It is an operation schematic diagram when the Vi value is large in the screw compressor which concerns on Embodiment 1 of this invention. It is an operation schematic diagram when the Vi value is small in the screw compressor which concerns on Embodiment 1 of this invention. It is an operation schematic diagram when the Vi value is large in the screw compressor which concerns on Embodiment 2 of this invention. It is an operation schematic diagram when the Vi value is small in the screw compressor which concerns on Embodiment 2 of this invention. It is a figure which shows the modification of the screw compressor which concerns on Embodiment 1 and Embodiment 2 of this invention.
  • Embodiment 1. 1 is a schematic configuration diagram of a screw compressor according to Embodiment 1 of the present invention.
  • the screw compressor according to the first embodiment is a single screw compressor, and has a cylindrical casing body 1 and a screw rotor 3 housed in the casing body 1 as shown in the schematic configuration in FIG. And a motor 2 for driving the screw rotor 3 to rotate.
  • the motor 2 is composed of a stator 2a that is inscribed in the casing body 1 and is fixed thereto, and a motor rotor 2b that is arranged inside the stator 2a, and the number of rotations is controlled by an inverter system. Capacity control for operating the screw compressor at a desired operating compression ratio can be realized by controlling the rotation speed by driving the inverter of the motor 2.
  • the screw rotor 3 and the motor rotor 2b are arranged on the same axis, and both are fixed to the screw shaft 4. Further, on the outer peripheral surface of the screw rotor 3, a plurality of spiral grooves (hereinafter, referred to as screw grooves) 3a are formed.
  • the screw rotor 3 is connected to a motor rotor 2b fixed to the screw shaft 4 and is rotationally driven. Further, the space in the screw groove 3a formed in the screw rotor 3 is surrounded by the inner cylinder surface of the casing main body 1 and a pair of gate rotors (not shown) that mesh and engage with the groove to form a compression chamber 5. To do.
  • the discharge pressure side and the suction pressure side are separated by a partition wall (not shown), and a discharge chamber 6 and a discharge port 7 opening to the discharge chamber 6 are formed on the discharge pressure side.
  • a suction chamber 16 is formed on the suction pressure side.
  • the casing body 1 is provided with a pair of variable Vi valves 8 which are connected to the pair of rods 9 and the drive device 10 and are movable in the axial direction.
  • the variable Vi valve 8 forms part of the discharge port 7.
  • the drive device 10 connected to the other variable Vi valve 8 is not shown.
  • FIG. 2 is a schematic diagram of an internal volume ratio variable mechanism including a driving device for a screw compressor according to Embodiment 1 of the present invention.
  • the drive device 10 constitutes a part of an internal volume ratio variable mechanism (hereinafter referred to as a variable Vi mechanism), and connects a piston 12 provided in a cylinder 11 and a variable Vi valve 8 with a rod 9. It is configured to do.
  • a variable Vi mechanism an internal volume ratio variable mechanism
  • the variable Vi valve 8 is composed of a valve body 8a, a guide portion 8b, and a connecting portion 8c.
  • a connecting portion 8c is provided at the discharge port side end portion 8e of the guide portion 8b, and the rod 9 is connected to the end surface on the drive device 10 side.
  • the discharge port side end portion 8d of the valve body 8a and the discharge port side end portion 8e of the guide portion 8b are connected by a connecting portion 8c, and a discharge gap 8f communicating with the discharge port 7 is formed. There is.
  • the inside of the cylinder 11 is divided into two space chambers by the piston 12, and the cylinder chamber 13a and the cylinder chamber 13b are formed on the front side (variable Vi valve direction) and the rear side (anti-variable Vi valve direction) of the piston 12. ..
  • the cylinder 11 is provided with a pressure introduction hole 113a on the cylinder chamber 13a side which is closer to the variable Vi valve 8. Further, the cylinder 11 is provided with a pressure introducing hole 113b on the cylinder chamber 13b side farther from the variable Vi valve 8.
  • the cylinder chamber 13a communicates with the discharge chamber 6 of FIG. 1 through the pressure introduction hole 113a and the flow path 15a, and the discharge pressure is constantly introduced.
  • the cylinder chamber 13b communicates with the discharge chamber 6 of FIG. 1 via the pressure introduction hole 113b and the flow path 15b, and enters the suction chamber 16 of FIG. 1 via the flow path 15c branched from the middle of the flow path 15b. It is in communication.
  • the flow path 15b is provided with a solenoid valve 14b that opens and closes the flow path 15b
  • the flow path 15c is provided with a solenoid valve 14a that opens and closes the flow path 15c.
  • Discharge pressure or suction pressure is selectively introduced into the cylinder chamber 13b by opening and closing the solenoid valves 14a and 14b.
  • the solenoid valves 14a and 14b described above are merely examples, and may be any valve means capable of opening/closing or switching the flow path, for example, a stop valve or a three-way valve. In the case of a three-way valve capable of switching the flow path, one may be provided at the branch portion of the flow path, and therefore the solenoid valve 14a and the solenoid valve 14b can be omitted. Further, the flow path 15a, the flow path 15b and the flow path 15c may be formed inside the walls of the casing main body 1 and the cylinder 11, or may be connected by using piping.
  • the Vi value can be set in two ways, large and small.
  • FIG. 3 is a schematic view of the operation when the Vi value is large in the screw compressor according to the first embodiment of the present invention.
  • the drive device 10 positions the variable Vi valve 8 in the left direction indicated by the arrow in the figure, thereby delaying the opening timing of the discharge port 7.
  • the solenoid valve 14a is opened and the solenoid valve 14b is closed to set the suction pressure in the cylinder chamber 13b.
  • the cylinder chamber 13a is connected to the discharge chamber 6, and a discharge pressure is constantly introduced. Therefore, the piston 12 tends to move to the left in the figure due to the pressure difference in the cylinder 11.
  • variable Vi valve 8 connected to the piston 12
  • a suction pressure acts on the suction side end 8g of the valve body 8a
  • a discharge pressure immediately after discharge acts on the discharge port side end 8d.
  • the same pressure as the pressure acting on the discharge port side end portion 8d acts on the discharge port side end portion 8e of the guide portion 8b in mutually opposite directions.
  • a discharge pressure acts on the drive device side end portion 8h of the guide portion 8b. Therefore, the loads acting on the discharge port side end portion 8d and the discharge port side end portion 8e inside the variable Vi valve 8 are offset. Therefore, the variable Vi valve 8 tends to move to the right in the figure due to the pressure difference acting on the drive device side end portion 8h and the suction side end portion 8g.
  • the area of both end faces in the moving direction of the piston 12 is set to be larger than the area of the drive device side end portion 8h of the variable Vi valve 8. Therefore, the piston 12 and the variable Vi valve 8 move to the left in the figure due to the pressure difference between the two areas. Then, since the variable Vi valve 8 stops at a position where the piston 12 hits the wall surface of the cylinder chamber 13, the variable Vi valve 8 is accurately positioned at a position having a large Vi value.
  • FIG. 4 is a schematic diagram of the operation when the Vi value is small in the screw compressor according to the first embodiment of the present invention.
  • the drive device 10 positions the variable Vi valve 8 in the right direction indicated by the arrow in the figure, thereby accelerating the opening timing of the discharge port 7.
  • the solenoid valve 14a is closed and the solenoid valve 14b is opened to set the discharge pressure in the cylinder chamber 13b.
  • the cylinder chamber 13a is connected to the discharge chamber 6 and the discharge pressure is constantly introduced, there is no pressure difference in the cylinder chamber 13.
  • a suction pressure acts on the suction side end 8g of the valve body 8a, and a discharge pressure immediately after discharge acts on the discharge port side end 8d. Further, the same pressure as the pressure acting on the discharge port side end portion 8d acts on the discharge port side end portion 8e of the guide portion 8b in mutually opposite directions. Further, a discharge pressure acts on the drive device side end portion 8h of the guide portion 8b.
  • variable Vi valve 8 moves to the right in the figure due to the differential pressure between the discharge pressure acting on the drive device side end 8h and the suction pressure acting on the suction side end 8g. Then, since the variable Vi valve 8 stops at a position where the piston 12 hits the wall surface of the cylinder chamber 13, the variable Vi valve 8 is accurately positioned at a position where the Vi value is small.
  • the variable Vi valve 8 may be positioned at a position where the suction side end portion 8g of the variable Vi valve 8 contacts the wall surface of the casing body 1 as shown in FIG.
  • the setting of the Vi value will be described.
  • the setting method according to each policy will be described below.
  • the Vi value on the large side may be set as follows.
  • the operating range is set by setting an upper limit temperature for, for example, the temperature of the discharged refrigerant gas or the temperature of the winding of the motor stator in order to protect the compressor.
  • an upper limit temperature for, for example, the temperature of the discharged refrigerant gas or the temperature of the winding of the motor stator in order to protect the compressor.
  • the evaporation temperature is constant, it is possible to secure a wide operating range by being able to raise the condensation temperature as high as possible within the range below the upper limit temperature.
  • the condensation temperature is constant, the evaporation temperature can be made as low or as high as possible, which will ensure a wide operating range.
  • the temperature of the discharged refrigerant gas tends to rise during operation under high compression ratio conditions, and the winding temperature tends to rise under high load conditions or high compression ratio conditions.
  • the high compression ratio condition is a high condensation temperature and low evaporation temperature condition
  • the high load condition is a high condensation temperature and high evaporation temperature condition. Therefore, when the temperature of the discharged refrigerant gas and the winding temperature are about to reach the upper limit temperature during operation under a high load condition or a high compression ratio condition, the temperature of the discharged refrigerant gas and the winding temperature do not reach the upper limit temperature. It becomes necessary to change the operation. It is necessary to take measures such as reducing the rotation speed of the compressor to lower the condensation temperature and keep the operating temperature condition within the operating range.
  • the temperature of the discharged refrigerant gas and the winding temperature under a certain operating condition tend to decrease as the compressor efficiency under the operating condition increases. Therefore, by increasing the compressor efficiency during operation under high load conditions or high compression ratio conditions, it is possible to suppress the rise in the discharged refrigerant gas temperature and winding temperature without taking measures such as lowering the condensation temperature. As a result, a wide operating range can be secured.
  • the compressor efficiency is determined by the internal structure of the compressor and structural elements such as the number of windings of the motor.
  • the Vi value on the large side is set so that the compressor efficiency becomes equal to or higher than the preset set efficiency during operation under a predetermined high load condition or high compression ratio condition.
  • the compressor efficiency is a value that changes according to the Vi value, and is represented by a graph that is convex when the horizontal axis represents Vi and the vertical axis represents the compressor efficiency. That is, there is a Vi value that maximizes the compressor efficiency.
  • the Vi value on the large side may be the Vi value when the compressor efficiency is maximum, or may be set to a value equal to or higher than the set efficiency in short.
  • the setting efficiency may be appropriately set according to the performance required for the screw compressor and the like. For example, when the maximum efficiency is set to 100%, the set efficiency may be set to 95% or more.
  • the Vi value is set as described above. Therefore, the position when the variable Vi valve 8 moves to the high Vi value side is set to be the set Vi value.
  • the Vi value on the large side is set so that the rated performance is high.
  • the rated performance is the performance under the conditions defined by the industrial standard and represents the performance of the compressor.
  • the rated performance is a value that changes according to the Vi value, and is represented by a graph that is convex upward when the horizontal axis is Vi and the vertical axis is the rated performance. That is, there is a Vi value that maximizes the rated performance.
  • the Vi value on the large side may be the Vi value when the rated performance is maximum, or in short, may be set to the Vi value that is equal to or higher than the preset set performance.
  • the set performance may be appropriately set according to the performance required of the screw compressor. For example, it is conceivable to set the set performance to 95% or more when the maximum performance is set to 100%.
  • the Vi value is set as described above. Therefore, the position when the variable Vi valve 8 moves to the high Vi value side is set to be the set Vi value.
  • Vi value small side The Vi value on the small side is set as follows. In refrigerating and air-conditioning equipment, in addition to the coefficient of performance indicating energy consumption efficiency of COP, there is a coefficient of performance of refrigerators throughout the period called IPLV or ESSER.
  • the period performance coefficient IPLV is calculated by the following formula.
  • IPLV 0.01 ⁇ A+0.42 ⁇ B+0.45 ⁇ C+0.12 ⁇ D
  • A COP at 100% load
  • B COP at 75% load
  • C COP at 50% load
  • D COP at 25% load
  • the weight to be multiplied differs depending on the load during operation.
  • operation with a 75% load accounts for 42%
  • operation with a 50% load accounts for 45%. Therefore, in the calculation formula of IPLV, the weight in these two conditions is large.
  • ESEER is set as the European seasonal energy efficiency ratio.
  • ESSER is a value obtained by multiplying the energy efficiency ratio of the four operating load conditions by a weighting coefficient, and is calculated by the following formula. Note that EES, which is a value indicating energy consumption efficiency, is used to calculate ESEER, as in COP.
  • ESEER 0.03 ⁇ A+0.33 ⁇ B+0.41 ⁇ C+0.23 ⁇ D
  • the weights at 75% load and 50% load are large in various indexes representing the coefficient of performance of the refrigerating and air-conditioning equipment over the period.
  • the Vi value on the small side is set for the purpose of performing efficient operation in partial load operation, and the value of "0.47 x B + 0.37 x C + 0.15 x D" is equal to or higher than the preset set value. Is set to the Vi value. In other words, the Vi value on the small side is set on the basis of the top three driving loads having a large weight in the period performance coefficient.
  • the value of "0.47 x B + 0.37 x C + 0.15 x D" is a value that changes according to the Vi value, and the horizontal axis is Vi and the vertical axis is "0.47 x B + 0.37 x C + 0.15 x". It is represented by a graph that becomes convex upward when "D" is taken. That is, there is a Vi value that maximizes “0.47 ⁇ B+0.37 ⁇ C+0.15 ⁇ D”. Based on this, the Vi value on the small side may be the Vi value when "0.47 x B + 0.37 x C + 0.15 x D" is the maximum, or in short, it may be a value that is equal to or greater than the set value. ..
  • the set value may be appropriately set according to the performance required for the screw compressor and the like. For example, when the maximum set value is set to 100%, the set value may be set to 95% or more.
  • the Vi value is set as described above. Therefore, the position when the variable Vi valve 8 moves to the Vi value lower side is set to be the set Vi value.
  • the small Vi value side is set as described above and the large Vi value side is set to a Vi value at which the compressor efficiency exceeds the set efficiency during operation under high load conditions or high compression ratio conditions, a wide operating range is provided. It is possible to secure and improve IPLV.
  • both the rated performance and the IPLV can be improved.
  • the Vi value on the small side is set based on the top three driving loads that have a large weight in the period performance coefficient.
  • the operation at 75% load and the operation at 50% load account for the majority of the annual operation time. Therefore, the Vi value on the small side may be set on the basis of the top one or the top two driving loads having a large weight in the period performance coefficient.
  • variable Vi valve has a simple two-step control based on only the discharge pressure and the suction pressure. This makes it possible to simplify the configuration and control while changing the internal volume ratio without requiring a special device.
  • the position of the variable Vi valve when the Vi value is set to be large is set so that the compressor efficiency becomes a Vi value equal to or higher than the set efficiency during operation under a high load condition or a high compression ratio condition. As a result, a wide operating range can be secured.
  • the position of the variable Vi valve when the Vi value is large is set so that the rated performance is the Vi value at which the rated performance is equal to or higher than the set performance. Thereby, the rated performance can be improved.
  • the position of the variable Vi valve when the Vi value is small is such that a value obtained by multiplying each of the coefficient of performance in the top one to three driving loads by the weight corresponding to the driving load is equal to or more than the set value. It is set to be a value. As a result, the partial load performance can be improved and the compressor efficiency can be improved.
  • Embodiment 2 the pressure introducing hole 113a of the cylinder chamber 13a is connected to the discharge chamber 6.
  • the pressure introducing hole 113b of the cylinder chamber 13b is connected to the discharge chamber 6 and the suction chamber 16 in the casing body 1 via the solenoid valve 14a and the solenoid valve 14b, respectively, by the flow passage 15b and the flow passage 15c.
  • the pressure introducing hole 113a is connected to the discharge chamber 6 and the suction chamber 16 in the casing body 1 via the solenoid valve 14a and the solenoid valve 14b, respectively, by the flow passage 15b and the flow passage 15c. ..
  • the pressure introducing hole 113b is connected to the suction chamber 16 in the casing body 1.
  • the Vi value can be set in two ways, large and small.
  • FIG. 5 is a schematic diagram of the operation when the Vi value is large in the screw compressor according to the second embodiment of the present invention.
  • the drive device 10 positions the variable Vi valve 8 in the left direction indicated by the arrow in the figure, thereby delaying the opening timing of the discharge port 7.
  • the solenoid valve 14a when the Vi value is large, the solenoid valve 14a is closed and the solenoid valve 14b is opened to set the discharge pressure in the cylinder chamber 13a.
  • the cylinder chamber 13b is connected to the suction chamber 16, and a suction pressure is constantly introduced. Therefore, the piston 12 tends to move to the left in the figure due to the pressure difference in the cylinder chamber 13.
  • a suction pressure acts on the suction side end 8g of the valve body 8a, and a discharge pressure immediately after discharge acts on the discharge port side end 8d. Further, the same pressure as the pressure acting on the discharge port side end portion 8d acts on the discharge port side end portion 8e of the guide portion 8b in mutually opposite directions. Further, a discharge pressure acts on the drive device side end portion 8h of the guide portion 8b.
  • variable Vi valve 8 tries to move to the right in the figure due to the pressure difference between the pressure acting on the drive device side end 8h and the pressure acting on the suction side end 8g.
  • the piston 12 and the variable Vi valve 8 are affected by the pressure difference between the two areas. Move to the left in the figure. Then, since the variable Vi valve 8 stops at a position where the piston 12 hits the wall surface of the cylinder chamber 13, the variable Vi valve 8 is accurately positioned at a position having a large Vi value.
  • FIG. 6 is a schematic diagram of the operation when the Vi value is small in the screw compressor according to the second embodiment of the present invention.
  • the drive device 10 positions the variable Vi valve 8 in the right direction indicated by the arrow in the figure, thereby accelerating the opening timing of the discharge port 7.
  • the solenoid valve 14a is opened and the solenoid valve 14b is closed to set the suction pressure in the cylinder chamber 13a.
  • the cylinder chamber 13b is connected to the suction chamber 16 and the suction pressure is constantly introduced, there is no pressure difference in the cylinder chamber 13.
  • a suction pressure acts on the suction side end 8g of the valve body 8a, and a discharge pressure immediately after discharge acts on the discharge port side end 8d. Further, the same pressure as the pressure acting on the discharge port side end portion 8d acts on the discharge port side end portion 8e of the guide portion 8b in mutually opposite directions. Further, a discharge pressure acts on the drive device side end portion 8h of the guide portion 8b.
  • variable Vi valve 8 moves to the right in the figure due to the differential pressure between the discharge pressure acting on the drive device side end 8h and the suction pressure acting on the suction side end 8g. Then, since the variable Vi valve 8 stops at a position where the piston 12 hits the wall surface of the cylinder chamber 13, the variable Vi valve 8 is accurately positioned at a position where the Vi value is small.
  • the variable Vi valve 8 may be positioned at a position where the suction side end portion 8g of the variable Vi valve 8 contacts the wall surface of the casing body 1 as shown in FIG.
  • the screw compressor of the present invention is not limited to the structure shown in FIGS. 1 to 6, and may be modified as follows, for example, without departing from the scope of the present invention. is there.
  • FIG. 7 is a figure which shows the modification of the screw compressor which concerns on Embodiment 1 and Embodiment 2 of this invention.
  • the piston 12 shown in FIG. 1 is deleted and a piston rod 17 is provided.
  • the piston rod 17 is connected to the rods 9 of the two variable Vi valves 8 via the common mounting plate 18, and one piston rod 17 is provided for every two variable Vi valves. ing. In this way, the number of pistons 12 for the variable Vi valve 8 is not limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

This screw compressor comprises an internal volume ratio variable mechanism including a variable Vi valve that enables a Vi value, which is an internal volume ratio, to be varied. In the screw compressor, the position of the variable Vi valve is controlled in two stages, and the position of the variable Vi valve when the Vi value is large is set so that compressor efficiency during operation at a predetermined high-load condition or high-compression-ratio condition reaches a Vi value equal to or greater than a set efficiency that has been set in advance.

Description

スクリュー圧縮機Screw compressor
 本発明は、例えば冷凍機または空調機等の冷媒圧縮に用いられるスクリュー圧縮機に関するものである。 The present invention relates to a screw compressor used for refrigerant compression such as a refrigerator or an air conditioner.
 スクリュー圧縮機において、吐出開始のタイミングを調整して内部容積比Viを可変にするスライド弁である可変内部容積比弁(以下、可変Vi弁という)を備え、運転圧縮比に応じて駆動装置からの駆動力により可変Vi弁の開度を調整するものがある(例えば、特許文献1参照)。スクリュー圧縮機における内部容積比は、吸込み時の歯溝空間容積と吐出寸前の歯溝空間容積との比であり、吸込みが完了したときの容積と吐出ポートが開くときの容積との比を表している。 The screw compressor is equipped with a variable internal volume ratio valve (hereinafter referred to as a variable Vi valve), which is a slide valve that adjusts the discharge start timing to make the internal volume ratio Vi variable, and is provided from the drive device according to the operating compression ratio. There is one that adjusts the opening degree of the variable Vi valve by the driving force of (see, for example, Patent Document 1). The internal volume ratio in the screw compressor is the ratio of the tooth groove space volume at the time of suction to the tooth groove space volume just before discharge, and represents the ratio between the volume when suction is completed and the volume when the discharge port is opened. ing.
 特許文献1の可変Vi弁は、特許文献1の図1および図2に示されるように、吐出圧力HPと吸込圧力LPとから演算される最適Vi値と、位置検出手段から求められる現Vi値との差が小さくなるように制御される。さらに、実運転時の最適Vi値に近づけるために、モーター駆動電力が最小となるように可変Vi弁の開度調整を行っている。 As shown in FIGS. 1 and 2 of Patent Document 1, the variable Vi valve of Patent Document 1 has an optimum Vi value calculated from a discharge pressure HP and a suction pressure LP, and a current Vi value obtained from a position detecting means. Is controlled so that the difference between Further, in order to approach the optimum Vi value during actual operation, the opening degree of the variable Vi valve is adjusted so that the motor drive power becomes the minimum.
 スクリュー圧縮機は、内部容積比に見合う適正な圧縮比を有しており、実運転時の圧縮比が適正圧縮比となる運転条件では、不適正な圧縮損失は生じない。しかし、適正圧縮比よりも低い低圧縮比で運転を行うと、吐出ポートが開く前にガスが吐出圧力以上に過圧縮され、余分な圧縮仕事を行うことになる。また逆に、適正圧縮比よりも高圧縮比で運転を行うと、吐出圧力に到達する前に吐出ポートが開くため、ガスの逆流が生じる不足圧縮の状態となる。これらはいずれも動力のロスを生じ、効率の低下を招く。 The screw compressor has an appropriate compression ratio commensurate with the internal volume ratio, and under operating conditions in which the compression ratio during actual operation is the appropriate compression ratio, inadequate compression loss does not occur. However, when the operation is performed at a low compression ratio lower than the proper compression ratio, the gas is over-compressed to the pressure equal to or higher than the discharge pressure before the discharge port is opened, and extra compression work is performed. On the contrary, when the operation is performed at a compression ratio higher than the proper compression ratio, the discharge port opens before the discharge pressure is reached, resulting in an insufficient compression state in which a reverse gas flow occurs. All of these cause a loss of power and reduce efficiency.
 そこで、特許文献1のように、運転負荷に応じた圧縮比(吐出圧力/吸込圧力)に対して、高い圧縮機効率が得られる内部容積比となるように、可変Vi弁の位置を無段階に調整して内部容積比を可変とした技術が提案されている。 Therefore, as in Patent Document 1, the position of the variable Vi valve is steplessly set so as to have an internal volume ratio that can obtain high compressor efficiency with respect to the compression ratio (discharge pressure / suction pressure) according to the operating load. A technique has been proposed in which the internal volume ratio is made variable by adjusting to.
特許第4147891号公報Japanese Patent No. 4147891
 特許文献1では、可変Vi弁の位置制御を無段階で実施しており、吐出圧力、吸込圧力および回転周波数の検出結果から可変Vi弁の制御量を算出している。つまり、特許文献1では可変Vi弁の位置制御を無段階制御とすることで、構成および制御が複雑化していた。 In Patent Document 1, the position control of the variable Vi valve is performed steplessly, and the control amount of the variable Vi valve is calculated from the detection results of the discharge pressure, the suction pressure, and the rotation frequency. In other words, in Patent Document 1, the position control of the variable Vi valve is stepless control, which complicates the configuration and control.
 本発明は、上記のような課題を解決するためになされたものであり、内部容積比を可変としながらも、構成および制御を簡単化することが可能なスクリュー圧縮機を得ることを目的とする。 The present invention has been made to solve the above problems, and an object thereof is to obtain a screw compressor capable of simplifying the configuration and control while varying the internal volume ratio. ..
 本発明に係るスクリュー圧縮機は、内部容積比であるVi値を可変にする可変Vi弁を含む内部容積比可変機構を備えたスクリュー圧縮機であって、可変Vi弁の位置を2段階で制御するものであり、Vi値を大とするときの可変Vi弁の位置は、予め決められた高負荷条件または高圧縮比条件での運転時における圧縮機効率が予め設定された設定効率以上となるVi値となるように設定されているものである。 The screw compressor according to the present invention is a screw compressor provided with an internal volume ratio variable mechanism including a variable Vi valve that changes the Vi value, which is the internal volume ratio, and controls the position of the variable Vi valve in two stages. The position of the variable Vi valve when the Vi value is large is such that the compressor efficiency during operation under a predetermined high load condition or high compression ratio condition is equal to or higher than the preset set efficiency. It is set to be a Vi value.
 本発明によれば、可変Vi弁の位置制御を2段階としたので、内部容積比を可変としながらも、構成および制御を簡単化することができる。 According to the present invention, since the position control of the variable Vi valve is set to two stages, the configuration and control can be simplified while the internal volume ratio is variable.
本発明の実施の形態1に係るスクリュー圧縮機の概略構成図である。It is a schematic block diagram of the screw compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクリュー圧縮機の駆動装置を含む内部容積比可変機構の概要図である。1 is a schematic diagram of an internal volume ratio variable mechanism including a drive device for a screw compressor according to Embodiment 1 of the present invention. 本発明の実施の形態1に係るスクリュー圧縮機においてVi値が大のときの動作概要図である。It is an operation schematic diagram when the Vi value is large in the screw compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクリュー圧縮機においてVi値が小のときの動作概要図である。It is an operation schematic diagram when the Vi value is small in the screw compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係るスクリュー圧縮機においてVi値が大のときの動作概要図である。It is an operation schematic diagram when the Vi value is large in the screw compressor which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るスクリュー圧縮機においてVi値が小のときの動作概要図である。It is an operation schematic diagram when the Vi value is small in the screw compressor which concerns on Embodiment 2 of this invention. 本発明の実施の形態1および実施の形態2に係るスクリュー圧縮機の変形例を示す図である。It is a figure which shows the modification of the screw compressor which concerns on Embodiment 1 and Embodiment 2 of this invention.
実施の形態1.
 図1は、本発明の実施の形態1に係るスクリュー圧縮機の概略構成図である。
 この実施の形態1に係るスクリュー圧縮機は、シングルスクリュー圧縮機であり、図1に概略の構成を示すように、筒状のケーシング本体1と、このケーシング本体1内に収容されたスクリューローター3と、このスクリューローター3を回転駆動するモーター2とを備えている。このモーター2は、ケーシング本体1に内接して固定されたステーター2aと、ステーター2aの内側に配置されたモーターローター2bとから構成され、インバーター方式で回転数が制御されるようになっている。スクリュー圧縮機を所望の運転圧縮比で運転するための容量制御は、モーター2のインバーター駆動による回転数制御とすることで実現できる。
Embodiment 1.
1 is a schematic configuration diagram of a screw compressor according to Embodiment 1 of the present invention.
The screw compressor according to the first embodiment is a single screw compressor, and has a cylindrical casing body 1 and a screw rotor 3 housed in the casing body 1 as shown in the schematic configuration in FIG. And a motor 2 for driving the screw rotor 3 to rotate. The motor 2 is composed of a stator 2a that is inscribed in the casing body 1 and is fixed thereto, and a motor rotor 2b that is arranged inside the stator 2a, and the number of rotations is controlled by an inverter system. Capacity control for operating the screw compressor at a desired operating compression ratio can be realized by controlling the rotation speed by driving the inverter of the motor 2.
 スクリューローター3とモーターローター2bとは互いに同一軸線上に配置されており、いずれもスクリュー軸4に固定されている。また、スクリューローター3の外周面には、複数の螺旋状の溝(以下、スクリュー溝という)3aが形成されている。スクリューローター3は、スクリュー軸4に固定されたモーターローター2bに連結されて回転駆動される。また、スクリューローター3に形成されたスクリュー溝3a内の空間は、ケーシング本体1の内筒面およびこの溝に噛み合い係合する一対のゲートローター(図示せず)によって囲まれて圧縮室5を形成する。 The screw rotor 3 and the motor rotor 2b are arranged on the same axis, and both are fixed to the screw shaft 4. Further, on the outer peripheral surface of the screw rotor 3, a plurality of spiral grooves (hereinafter, referred to as screw grooves) 3a are formed. The screw rotor 3 is connected to a motor rotor 2b fixed to the screw shaft 4 and is rotationally driven. Further, the space in the screw groove 3a formed in the screw rotor 3 is surrounded by the inner cylinder surface of the casing main body 1 and a pair of gate rotors (not shown) that mesh and engage with the groove to form a compression chamber 5. To do.
 ケーシング本体1の内部は、隔壁(図示せず)により吐出圧力側と吸込圧力側とが隔てられ、吐出圧力側には、吐出室6と、吐出室6に開口する吐出口7とが形成されている。ケーシング本体1の内部において、吸込圧力側には吸込室16が形成されている。さらに、ケーシング本体1には、一対のロッド9および駆動装置10に連結され、軸方向に移動可能な一対の可変Vi弁8が設けられている。可変Vi弁8は、吐出口7の一部を形成している。なお、もう一方の可変Vi弁8に連結する駆動装置10については図示を省略している。 Inside the casing body 1, the discharge pressure side and the suction pressure side are separated by a partition wall (not shown), and a discharge chamber 6 and a discharge port 7 opening to the discharge chamber 6 are formed on the discharge pressure side. ing. Inside the casing body 1, a suction chamber 16 is formed on the suction pressure side. Further, the casing body 1 is provided with a pair of variable Vi valves 8 which are connected to the pair of rods 9 and the drive device 10 and are movable in the axial direction. The variable Vi valve 8 forms part of the discharge port 7. The drive device 10 connected to the other variable Vi valve 8 is not shown.
 図2は、本発明の実施の形態1に係るスクリュー圧縮機の駆動装置を含む内部容積比可変機構の概要図である。
 駆動装置10は、内部容積比可変機構(以下、可変Vi機構という)の一部を構成するものであり、シリンダー11内に設けられたピストン12と可変Vi弁8とを、ロッド9にて連結する構成となっている。
FIG. 2 is a schematic diagram of an internal volume ratio variable mechanism including a driving device for a screw compressor according to Embodiment 1 of the present invention.
The drive device 10 constitutes a part of an internal volume ratio variable mechanism (hereinafter referred to as a variable Vi mechanism), and connects a piston 12 provided in a cylinder 11 and a variable Vi valve 8 with a rod 9. It is configured to do.
 可変Vi弁8は、弁本体8aと、ガイド部8bと、連結部8cとから構成されている。ガイド部8bの吐出口側端部8eには連結部8cが設けられ、駆動装置10側の端面には上記ロッド9が連結されている。また、弁本体8aの吐出口側端部8dとガイド部8bの吐出口側端部8eとの間は連結部8cによって連結されるとともに、上記吐出口7に連通する吐出空隙8fを形成している。 The variable Vi valve 8 is composed of a valve body 8a, a guide portion 8b, and a connecting portion 8c. A connecting portion 8c is provided at the discharge port side end portion 8e of the guide portion 8b, and the rod 9 is connected to the end surface on the drive device 10 side. Further, the discharge port side end portion 8d of the valve body 8a and the discharge port side end portion 8e of the guide portion 8b are connected by a connecting portion 8c, and a discharge gap 8f communicating with the discharge port 7 is formed. There is.
 シリンダー11内はピストン12により2つの空間室に区画され、ピストン12の前側(可変Vi弁方向)および後ろ側(反可変Vi弁方向)には、シリンダー室13aおよびシリンダー室13bが形成されている。シリンダー11には、可変Vi弁8に対して近い方にあるシリンダー室13a側に、圧力導入孔113aが設けられている。また、シリンダー11には、可変Vi弁8に対して遠い方にあるシリンダー室13b側に、圧力導入孔113bが設けられている。 The inside of the cylinder 11 is divided into two space chambers by the piston 12, and the cylinder chamber 13a and the cylinder chamber 13b are formed on the front side (variable Vi valve direction) and the rear side (anti-variable Vi valve direction) of the piston 12. .. The cylinder 11 is provided with a pressure introduction hole 113a on the cylinder chamber 13a side which is closer to the variable Vi valve 8. Further, the cylinder 11 is provided with a pressure introducing hole 113b on the cylinder chamber 13b side farther from the variable Vi valve 8.
 シリンダー室13aは、圧力導入孔113aおよび流路15aを介して図1の吐出室6に連通しており、常時、吐出圧力が導入されている。シリンダー室13bは、圧力導入孔113bおよび流路15bを介して図1の吐出室6に連通しているとともに、流路15bの途中から分岐した流路15cを介して図1の吸込室16に連通している。流路15bには、流路15bを開閉する電磁弁14bが設けられ、流路15cには流路15cを開閉する電磁弁14aが設けられている。電磁弁14aおよび電磁弁14bの開閉により、シリンダー室13bには吐出圧力または吸込圧力が選択的に導入される。 The cylinder chamber 13a communicates with the discharge chamber 6 of FIG. 1 through the pressure introduction hole 113a and the flow path 15a, and the discharge pressure is constantly introduced. The cylinder chamber 13b communicates with the discharge chamber 6 of FIG. 1 via the pressure introduction hole 113b and the flow path 15b, and enters the suction chamber 16 of FIG. 1 via the flow path 15c branched from the middle of the flow path 15b. It is in communication. The flow path 15b is provided with a solenoid valve 14b that opens and closes the flow path 15b, and the flow path 15c is provided with a solenoid valve 14a that opens and closes the flow path 15c. Discharge pressure or suction pressure is selectively introduced into the cylinder chamber 13b by opening and closing the solenoid valves 14a and 14b.
 また、上記の電磁弁14aおよび電磁弁14bは一例であり、流路の開閉または切り替えができる弁手段であればよく、例えば止め弁または三方弁でもよい。流路の切り替えが可能な三方弁の場合、流路の分岐部に1つ設ければよく、したがって電磁弁14aおよび電磁弁14bを省略することができる。また、流路15a、流路15bおよび流路15cは、ケーシング本体1およびシリンダー11の壁内部に形成してもよく、配管を用いて接続するようにしてもよい。 The solenoid valves 14a and 14b described above are merely examples, and may be any valve means capable of opening/closing or switching the flow path, for example, a stop valve or a three-way valve. In the case of a three-way valve capable of switching the flow path, one may be provided at the branch portion of the flow path, and therefore the solenoid valve 14a and the solenoid valve 14b can be omitted. Further, the flow path 15a, the flow path 15b and the flow path 15c may be formed inside the walls of the casing main body 1 and the cylinder 11, or may be connected by using piping.
 次に可変Vi弁8の動作について説明する。この可変Vi機構によればVi値を大と小の2通りに設定できる。 Next, the operation of the variable Vi valve 8 will be described. According to this variable Vi mechanism, the Vi value can be set in two ways, large and small.
(i)Vi値大のときの動作
 図3は、本発明の実施の形態1に係るスクリュー圧縮機においてVi値が大のときの動作概要図である。
 Vi値大のときは、駆動装置10が可変Vi弁8を図中矢印で示す左方向に位置させることで、吐出口7が開くタイミングを遅くしている。
(I) Operation when the Vi value is large FIG. 3 is a schematic view of the operation when the Vi value is large in the screw compressor according to the first embodiment of the present invention.
When the Vi value is large, the drive device 10 positions the variable Vi valve 8 in the left direction indicated by the arrow in the figure, thereby delaying the opening timing of the discharge port 7.
 すなわち、Vi値大のときは、電磁弁14aを開、電磁弁14bを閉とすることでシリンダー室13b内を吸込圧力とする。一方、シリンダー室13aは吐出室6と連結しており、常時吐出圧力が導入されている。よって、シリンダー11内の圧力差によりピストン12は図中左方向へ移動しようとする。 That is, when the Vi value is large, the solenoid valve 14a is opened and the solenoid valve 14b is closed to set the suction pressure in the cylinder chamber 13b. On the other hand, the cylinder chamber 13a is connected to the discharge chamber 6, and a discharge pressure is constantly introduced. Therefore, the piston 12 tends to move to the left in the figure due to the pressure difference in the cylinder 11.
 一方、ピストン12に連結されている可変Vi弁8については、弁本体8aの吸込側端部8gには吸込圧力が作用し、吐出口側端部8dには吐出直後の吐出圧力が作用する。また、ガイド部8bの吐出口側端部8eには吐出口側端部8dに作用する圧力と同じ圧力が互いに逆向きに作用する。また、ガイド部8bの駆動装置側端部8hには吐出圧力が作用する。したがって、可変Vi弁8内部の吐出口側端部8dと吐出口側端部8eとに作用する荷重は相殺される。よって、可変Vi弁8は、駆動装置側端部8hと吸込側端部8gに作用する圧力差により図中右方向へ移動しようとする。 On the other hand, with respect to the variable Vi valve 8 connected to the piston 12, a suction pressure acts on the suction side end 8g of the valve body 8a, and a discharge pressure immediately after discharge acts on the discharge port side end 8d. Further, the same pressure as the pressure acting on the discharge port side end portion 8d acts on the discharge port side end portion 8e of the guide portion 8b in mutually opposite directions. Further, a discharge pressure acts on the drive device side end portion 8h of the guide portion 8b. Therefore, the loads acting on the discharge port side end portion 8d and the discharge port side end portion 8e inside the variable Vi valve 8 are offset. Therefore, the variable Vi valve 8 tends to move to the right in the figure due to the pressure difference acting on the drive device side end portion 8h and the suction side end portion 8g.
 ここで、ピストン12の移動方向の両端面の面積は、可変Vi弁8の駆動装置側端部8hの面積より大きく設定されている。このため、両面積が受ける圧力差によりピストン12および可変Vi弁8は図中左方向へ移動する。そして、可変Vi弁8は、ピストン12がシリンダー室13の壁面と当たる位置で停止するため、Vi値大の位置に、正確に位置決めされる。 Here, the area of both end faces in the moving direction of the piston 12 is set to be larger than the area of the drive device side end portion 8h of the variable Vi valve 8. Therefore, the piston 12 and the variable Vi valve 8 move to the left in the figure due to the pressure difference between the two areas. Then, since the variable Vi valve 8 stops at a position where the piston 12 hits the wall surface of the cylinder chamber 13, the variable Vi valve 8 is accurately positioned at a position having a large Vi value.
(ii)Vi値小のときの動作
 図4は、本発明の実施の形態1に係るスクリュー圧縮機においてVi値が小のときの動作概要図である。
 Vi値小のときは、駆動装置10が可変Vi弁8を図中矢印で示す右方向に位置させることで、吐出口7が開くタイミングを早めている。
(Ii) Operation when the Vi value is small FIG. 4 is a schematic diagram of the operation when the Vi value is small in the screw compressor according to the first embodiment of the present invention.
When the Vi value is small, the drive device 10 positions the variable Vi valve 8 in the right direction indicated by the arrow in the figure, thereby accelerating the opening timing of the discharge port 7.
 すなわち、Vi値小のときは、電磁弁14aを閉、電磁弁14bを開とすることでシリンダー室13b内を吐出圧力とする。一方、シリンダー室13aは吐出室6と連結しており、常時吐出圧力が導入されているので、シリンダー室13内の圧力差はない状態となっている。 That is, when the Vi value is small, the solenoid valve 14a is closed and the solenoid valve 14b is opened to set the discharge pressure in the cylinder chamber 13b. On the other hand, since the cylinder chamber 13a is connected to the discharge chamber 6 and the discharge pressure is constantly introduced, there is no pressure difference in the cylinder chamber 13.
 一方、ピストン12に連結されている可変Vi弁8については、弁本体8aの吸込側端部8gには吸込圧力が作用し、吐出口側端部8dには吐出直後の吐出圧力が作用する。また、ガイド部8bの吐出口側端部8eには吐出口側端部8dに作用する圧力と同じ圧力が互いに逆向きに作用する。また、ガイド部8bの駆動装置側端部8hには吐出圧力が作用する。 On the other hand, with respect to the variable Vi valve 8 connected to the piston 12, a suction pressure acts on the suction side end 8g of the valve body 8a, and a discharge pressure immediately after discharge acts on the discharge port side end 8d. Further, the same pressure as the pressure acting on the discharge port side end portion 8d acts on the discharge port side end portion 8e of the guide portion 8b in mutually opposite directions. Further, a discharge pressure acts on the drive device side end portion 8h of the guide portion 8b.
 したがって、可変Vi弁8は、駆動装置側端部8hに作用する吐出圧力と吸込側端部8gに作用する吸込圧力との差圧により図中右方向へ移動する。そして、可変Vi弁8は、ピストン12がシリンダー室13の壁面と当たる位置で停止するため、Vi値小の位置に、正確に位置決めされる。なお、可変Vi弁8は図1に示すように、可変Vi弁8の吸込側端部8gをケーシング本体1の壁面に当たる位置で位置決めしても良い。 Therefore, the variable Vi valve 8 moves to the right in the figure due to the differential pressure between the discharge pressure acting on the drive device side end 8h and the suction pressure acting on the suction side end 8g. Then, since the variable Vi valve 8 stops at a position where the piston 12 hits the wall surface of the cylinder chamber 13, the variable Vi valve 8 is accurately positioned at a position where the Vi value is small. The variable Vi valve 8 may be positioned at a position where the suction side end portion 8g of the variable Vi valve 8 contacts the wall surface of the casing body 1 as shown in FIG.
 ここで、Vi値の設定について説明する。Vi値の設定は、広い運転範囲を確保することを課題として設定する方針と、「定格性能」または省エネルギーの指標1つである「期間成績係数」の向上を課題として設定する方針とがある。以下、それぞれの方針に応じた設定方法について説明する。 Here, the setting of the Vi value will be described. There are two policies for setting the Vi value: one is to secure a wide operating range as an issue, and the other is to set the improvement of "rated performance" or "period coefficient of performance", which is one of the indicators of energy saving, as an issue. The setting method according to each policy will be described below.
(広い運転範囲の確保)
 広い運転範囲を確保するには、大側のVi値を以下のように設定すればよい。運転範囲は、圧縮機保護のために、たとえば吐出冷媒ガスの温度またはモーターステーターの巻き線の温度などに上限温度を設けることで設定される。蒸発温度一定の場合、上限温度未満の範囲で凝縮温度をできるだけ高くできることが、広い運転範囲の確保に繋がる。一方、凝縮温度一定の場合は、蒸発温度をできるだけ、低く、または高くできることが、広い運転範囲の確保に繋がる。
(Securing a wide operating range)
To secure a wide operating range, the Vi value on the large side may be set as follows. The operating range is set by setting an upper limit temperature for, for example, the temperature of the discharged refrigerant gas or the temperature of the winding of the motor stator in order to protect the compressor. When the evaporation temperature is constant, it is possible to secure a wide operating range by being able to raise the condensation temperature as high as possible within the range below the upper limit temperature. On the other hand, when the condensation temperature is constant, the evaporation temperature can be made as low or as high as possible, which will ensure a wide operating range.
 吐出冷媒ガスの温度は、高圧縮比条件の運転時に高くなりやすく、巻き線温度は高負荷条件または高圧縮比条件時に高くなりやすい。ここで、高圧縮比条件とは高凝縮温度かつ低蒸発温度条件のことであり、高負荷条件とは高凝縮温度かつ高蒸発温度条件のことである。よって、高負荷条件または高圧縮比条件の運転時において、吐出冷媒ガスの温度および巻き線温度が上限温度に達しそうになった場合、吐出冷媒ガスの温度および巻き線温度が上限温度に達しないように運転を変更する必要が生じる。運転の変更とはたとえば、圧縮機の回転数を減らして凝縮温度を下げるなどの対応を実施し、運転温度条件を運転範囲内とする必要がある。つまり、凝縮温度を高くしたまま運転を継続したいところ、高負荷条件または高圧縮比条件の運転時は吐出冷媒ガスの温度および巻き線温度が高くなることから、凝縮温度を下げるなどの対応が必要となり、運転範囲が狭まる。 The temperature of the discharged refrigerant gas tends to rise during operation under high compression ratio conditions, and the winding temperature tends to rise under high load conditions or high compression ratio conditions. Here, the high compression ratio condition is a high condensation temperature and low evaporation temperature condition, and the high load condition is a high condensation temperature and high evaporation temperature condition. Therefore, when the temperature of the discharged refrigerant gas and the winding temperature are about to reach the upper limit temperature during operation under a high load condition or a high compression ratio condition, the temperature of the discharged refrigerant gas and the winding temperature do not reach the upper limit temperature. It becomes necessary to change the operation. It is necessary to take measures such as reducing the rotation speed of the compressor to lower the condensation temperature and keep the operating temperature condition within the operating range. In other words, if you want to continue the operation while keeping the condensation temperature high, the temperature of the discharged refrigerant gas and the winding temperature will rise during operation under high load conditions or high compression ratio conditions, so it is necessary to take measures such as lowering the condensation temperature. The operating range is narrowed.
 ある運転条件での吐出冷媒ガスの温度および巻き線温度は、その運転条件での圧縮機効率が上昇するにつれ、下がる傾向がある。したがって、高負荷条件または高圧縮比条件の運転時における圧縮機効率を高くすることで、凝縮温度を下げるなどの対応を実施しなくても吐出冷媒ガス温度および巻き線温度の上昇を抑えることができ、結果として、広い運転範囲の確保につながる。なお、圧縮機効率とは、圧縮機内部の構造およびモーターの巻き数等の構造的要素によって決まるものである。 The temperature of the discharged refrigerant gas and the winding temperature under a certain operating condition tend to decrease as the compressor efficiency under the operating condition increases. Therefore, by increasing the compressor efficiency during operation under high load conditions or high compression ratio conditions, it is possible to suppress the rise in the discharged refrigerant gas temperature and winding temperature without taking measures such as lowering the condensation temperature. As a result, a wide operating range can be secured. The compressor efficiency is determined by the internal structure of the compressor and structural elements such as the number of windings of the motor.
 そこで、大側のVi値は、予め決められた高負荷条件または高圧縮比条件での運転時に圧縮機効率が予め設定された設定効率以上となるVi値となるように設定されている。圧縮機効率はVi値に応じて変化する値であり、横軸にVi、縦軸に圧縮機効率を取ったときに上に凸となるグラフで表現される。つまり、圧縮機効率が最大となるVi値が存在する。これを踏まえ、大側のVi値は、圧縮機効率が最大となるときのVi値としてもよいし、要するに設定効率以上となる値に設定されればよい。設定効率は、スクリュー圧縮機に求められる性能等に応じて適宜設定されればよい。例えば、最大効率を100%とした時に設定効率を95%以上とすることなどが考えられる。 Therefore, the Vi value on the large side is set so that the compressor efficiency becomes equal to or higher than the preset set efficiency during operation under a predetermined high load condition or high compression ratio condition. The compressor efficiency is a value that changes according to the Vi value, and is represented by a graph that is convex when the horizontal axis represents Vi and the vertical axis represents the compressor efficiency. That is, there is a Vi value that maximizes the compressor efficiency. Based on this, the Vi value on the large side may be the Vi value when the compressor efficiency is maximum, or may be set to a value equal to or higher than the set efficiency in short. The setting efficiency may be appropriately set according to the performance required for the screw compressor and the like. For example, when the maximum efficiency is set to 100%, the set efficiency may be set to 95% or more.
 広い運転範囲を確保するスクリュー圧縮機を構成する場合、以上のようにしてVi値が設定される。よって、可変Vi弁8がVi値大側に移動した際の位置は、設定されたVi値となるように設定される。 When configuring a screw compressor that secures a wide operating range, the Vi value is set as described above. Therefore, the position when the variable Vi valve 8 moves to the high Vi value side is set to be the set Vi value.
(定格性能または期間成績係数の向上)
[定格性能の向上:Vi値大側]
 大側のVi値を定格性能が高くなるように設定する。定格性能とは、工業規格などで定められている条件における性能であり、圧縮機の性能を代表するものである。定格性能はVi値に応じて変化する値であり、横軸にVi、縦軸に定格性能を取ったときに上に凸となるグラフで表現される。つまり、定格性能が最大となるVi値が存在する。これを踏まえ、大側のVi値は、定格性能が最大となるときのVi値としてもよいし、要するに予め設定された設定性能以上となるVi値に設定されればよい。設定性能は、スクリュー圧縮機に求められる性能等に応じて適宜設定されればよい。例えば、最大性能を100%とした時に設定性能を95%以上とすることなどが考えられる。
(Improvement of rated performance or period coefficient of performance)
[Improvement of rated performance: Vi side is large]
The Vi value on the large side is set so that the rated performance is high. The rated performance is the performance under the conditions defined by the industrial standard and represents the performance of the compressor. The rated performance is a value that changes according to the Vi value, and is represented by a graph that is convex upward when the horizontal axis is Vi and the vertical axis is the rated performance. That is, there is a Vi value that maximizes the rated performance. Based on this, the Vi value on the large side may be the Vi value when the rated performance is maximum, or in short, may be set to the Vi value that is equal to or higher than the preset set performance. The set performance may be appropriately set according to the performance required of the screw compressor. For example, it is conceivable to set the set performance to 95% or more when the maximum performance is set to 100%.
 定格性能の向上を図るスクリュー圧縮機を構成する場合、以上のようにしてVi値が設定される。よって、可変Vi弁8がVi値大側に移動した際の位置は、設定されたVi値となるように設定される。 When configuring a screw compressor to improve the rated performance, the Vi value is set as described above. Therefore, the position when the variable Vi valve 8 moves to the high Vi value side is set to be the set Vi value.
[期間成績係数の向上:Vi値小側]
 小側のVi値は、以下のようにして設定される。冷凍空調機器においては、COPというエネルギー消費効率を示す成績係数の他に、IPLVまたはESEERという、期間を通じた冷凍機の成績係数がある。
[Improvement of period coefficient of performance: Vi value small side]
The Vi value on the small side is set as follows. In refrigerating and air-conditioning equipment, in addition to the coefficient of performance indicating energy consumption efficiency of COP, there is a coefficient of performance of refrigerators throughout the period called IPLV or ESSER.
 米国冷凍空調工業会において、期間成績係数であるIPLVは下記の計算式により算出される。
 IPLV=0.01×A+0.42×B+0.45×C+0.12×D
    A=100%負荷時のCOP、B=75%負荷時のCOP、
    C=50%負荷時のCOP、D=25%負荷時のCOP
 この計算式によれば、運転時の負荷に応じて、乗算される重みが異なっている。冷凍空調機器の年間の運転時間のうち、75%負荷での運転は42%を占め、50%負荷での運転は45%を占める。よって、IPLVの算出式では、この2条件における重みが大きくなっている。
At the American Refrigeration and Air Conditioning Industry Association, the period performance coefficient IPLV is calculated by the following formula.
IPLV=0.01×A+0.42×B+0.45×C+0.12×D
A=COP at 100% load, B=COP at 75% load,
C=COP at 50% load, D=COP at 25% load
According to this calculation formula, the weight to be multiplied differs depending on the load during operation. Of the annual operating time of refrigeration and air conditioning equipment, operation with a 75% load accounts for 42%, and operation with a 50% load accounts for 45%. Therefore, in the calculation formula of IPLV, the weight in these two conditions is large.
 また、日本冷凍空調工業会および欧州冷凍空調工業会においても同様の指標が定められている。
 日本冷凍空調工業会の場合以下の式のように定められている。
 IPLV=0.01×A+0.47×B+0.37×C+0.15×D
    A=100%負荷時のCOP、B=75%負荷時のCOP、
    C=50%負荷時のCOP、D=25%負荷時のCOP
Similar indexes are also set by the Japan Refrigeration and Air Conditioning Industry Association and the European Refrigeration and Air Conditioning Industry Association.
In the case of Japan Refrigeration and Air Conditioning Industry Association, it is defined as the following formula.
IPLV=0.01×A+0.47×B+0.37×C+0.15×D
A=COP at 100% load, B=COP at 75% load,
C=COP at 50% load, D=COP at 25% load
 欧州冷凍空調工業会の場合、欧州季節エネルギー効率比としてESEERが定められている。ESEERはIPLV同様に4つの運転負荷条件のエネルギー効率比に加重係数を乗算することで求められる値であり、以下の計算式により算出される。なお、ESEERの算出にはCOPと同様にエネルギー消費効率を示す値であるEERが用いられる。
 ESEER=0.03×A+0.33×B+0.41×C+0.23×D
    A=100%負荷時のEER、B=75%負荷時のEER、
    C=50%負荷時のEER、D=25%負荷時のEER
 このように冷凍空調機器の期間を通じた成績係数を表す様々な指標において75%負荷時と50%負荷時における重みが大きい。
In the case of the European Refrigeration and Air Conditioning Industry Association, ESEER is set as the European seasonal energy efficiency ratio. Like IPLV, ESSER is a value obtained by multiplying the energy efficiency ratio of the four operating load conditions by a weighting coefficient, and is calculated by the following formula. Note that EES, which is a value indicating energy consumption efficiency, is used to calculate ESEER, as in COP.
ESEER=0.03×A+0.33×B+0.41×C+0.23×D
A=100% load EER, B=75% load EER,
C=50% load EER, D=25% load EER
As described above, the weights at 75% load and 50% load are large in various indexes representing the coefficient of performance of the refrigerating and air-conditioning equipment over the period.
 ここで、日本冷凍空調工業会の算出式の例で説明すると、「0.01×A」は100%負荷運転による成績係数、「0.47×B+0.37×C+0.15×D」は部分負荷運転による成績係数であると言える。 Here, if an example of the calculation formula of the Japan Refrigeration and Air Conditioning Industry Association is explained, "0.01 x A" is the coefficient of performance by 100% load operation, and "0.47 x B + 0.37 x C + 0.15 x D" is a part. It can be said that it is a coefficient of performance due to load driving.
 小側のVi値は、部分負荷運転で効率の良い運転を行うことを目的として設定され、「0.47×B+0.37×C+0.15×D」の値が予め設定された設定値以上となるVi値に設定される。言い換えれば、小側のVi値は、期間成績係数において重みが大きい上位3つの運転負荷に基づいて設定される。 The Vi value on the small side is set for the purpose of performing efficient operation in partial load operation, and the value of "0.47 x B + 0.37 x C + 0.15 x D" is equal to or higher than the preset set value. Is set to the Vi value. In other words, the Vi value on the small side is set on the basis of the top three driving loads having a large weight in the period performance coefficient.
 「0.47×B+0.37×C+0.15×D」の値はVi値に応じて変化する値であり、横軸にVi、縦軸に「0.47×B+0.37×C+0.15×D」を取ったときに上に凸となるグラフで表現される。つまり、「0.47×B+0.37×C+0.15×D」が最大となるVi値が存在する。これを踏まえ、小側のVi値は、「0.47×B+0.37×C+0.15×D」が最大となるときのVi値としてもよいし、要するに設定値以上となる値であればよい。設定値は、スクリュー圧縮機に求められる性能等に応じて適宜設定されればよい。例えば、最大設定値を100%とした時に設定値を95%以上とすることなどが考えられる。 The value of "0.47 x B + 0.37 x C + 0.15 x D" is a value that changes according to the Vi value, and the horizontal axis is Vi and the vertical axis is "0.47 x B + 0.37 x C + 0.15 x". It is represented by a graph that becomes convex upward when "D" is taken. That is, there is a Vi value that maximizes “0.47×B+0.37×C+0.15×D”. Based on this, the Vi value on the small side may be the Vi value when "0.47 x B + 0.37 x C + 0.15 x D" is the maximum, or in short, it may be a value that is equal to or greater than the set value. .. The set value may be appropriately set according to the performance required for the screw compressor and the like. For example, when the maximum set value is set to 100%, the set value may be set to 95% or more.
 部分負荷運転で効率の良い運転を行うスクリュー圧縮機を構成する場合、以上のようにしてVi値が設定される。よって、可変Vi弁8がVi値小側に移動した際の位置は、設定されたVi値となるように設定される。 When configuring a screw compressor that operates efficiently with partial load operation, the Vi value is set as described above. Therefore, the position when the variable Vi valve 8 moves to the Vi value lower side is set to be the set Vi value.
 Vi値小側を上記のように設定し、Vi値大側を、高負荷条件または高圧縮比条件での運転時に圧縮機効率が設定効率以上となるVi値に設定した場合、広い運転範囲の確保とIPLVの向上を図ることができる。 When the small Vi value side is set as described above and the large Vi value side is set to a Vi value at which the compressor efficiency exceeds the set efficiency during operation under high load conditions or high compression ratio conditions, a wide operating range is provided. It is possible to secure and improve IPLV.
 Vi値小側を上記のように設定し、Vi値大側を、定格条件での運転時に定格性能が設定性能以上となるVi値に設定した場合、定格性能とIPLVをともに向上できる。 When the small Vi value side is set as described above and the large Vi value side is set to a Vi value at which the rated performance exceeds the set performance when operating under the rated conditions, both the rated performance and the IPLV can be improved.
 なお、ここでは、小側のVi値は、期間成績係数において重みが大きい上位3つの運転負荷に基づいて設定されるとした。しかし、上述したように年間の運転時間のうち75%負荷での運転と50%負荷での運転が大部分を占める。このため、小側のVi値は、期間成績係数において重みが大きい上位1つまたは上位2つの運転負荷に基づいて設定されてもよい。 Note that here, the Vi value on the small side is set based on the top three driving loads that have a large weight in the period performance coefficient. However, as described above, the operation at 75% load and the operation at 50% load account for the majority of the annual operation time. Therefore, the Vi value on the small side may be set on the basis of the top one or the top two driving loads having a large weight in the period performance coefficient.
 以上説明したように、本実施の形態1は、可変Vi弁を、吐出圧力と吸込圧力のみに基づいたシンプルな2段階制御とした。これにより、特別な装置を必要とせずに、内部容積比を可変としながらも、構成および制御を簡単化することができる。 As described above, in the first embodiment, the variable Vi valve has a simple two-step control based on only the discharge pressure and the suction pressure. This makes it possible to simplify the configuration and control while changing the internal volume ratio without requiring a special device.
 また、Vi値を大とするときの可変Vi弁の位置は、高負荷条件または高圧縮比条件での運転時に圧縮機効率が設定効率以上となるVi値となるように設定されている。これにより、広い運転範囲を確保することができる。 Further, the position of the variable Vi valve when the Vi value is set to be large is set so that the compressor efficiency becomes a Vi value equal to or higher than the set efficiency during operation under a high load condition or a high compression ratio condition. As a result, a wide operating range can be secured.
 また、Vi値を大とするときの可変Vi弁の位置は、定格性能が設定性能以上となるVi値となるように設定されている。これにより、定格性能を向上することができる。 Also, the position of the variable Vi valve when the Vi value is large is set so that the rated performance is the Vi value at which the rated performance is equal to or higher than the set performance. Thereby, the rated performance can be improved.
 また、Vi値を小とするときの可変Vi弁の位置は、上位1つ~3つの運転負荷における成績係数のそれぞれと、運転負荷に対応する重みとを乗算した値が設定値以上となるVi値となるように設定されている。これにより、部分負荷性能を向上して、圧縮機効率を向上できる。 Further, the position of the variable Vi valve when the Vi value is small is such that a value obtained by multiplying each of the coefficient of performance in the top one to three driving loads by the weight corresponding to the driving load is equal to or more than the set value. It is set to be a value. As a result, the partial load performance can be improved and the compressor efficiency can be improved.
実施の形態2.
 実施の形態1においては、シリンダー室13aの圧力導入孔113aを吐出室6と連結した構成を示した。また、シリンダー室13bの圧力導入孔113bについてはケーシング本体1内の吐出室6と吸込室16とにそれぞれ電磁弁14aおよび電磁弁14bを介して流路15bおよび流路15cで連結した構成を示した。この実施の形態2では、圧力導入孔113aをケーシング本体1内の吐出室6と吸込室16とにそれぞれ電磁弁14aおよび電磁弁14bを介して流路15bおよび流路15cで連結した構成とする。また、圧力導入孔113bについてはケーシング本体1内の吸込室16と連結した構成とする。
Embodiment 2.
In the first embodiment, the pressure introducing hole 113a of the cylinder chamber 13a is connected to the discharge chamber 6. The pressure introducing hole 113b of the cylinder chamber 13b is connected to the discharge chamber 6 and the suction chamber 16 in the casing body 1 via the solenoid valve 14a and the solenoid valve 14b, respectively, by the flow passage 15b and the flow passage 15c. It was In the second embodiment, the pressure introducing hole 113a is connected to the discharge chamber 6 and the suction chamber 16 in the casing body 1 via the solenoid valve 14a and the solenoid valve 14b, respectively, by the flow passage 15b and the flow passage 15c. .. The pressure introducing hole 113b is connected to the suction chamber 16 in the casing body 1.
 次に、この実施の形態2における可変Vi弁8の動作について説明する。実施の形態1と同様にVi値を大と小の2通りに設定できる。 Next, the operation of the variable Vi valve 8 in the second embodiment will be described. As in the first embodiment, the Vi value can be set in two ways, large and small.
(i)Vi値大のときの動作
 図5は、本発明の実施の形態2に係るスクリュー圧縮機においてVi値が大のときの動作概要図である。
 Vi値大のときは、駆動装置10が可変Vi弁8を図中矢印で示す左方向に位置させることで、吐出口7が開くタイミングを遅くしている。
(I) Operation when the Vi value is large FIG. 5 is a schematic diagram of the operation when the Vi value is large in the screw compressor according to the second embodiment of the present invention.
When the Vi value is large, the drive device 10 positions the variable Vi valve 8 in the left direction indicated by the arrow in the figure, thereby delaying the opening timing of the discharge port 7.
 すなわち、Vi値大のときは、電磁弁14aを閉、電磁弁14bを開とすることでシリンダー室13a内を吐出圧力とする。一方、シリンダー室13bは吸込室16と連結しており、常時吸込圧力が導入されている。よって、シリンダー室13内の圧力差によりピストン12が図中左方向へ移動しようとする。 That is, when the Vi value is large, the solenoid valve 14a is closed and the solenoid valve 14b is opened to set the discharge pressure in the cylinder chamber 13a. On the other hand, the cylinder chamber 13b is connected to the suction chamber 16, and a suction pressure is constantly introduced. Therefore, the piston 12 tends to move to the left in the figure due to the pressure difference in the cylinder chamber 13.
 一方、ピストン12に連結されている可変Vi弁8については、弁本体8aの吸込側端部8gには吸込圧力が作用し、吐出口側端部8dには吐出直後の吐出圧力が作用する。また、ガイド部8bの吐出口側端部8eには吐出口側端部8dに作用する圧力と同じ圧力が互いに逆向きに作用する。また、ガイド部8bの駆動装置側端部8hには吐出圧力が作用する。 On the other hand, with respect to the variable Vi valve 8 connected to the piston 12, a suction pressure acts on the suction side end 8g of the valve body 8a, and a discharge pressure immediately after discharge acts on the discharge port side end 8d. Further, the same pressure as the pressure acting on the discharge port side end portion 8d acts on the discharge port side end portion 8e of the guide portion 8b in mutually opposite directions. Further, a discharge pressure acts on the drive device side end portion 8h of the guide portion 8b.
 したがって、可変Vi弁8内部の吐出口側端部8dと8eに作用する荷重は相殺される。よって、可変Vi弁8は、駆動装置側端部8hと吸込側端部8gに作用する圧力との圧力差により図中右方向へ移動しようとする。しかし、ピストン12の移動方向の両端面の面積が、可変Vi弁8の駆動装置側端部8hの面積より大きく設定されているため、両面積が受ける圧力差によりピストン12および可変Vi弁8は図中左方向へ移動する。そして、可変Vi弁8は、ピストン12がシリンダー室13の壁面と当たる位置で停止するため、Vi値大の位置に正確に位置決めされる。 Therefore, the loads acting on the discharge port side end portions 8d and 8e inside the variable Vi valve 8 are offset. Therefore, the variable Vi valve 8 tries to move to the right in the figure due to the pressure difference between the pressure acting on the drive device side end 8h and the pressure acting on the suction side end 8g. However, since the area of both end faces of the piston 12 in the moving direction is set to be larger than the area of the drive device side end portion 8h of the variable Vi valve 8, the piston 12 and the variable Vi valve 8 are affected by the pressure difference between the two areas. Move to the left in the figure. Then, since the variable Vi valve 8 stops at a position where the piston 12 hits the wall surface of the cylinder chamber 13, the variable Vi valve 8 is accurately positioned at a position having a large Vi value.
(ii)Vi値小のときの動作
 図6は、本発明の実施の形態2に係るスクリュー圧縮機においてVi値が小のときの動作概要図である。
 Vi値小のときは、駆動装置10が可変Vi弁8を図中矢印で示す右方向に位置させることで、吐出口7が開くタイミングを早めている。
(Ii) Operation when the Vi value is small FIG. 6 is a schematic diagram of the operation when the Vi value is small in the screw compressor according to the second embodiment of the present invention.
When the Vi value is small, the drive device 10 positions the variable Vi valve 8 in the right direction indicated by the arrow in the figure, thereby accelerating the opening timing of the discharge port 7.
 すなわち、Vi値小のときは、電磁弁14aを開、電磁弁14bを閉とすることでシリンダー室13a内を吸込圧力とする。一方、シリンダー室13bは吸込室16と連結しており、常時吸込圧力が導入されているので、シリンダー室13内の圧力差はない状態となっている。 That is, when the Vi value is small, the solenoid valve 14a is opened and the solenoid valve 14b is closed to set the suction pressure in the cylinder chamber 13a. On the other hand, since the cylinder chamber 13b is connected to the suction chamber 16 and the suction pressure is constantly introduced, there is no pressure difference in the cylinder chamber 13.
 一方、ピストン12に連結されている可変Vi弁8については、弁本体8aの吸込側端部8gには吸込圧力が作用し、吐出口側端部8dには吐出直後の吐出圧力が作用する。また、ガイド部8bの吐出口側端部8eには吐出口側端部8dに作用する圧力と同じ圧力が互いに逆向きに作用する。また、ガイド部8bの駆動装置側端部8hには吐出圧力が作用する。 On the other hand, with respect to the variable Vi valve 8 connected to the piston 12, a suction pressure acts on the suction side end 8g of the valve body 8a, and a discharge pressure immediately after discharge acts on the discharge port side end 8d. Further, the same pressure as the pressure acting on the discharge port side end portion 8d acts on the discharge port side end portion 8e of the guide portion 8b in mutually opposite directions. Further, a discharge pressure acts on the drive device side end portion 8h of the guide portion 8b.
 したがって、可変Vi弁8は、駆動装置側端部8hに作用する吐出圧力と吸込側端部8gに作用する吸込圧力との差圧により図中右方向へ移動する。そして、可変Vi弁8は、ピストン12がシリンダー室13の壁面と当たる位置で停止するため、Vi値小の位置に正確に位置決めされる。なお、可変Vi弁8は図1に示すように、可変Vi弁8の吸込側端部8gをケーシング本体1の壁面に当たる位置で位置決めしても良い。 Therefore, the variable Vi valve 8 moves to the right in the figure due to the differential pressure between the discharge pressure acting on the drive device side end 8h and the suction pressure acting on the suction side end 8g. Then, since the variable Vi valve 8 stops at a position where the piston 12 hits the wall surface of the cylinder chamber 13, the variable Vi valve 8 is accurately positioned at a position where the Vi value is small. The variable Vi valve 8 may be positioned at a position where the suction side end portion 8g of the variable Vi valve 8 contacts the wall surface of the casing body 1 as shown in FIG.
 本実施の形態2によれば、実施の形態1と同様の効果を得ることができる。 According to the second embodiment, the same effect as that of the first embodiment can be obtained.
 なお、本発明のスクリュー圧縮機は、図1~図6に示した構造に限定されるものではなく、本発明の要旨を逸脱しない範囲で例えば以下のように変形して実施することが可能である。 The screw compressor of the present invention is not limited to the structure shown in FIGS. 1 to 6, and may be modified as follows, for example, without departing from the scope of the present invention. is there.
 図7は、本発明の実施の形態1および実施の形態2に係るスクリュー圧縮機の変形例を示す図である。
 この変形例では、図1に示したピストン12が削除され、ピストンロッド17が備えられている。図1では、可変Vi弁1個に対して1個のピストンであった。これに対し、この変形例では、ピストンロッド17は、共通の取付板18を介して2個の可変Vi弁8のロッド9に連結されており、可変Vi弁2個に対して1個設けられている。このように、可変Vi弁8に対するピストン12の個数は限定しないものとする。
FIG. 7: is a figure which shows the modification of the screw compressor which concerns on Embodiment 1 and Embodiment 2 of this invention.
In this modification, the piston 12 shown in FIG. 1 is deleted and a piston rod 17 is provided. In FIG. 1, there was one piston for each variable Vi valve. On the other hand, in this modification, the piston rod 17 is connected to the rods 9 of the two variable Vi valves 8 via the common mounting plate 18, and one piston rod 17 is provided for every two variable Vi valves. ing. In this way, the number of pistons 12 for the variable Vi valve 8 is not limited.
 1 ケーシング本体、2 モーター、2a ステーター、2b モーターローター、3 スクリューローター、3a スクリュー溝、4 スクリュー軸、5 圧縮室、6 吐出室、7 吐出口、8 可変Vi弁、8a 弁本体、8b ガイド部、8c 連結部、8d 吐出口側端部、8e 吐出口側端部、8f 吐出空隙、8g 吸込側端部、8h 駆動装置側端部、9 ロッド、10 駆動装置、11 シリンダー、12 ピストン、13 シリンダー室、13a シリンダー室、13b シリンダー室、14a 電磁弁、14b 電磁弁、15a 流路、15b 流路、15c 流路、16 吸込室、17 ピストンロッド、18 取付板、113a 圧力導入孔、113b 圧力導入孔。 1 casing body, 2 motor, 2a stator, 2b motor rotor, 3 screw rotor, 3a screw groove, 4 screw shaft, 5 compression chamber, 6 discharge chamber, 7 discharge port, 8 variable Vi valve, 8a valve body, 8b guide part , 8c connecting portion, 8d discharge port side end, 8e discharge port side end, 8f discharge gap, 8g suction side end, 8h drive device side end, 9 rod, 10 drive device, 11 cylinder, 12 piston, 13 Cylinder chamber, 13a cylinder chamber, 13b cylinder chamber, 14a solenoid valve, 14b solenoid valve, 15a flow passage, 15b flow passage, 15c flow passage, 16 suction chamber, 17 piston rod, 18 mounting plate, 113a pressure introduction hole, 113b pressure Introduction hole.

Claims (6)

  1.  内部容積比であるVi値を可変にする可変Vi弁を含む内部容積比可変機構を備えたスクリュー圧縮機であって、
     前記可変Vi弁の位置を2段階で制御するものであり、
     前記Vi値を大とするときの前記可変Vi弁の位置は、
     予め決められた高負荷条件または高圧縮比条件での運転時における圧縮機効率が予め設定された設定効率以上となるVi値となるように設定されているスクリュー圧縮機。
    A screw compressor having an internal volume ratio variable mechanism including a variable Vi valve for varying a Vi value, which is an internal volume ratio, comprising:
    Controlling the position of the variable Vi valve in two steps,
    The position of the variable Vi valve when the Vi value is large is
    A screw compressor in which the compressor efficiency during operation under a predetermined high load condition or high compression ratio condition is set to a Vi value that exceeds a preset set efficiency.
  2.  内部容積比であるVi値を可変にする可変Vi弁を含む内部容積比可変機構を備えたスクリュー圧縮機であって、
     前記可変Vi弁の位置を2段階で制御するものであり、
     前記Vi値を大とするときの前記可変Vi弁の位置は、
     定格性能が予め設定された設定性能以上となるVi値となるように設定されているスクリュー圧縮機。
    A screw compressor having an internal volume ratio variable mechanism including a variable Vi valve for varying a Vi value, which is an internal volume ratio, comprising:
    Controlling the position of the variable Vi valve in two steps,
    The position of the variable Vi valve when the Vi value is large is
    A screw compressor that is set to have a Vi value that has a rated performance that is equal to or higher than a preset performance.
  3.  前記Vi値を小とするときの前記可変Vi弁の位置は、
     4つの運転負荷毎に重みを付けて算出される期間成績係数において、重みが大きい上位1つ~3つの運転負荷における成績係数のそれぞれと、前記運転負荷に対応する前記重みとを乗算した値が予め設定された設定値以上となるVi値となるように設定されている請求項1または請求項2記載のスクリュー圧縮機。
    The position of the variable Vi valve when the Vi value is small is
    In the period performance coefficient calculated by weighting each of the four driving loads, a value obtained by multiplying each of the performance coefficients in the top one to three driving loads having a large weight by the weight corresponding to the driving load is obtained. The screw compressor according to claim 1 or 2, which is set to have a Vi value that is equal to or larger than a preset set value.
  4.  前記内部容積比可変機構は、
     前記可変Vi弁に連結されたピストンと、
     前記ピストンを収容するシリンダーとを備え、
     前記シリンダーの内部は、前記ピストンにより2つの空間室に区間され、
     前記2つの空間室は、前記可変Vi弁に近い順に、常時吐出圧力を導入するシリンダー室と、弁手段を介して吸込圧力または吐出圧力を導入するシリンダー室として配置されている請求項1~請求項3のいずれか一項に記載のスクリュー圧縮機。
    The internal volume ratio variable mechanism,
    A piston connected to the variable Vi valve,
    A cylinder accommodating the piston,
    The inside of the cylinder is divided into two space chambers by the piston,
    The two space chambers are arranged as a cylinder chamber for constantly introducing a discharge pressure and a cylinder chamber for introducing a suction pressure or a discharge pressure via a valve means in the order of being closer to the variable Vi valve. Item 4. The screw compressor according to any one of Item 3.
  5.  前記内部容積比可変機構は、
     前記可変Vi弁に連結されたピストンと、
     前記ピストンを収容するシリンダーとを備え、
     前記シリンダーの内部は、前記ピストンにより2つの空間室に区間され、
     前記2つの空間室は、前記可変Vi弁に近い順に、弁手段を介して吸込圧力または吐出圧力を導入するシリンダー室と、常時吸込圧力を導入するシリンダー室として配置されている請求項1~請求項3のいずれか一項に記載のスクリュー圧縮機。
    The internal volume ratio variable mechanism,
    A piston connected to the variable Vi valve,
    A cylinder accommodating the piston,
    The inside of the cylinder is divided into two space chambers by the piston,
    The two space chambers are arranged as a cylinder chamber for introducing a suction pressure or a discharge pressure via a valve means and a cylinder chamber for constantly introducing a suction pressure in the order of being closer to the variable Vi valve. Item 4. The screw compressor according to any one of items 3.
  6.  インバーター回転数制御により容量制御を行う請求項1~請求項5のいずれか一項に記載のスクリュー圧縮機。 The screw compressor according to any one of claims 1 to 5, wherein capacity control is performed by inverter speed control.
PCT/JP2019/008079 2019-03-01 2019-03-01 Screw compressor WO2020178895A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021503251A JP7112031B2 (en) 2019-03-01 2019-03-01 screw compressor
EP19918120.7A EP3933204A4 (en) 2019-03-01 2019-03-01 Screw compressor
PCT/JP2019/008079 WO2020178895A1 (en) 2019-03-01 2019-03-01 Screw compressor
US17/419,356 US20220082099A1 (en) 2019-03-01 2019-03-01 Screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008079 WO2020178895A1 (en) 2019-03-01 2019-03-01 Screw compressor

Publications (1)

Publication Number Publication Date
WO2020178895A1 true WO2020178895A1 (en) 2020-09-10

Family

ID=72338211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008079 WO2020178895A1 (en) 2019-03-01 2019-03-01 Screw compressor

Country Status (4)

Country Link
US (1) US20220082099A1 (en)
EP (1) EP3933204A4 (en)
JP (1) JP7112031B2 (en)
WO (1) WO2020178895A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248450A1 (en) * 2022-06-24 2023-12-28 三菱電機株式会社 Screw compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4147891B2 (en) 2002-10-16 2008-09-10 ダイキン工業株式会社 Variable VI inverter screw compressor
JP2013124600A (en) * 2011-12-15 2013-06-24 Mitsubishi Electric Corp Screw compressor
JP2014206098A (en) * 2013-04-12 2014-10-30 三菱電機株式会社 Screw compressor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5818522B2 (en) * 2011-06-13 2015-11-18 三菱電機株式会社 Screw compressor
JP5865056B2 (en) * 2011-12-16 2016-02-17 三菱電機株式会社 Screw compressor
JP5888997B2 (en) * 2012-01-18 2016-03-22 三菱電機株式会社 Screw compressor
JP2013209953A (en) * 2012-03-30 2013-10-10 Kobe Steel Ltd Two-stage compression device
JP2014029133A (en) * 2012-07-31 2014-02-13 Mitsubishi Electric Corp Screw compressor
US9664418B2 (en) * 2013-03-14 2017-05-30 Johnson Controls Technology Company Variable volume screw compressors using proportional valve control
WO2015094466A1 (en) * 2013-12-19 2015-06-25 Carrier Corporation Compressor comprising a variable volume index valve
WO2015157635A1 (en) * 2014-04-11 2015-10-15 Trane International Inc. Hvac systems and controls
WO2016121021A1 (en) * 2015-01-28 2016-08-04 三菱電機株式会社 Screw compressor
EP3421800B1 (en) * 2016-02-23 2020-03-25 Mitsubishi Electric Corporation Screw compressor and refrigeration cycle device
JPWO2018100911A1 (en) * 2016-11-29 2019-10-17 株式会社前川製作所 Screw compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4147891B2 (en) 2002-10-16 2008-09-10 ダイキン工業株式会社 Variable VI inverter screw compressor
JP2013124600A (en) * 2011-12-15 2013-06-24 Mitsubishi Electric Corp Screw compressor
JP2014206098A (en) * 2013-04-12 2014-10-30 三菱電機株式会社 Screw compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248450A1 (en) * 2022-06-24 2023-12-28 三菱電機株式会社 Screw compressor

Also Published As

Publication number Publication date
JP7112031B2 (en) 2022-08-03
US20220082099A1 (en) 2022-03-17
EP3933204A4 (en) 2022-03-09
JPWO2020178895A1 (en) 2021-09-30
EP3933204A1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
JP5881403B2 (en) Screw compressor
US5050233A (en) Rotary compressor
KR100555022B1 (en) Compressor capacity modulation
KR101268612B1 (en) Variable frequency compressor and method of controlling the same
JP4856091B2 (en) Variable capacity rotary compressor and cooling system including the same
KR101280155B1 (en) Heat pump device, two-stage compressor, and method of operating heat pump device
JP4927468B2 (en) Two-stage screw compressor and two-stage compression refrigerator using the same
JP6685379B2 (en) Screw compressor and refrigeration cycle equipment
US20200232464A1 (en) Variable-capacity control structure, compressor and variable-capacity control method thereof
JP6136499B2 (en) Screw compressor
WO2020178895A1 (en) Screw compressor
KR20080067125A (en) Air conditioning system and control method thereof
WO2017094057A1 (en) Single-screw compressor and refrigeration cycle device
CN107621100B (en) Variable economizer injection position
JP2011032957A (en) Screw compressor
WO2023073798A1 (en) Screw compressor
KR101122080B1 (en) Control method for air conditioner
KR100608866B1 (en) Modulation apparatus for rotary compressor
JPWO2012160832A1 (en) Refrigeration cycle equipment
JPH11324951A (en) Air conditioner
US4636148A (en) Vane type compressor with volume control
JPH09250484A (en) Compressor
US9546659B2 (en) Rotary compressor
CN110617218B (en) Control method of two-stage compressor and air conditioning unit
JP4006390B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503251

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019918120

Country of ref document: EP