WO2016121021A1 - Screw compressor - Google Patents

Screw compressor Download PDF

Info

Publication number
WO2016121021A1
WO2016121021A1 PCT/JP2015/052275 JP2015052275W WO2016121021A1 WO 2016121021 A1 WO2016121021 A1 WO 2016121021A1 JP 2015052275 W JP2015052275 W JP 2015052275W WO 2016121021 A1 WO2016121021 A1 WO 2016121021A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
slide valve
screw compressor
screw
partition wall
Prior art date
Application number
PCT/JP2015/052275
Other languages
French (fr)
Japanese (ja)
Inventor
克也 前田
雅章 上川
伊藤 健
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP15879918.9A priority Critical patent/EP3252310B1/en
Priority to PCT/JP2015/052275 priority patent/WO2016121021A1/en
Priority to CN201590001327.9U priority patent/CN207333184U/en
Priority to TW104111381A priority patent/TWI579464B/en
Publication of WO2016121021A1 publication Critical patent/WO2016121021A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/50Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
    • F04C18/52Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating

Definitions

  • the present invention relates to a screw compressor, and particularly to a screw compressor provided with a slide valve.
  • a conventional screw compressor includes a casing main body and a screw rotor rotatably accommodated in a cylinder chamber formed in the casing main body.
  • Some screw compressors further include a slide valve that controls the operating capacity by bypassing a part of the refrigerant introduced into the compression chamber to the low pressure space in the middle of the compression stroke (for example, Patent Documents). 1).
  • This slide valve is disposed on the outer periphery of the screw rotor and is movable in the axial direction of the screw rotor.
  • the slide valve is provided on the outer periphery of the screw rotor so as to be movable in the axial direction of the screw rotor.
  • the slide valve has a casing body side (hereinafter referred to as a back side) and a slide valve side of the casing body. There is a gap between them.
  • the surface on the screw rotor side of the slide valve (hereinafter referred to as the inner peripheral surface) is radially outward from the inner peripheral surface of the cylinder chamber in order to avoid mutual contact between the slide valve and the screw rotor. It is arranged to be located. Therefore, the clearance between the inner peripheral surface of the slide valve and the outer peripheral surface of the screw rotor is larger than the clearance between the inner peripheral surface of the cylinder and the outer peripheral surface of the screw rotor.
  • JP 2004-316586 A Japanese Patent No. 4103709
  • the covering member is provided on the inner peripheral surface of the slide valve to reduce the gap between the outer peripheral surface of the screw rotor or eliminate the gap, so that It suppresses refrigerant leakage. However, it did not suppress refrigerant leakage from the gap on the back side of the slide valve.
  • the casing body is formed with a partition wall (hereinafter referred to as a high and low pressure partition wall) that separates the discharge pressure (high pressure) side and the suction pressure (low pressure) side, and the inner peripheral side of the high and low pressure partition wall is on the back side of the slide valve. Facing. A gap is provided between the back surface of the slide valve and the inner peripheral surface of the high and low pressure partition wall so as to avoid mutual contact. From this clearance, the discharge pressure (high pressure) with the high and low pressure partition wall as a boundary is provided.
  • the refrigerant leaks due to the pressure difference from the suction pressure to the suction pressure (low pressure).
  • the high pressure refrigerant such as R410A has a problem that the differential pressure tends to increase, and the performance deterioration due to refrigerant leakage from the back side of the slide valve becomes significant.
  • the present invention has been made to solve the above-described problems, and suppresses refrigerant leakage from the gap between the back surface of the slide valve and the inner peripheral surface of the high and low pressure partition wall, and provides a highly efficient screw compressor.
  • the purpose is to provide.
  • a screw compressor includes a casing main body, a screw rotor arranged to rotate within the casing main body, a slide valve provided movably between the casing main body and the screw rotor, Oil is supplied to the gap between the partition wall, which is formed facing the back side and separates the inside of the casing body into a discharge pressure space and a suction pressure space, and between the inner peripheral surface of the partition wall and the back side of the slide valve. And an injection mechanism for sealing.
  • refrigerant leakage from the gap between the back surface of the slide valve and the inner peripheral surface of the high and low pressure partition wall can be suppressed, and the performance of the screw compressor can be improved.
  • FIG. 3 is an operation explanatory diagram according to a conventional screw compressor shown as a comparison target of the first embodiment. It is the figure which showed the refrigerant
  • FIG. 10 is a sectional view taken along line AA in FIG. 9.
  • FIG. 10 is a sectional view taken along line BB in FIG. 9. It is the schematic which showed the principal part of the screw compressor which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a diagram showing a schematic configuration of a refrigeration apparatus including a screw compressor according to Embodiment 1 of the present invention.
  • the refrigeration apparatus includes a screw compressor 1, a condenser 5, an expansion valve 6, an evaporator 7, and the like.
  • the screw compressor 1 includes a compression unit 2, a motor 3 connected in series to the compression unit 2, and driving the compression unit 2, and an oil separator 4.
  • the oil separator 4 separates the refrigerant into oil.
  • the oil after separation is returned to the compression section 2 using differential pressure.
  • the specification in which the oil separator 4 is built in the screw compressor 1 is shown. However, the oil separator 4 may be separately provided outside the screw compressor 1.
  • FIG. 2 is a schematic configuration diagram of the screw compressor according to the first embodiment of the present invention.
  • the screw compressor includes a cylindrical casing body 8, a screw rotor 9 accommodated in the casing body 8, and a motor 3 that rotationally drives the screw rotor 9.
  • the motor 3 includes a stator 3a that is inscribed and fixed to the casing body 8, and a motor rotor 3b that is disposed inside the stator 3a.
  • the screw rotor 9 and the motor rotor 3 b are arranged on the same axis line, and both are fixed to the screw shaft 10.
  • the screw rotor 9 has a plurality of spiral grooves (screw grooves) 11a formed on the outer peripheral surface thereof, and is driven to rotate by being connected to a motor rotor 3b fixed to the screw shaft 10. Further, the space in the screw groove 11a is surrounded by the inner cylindrical surface of the casing body 8 and a pair of gate rotors (not shown) engaged with and engaged with the screw groove 11a to form the compression chamber 11. Further, the inside of the casing body 8 is separated by a high and low pressure partition wall 17 into a discharge pressure side and a suction pressure side. The high / low pressure partition wall 17 is formed on the casing body 8 so as to face the casing body 8 side of the slide valve 14 described later. A pair of discharge ports 13 that open to the discharge chamber 12 are formed on the discharge pressure side of the casing body 8.
  • a slide valve 14 is provided in the casing body 8.
  • the slide valve 14 is connected to the rod 15 of the driving device 16 and is movable in the axial direction of the screw rotor 9.
  • the slide valve 14 forms a part of the discharge port 13, and changes the discharge opening timing by changing the discharge start (compression completion) position of the high-pressure gas compressed in the compression chamber 11, thereby changing the internal volume ratio. It is a mechanism to change.
  • the internal volume ratio is a ratio between the volume of the compression chamber 11 at the time of completion of suction (start of compression) and the volume of the compression chamber 11 just before the discharge.
  • two or more slide valves 14 may be provided, the illustration is omitted.
  • the casing body 8 side is referred to as “rear side” and the screw rotor 9 side is referred to as “inner peripheral surface side”.
  • FIG. 3 is an operation explanatory view according to a conventional screw compressor shown as a comparison target of the first embodiment.
  • FIG. 4 is a diagram showing a refrigerant leakage path when a conventional slide valve shown as a comparison target of the first embodiment is viewed from the back side.
  • the slide valve 140 provided in the casing main body 80 is movable in the axial direction of the screw rotor 90, so that the back surface 140 a of the slide valve 140 and a part of the casing main body 80 are high.
  • the high / low pressure partition 170 is located at a position separating the discharge pressure (high pressure) side and the suction pressure (low pressure) side, refrigerant leakage occurs from this gap as shown by an arrow a in FIG. It was a challenge.
  • the first embodiment has the following configuration.
  • FIG. 5 is an operation explanatory diagram of the screw compressor according to Embodiment 1 of the present invention.
  • FIG. 6 is a perspective view showing an oil path when the slide valve of the screw compressor according to Embodiment 1 of the present invention is viewed from the back side.
  • the slide valve 14 of the first embodiment has a seal surface S formed by a gap between the back side 14 f of the slide valve 14 and the inner peripheral surface 17 a of the high-low pressure partition wall 17.
  • An injection mechanism 20 for injecting oil is provided.
  • FIG. 7 is a perspective view of the slide valve of the screw compressor according to Embodiment 1 of the present invention as viewed from the inner surface side.
  • FIG. 8 is a plan view of the slide valve of the screw compressor according to the first embodiment of the present invention as viewed from the back side.
  • FIG. 9 is a view of the slide valve of FIG. 6 turned upside down as seen from the direction of the arrow X (the direction in which the oil sump 14m can be seen).
  • 10 is a cross-sectional view taken along the line AA in FIG. 11 is a cross-sectional view taken along the line BB in FIG.
  • the arrows indicate the oil paths.
  • the slide valve 14 includes a valve main body 14a, a guide portion 14b, and a connecting portion 14c for connecting them.
  • a gap communicating with the discharge port 13 is formed between the valve main body 14a and the guide portion 14b, and a part of the discharge port 13 is formed.
  • the inner peripheral side 14e of the discharge port end portion 14d of the discharge port 13 forms a part of the discharge port 13 and determines the timing for discharging the compressed refrigerant.
  • the internal volume ratio is changed by moving the slide valve 14 in the axial direction of the screw rotor 9 and simultaneously moving the discharge port end portion 14 d in the axial direction of the screw rotor 9. Further, a connecting hole 15a is provided in the guide portion 14b, and the rod 15 is coupled to the connecting hole 15a as shown in FIG.
  • an oil supply hole 14g for injecting high-pressure oil into the screw rotor 9 is formed so as to penetrate therethrough as shown in FIG.
  • the screw rotor part oil supply port 14i which is an opening on the oil inflow side is located on the back side 14f of the slide valve 14, and the screw rotor part oil supply port 14h which is an opening on the oil outflow side is inside the slide valve 14. It is located on the circumferential side 14e.
  • the hole shape and number of the oil supply holes 14g are not limited.
  • the slide valve 14 includes a gap (seal surface S) between the high / low pressure partition wall 17 and the back side 14f of the slide valve 14 as shown in FIGS. ) Is formed with an oil supply hole 14j for injecting oil.
  • the oil supply hole 14j has a slide valve back surface oil supply port 14l that is an opening on the oil inflow side of the oil supply hole 14j and is located on the back side 14f of the slide valve 14. Then, as shown in FIG. 5, the slide valve back surface oil supply port 14k, which is the opening on the oil outflow side of the oil supply hole 14j, is opposed to the high / low pressure partition wall 17 on the back surface 14f of the slide valve 14, that is, the seal surface S. Located within range.
  • the hole shape and the number of the oil supply holes 14j are not limited.
  • the oil supply hole 14j constitutes the first oil supply hole of the present invention.
  • An oil sump 14m composed of a depression is formed on the back side 14f of the slide valve 14. As shown in FIG. 9, the screw rotor part oil supply port 14i and the slide valve back part are formed in the oil sump 14m. An oil supply port 14l is located.
  • each of the inner peripheral side 14e and the rear side 14f of the slide valve 14 from the viewpoint of suppressing refrigerant leakage from the screw rotor 9 and preventing seizure, and the portions facing the respective sides. High pressure oil is injected between the two.
  • the first embodiment is characterized in that high-pressure oil is injected from the back side 14 f to the seal surface S.
  • the oil in the oil reservoir 14m distributed from the oil separator 4 is used.
  • the high pressure oil in the oil reservoir 14m flows into the oil supply hole 14j from the slide valve rear surface oil supply port 14l provided in the oil reservoir 14m by the differential pressure, passes through the oil supply hole 14g, and passes through the oil supply hole 14g.
  • Oil is injected into the sealing surface S from 14k.
  • the oil supply hole 14g provided in the slide valve 14 constitutes the injection mechanism 20 of the present invention.
  • the screw rotor oil supply port 14i and the slide valve back surface oil supply port 14l are positioned in the same oil sump 14m. It is good also as a structure located in the oil sump 14m.
  • the first embodiment is intended only to reduce refrigerant leakage on the back side of the slide valve 14, and the oil supply hole 14j can be applied to the slide valve 14 that does not include the oil supply hole 14g.
  • the high / low pressure partition wall 17 may be thick so that the oil supply hole 14j is disposed in the high / low pressure partition wall 17 even when the slide valve 14 moves.
  • the injection mechanism 20 that seals the seal surface S by injecting oil since the injection mechanism 20 that seals the seal surface S by injecting oil is provided, refrigerant leakage from the discharge pressure (high pressure) side to the suction pressure (low pressure) side is prevented. Can be suppressed. As a result, the efficiency of the screw compressor 1 can be improved, which can contribute to energy saving.
  • the injection mechanism 20 has an oil supply hole 14j that passes through the slide valve 14, and supplies oil that has flowed in from the slide valve back surface oil supply port 14l of the oil supply hole 14j to the seal surface S from the slide valve back surface oil supply port 14k.
  • it since it has a configuration in which a hole is formed in the slide valve 14, it can be configured at low cost.
  • FIG. The second embodiment is different from the first embodiment only in the portion where the oil supply hole for supplying oil to the seal surface S is provided.
  • FIG. 12 is a schematic view showing a main part of a screw compressor according to Embodiment 2 of the present invention.
  • FIG. 13 is the perspective view which looked at the slide valve of the screw compressor which concerns on Embodiment 2 of this invention from the back part side.
  • the oil supply hole 14j provided in the slide valve 14 in the first embodiment is abolished, and the oil supply hole 17b is provided in the high / low pressure partition wall 17 constituting a part of the casing body 8. .
  • a slide valve back surface oil supply port 17c which is an opening on the oil outflow side of the oil supply hole 17b, is provided on the inner peripheral surface 17a of the high and low pressure partition wall 17, and the high pressure oil flowing into the oil supply hole 17b is supplied to the slide valve back surface oil supply port 17c.
  • the position of the opening on the oil inflow side of the oil supply hole 17b is not particularly limited as long as it is provided at a position where the oil in the screw compressor 1 can be received. Further, the hole shape and the number of the oil supply holes 17b are not limited.
  • the oil supply hole 17b constitutes the second oil supply hole of the present invention.
  • high-pressure oil is injected into the seal surface S from the slide valve back surface oil supply port 17 c provided on the inner peripheral surface 17 a of the high-low pressure partition wall 17, thereby discharging on the seal surface S. Refrigerant leakage from the pressure (high pressure) side to the suction pressure (low pressure) side can be suppressed, and the efficiency of the screw compressor 1 can be improved.
  • Embodiment 3 FIG.
  • the third embodiment is different from the first embodiment only in that an oil groove is provided on the back side 14f of the slide valve 14.
  • FIG. 14 is a perspective view of a slide valve of the screw compressor according to Embodiment 3 of the present invention.
  • the oil groove 18 extending in the circumferential direction on the back surface side 14f of the valve body 14a of the slide valve 14 in order to efficiently spread the oil injected to the seal surface S in the first embodiment to the seal surface S. Is formed.
  • the processing position of the oil groove 18 is within the range of the seal surface S.
  • the oil groove 18 constitutes the first oil groove of the present invention.
  • the cross-sectional shape and the number of the oil grooves 18 are not limited.
  • FIG. 15 is an explanatory diagram of the positional relationship between the high and low pressure partition walls and the screw grooves according to the stop position of the slide valve of the screw compressor according to Embodiment 3 of the present invention.
  • the position of the oil groove 18 may straddle between the screw grooves 11a. Since the pressure in each screw groove 11a is different from each other, when the oil groove 18 straddles between the screw grooves 11a in this way, the oil groove 18 causes the screw groove 11a on the high pressure side and the screw groove 11a on the low pressure side to be separated. There is a possibility that the refrigerant leaks from the high pressure side to the low pressure side.
  • the oil groove 18 is not limited to the configuration provided in the entire circumferential direction of the back side 14f of the slide valve 14, and the groove processing is performed on the back side 14f. You may leave a part that does not.
  • the oil groove 18 may be provided not only on the back side 14f of the slide valve 14 but also on the inner peripheral surface 17a forming the seal surface S of the high / low pressure partition wall 17, or both.
  • the oil groove 18 is formed so as to extend in the circumferential direction as with the oil groove 18.
  • the oil groove provided on the inner peripheral surface 17a of the high / low pressure partition wall 17 constitutes the third oil groove of the present invention.
  • the same effects as those of the first embodiment can be obtained, and the following effects can be obtained. That is, the oil injected from the back surface side 14 f of the slide valve 14 to the seal surface S easily reaches the entire periphery of the slide valve back surface through the oil groove 18. For this reason, in the third embodiment, the oil groove 18 is further provided on the seal surface S as compared with the case where the configuration of the first embodiment (the configuration in which the slide valve rear surface oil supply port 14k is provided) is further implemented. Refrigerant leakage from the discharge pressure (high pressure) side to the suction pressure (low pressure) side can be suppressed. As a result, the efficiency of the screw compressor 1 can be further improved.
  • Embodiment 4 corresponds to a combination of the second embodiment and the third embodiment. That is, the oil groove 18 is provided in the slide valve 14 of the screw compressor 1 according to the second embodiment, in which oil is injected from the high / low pressure partition wall 17 into the seal surface S. Note that the shape, formation position, and the like of the oil groove 18 are the same as those in the third embodiment.
  • FIG. 16 is a perspective view of a slide valve of a screw compressor according to Embodiment 4 of the present invention.
  • the fourth embodiment differences from the second embodiment will be described, and configurations not described in the second embodiment are the same as those in the second embodiment.
  • the oil injected from the high / low pressure partition wall 17 side to the seal surface S flows along the oil grooves 18 as indicated by the solid line arrows, and efficiently spreads to the seal surface S.
  • the same effects as those of the second embodiment can be obtained, and the following effects can be obtained. That is, the oil injected into the seal surface S from the high / low pressure partition wall 17 side easily reaches the entire periphery of the slide valve back surface through the oil groove 18. For this reason, compared with the case where the configuration of the second embodiment (the configuration in which oil is injected into the seal surface S from the high / low pressure partition wall 17 side) is performed alone, the discharge pressure (high pressure) on the seal surface S is further increased by the action of the oil groove 18. ) Side refrigerant leakage from the suction pressure (low pressure) side can be suppressed. As a result, the efficiency of the screw compressor 1 can be further improved.
  • Embodiment 5 FIG.
  • the fifth embodiment is characterized in that the oil reservoir 14m and the oil groove 18 are communicated with each other.
  • FIG. 17 is a view showing the structure of the slide valve of the screw compressor according to Embodiment 5 of the present invention.
  • the slide valve 14 according to the first embodiment shown in FIG. 9 passes the oil in the oil reservoir 14m through the valve body 14a through the oil supply hole 14j, and supplies the oil from the slide valve rear surface oil supply port 14k to the seal surface S.
  • the configuration was to inject.
  • the fifth embodiment is configured such that oil flows along the back side (outer peripheral surface) of the slide valve 14 and is injected into the seal surface S.
  • the oil supply hole 14j of the first embodiment is deleted, the oil groove 18a is provided so as to communicate with the oil reservoir 14m, and the high-pressure oil in the oil reservoir 14m is applied to the seal surface S through the oil groove 18a. It is configured to inject.
  • the oil groove 18a of the fifth embodiment is the same as the oil groove 18 of the third embodiment except that the oil groove 18a is different from the oil groove 18 of the third embodiment in that it communicates with the oil reservoir 14m.
  • the oil groove 18a constitutes the second oil groove of the present invention.
  • the high pressure oil in the oil sump 14m is removed from the seal surface S without providing the oil supply hole 14j penetrating the slide valve 14 as in the first to fourth embodiments. Can be spread over. Therefore, refrigerant leakage can be suppressed with a simpler configuration, and the efficiency of the screw compressor 1 can be improved.
  • Embodiments 1 to 5 can be appropriately combined.
  • oil may be injected into the sealing surface S from both the back surface side 14f of the slide valve 14 and the inner peripheral surface 17a of the high / low pressure partition wall 17 by combining the first embodiment and the second embodiment.
  • Embodiments 1 to 5 are applicable to all screw compressors having a mechanism having a gap between the back side 14f of the slide valve 14 and the inner peripheral surface 17a of the high / low pressure partition wall 17.
  • the single-stage screw compressor including one compression unit 2 is illustrated, but a multi-stage compressor including two or more compression units 2 may be used.
  • the present invention is useful not only for a constant speed specification screw compressor but also for an inverter driven screw compressor.
  • the slide valve 14 is a slide valve having a variable internal volume ratio.
  • the slide valve to which the present invention is applied is not limited to a valve having a variable internal volume ratio.
  • a slide valve for capacity control that can bypass part of the refrigerant gas to the suction side (low pressure) may be used, or a slide valve that is fixed to the casing body 8 and is not movable may be used.

Abstract

A screw compressor is provided with: a casing body (8); a screw rotor (9) disposed so as to rotate within the casing body (8); a slide valve (14) provided in a movable manner between the casing body (8) and the screw rotor (9); a high-low pressure partition wall (17) formed so as to face the rear surface side (14f) of the slide valve (14) and dividing the inside of the casing body (8) into a discharge pressure space and a suction pressure space; and an injection mechanism (20) for supplying oil to the gap between the high-low pressure partition wall (17) and the rear surface side of the slide valve (14), thereby sealing the gap.

Description

スクリュー圧縮機Screw compressor
 本発明は、スクリュー圧縮機に関し、特にスライドバルブを備えたスクリュー圧縮機に関するものである。 The present invention relates to a screw compressor, and particularly to a screw compressor provided with a slide valve.
 従来のスクリュー圧縮機は、ケーシング本体と、ケーシング本体内に形成されたシリンダ室に回転自在に収容されたスクリューロータとを備えている。また、スクリュー圧縮機には、圧縮室に導入された冷媒の一部を圧縮行程の途中で低圧空間にバイパスさせることで運転容量を制御するスライドバルブをさらに備えたものがある(例えば、特許文献1参照)。このスライドバルブはスクリューロータの外周に配置され、スクリューロータの軸方向に可動するものである。 A conventional screw compressor includes a casing main body and a screw rotor rotatably accommodated in a cylinder chamber formed in the casing main body. Some screw compressors further include a slide valve that controls the operating capacity by bypassing a part of the refrigerant introduced into the compression chamber to the low pressure space in the middle of the compression stroke (for example, Patent Documents). 1). This slide valve is disposed on the outer periphery of the screw rotor and is movable in the axial direction of the screw rotor.
 スライドバルブは、上記のようにスクリューロータの外周において、スクリューロータの軸方向に可動するように設けられており、スライドバルブのケーシング本体側(以下、背面側という)とケーシング本体のスライドバルブ側との間には隙間が生じている。 As described above, the slide valve is provided on the outer periphery of the screw rotor so as to be movable in the axial direction of the screw rotor. The slide valve has a casing body side (hereinafter referred to as a back side) and a slide valve side of the casing body. There is a gap between them.
 また、一般的にスライドバルブのスクリューロータ側の面(以下、内周面という)は、スライドバルブとスクリューロータとの互いの接触を避けるために、シリンダ室の内周面よりも半径方向外側に位置するように配置されている。そのため、スライドバルブの内周面とスクリューロータの外周面との間の隙間は、シリンダ内周面とスクリューロータの外周面との間の隙間よりも大きい。 In general, the surface on the screw rotor side of the slide valve (hereinafter referred to as the inner peripheral surface) is radially outward from the inner peripheral surface of the cylinder chamber in order to avoid mutual contact between the slide valve and the screw rotor. It is arranged to be located. Therefore, the clearance between the inner peripheral surface of the slide valve and the outer peripheral surface of the screw rotor is larger than the clearance between the inner peripheral surface of the cylinder and the outer peripheral surface of the screw rotor.
 上記のように、スクリュー圧縮機では、スライドバルブの背面側及び内周面側のそれぞれに、構造上必要な隙間が設けられている。これらの隙間を通じて、冷媒が吐出圧力(高圧)側から吸込圧力(低圧)側へ少なからず漏れることは避けられず、この漏れが性能低下を招くという課題があった。 As described above, in the screw compressor, a gap necessary for the structure is provided on each of the back surface side and the inner peripheral surface side of the slide valve. Through these gaps, it is inevitable that the refrigerant leaks from the discharge pressure (high pressure) side to the suction pressure (low pressure) side, and there is a problem that this leakage causes a decrease in performance.
 スライドバルブ内周面からの冷媒漏れを抑制する技術として、スライドバルブ内周面に、スクリューロータの外周面との間の隙間を埋める被覆部材を設けたものがある(例えば、特許文献2参照)。 As a technique for suppressing refrigerant leakage from the inner peripheral surface of the slide valve, there is one in which a covering member is provided on the inner peripheral surface of the slide valve so as to fill a gap between the outer peripheral surface of the screw rotor (for example, see Patent Document 2). .
特開2004-316586号公報JP 2004-316586 A 特許第4103709号公報Japanese Patent No. 4103709
 上記特許文献2は、上記のようにスライドバルブ内周面に被覆部材を設けてスクリューロータの外周面との間の隙間を小さくする、あるいは隙間をなくすことで、スライドバルブ内周面側からの冷媒漏れを抑制するものである。しかし、スライドバルブ背面側における隙間からの冷媒漏れを抑制するものではなかった。 In Patent Document 2, as described above, the covering member is provided on the inner peripheral surface of the slide valve to reduce the gap between the outer peripheral surface of the screw rotor or eliminate the gap, so that It suppresses refrigerant leakage. However, it did not suppress refrigerant leakage from the gap on the back side of the slide valve.
 ケーシング本体には吐出圧力(高圧)側と吸込圧力(低圧)側とを隔てる隔壁(以下、高低圧隔壁と称する)が形成されており、高低圧隔壁の内周側はスライドバルブの背面側に面している。そして、スライドバルブの背面と高低圧隔壁の内周面との間には、互いの接触を避けるために隙間が設けられており、この隙間から、高低圧隔壁を境とした吐出圧力(高圧)から吸込圧力(低圧)への差圧により冷媒漏れが生じる。特にR410Aなどの高圧冷媒は差圧が大きくなりやすく、スライドバルブ背面側からの冷媒漏れによる性能低下が顕著になるといった問題があった。 The casing body is formed with a partition wall (hereinafter referred to as a high and low pressure partition wall) that separates the discharge pressure (high pressure) side and the suction pressure (low pressure) side, and the inner peripheral side of the high and low pressure partition wall is on the back side of the slide valve. Facing. A gap is provided between the back surface of the slide valve and the inner peripheral surface of the high and low pressure partition wall so as to avoid mutual contact. From this clearance, the discharge pressure (high pressure) with the high and low pressure partition wall as a boundary is provided. The refrigerant leaks due to the pressure difference from the suction pressure to the suction pressure (low pressure). In particular, the high pressure refrigerant such as R410A has a problem that the differential pressure tends to increase, and the performance deterioration due to refrigerant leakage from the back side of the slide valve becomes significant.
 本発明は、上記のような課題を解決するためになされたものであり、スライドバルブ背面と高低圧隔壁内周面との間の隙間からの冷媒漏れを抑制し、高効率なスクリュー圧縮機を提供することを目的とする。 The present invention has been made to solve the above-described problems, and suppresses refrigerant leakage from the gap between the back surface of the slide valve and the inner peripheral surface of the high and low pressure partition wall, and provides a highly efficient screw compressor. The purpose is to provide.
 本発明に係るスクリュー圧縮機は、ケーシング本体と、ケーシング本体内で回転するように配置されたスクリューロータと、ケーシング本体とスクリューロータとの間に移動可能に設けられたスライドバルブと、スライドバルブの背面側と対向して形成され、ケーシング本体内を吐出圧力空間と吸込圧力空間とに隔てる隔壁と、隔壁の内周面とスライドバルブの背面側との間の隙間に油を供給して隙間をシールするインジェクション機構とを備えたものである。 A screw compressor according to the present invention includes a casing main body, a screw rotor arranged to rotate within the casing main body, a slide valve provided movably between the casing main body and the screw rotor, Oil is supplied to the gap between the partition wall, which is formed facing the back side and separates the inside of the casing body into a discharge pressure space and a suction pressure space, and between the inner peripheral surface of the partition wall and the back side of the slide valve. And an injection mechanism for sealing.
 本発明によれば、スライドバルブ背面と高低圧隔壁内周面の隙間からの冷媒漏れを抑制することができ、スクリュー圧縮機の性能を向上させることができる。 According to the present invention, refrigerant leakage from the gap between the back surface of the slide valve and the inner peripheral surface of the high and low pressure partition wall can be suppressed, and the performance of the screw compressor can be improved.
本発明の本実施の形態1に係るスクリュー圧縮機を備えた冷凍装置の概略構成を示す図である。It is a figure which shows schematic structure of the freezing apparatus provided with the screw compressor which concerns on this Embodiment 1 of this invention. 本発明の本実施の形態1に係るスクリュー圧縮機の概略構成図である。It is a schematic block diagram of the screw compressor which concerns on this Embodiment 1 of this invention. 実施の形態1の比較対象として示す従来のスクリュー圧縮機に係る作用説明図である。FIG. 3 is an operation explanatory diagram according to a conventional screw compressor shown as a comparison target of the first embodiment. 実施の形態1の比較対象として示す従来のスライドバルブを背面側から見た際の冷媒漏れ経路を示した図である。It is the figure which showed the refrigerant | coolant leak path | route at the time of seeing the conventional slide valve shown as a comparison object of Embodiment 1 from the back side. 本発明の実施の形態1に係るスクリュー圧縮機の作用説明図である。It is operation | movement explanatory drawing of the screw compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクリュー圧縮機のスライドバルブを背面側から見た際の油経路を示した斜視図である。It is the perspective view which showed the oil path | route at the time of seeing the slide valve of the screw compressor which concerns on Embodiment 1 of this invention from the back side. 本発明の実施の形態1に係るスクリュー圧縮機のスライドバルブを内面側から見た斜視図である。It is the perspective view which looked at the slide valve of the screw compressor which concerns on Embodiment 1 of this invention from the inner surface side. 本発明の本実施の形態1に係るスクリュー圧縮機のスライドバルブを背面側から見た平面図である。It is the top view which looked at the slide valve of the screw compressor concerning this Embodiment 1 of the present invention from the back side. 図6のスライドバルブを上下反転して矢印X方向(油溜り14mが見える方向)から見た図である。It is the figure which turned the slide valve of FIG. 6 upside down, and was seen from the arrow X direction (direction which can see the oil sump 14m). 図9のA-A断面図である。FIG. 10 is a sectional view taken along line AA in FIG. 9. 図9のB-B断面図である。FIG. 10 is a sectional view taken along line BB in FIG. 9. 本発明の実施の形態2に係るスクリュー圧縮機の要部を示した概略図である。It is the schematic which showed the principal part of the screw compressor which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るスクリュー圧縮機のスライドバルブを背面部側から見た斜視図である。It is the perspective view which looked at the slide valve of the screw compressor which concerns on Embodiment 2 of this invention from the back part side. 本発明の実施の形態3に係るスクリュー圧縮機のスライドバルブの斜視図である。It is a perspective view of the slide valve of the screw compressor which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係るスクリュー圧縮機のスライドバルブの停止位置に応じた高低圧隔壁とスクリュー溝との位置関係の説明図である。It is explanatory drawing of the positional relationship of the high-low pressure partition according to the stop position of the slide valve of the screw compressor which concerns on Embodiment 3 of this invention, and a screw groove. 本発明の実施の形態4に係るスクリュー圧縮機のスライドバルブの斜視図である。It is a perspective view of the slide valve of the screw compressor which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係るスクリュー圧縮機のスライドバルブの構造を示す図である。It is a figure which shows the structure of the slide valve of the screw compressor which concerns on Embodiment 5 of this invention.
実施の形態1.
 図1は、本発明の本実施の形態1に係るスクリュー圧縮機を備えた冷凍装置の概略構成を示す図である。図1に示すように、冷凍装置はスクリュー圧縮機1と、凝縮器5と、膨張弁6と、蒸発器7等とを備える。また、スクリュー圧縮機1は、圧縮部2と、圧縮部2に直列に接続され、圧縮部2を駆動するモーター3と、油分離器4とを有している。スクリュー圧縮機1において、圧縮部2から吐出された冷媒には冷凍機油(以下、油と称する)が混在しているため、油分離器4にて冷媒と油とに分離される。分離後の油は、差圧を利用して圧縮部2に戻すようになっている。図1では、スクリュー圧縮機1に油分離器4が内蔵されている仕様を示したが、油分離器4はスクリュー圧縮機1の外部に別置きされた構成でも構わない。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a schematic configuration of a refrigeration apparatus including a screw compressor according to Embodiment 1 of the present invention. As shown in FIG. 1, the refrigeration apparatus includes a screw compressor 1, a condenser 5, an expansion valve 6, an evaporator 7, and the like. The screw compressor 1 includes a compression unit 2, a motor 3 connected in series to the compression unit 2, and driving the compression unit 2, and an oil separator 4. In the screw compressor 1, since the refrigerant discharged from the compression unit 2 contains refrigeration oil (hereinafter referred to as oil), the oil separator 4 separates the refrigerant into oil. The oil after separation is returned to the compression section 2 using differential pressure. In FIG. 1, the specification in which the oil separator 4 is built in the screw compressor 1 is shown. However, the oil separator 4 may be separately provided outside the screw compressor 1.
 図2は、本発明の本実施の形態1に係るスクリュー圧縮機の概略構成図である。
 図2に概略の構成を示すように、スクリュー圧縮機は、筒状のケーシング本体8と、このケーシング本体8内に収容されたスクリューロータ9と、このスクリューロータ9を回転駆動するモーター3とを備えている。このモーター3は、ケーシング本体8に内接して固定されたステーター3aと、ステーター3aの内側に配置されたモーターロータ3bとから構成されている。スクリューロータ9とモーターロータ3bとは互いに同一軸線上に配置されており、何れもスクリュー軸10に固定されている。
FIG. 2 is a schematic configuration diagram of the screw compressor according to the first embodiment of the present invention.
As shown schematically in FIG. 2, the screw compressor includes a cylindrical casing body 8, a screw rotor 9 accommodated in the casing body 8, and a motor 3 that rotationally drives the screw rotor 9. I have. The motor 3 includes a stator 3a that is inscribed and fixed to the casing body 8, and a motor rotor 3b that is disposed inside the stator 3a. The screw rotor 9 and the motor rotor 3 b are arranged on the same axis line, and both are fixed to the screw shaft 10.
 また、スクリューロータ9は、外周面に複数の螺旋状の溝(スクリュー溝)11aが形成されており、スクリュー軸10に固定されたモーターロータ3bに連結されて回転駆動される。また、スクリュー溝11a内の空間は、ケーシング本体8の内筒面と、このスクリュー溝11aに噛み合い係合する一対のゲートロータ(図示せず)とによって囲まれて圧縮室11を形成する。また、ケーシング本体8内は高低圧隔壁17により吐出圧力側と吸込圧力側とに隔てられている。高低圧隔壁17は、ケーシング本体8に後述のスライドバルブ14のケーシング本体8側と対向して形成されている。そして、ケーシング本体8の吐出圧力側には、吐出室12に開口する一対の吐出口13が形成されている。 The screw rotor 9 has a plurality of spiral grooves (screw grooves) 11a formed on the outer peripheral surface thereof, and is driven to rotate by being connected to a motor rotor 3b fixed to the screw shaft 10. Further, the space in the screw groove 11a is surrounded by the inner cylindrical surface of the casing body 8 and a pair of gate rotors (not shown) engaged with and engaged with the screw groove 11a to form the compression chamber 11. Further, the inside of the casing body 8 is separated by a high and low pressure partition wall 17 into a discharge pressure side and a suction pressure side. The high / low pressure partition wall 17 is formed on the casing body 8 so as to face the casing body 8 side of the slide valve 14 described later. A pair of discharge ports 13 that open to the discharge chamber 12 are formed on the discharge pressure side of the casing body 8.
 さらに、ケーシング本体8内には、スライドバルブ14が設けられている。スライドバルブ14は駆動装置16のロッド15に連結され、スクリューロータ9の軸方向に移動可能となっている。スライドバルブ14は、吐出口13の一部を形成しており、圧縮室11で圧縮された高圧ガスの吐出開始(圧縮完了)位置を変更することで吐出開口タイミングを変化させ、内部容積比を変更する機構である。 Furthermore, a slide valve 14 is provided in the casing body 8. The slide valve 14 is connected to the rod 15 of the driving device 16 and is movable in the axial direction of the screw rotor 9. The slide valve 14 forms a part of the discharge port 13, and changes the discharge opening timing by changing the discharge start (compression completion) position of the high-pressure gas compressed in the compression chamber 11, thereby changing the internal volume ratio. It is a mechanism to change.
 ここで、内部容積比とは、吸込完了(圧縮開始)時の圧縮室11の容積と吐出寸前の圧縮室11の容積との比である。なお、スライドバルブ14は2つ以上備えていてもよいが図示を省略している。なお、以下では、スライドバルブ14においてケーシング本体8側を「背面側」、スクリューロータ9側を「内周面側」という。 Here, the internal volume ratio is a ratio between the volume of the compression chamber 11 at the time of completion of suction (start of compression) and the volume of the compression chamber 11 just before the discharge. Although two or more slide valves 14 may be provided, the illustration is omitted. In the following, in the slide valve 14, the casing body 8 side is referred to as “rear side” and the screw rotor 9 side is referred to as “inner peripheral surface side”.
 以下、実施の形態1の比較対象として従来のスクリュー圧縮機について説明する。 Hereinafter, a conventional screw compressor will be described as a comparison object of the first embodiment.
 図3は、実施の形態1の比較対象として示す従来のスクリュー圧縮機に係る作用説明図である。また、図4は、実施の形態1の比較対象として示す従来のスライドバルブを背面側から見た際の冷媒漏れ経路を示した図である。
 従来は、上述のように、ケーシング本体80内に設けられたスライドバルブ140が、スクリューロータ90の軸方向に移動可能とするため、スライドバルブ140の背面140aとケーシング本体80の一部である高低圧隔壁170の内周面170aとの間に隙間がある。ここで、高低圧隔壁170は吐出圧力(高圧)側と吸込圧力(低圧)側とを隔てる位置にあるため、この隙間から図3の矢印aに示すように冷媒漏れが発生し、性能悪化が課題であった。
FIG. 3 is an operation explanatory view according to a conventional screw compressor shown as a comparison target of the first embodiment. FIG. 4 is a diagram showing a refrigerant leakage path when a conventional slide valve shown as a comparison target of the first embodiment is viewed from the back side.
Conventionally, as described above, the slide valve 140 provided in the casing main body 80 is movable in the axial direction of the screw rotor 90, so that the back surface 140 a of the slide valve 140 and a part of the casing main body 80 are high. There is a gap between the inner peripheral surface 170a of the low-pressure partition wall 170a. Here, since the high / low pressure partition 170 is located at a position separating the discharge pressure (high pressure) side and the suction pressure (low pressure) side, refrigerant leakage occurs from this gap as shown by an arrow a in FIG. It was a challenge.
 これに対し、本実施の形態1では、以下の構成としている。 On the other hand, the first embodiment has the following configuration.
 図5は、本発明の実施の形態1に係るスクリュー圧縮機の作用説明図である。また、図6は、本発明の実施の形態1に係るスクリュー圧縮機のスライドバルブを背面側から見た際の油経路を示した斜視図である。
 本実施の形態1のスライドバルブ14は、図5及び図6に示すようにスライドバルブ14の背面側14fと高低圧隔壁17の内周面17aとの間の隙間で形成されたシール面Sに油をインジェクションするインジェクション機構20を備える。
FIG. 5 is an operation explanatory diagram of the screw compressor according to Embodiment 1 of the present invention. FIG. 6 is a perspective view showing an oil path when the slide valve of the screw compressor according to Embodiment 1 of the present invention is viewed from the back side.
As shown in FIGS. 5 and 6, the slide valve 14 of the first embodiment has a seal surface S formed by a gap between the back side 14 f of the slide valve 14 and the inner peripheral surface 17 a of the high-low pressure partition wall 17. An injection mechanism 20 for injecting oil is provided.
 以下、インジェクション機構20について詳細に説明する。 Hereinafter, the injection mechanism 20 will be described in detail.
 図7は、本発明の実施の形態1に係るスクリュー圧縮機のスライドバルブを内面側から見た斜視図である。図8は、本発明の本実施の形態1に係るスクリュー圧縮機のスライドバルブを背面側から見た平面図である。図9は、図6のスライドバルブを上下反転して矢印X方向(油溜り14mが見える方向)から見た図である。図10は、図9のA-A断面図である。図11は、図9のB-B断面図である。図10及び図11において矢印は油経路を示している。 FIG. 7 is a perspective view of the slide valve of the screw compressor according to Embodiment 1 of the present invention as viewed from the inner surface side. FIG. 8 is a plan view of the slide valve of the screw compressor according to the first embodiment of the present invention as viewed from the back side. FIG. 9 is a view of the slide valve of FIG. 6 turned upside down as seen from the direction of the arrow X (the direction in which the oil sump 14m can be seen). 10 is a cross-sectional view taken along the line AA in FIG. 11 is a cross-sectional view taken along the line BB in FIG. In FIGS. 10 and 11, the arrows indicate the oil paths.
 ここでまず、スライドバルブ14の基本構造について説明し、その後、インジェクション機構20について説明する。スライドバルブ14は、これらの図に示すように、弁本体14aと、ガイド部14bと、これらを連結する連結部14cとを備えている。弁本体14aとガイド部14bとの間には、吐出口13に連通する空隙が形成され、吐出口13の一部を形成している。さらに弁本体14aにおいて、吐出口13の吐出口端部14dの内周側14eは吐出口13の一部を形成すると共に、圧縮された冷媒を吐出するタイミングを決定している。つまり、スライドバルブ14をスクリューロータ9の軸方向に移動させると同時に吐出口端部14dもスクリューロータ9の軸方向に移動することによって、内部容積比を変更させる。また、ガイド部14bには接続穴15aが設けられ、この接続穴15aに、図2に示すようにロッド15が連結される。 Here, first, the basic structure of the slide valve 14 will be described, and then the injection mechanism 20 will be described. As shown in these drawings, the slide valve 14 includes a valve main body 14a, a guide portion 14b, and a connecting portion 14c for connecting them. A gap communicating with the discharge port 13 is formed between the valve main body 14a and the guide portion 14b, and a part of the discharge port 13 is formed. Further, in the valve main body 14a, the inner peripheral side 14e of the discharge port end portion 14d of the discharge port 13 forms a part of the discharge port 13 and determines the timing for discharging the compressed refrigerant. That is, the internal volume ratio is changed by moving the slide valve 14 in the axial direction of the screw rotor 9 and simultaneously moving the discharge port end portion 14 d in the axial direction of the screw rotor 9. Further, a connecting hole 15a is provided in the guide portion 14b, and the rod 15 is coupled to the connecting hole 15a as shown in FIG.
 本実施の形態1のスライドバルブ14には、図11に示すようにスクリューロータ9に高圧の油をインジェクションする給油穴14gが貫通して形成されている。給油穴14gは、油流入側の開口であるスクリューロータ部油供給口14iがスライドバルブ14の背面側14fに位置し、油流出側の開口であるスクリューロータ部給油口14hがスライドバルブ14の内周側14eに位置している。給油穴14gの穴形状及び個数は問わない。 In the slide valve 14 of the first embodiment, an oil supply hole 14g for injecting high-pressure oil into the screw rotor 9 is formed so as to penetrate therethrough as shown in FIG. In the oil supply hole 14g, the screw rotor part oil supply port 14i which is an opening on the oil inflow side is located on the back side 14f of the slide valve 14, and the screw rotor part oil supply port 14h which is an opening on the oil outflow side is inside the slide valve 14. It is located on the circumferential side 14e. The hole shape and number of the oil supply holes 14g are not limited.
 また、本実施の形態1のスライドバルブ14には、図5、図8、図9及び図10に示すように高低圧隔壁17とスライドバルブ14の背面側14fとの間の隙間(シール面S)に油をインジェクションする給油穴14jが形成されている。給油穴14jは、給油穴14jの油流入側の開口であるスライドバルブ背面部油供給口14lがスライドバルブ14の背面側14fに位置する。そして、給油穴14jの油流出側の開口であるスライドバルブ背面部給油口14kが、図5に示すようにスライドバルブ14の背面側14fにおいて高低圧隔壁17との対向部分、つまりシール面Sの範囲内に位置している。給油穴14jの穴形状及び個数は問わない。なお、この給油穴14jは本発明の第1給油穴を構成している。 Further, the slide valve 14 according to the first embodiment includes a gap (seal surface S) between the high / low pressure partition wall 17 and the back side 14f of the slide valve 14 as shown in FIGS. ) Is formed with an oil supply hole 14j for injecting oil. The oil supply hole 14j has a slide valve back surface oil supply port 14l that is an opening on the oil inflow side of the oil supply hole 14j and is located on the back side 14f of the slide valve 14. Then, as shown in FIG. 5, the slide valve back surface oil supply port 14k, which is the opening on the oil outflow side of the oil supply hole 14j, is opposed to the high / low pressure partition wall 17 on the back surface 14f of the slide valve 14, that is, the seal surface S. Located within range. The hole shape and the number of the oil supply holes 14j are not limited. The oil supply hole 14j constitutes the first oil supply hole of the present invention.
 そして、スライドバルブ14の背面側14fには、窪みで構成された油溜り14mが形成されており、図9に示すように、この油溜り14mにスクリューロータ部油供給口14iとスライドバルブ背面部油供給口14lとが位置している。 An oil sump 14m composed of a depression is formed on the back side 14f of the slide valve 14. As shown in FIG. 9, the screw rotor part oil supply port 14i and the slide valve back part are formed in the oil sump 14m. An oil supply port 14l is located.
 以下、油の流れについて説明する。
 本実施の形態1に係るスクリュー圧縮機1においては、スクリューロータ9からの冷媒漏れ抑制及び焼き付き防止などの観点からスライドバルブ14の内周側14e及び背面側14fそれぞれと、そのそれぞれと対向する部分との間に高圧の油をインジェクションする。
Hereinafter, the flow of oil will be described.
In the screw compressor 1 according to the first embodiment, each of the inner peripheral side 14e and the rear side 14f of the slide valve 14 from the viewpoint of suppressing refrigerant leakage from the screw rotor 9 and preventing seizure, and the portions facing the respective sides. High pressure oil is injected between the two.
 ここでまず、スライドバルブ14の内周側14eのインジェクションについて説明する。まず、図1に示すように油分離器4内の高圧の油を差圧によりケーシング本体8内の流路(図示せず)を介してスライドバルブ14に設けられた油溜り14mに供給する。これにより、油溜り14mに供給された油が、差圧により油溜り14m内に設けられたスクリューロータ部油供給口14iから給油穴14gに流入し、給油穴14gを通過してスクリューロータ部給油口14hからスクリューロータ9に高圧の油がインジェクションされる。 Here, first, the injection of the inner peripheral side 14e of the slide valve 14 will be described. First, as shown in FIG. 1, high-pressure oil in the oil separator 4 is supplied to an oil reservoir 14m provided in the slide valve 14 through a flow path (not shown) in the casing body 8 by differential pressure. Thereby, the oil supplied to the oil reservoir 14m flows into the oil supply hole 14g from the screw rotor oil supply port 14i provided in the oil reservoir 14m by the differential pressure, passes through the oil supply hole 14g, and is supplied to the screw rotor oil supply. High pressure oil is injected into the screw rotor 9 from the opening 14h.
 次に、スライドバルブ14の背面側14fのインジェクションについて説明する。本実施の形態1では、背面側14fからシール面Sに高圧の油をインジェクションすることを特徴としている。まず、油分離器4より分配された上記油溜り14m内の油を流用する。油溜り14m内における高圧の油が、差圧により油溜り14m内に設けられたスライドバルブ背面部油供給口14lから給油穴14jに流入し、給油穴14gを通過してスライドバルブ背面部給油口14kからシール面Sに油がインジェクションされる。なお、スライドバルブ14に設けた給油穴14gは本発明のインジェクション機構20を構成している。 Next, the injection on the back side 14f of the slide valve 14 will be described. The first embodiment is characterized in that high-pressure oil is injected from the back side 14 f to the seal surface S. First, the oil in the oil reservoir 14m distributed from the oil separator 4 is used. The high pressure oil in the oil reservoir 14m flows into the oil supply hole 14j from the slide valve rear surface oil supply port 14l provided in the oil reservoir 14m by the differential pressure, passes through the oil supply hole 14g, and passes through the oil supply hole 14g. Oil is injected into the sealing surface S from 14k. The oil supply hole 14g provided in the slide valve 14 constitutes the injection mechanism 20 of the present invention.
 なお、実施の形態1においては、スクリューロータ部油供給口14iとスライドバルブ背面部油供給口14lとを同一の油溜り14m内に位置させたが、必ずしもこの構成である必要はなく、別々の油溜り14m内に位置させる構成としてもよい。また、本実施の形態1はあくまでもスライドバルブ14の背面側の冷媒漏れの低減を目的としており、給油穴14gを備えていないスライドバルブ14にも、給油穴14jは適用可能である。また、スライドバルブ14が移動した場合においても給油穴14jが高低圧隔壁17内に配置されるように、高低圧隔壁17を厚くしてもよい。 In the first embodiment, the screw rotor oil supply port 14i and the slide valve back surface oil supply port 14l are positioned in the same oil sump 14m. It is good also as a structure located in the oil sump 14m. The first embodiment is intended only to reduce refrigerant leakage on the back side of the slide valve 14, and the oil supply hole 14j can be applied to the slide valve 14 that does not include the oil supply hole 14g. Further, the high / low pressure partition wall 17 may be thick so that the oil supply hole 14j is disposed in the high / low pressure partition wall 17 even when the slide valve 14 moves.
 以上のように本実施の形態1によれば、シール面Sに油をインジェクションしてシールするインジェクション機構20を備えたので、吐出圧力(高圧)側から吸込圧力(低圧)側への冷媒漏れを抑制することができる。その結果、スクリュー圧縮機1の効率を向上させることができ、省エネにも寄与することができる。 As described above, according to the first embodiment, since the injection mechanism 20 that seals the seal surface S by injecting oil is provided, refrigerant leakage from the discharge pressure (high pressure) side to the suction pressure (low pressure) side is prevented. Can be suppressed. As a result, the efficiency of the screw compressor 1 can be improved, which can contribute to energy saving.
 インジェクション機構20は、スライドバルブ14を貫通する給油穴14jを有し、給油穴14jのスライドバルブ背面部油供給口14lから流入した油をスライドバルブ背面部給油口14kからシール面Sに供給する構成であり、いわばスライドバルブ14に穴を開けただけの構成であるため、安価に構成できる。 The injection mechanism 20 has an oil supply hole 14j that passes through the slide valve 14, and supplies oil that has flowed in from the slide valve back surface oil supply port 14l of the oil supply hole 14j to the seal surface S from the slide valve back surface oil supply port 14k. In other words, since it has a configuration in which a hole is formed in the slide valve 14, it can be configured at low cost.
実施の形態2.
 実施の形態2は、実施の形態1と比較して、シール面Sに給油する給油穴を設ける部位のみ異なったものである。
Embodiment 2. FIG.
The second embodiment is different from the first embodiment only in the portion where the oil supply hole for supplying oil to the seal surface S is provided.
 図12は、本発明の実施の形態2に係るスクリュー圧縮機の要部を示した概略図である。図13は、本発明の実施の形態2に係るスクリュー圧縮機のスライドバルブを背面部側から見た斜視図である。なお、本実施の形態2では実施の形態1との差異点を説明するものとし、本実施の形態2で説明されていない構成は実施の形態1と同様である。
 実施の形態2では、実施の形態1においてスライドバルブ14に設けていた給油穴14jを廃止し、ケーシング本体8の一部を構成している高低圧隔壁17に給油穴17bを設けたものである。そして、給油穴17bの油流出側の開口であるスライドバルブ背面部給油口17cを高低圧隔壁17の内周面17aに設け、給油穴17bに流入した高圧の油をスライドバルブ背面部給油口17cからシール面Sにインジェクションする構成とした。
FIG. 12 is a schematic view showing a main part of a screw compressor according to Embodiment 2 of the present invention. FIG. 13: is the perspective view which looked at the slide valve of the screw compressor which concerns on Embodiment 2 of this invention from the back part side. In the second embodiment, differences from the first embodiment will be described, and configurations not described in the second embodiment are the same as those in the first embodiment.
In the second embodiment, the oil supply hole 14j provided in the slide valve 14 in the first embodiment is abolished, and the oil supply hole 17b is provided in the high / low pressure partition wall 17 constituting a part of the casing body 8. . Then, a slide valve back surface oil supply port 17c, which is an opening on the oil outflow side of the oil supply hole 17b, is provided on the inner peripheral surface 17a of the high and low pressure partition wall 17, and the high pressure oil flowing into the oil supply hole 17b is supplied to the slide valve back surface oil supply port 17c. To the sealing surface S.
 給油穴17bの油流入側の開口の位置は特に限定するものではなく、スクリュー圧縮機1内の油を受け入れ可能な位置に設けられていればよい。また、給油穴17bの穴形状及び個数は問わない。なお、この給油穴17bは本発明の第2給油穴を構成している。 The position of the opening on the oil inflow side of the oil supply hole 17b is not particularly limited as long as it is provided at a position where the oil in the screw compressor 1 can be received. Further, the hole shape and the number of the oil supply holes 17b are not limited. The oil supply hole 17b constitutes the second oil supply hole of the present invention.
 以上のように本実施の形態2によれば、高低圧隔壁17の内周面17aに設けたスライドバルブ背面部給油口17cからシール面Sに高圧の油をインジェクションすることでシール面Sにおける吐出圧力(高圧)側から吸込圧力(低圧)側への冷媒漏れを抑制し、スクリュー圧縮機1の効率を向上させることができる。 As described above, according to the second embodiment, high-pressure oil is injected into the seal surface S from the slide valve back surface oil supply port 17 c provided on the inner peripheral surface 17 a of the high-low pressure partition wall 17, thereby discharging on the seal surface S. Refrigerant leakage from the pressure (high pressure) side to the suction pressure (low pressure) side can be suppressed, and the efficiency of the screw compressor 1 can be improved.
実施の形態3.
 実施の形態3は、実施の形態1に対してスライドバルブ14の背面側14fに油溝を設ける点のみ異なったものである。
Embodiment 3 FIG.
The third embodiment is different from the first embodiment only in that an oil groove is provided on the back side 14f of the slide valve 14.
 図14は、本発明の実施の形態3に係るスクリュー圧縮機のスライドバルブの斜視図である。なお、本実施の形態3では実施の形態1との差異点を説明するものとし、本実施の形態1で説明されていない構成は実施の形態1と同様である。
 本実施の形態3では、実施の形態1でシール面Sにインジェクションした油を効率よくシール面Sに行き渡らせるために、スライドバルブ14の弁本体14aの背面側14fに周方向に延びる油溝18が形成されている。この油溝18の加工位置は、シール面Sの範囲内とする。なお、油溝18は本発明の第1油溝を構成している。上記油溝18の、断面形状、本数は問わない。
FIG. 14 is a perspective view of a slide valve of the screw compressor according to Embodiment 3 of the present invention. In the third embodiment, differences from the first embodiment will be described, and configurations not described in the first embodiment are the same as those in the first embodiment.
In the third embodiment, the oil groove 18 extending in the circumferential direction on the back surface side 14f of the valve body 14a of the slide valve 14 in order to efficiently spread the oil injected to the seal surface S in the first embodiment to the seal surface S. Is formed. The processing position of the oil groove 18 is within the range of the seal surface S. The oil groove 18 constitutes the first oil groove of the present invention. The cross-sectional shape and the number of the oil grooves 18 are not limited.
 図15は、本発明の実施の形態3に係るスクリュー圧縮機のスライドバルブの停止位置に応じた高低圧隔壁とスクリュー溝との位置関係の説明図である。図15に示すように、スライドバルブ14のスライド位置によっては、油溝18の位置がスクリュー溝11a同士の間に跨がることがある。各スクリュー溝11a内の圧力は互いに異なるため、このようにスクリュー溝11a同士の間に油溝18が跨がると、油溝18によって高圧側のスクリュー溝11aと低圧側のスクリュー溝11aとが連通し、高圧側から低圧側に冷媒が漏れてしまう可能性がある。よって、このように油溝18が冷媒の漏れ通路となることを防ぐために、油溝18は、スライドバルブ14の背面側14fの周方向の全体に設ける構成に限られず、背面側14fにおいて溝加工をしない部位を残してもよい。 FIG. 15 is an explanatory diagram of the positional relationship between the high and low pressure partition walls and the screw grooves according to the stop position of the slide valve of the screw compressor according to Embodiment 3 of the present invention. As shown in FIG. 15, depending on the slide position of the slide valve 14, the position of the oil groove 18 may straddle between the screw grooves 11a. Since the pressure in each screw groove 11a is different from each other, when the oil groove 18 straddles between the screw grooves 11a in this way, the oil groove 18 causes the screw groove 11a on the high pressure side and the screw groove 11a on the low pressure side to be separated. There is a possibility that the refrigerant leaks from the high pressure side to the low pressure side. Therefore, in order to prevent the oil groove 18 from becoming a refrigerant leakage passage in this way, the oil groove 18 is not limited to the configuration provided in the entire circumferential direction of the back side 14f of the slide valve 14, and the groove processing is performed on the back side 14f. You may leave a part that does not.
 このように油溝18を設けたことで、スライドバルブ背面部給油口14kからシール面Sに向けてインジェクションされた油が、シール面Sに効率よく行き渡る。 Thus, by providing the oil groove 18, the oil injected from the slide valve back surface oil supply port 14 k toward the seal surface S efficiently spreads over the seal surface S.
 油溝18を設ける個所は、スライドバルブ14の背面側14fだけでなく、高低圧隔壁17のシール面Sを形成している内周面17aとしても良いし、あるいはその両方としても良い。なお、高低圧隔壁17の内周面17aに油溝を設ける場合、油溝18と同様に周方向に延びて形成される。このように高低圧隔壁17の内周面17aに設けた油溝は本発明の第3油溝を構成している。 The oil groove 18 may be provided not only on the back side 14f of the slide valve 14 but also on the inner peripheral surface 17a forming the seal surface S of the high / low pressure partition wall 17, or both. In the case where an oil groove is provided on the inner peripheral surface 17 a of the high / low pressure partition wall 17, the oil groove 18 is formed so as to extend in the circumferential direction as with the oil groove 18. Thus, the oil groove provided on the inner peripheral surface 17a of the high / low pressure partition wall 17 constitutes the third oil groove of the present invention.
 以上のように本実施の形態3によれば、実施の形態1と同様の効果が得られると共に、以下の効果が得られる。すなわち、スライドバルブ14の背面側14fからシール面Sにインジェクションされた油が、油溝18を通じてスライドバルブ背面全周に行き渡りやすくなる。このため、実施の形態3は、実施の形態1の構成(スライドバルブ背面部給油口14kを設けた構成)を単独実施する場合に比べてさらに、油溝18を設けたことでシール面Sにおける吐出圧力(高圧)側から吸込圧力(低圧)側への冷媒漏れを抑制することができる。その結果、スクリュー圧縮機1の効率をさらに向上させることができる。 As described above, according to the third embodiment, the same effects as those of the first embodiment can be obtained, and the following effects can be obtained. That is, the oil injected from the back surface side 14 f of the slide valve 14 to the seal surface S easily reaches the entire periphery of the slide valve back surface through the oil groove 18. For this reason, in the third embodiment, the oil groove 18 is further provided on the seal surface S as compared with the case where the configuration of the first embodiment (the configuration in which the slide valve rear surface oil supply port 14k is provided) is further implemented. Refrigerant leakage from the discharge pressure (high pressure) side to the suction pressure (low pressure) side can be suppressed. As a result, the efficiency of the screw compressor 1 can be further improved.
実施の形態4.
 実施の形態4は、実施の形態2と実施の形態3とを組合せた構成に相当する。すなわち、高低圧隔壁17側からシール面Sに油をインジェクションすることを特徴とする実施の形態2のスクリュー圧縮機1のスライドバルブ14に油溝18を設けたものである。なお、油溝18の形状、形成位置等は実施の形態3と同様とする。
Embodiment 4 FIG.
The fourth embodiment corresponds to a combination of the second embodiment and the third embodiment. That is, the oil groove 18 is provided in the slide valve 14 of the screw compressor 1 according to the second embodiment, in which oil is injected from the high / low pressure partition wall 17 into the seal surface S. Note that the shape, formation position, and the like of the oil groove 18 are the same as those in the third embodiment.
 図16は、本発明の実施の形態4に係るスクリュー圧縮機のスライドバルブの斜視図である。なお、本実施の形態4では実施の形態2との差異点を説明するものとし、本実施の形態2で説明されていない構成は実施の形態2と同様である。
 図16の白抜き矢印に示すように、高低圧隔壁17側からシール面Sにインジェクションされた油は、実線矢印に示すように油溝18に沿って流れ、シール面Sに効率よく行き渡る。
FIG. 16 is a perspective view of a slide valve of a screw compressor according to Embodiment 4 of the present invention. In the fourth embodiment, differences from the second embodiment will be described, and configurations not described in the second embodiment are the same as those in the second embodiment.
As indicated by the white arrows in FIG. 16, the oil injected from the high / low pressure partition wall 17 side to the seal surface S flows along the oil grooves 18 as indicated by the solid line arrows, and efficiently spreads to the seal surface S.
 以上のように本実施の形態4によれば、実施の形態2と同様の効果が得られると共に、以下の効果が得られる。すなわち、高低圧隔壁17側からシール面Sにインジェクションされた油が油溝18を通じてスライドバルブ背面全周に行き渡りやすくなる。このため、実施の形態2の構成(高低圧隔壁17側からシール面Sに油をインジェクションする構成)を単独実施する場合に比べてさらに、油溝18の作用によりシール面Sにおける吐出圧力(高圧)側から吸込圧力(低圧)側への冷媒漏れを抑制できる。その結果、スクリュー圧縮機1の効率をさらに向上させることができる。 As described above, according to the fourth embodiment, the same effects as those of the second embodiment can be obtained, and the following effects can be obtained. That is, the oil injected into the seal surface S from the high / low pressure partition wall 17 side easily reaches the entire periphery of the slide valve back surface through the oil groove 18. For this reason, compared with the case where the configuration of the second embodiment (the configuration in which oil is injected into the seal surface S from the high / low pressure partition wall 17 side) is performed alone, the discharge pressure (high pressure) on the seal surface S is further increased by the action of the oil groove 18. ) Side refrigerant leakage from the suction pressure (low pressure) side can be suppressed. As a result, the efficiency of the screw compressor 1 can be further improved.
実施の形態5.
 実施の形態5は、油溜り14mと油溝18とを連通させることを特徴としている。
Embodiment 5 FIG.
The fifth embodiment is characterized in that the oil reservoir 14m and the oil groove 18 are communicated with each other.
 図17は、本発明の実施の形態5に係るスクリュー圧縮機のスライドバルブの構造を示す図である。
 上記図9に示した実施の形態1のスライドバルブ14は、油溜り14m内の油を、給油穴14jにより弁本体14a内を通過させてスライドバルブ背面部給油口14kからシール面Sに油をインジェクションする構成であった。
FIG. 17 is a view showing the structure of the slide valve of the screw compressor according to Embodiment 5 of the present invention.
The slide valve 14 according to the first embodiment shown in FIG. 9 passes the oil in the oil reservoir 14m through the valve body 14a through the oil supply hole 14j, and supplies the oil from the slide valve rear surface oil supply port 14k to the seal surface S. The configuration was to inject.
 これに対し、実施の形態5は、スライドバルブ14の背面側(外周面)に沿って油を流し、シール面Sにインジェクションする構成としたものである。具体的な構成としては、実施の形態1の給油穴14jを削除し、油溝18aを油溜り14mに連通するように設け、油溜り14m内の高圧の油を油溝18aを通じてシール面Sにインジェクションする構成としたものである。実施の形態5の油溝18aは、実施の形態3の油溝18に対して油溜り14mに連通する点が異なるのみで、その他については実施の形態3の油溝18と同様である。なお、油溝18aは本発明の第2油溝を構成している。 On the other hand, the fifth embodiment is configured such that oil flows along the back side (outer peripheral surface) of the slide valve 14 and is injected into the seal surface S. Specifically, the oil supply hole 14j of the first embodiment is deleted, the oil groove 18a is provided so as to communicate with the oil reservoir 14m, and the high-pressure oil in the oil reservoir 14m is applied to the seal surface S through the oil groove 18a. It is configured to inject. The oil groove 18a of the fifth embodiment is the same as the oil groove 18 of the third embodiment except that the oil groove 18a is different from the oil groove 18 of the third embodiment in that it communicates with the oil reservoir 14m. The oil groove 18a constitutes the second oil groove of the present invention.
 以上のように、本実施の形態5によれば、実施の形態1~4のような、スライドバルブ14内を貫通する給油穴14jを設けずとも、油溜り14mの高圧の油をシール面Sに行き渡らせることができる。よって、より簡単な構成で冷媒漏れを抑制し、スクリュー圧縮機1の効率を向上させることができる。 As described above, according to the fifth embodiment, the high pressure oil in the oil sump 14m is removed from the seal surface S without providing the oil supply hole 14j penetrating the slide valve 14 as in the first to fourth embodiments. Can be spread over. Therefore, refrigerant leakage can be suppressed with a simpler configuration, and the efficiency of the screw compressor 1 can be improved.
 なお、実施の形態1~5は、適宜組合せ可能である。例えば、実施の形態1と実施の形態2とを組合せて、スライドバルブ14の背面側14fと高低圧隔壁17の内周面17aとの両方からシール面Sに油をインジェクションしてもよい。 Note that Embodiments 1 to 5 can be appropriately combined. For example, oil may be injected into the sealing surface S from both the back surface side 14f of the slide valve 14 and the inner peripheral surface 17a of the high / low pressure partition wall 17 by combining the first embodiment and the second embodiment.
 また、実施の形態1~5は、スライドバルブ14の背面側14fと高低圧隔壁17の内周面17aとの間に隙間がある機構を有するスクリュー圧縮機全般に適用可能である。例えば上述では、1つの圧縮部2を備えた単段スクリュー圧縮機について例示したが、圧縮部2を2つ以上備えた多段圧縮機であってもよい。また、一定速仕様のスクリュー圧縮機のみならず、インバータ駆動のスクリュー圧縮機であっても本発明は有用である。 Further, Embodiments 1 to 5 are applicable to all screw compressors having a mechanism having a gap between the back side 14f of the slide valve 14 and the inner peripheral surface 17a of the high / low pressure partition wall 17. For example, in the above description, the single-stage screw compressor including one compression unit 2 is illustrated, but a multi-stage compressor including two or more compression units 2 may be used. Further, the present invention is useful not only for a constant speed specification screw compressor but also for an inverter driven screw compressor.
 なお、実施の形態1~5では、スライドバルブ14が内部容積比可変のスライドバルブであるとしたが、本発明が適用されるスライドバルブは、内部容積比可変のものに限定されない。例えば、冷媒ガスの一部を吸込側(低圧)へバイパスさせることができる容量制御用のスライドバルブなどでもよいし、ケーシング本体8と固定され、可動しないスライドバルブでもよい。 In the first to fifth embodiments, the slide valve 14 is a slide valve having a variable internal volume ratio. However, the slide valve to which the present invention is applied is not limited to a valve having a variable internal volume ratio. For example, a slide valve for capacity control that can bypass part of the refrigerant gas to the suction side (low pressure) may be used, or a slide valve that is fixed to the casing body 8 and is not movable may be used.
 1 スクリュー圧縮機、2 圧縮部、3 モーター、3a ステーター、3b モーターロータ、4 油分離器、5 凝縮器、6 膨張弁、7 蒸発器、8 ケーシング本体、9 スクリューロータ、10 スクリュー軸、11 圧縮室、11a スクリュー溝、12 吐出室、13 吐出口、14 スライドバルブ、14a 弁本体、14b ガイド部、14c 連結部、14d 吐出口端部、14e 内周側、14f 背面側、14g 給油穴、14h スクリューロータ部給油口、14i スクリューロータ部油供給口、14j 給油穴、14k スライドバルブ背面部給油口、14l スライドバルブ背面部油供給口、14m 油溜り、15 ロッド、15a接続穴、16 駆動装置、17 高低圧隔壁、17a 内周面、17b 給油穴、17c スライドバルブ背面部給油口、18 油溝、18a 油溝、20 インジェクション機構、80 ケーシング本体、90 スクリューロータ、140 スライドバルブ、140a 背面、170 高低圧隔壁、170a 内周面、S シール面。 1 Screw compressor, 2 compression section, 3 motor, 3a stator, 3b motor rotor, 4 oil separator, 5 condenser, 6 expansion valve, 7 evaporator, 8 casing body, 9 screw rotor, 10 screw shaft, 11 compression Chamber, 11a Screw groove, 12 Discharge chamber, 13 Discharge port, 14 Slide valve, 14a Valve body, 14b Guide portion, 14c Connection portion, 14d Discharge port end, 14e Inner peripheral side, 14f Back side, 14g Oil supply hole, 14h Screw rotor part oil supply port, 14i Screw rotor part oil supply port, 14j Oil supply hole, 14k Slide valve rear part oil supply port, 14l Slide valve rear part oil supply port, 14m Oil reservoir, 15 Rod, 15a connection hole, 16 Drive unit, 17 High / low pressure partition, 17a Inner peripheral surface, 17b Oil supply hole, 17c Slide valve rear surface oil supply port, 18 oil groove, 18a oil groove, 20 injection mechanism, 80 casing body, 90 screw rotor, 140 slide valve, 140a rear surface, 170 high / low pressure partition wall, 170a inner peripheral surface, S seal surface.

Claims (9)

  1.  ケーシング本体と、
     前記ケーシング本体内で回転するように配置されたスクリューロータと、
     前記ケーシング本体と前記スクリューロータとの間に移動可能に設けられたスライドバルブと、
     前記スライドバルブの背面側と対向して形成され、前記ケーシング本体内を吐出圧力空間と吸込圧力空間とに隔てる隔壁と、
     前記隔壁の内周面と前記スライドバルブの背面側との間の隙間に油を供給して前記隙間をシールするインジェクション機構と
    を備えたスクリュー圧縮機。
    A casing body;
    A screw rotor arranged to rotate within the casing body;
    A slide valve movably provided between the casing body and the screw rotor;
    A partition that is formed to face the back side of the slide valve and separates the inside of the casing body into a discharge pressure space and a suction pressure space;
    The screw compressor provided with the injection mechanism which supplies oil to the clearance gap between the internal peripheral surface of the said partition, and the back side of the said slide valve, and seals the said clearance gap.
  2.  前記インジェクション機構は、前記スライドバルブを貫通して形成された1つ以上の第1給油穴を有し、前記第1給油穴の一端側の開口が前記隔壁と対向して形成され、前記開口から前記隙間に油を供給する構成を有する請求項1記載のスクリュー圧縮機。 The injection mechanism has one or more first oil supply holes formed through the slide valve, and an opening on one end side of the first oil supply hole is formed to face the partition, The screw compressor according to claim 1, wherein oil is supplied to the gap.
  3.  前記インジェクション機構はさらに、前記スライドバルブの背面側に前記隔壁と対向して設けられ、前記隙間に供給された油が流通する第1油溝を有する請求項2記載のスクリュー圧縮機。 The screw compressor according to claim 2, wherein the injection mechanism further includes a first oil groove provided on the back side of the slide valve so as to face the partition wall and through which oil supplied to the gap flows.
  4.  前記第1油溝は、前記スライドバルブの背面側に周方向に設けられている請求項3記載のスクリュー圧縮機。 The screw compressor according to claim 3, wherein the first oil groove is provided in a circumferential direction on a back side of the slide valve.
  5.  前記スライドバルブの背面側には、窪みで構成された油溜りを有し、前記第1給油穴の他端側が前記油溜りに開口する請求項2~請求項4の何れか一項に記載のスクリュー圧縮機。 The back side of the slide valve has an oil sump constituted by a recess, and the other end side of the first oil supply hole opens into the oil sump. Screw compressor.
  6.  前記インジェクション機構は、前記スライドバルブの背面側に窪みで構成された油溜りと、前記スライドバルブの背面側に前記隔壁と対向して設けられた第2油溝とを有し、前記油溜りと前記第2油溝とが連通して設けられ、前記油溜り内の油を前記第2油溝から前記隙間に供給する構成を有する請求項1記載のスクリュー圧縮機。 The injection mechanism includes an oil sump formed of a depression on the back side of the slide valve, and a second oil groove provided on the back side of the slide valve so as to face the partition wall, and the oil sump 2. The screw compressor according to claim 1, wherein the screw compressor is provided in communication with the second oil groove and supplies oil in the oil reservoir from the second oil groove to the gap.
  7.  前記インジェクション機構は、前記隔壁に形成された1つ以上の第2給油穴を有し、前記第2給油穴の一端側の開口が前記隔壁の内周面に開口して油を前記隙間に供給する構成を有する請求項1~請求項6の何れか一項に記載のスクリュー圧縮機。 The injection mechanism has one or more second oil supply holes formed in the partition wall, and an opening on one end side of the second oil supply hole opens on an inner peripheral surface of the partition wall to supply oil to the gap. The screw compressor according to any one of claims 1 to 6, wherein the screw compressor has the configuration as described above.
  8.  前記インジェクション機構はさらに、前記隔壁の前記内周面に設けられ、前記隙間に供給された油が流通する第3油溝を有する請求項1~請求項7の何れか一項に記載のスクリュー圧縮機。 The screw compression according to any one of claims 1 to 7, wherein the injection mechanism further includes a third oil groove that is provided on the inner peripheral surface of the partition wall and through which oil supplied to the gap flows. Machine.
  9.  前記第3油溝は、前記隔壁の内周面に周方向に設けられている請求項8記載のスクリュー圧縮機。 The screw compressor according to claim 8, wherein the third oil groove is provided on an inner peripheral surface of the partition wall in a circumferential direction.
PCT/JP2015/052275 2015-01-28 2015-01-28 Screw compressor WO2016121021A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15879918.9A EP3252310B1 (en) 2015-01-28 2015-01-28 Screw compressor
PCT/JP2015/052275 WO2016121021A1 (en) 2015-01-28 2015-01-28 Screw compressor
CN201590001327.9U CN207333184U (en) 2015-01-28 2015-01-28 Helical-lobe compressor
TW104111381A TWI579464B (en) 2015-01-28 2015-04-09 Screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052275 WO2016121021A1 (en) 2015-01-28 2015-01-28 Screw compressor

Publications (1)

Publication Number Publication Date
WO2016121021A1 true WO2016121021A1 (en) 2016-08-04

Family

ID=56542677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052275 WO2016121021A1 (en) 2015-01-28 2015-01-28 Screw compressor

Country Status (4)

Country Link
EP (1) EP3252310B1 (en)
CN (1) CN207333184U (en)
TW (1) TWI579464B (en)
WO (1) WO2016121021A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220082099A1 (en) * 2019-03-01 2022-03-17 Mitsubishi Electric Corporation Screw compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11802563B2 (en) * 2019-11-26 2023-10-31 Mitsubishi Electric Corporation Screw compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1237333A (en) * 1968-10-24 1971-06-30 Gutehoffnungshuette Sterkrade Improvements in or relating to screw compressors
JPS5147051Y2 (en) * 1972-12-08 1976-11-13
JPH05106572A (en) * 1991-10-17 1993-04-27 Daikin Ind Ltd Single shaft type screw compressor
JP2013127203A (en) * 2011-12-16 2013-06-27 Mitsubishi Electric Corp Screw compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO117317B (en) * 1964-03-20 1969-07-28 Svenska Rotor Maskiner Ab
JPS5147051U (en) * 1974-10-05 1976-04-07
CN103109091B (en) * 2010-09-30 2015-09-16 大金工业株式会社 Screw compressor
DE102011051730A1 (en) * 2011-07-11 2013-01-17 Bitzer Kühlmaschinenbau Gmbh screw compressors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1237333A (en) * 1968-10-24 1971-06-30 Gutehoffnungshuette Sterkrade Improvements in or relating to screw compressors
JPS5147051Y2 (en) * 1972-12-08 1976-11-13
JPH05106572A (en) * 1991-10-17 1993-04-27 Daikin Ind Ltd Single shaft type screw compressor
JP2013127203A (en) * 2011-12-16 2013-06-27 Mitsubishi Electric Corp Screw compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3252310A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220082099A1 (en) * 2019-03-01 2022-03-17 Mitsubishi Electric Corporation Screw compressor

Also Published As

Publication number Publication date
EP3252310B1 (en) 2024-04-03
TW201627577A (en) 2016-08-01
EP3252310A4 (en) 2018-10-10
TWI579464B (en) 2017-04-21
CN207333184U (en) 2018-05-08
EP3252310A1 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
JP6177449B2 (en) Screw compressor and refrigeration cycle equipment
KR20130034536A (en) Scroll compressor
KR102051096B1 (en) 2-stage scroll compressor and refrigerating cycle system having the same
JP5586537B2 (en) Rotary two-stage compressor
US8702408B2 (en) Slide for use in a screw compressor
EP3425202A1 (en) Screw compressor and refrigeration cycle device
JP6609051B2 (en) Sliding vane control structure of variable volume cylinder, variable volume cylinder and variable capacity compressor
CN112055785B (en) Hermetic compressor and refrigeration cycle device
KR20180091577A (en) Scroll compressor
WO2016104274A1 (en) Gas compressor
WO2016121021A1 (en) Screw compressor
WO2016189801A1 (en) Cylinder-rotation-type compressor
WO2016084176A1 (en) Screw compressor and refrigeration cycle device
CN105392996A (en) Screw compressor
KR101731162B1 (en) Piston type compressor
JPWO2019049226A1 (en) Hermetic compressor and refrigeration cycle device
JP5831619B1 (en) Gas compressor
WO2016147467A1 (en) Screw compressor
JP5727348B2 (en) Gas compressor
CN115126697B (en) Compressor pump body, compressor and temperature regulating system
KR20190074359A (en) Multiple hydrogen compress system
JPWO2019043741A1 (en) Compressor
JP5878971B1 (en) Gas compressor
JP4421359B2 (en) Gas compressor
JP5878970B1 (en) Gas compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015879918

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP