JP6609051B2 - Sliding vane control structure of variable volume cylinder, variable volume cylinder and variable capacity compressor - Google Patents

Sliding vane control structure of variable volume cylinder, variable volume cylinder and variable capacity compressor Download PDF

Info

Publication number
JP6609051B2
JP6609051B2 JP2018527862A JP2018527862A JP6609051B2 JP 6609051 B2 JP6609051 B2 JP 6609051B2 JP 2018527862 A JP2018527862 A JP 2018527862A JP 2018527862 A JP2018527862 A JP 2018527862A JP 6609051 B2 JP6609051 B2 JP 6609051B2
Authority
JP
Japan
Prior art keywords
pin
sliding vane
cylinder
hole
control structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018527862A
Other languages
Japanese (ja)
Other versions
JP2019500536A (en
Inventor
フアン,フイ
フー,ユーシェン
ウェイ,フイジン
ユー,ビン
ヤン,オウシアン
ワン,ジュン
ミアオ,ペンケ
ワン,ミンフア
Original Assignee
グリー グリーン リフリジレーション テクノロジー センター カンパニー リミテッド オブ ジューハイ
ジューハイ ランダ コンプレッサー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グリー グリーン リフリジレーション テクノロジー センター カンパニー リミテッド オブ ジューハイ, ジューハイ ランダ コンプレッサー カンパニー リミテッド filed Critical グリー グリーン リフリジレーション テクノロジー センター カンパニー リミテッド オブ ジューハイ
Publication of JP2019500536A publication Critical patent/JP2019500536A/en
Application granted granted Critical
Publication of JP6609051B2 publication Critical patent/JP6609051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • F04C28/065Capacity control using a multiplicity of units or pumping capacities, e.g. multiple chambers, individually switchable or controllable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/18Pressure
    • F04C2270/185Controlled or regulated

Description

本発明は、圧縮機の技術分野に関し、具体的には、可変容積シリンダのスライディングベーン制御構造及びこのようなスライディングベーン制御構造が設けられた可変容積シリンダ並びに可変容量圧縮機に関するものである。
本願は、2015年12月18日にて中国特許庁へ出願した、出願番号が201510965018.Xで、発明の名称が「可変容積シリンダのスライディングベーン制御構造、可変容積シリンダおよび可変容量圧縮機」である中国特許出願の優先権を主張し、その内容を全て参照により本願に組み込むものとする。
The present invention relates to a technical field of a compressor, and more particularly to a sliding vane control structure of a variable volume cylinder, a variable volume cylinder provided with such a sliding vane control structure, and a variable capacity compressor.
This application is filed with the Chinese Patent Office on December 18, 2015, with an application number of 20151019605018. X claims the priority of the Chinese patent application whose title is “sliding vane control structure of variable volume cylinder, variable volume cylinder and variable capacity compressor”, the entire contents of which are incorporated herein by reference. .

圧縮機本体が主シリンダと可変容積シリンダを備えるのは、従来の可変容量圧縮機の一般的な構造であり、可変容積シリンダは運転しても運転しなくてもよく、これにより運転容量を変化させ、冷却システムの異なる負荷要求に応え、省エネの目的を達成する。従来の可変容積シリンダは、通常、いわゆるピン−スライディングベーン切り替え方式を採用し、つまり、スライディングベーン、シリンダ、及びシリンダの両端に覆われた軸受と仕切り板等でスライディングベーンの尾部にて密閉空洞が形成され、該密閉空洞は、高圧/低圧ガスが選択的に導入されることができ、スライディングベーンの側辺にピンロック/ロック解除装置が設けられ、該装置は、ピン孔、ピン、ばね等からなり、ピンの頭部が上記密閉空洞に繋がり、ピンの尾部に低圧通路を介して低圧が導入され、そして、物理装置(例えば、ばね、磁石等)によって、ピンはスライディングベーンに近づくプレテンションを有する。上述した方式は、可変容量シリンダの正常運転が必要となる場合、密閉空洞内に高圧冷媒ガスを導入しなければならず、高圧冷媒ガスによって、密閉空洞内の冷凍機油が排出され、一方、ピンがピン孔内を上下摺動することを確保するために、ピンとピン孔との間に一定の隙間が保たれるため、潤滑油の隙間シールを実現することができず、さらに、冷媒の粘度が潤滑油よりも遥かに小さいため、隙間における漏れ速度が速くなるとの欠陥がある。このため、従来の構成は、ピンの側面の隙間を介して密閉空洞から可変容積シリンダの吸入口に漏れる冷媒が顕著に増加し、可変容量シリンダの容積効率の低下や性能の低下を招き、また、大量生産時に異なる圧縮機の隙間の大きさを完全に一致させることが不可能であるため、圧縮機の冷房/暖房能力が激しき変化し、圧縮機及び空調機製品の品質制御安定性に不利であるとの悪影響がある。   The compressor body has a main cylinder and a variable volume cylinder, which is a general structure of a conventional variable capacity compressor. The variable volume cylinder may or may not be operated, thereby changing the operating capacity. To meet the different load requirements of the cooling system and achieve the purpose of energy saving. Conventional variable volume cylinders usually employ a so-called pin-sliding vane switching method, that is, a sliding cavity is formed at the tail of the sliding vane with a sliding vane, cylinder, bearings and partition plates, etc. covered at both ends of the cylinder. Formed, the sealed cavity can be selectively introduced with high pressure / low pressure gas, and a pin lock / unlock device is provided on the side of the sliding vane, the device comprising a pin hole, pin, spring, etc. The head of the pin is connected to the sealed cavity, low pressure is introduced into the tail of the pin via a low pressure passage, and the physical device (eg, spring, magnet, etc.) causes the pin to pretension close to the sliding vane Have In the above-described method, when normal operation of the variable capacity cylinder is required, high-pressure refrigerant gas must be introduced into the sealed cavity, and the refrigerating machine oil in the sealed cavity is discharged by the high-pressure refrigerant gas. In order to ensure that the pin slides up and down in the pin hole, a constant gap is maintained between the pin and the pin hole, so that it is not possible to realize a gap seal of the lubricating oil, and the viscosity of the refrigerant Is much smaller than the lubricant, so there is a defect that the leak rate in the gap is increased. For this reason, the conventional configuration significantly increases the amount of refrigerant leaking from the sealed cavity to the suction port of the variable volume cylinder through the gap on the side surface of the pin, leading to a decrease in volume efficiency and performance of the variable capacity cylinder. Since it is impossible to perfectly match the gaps between different compressors during mass production, the cooling / heating capacity of the compressors will change drastically, leading to quality control stability of compressors and air conditioner products. There is an adverse effect that it is disadvantageous.

これに鑑みて、本発明は、上述した課題の少なくとも一部を解決するために、シール効果を確保できる可変容積シリンダのスライディングベーン制御構造及びこのようなスライディングベーン制御構造が設けられた可変容積シリンダ並びに可変容量圧縮機を提供する。   In view of this, in order to solve at least a part of the above-described problems, the present invention provides a sliding vane control structure for a variable volume cylinder capable of ensuring a sealing effect, and a variable volume cylinder provided with such a sliding vane control structure. A variable capacity compressor is also provided.

本発明の第1態様によれば、可変容積シリンダのスライディングベーン制御構造を提供し、前記スライディングベーン制御構造は、前記スライディングベーンの下側に設けられ、前記スライディングベーンを係止可能な第1位置と前記スライディングベーンから分離可能な第2位置を有するピンを備え、前記ピンの下方に低圧通路が設けられ、前記ピンと低圧通路との間に面シール構造が設けられ、前記ピンが第2位置にある場合、前記ピンの下端にて面シールが形成される。   According to a first aspect of the present invention, there is provided a sliding vane control structure for a variable volume cylinder, wherein the sliding vane control structure is provided at a lower side of the sliding vane and is capable of locking the sliding vane. And a pin having a second position separable from the sliding vane, a low pressure passage is provided below the pin, a face seal structure is provided between the pin and the low pressure passage, and the pin is in the second position. In some cases, a face seal is formed at the lower end of the pin.

前記ピンがピン孔内に設けられ、前記ピン孔は階段状孔であり、前記ピン孔は、下端寄りの部分の内径が上側の部分の内径よりも小さく形成されることで、前記ピン孔の下端寄りの部分にて径方向内側に延びる段差面が形成されることが好ましい。   The pin is provided in the pin hole, the pin hole is a stepped hole, and the pin hole is formed such that the inner diameter of the portion near the lower end is smaller than the inner diameter of the upper portion. It is preferable that a step surface extending radially inward is formed at a portion near the lower end.

前記段差面にシールガスケットが設けられ、前記ピンの下端は、前記シールガスケットの上面に強く圧着可能であり、前記ピンの下端と前記シールガスケットの上面との間に前記面シールが形成されていることが好ましい。   A seal gasket is provided on the stepped surface, and the lower end of the pin can be strongly crimped to the upper surface of the seal gasket, and the surface seal is formed between the lower end of the pin and the upper surface of the seal gasket. It is preferable.

前記シールガスケットの中央に貫通孔が形成されていることが好ましい。   A through hole is preferably formed in the center of the seal gasket.

前記ピンの下側にシール用仕切り板が設けられ、前記ピンの下端は、前記シール用仕切り板の上面に当接可能であり、前記ピンの下端と前記シール用仕切り板の上面との間に前記面シールが形成されていることが好ましい。   A seal partition plate is provided on the lower side of the pin, and a lower end of the pin can be brought into contact with an upper surface of the seal partition plate, and between the lower end of the pin and an upper surface of the seal partition plate. The face seal is preferably formed.

前記ピンの下部に凹溝が設けられ、前記シール用仕切り板の前記凹溝に対応する位置にて第1貫通孔が設けられていることが好ましい。   It is preferable that a concave groove is provided at a lower portion of the pin, and a first through hole is provided at a position corresponding to the concave groove of the sealing partition plate.

前記第1貫通孔の水平面における最大サイズが、前記ピンの最大外径よりも小さく形成されることが好ましい。   It is preferable that the maximum size of the first through hole in a horizontal plane is smaller than the maximum outer diameter of the pin.

前記第1貫通孔の水平面における最大サイズが、前記凹溝の水平面における最大サイズよりも小さく形成されることが好ましい。   The maximum size of the first through hole in the horizontal plane is preferably smaller than the maximum size of the concave groove in the horizontal plane.

前記シール用仕切り板に第2貫通孔が設けられ、前記第2貫通孔によって、前記低圧通路が前記可変容積シリンダの吸入孔に連通可能であることが好ましい。   Preferably, the sealing partition plate is provided with a second through hole, and the second through hole allows the low pressure passage to communicate with the suction hole of the variable volume cylinder.

本発明の第2態様によれば、本願におけるスライディングベーン制御構造が設けられている可変容積シリンダを提供する。   According to a second aspect of the present invention, there is provided a variable volume cylinder provided with the sliding vane control structure in the present application.

本発明の第3態様によれば、本願における可変容積シリンダが設けられている可変容量圧縮機を提供する。   According to the third aspect of the present invention, there is provided a variable capacity compressor provided with the variable volume cylinder in the present application.

本願では、ピンと低圧通路との間に面シール構造が設けられており、面シールによるシール効果が隙間シールよりも遥かに優れ、冷媒の漏れ量を大幅に低減し、そのうえ、可変容積シリンダが運転モードにある場合の圧縮機の効率を向上させ、圧縮機の性能を最適化する。そして、本願では、上述した面シール構造が設けられ、シール効果が優れているため、ピン孔の加工精度要求を下げ、ピン孔の加工コスト及び組立費用を低減し、圧縮機の生産品質の安定化を図る。   In the present application, a face seal structure is provided between the pin and the low pressure passage, and the sealing effect by the face seal is far superior to the gap seal, greatly reducing the amount of refrigerant leakage, and the variable volume cylinder is operated. Improve compressor efficiency when in mode and optimize compressor performance. In the present application, since the above-described face seal structure is provided and the sealing effect is excellent, the pin hole processing accuracy requirement is lowered, the pin hole processing cost and the assembly cost are reduced, and the production quality of the compressor is stabilized. Plan

従来技術による可変容量圧縮機における可変容量シリンダが正常運転モードにある場合の構造模式図である。It is a structure schematic diagram when the variable capacity cylinder in the variable capacity compressor by a prior art is in a normal operation mode. 従来技術による可変容量圧縮機における可変容量シリンダが取り外しモードにある場合の構造模式図である。It is a structure schematic diagram in case the variable capacity cylinder in the variable capacity compressor by a prior art is in removal mode. 図1におけるA−A断面の部分拡大図である。It is the elements on larger scale of the AA cross section in FIG. 本発明の1つの好適な実施例の構造模式図である(図3に示す部分に対応)。FIG. 4 is a structural schematic diagram of one preferred embodiment of the present invention (corresponding to the portion shown in FIG. 3). 本発明の他の好適な実施例の構造模式図である(図3に示す部分に対応)。It is a structure schematic diagram of the other suitable Example of this invention (corresponding | corresponding to the part shown in FIG. 3).

以下、図面を参照しながら本発明の実施例を説明することで、本発明の上述した及び他の目的、特徴や利点がより明瞭になる。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings to make the above-described and other objects, features, and advantages of the present invention clearer.

以下、図面を参照して本発明の様々な実施例をより詳しく説明する。各図面において、同じ部材に対して同一又は類似した符号を付する。分かりやすくするために、図面における各部分を一定の縮尺で描いていない。   Hereinafter, various embodiments of the present invention will be described in more detail with reference to the drawings. In the drawings, the same or similar reference numerals are given to the same members. For the sake of clarity, each part in the drawing is not drawn to scale.

なお、本文に使用される「上」、「下」、「前」、「後ろ」、「左」、「右」の用語及び類似した表現は、説明のためのものに過ぎず、本発明の構造を制限することは意図していない。   Note that the terms “upper”, “lower”, “front”, “rear”, “left”, “right” and similar expressions used in the text are merely for explanation, and It is not intended to limit the structure.

図1〜3に示すように、可変容量圧縮機のポンプアセンブリは、クランクシャフト1、クランクシャフト1に連結される上部軸受4、下部軸受5、カバープレート7、および上部軸受4と下部軸受5との間に介在する第1シリンダ2及び第2シリンダ3を備える。前記第1シリンダ2と第2シリンダ3とは仕切り板6により離間され、第2シリンダ3は可変容積シリンダである。前記上部軸受4、第1シリンダ2、仕切り板6、第2シリンダ3、下部軸受5及びカバープレート7は、圧縮機のクランクシャフト1の軸方向に沿って順に取り付けられている。前記第1シリンダ2内には第1スライディングベーン溝が設けられており、第1スライディングベーン10は第1スライディングベーン溝内に設けられ、第1スライディングベーン10は、その背部に設けられたばねの弾力の作用により第1ローリングピストン8に押し付けられ、第1スライディングベーン10と第1ローリングピストン8の外面が接触することで、第1シリンダ2の内部キャビティを吸入室と圧縮室に分割する。第2シリンダ3内には第2スライディングベーン溝が設けられており、前記第2スライディングベーンは第2スライディングベーン溝内に設けられ、前記第2スライディングベーン11の背部(図1において、第2スライディングベーン11の右側)に密閉空洞18が形成され、該密閉空洞18には圧力切替管12が設けられ、該圧力切替管12は、外部空気源(未図示)に連結されることができ、前記外部空気源は、該圧縮機の吐出口/吸入口からの高圧/低圧ガスであることが好ましい。該圧力切替管12は、制御弁を介して外部空気源に連結されることができ、該制御弁は、例えば、電磁弁又は三方弁などを用いることが好ましく、圧力切替管12内に高圧又は低圧ガスを導入することができるように、圧力切替管12内に導入された高/低圧ガスの切り替えを制御する。前記圧力切替管12内に高圧ガスが導入される場合、前記第2スライディングベーン11は、通入されたガス圧力の作用により第2ローリングピストン9に押し付けられ、第2スライディングベーン11と第2ローリングピストン9の外面が接触することで、第2シリンダ3の内部キャビティを吸入室と圧縮室に分割する。第1ローリングピストン8及び第2ローリングピストン9が圧縮機のクランクシャフト1の偏心部に固設され、圧縮機のクランクシャフト1に動かされてシリンダ内を偏心回転することで、シリンダの内部キャビティに入った冷媒ガスを圧縮する。   As shown in FIGS. 1 to 3, the pump assembly of the variable capacity compressor includes a crankshaft 1, an upper bearing 4 coupled to the crankshaft 1, a lower bearing 5, a cover plate 7, and an upper bearing 4 and a lower bearing 5. The 1st cylinder 2 and the 2nd cylinder 3 which are interposed between are provided. The first cylinder 2 and the second cylinder 3 are separated by a partition plate 6, and the second cylinder 3 is a variable volume cylinder. The upper bearing 4, the first cylinder 2, the partition plate 6, the second cylinder 3, the lower bearing 5 and the cover plate 7 are attached in order along the axial direction of the crankshaft 1 of the compressor. The first cylinder 2 is provided with a first sliding vane groove, the first sliding vane 10 is provided in the first sliding vane groove, and the first sliding vane 10 is provided with the elasticity of a spring provided on the back thereof. The first sliding piston 8 is pressed against the first rolling piston 8 by the action of the first sliding vane 10 and the outer surface of the first rolling piston 8 in contact with each other, thereby dividing the internal cavity of the first cylinder 2 into a suction chamber and a compression chamber. A second sliding vane groove is provided in the second cylinder 3, the second sliding vane is provided in the second sliding vane groove, and a back portion of the second sliding vane 11 (in FIG. 1, the second sliding vane). A sealed cavity 18 is formed on the right side of the vane 11, and a pressure switching pipe 12 is provided in the sealed cavity 18, and the pressure switching pipe 12 can be connected to an external air source (not shown). The external air source is preferably high pressure / low pressure gas from the discharge / suction port of the compressor. The pressure switching pipe 12 can be connected to an external air source via a control valve, and the control valve preferably uses, for example, an electromagnetic valve or a three-way valve. The switching of the high / low pressure gas introduced into the pressure switching pipe 12 is controlled so that the low pressure gas can be introduced. When the high pressure gas is introduced into the pressure switching pipe 12, the second sliding vane 11 is pressed against the second rolling piston 9 by the action of the gas pressure that has been introduced, and the second sliding vane 11 and the second rolling vane 11 are pressed. When the outer surface of the piston 9 comes into contact, the internal cavity of the second cylinder 3 is divided into a suction chamber and a compression chamber. The first rolling piston 8 and the second rolling piston 9 are fixed to the eccentric portion of the crankshaft 1 of the compressor, and are moved by the crankshaft 1 of the compressor to rotate eccentrically in the cylinder, thereby forming an internal cavity of the cylinder. Compress the refrigerant gas.

下部軸受5内にはピン孔17が設けられており、該ピン孔17の軸線が圧縮機のクランクシャフト1の軸線に平行であることが好ましく、前記ピン孔17の上端が前記密閉空洞18に連通する。前記ピン孔17の下方には前記第2シリンダの吸入孔16に連通する低圧通路15(図3を参照)が設けられており、前記低圧通路15の一部は、前記カバープレート7に設けられることが好ましい。前記ピン孔17内にはピン13が設けられ、前記ピン13は、ピン孔17内を上下移動することができる。前記ピン13の下側に付勢部材14が設けられ、前記付勢部材は、ばね等の物理装置であることができ、該付勢部材14は、前記ピン13に対して上向きの付勢力を付与する。前記ピン13の下側に凹溝131が設けられ、前記付勢部材14が前記凹溝の天壁とピン13の下方にあるカバープレート7との間に設けられることが好ましい。前記第2スライディングベーン11の下面には、前記ピン13の上端に嵌合可能なピン溝111(図1を参照)が対応して設けられ、ピン13が上向きに移動しながら端部が下部軸受5に突出する場合、ピン13の上端部が第2スライディングベーン11の前記ピン溝111内に延びることができ、これにより、前記第2スライディングベーン11を係止位置(この場合、前記ピン13が第1位置にある)にロックする。   A pin hole 17 is provided in the lower bearing 5, and the axis of the pin hole 17 is preferably parallel to the axis of the crankshaft 1 of the compressor, and the upper end of the pin hole 17 is formed in the sealed cavity 18. Communicate. A low pressure passage 15 (see FIG. 3) communicating with the suction hole 16 of the second cylinder is provided below the pin hole 17, and a part of the low pressure passage 15 is provided in the cover plate 7. It is preferable. A pin 13 is provided in the pin hole 17, and the pin 13 can move up and down in the pin hole 17. A biasing member 14 is provided below the pin 13, and the biasing member may be a physical device such as a spring, and the biasing member 14 exerts an upward biasing force on the pin 13. Give. It is preferable that a concave groove 131 is provided on the lower side of the pin 13, and the urging member 14 is provided between the top wall of the concave groove and the cover plate 7 below the pin 13. A pin groove 111 (see FIG. 1) that can be fitted to the upper end of the pin 13 is provided on the lower surface of the second sliding vane 11 so that the end of the pin 13 moves downward while the pin 13 moves upward. 5, the upper end portion of the pin 13 can extend into the pin groove 111 of the second sliding vane 11, so that the second sliding vane 11 can be moved to the locked position (in this case, the pin 13 is Locked in the first position).

圧力切替管12内に高圧ガスが導入される場合、前記ピン13は、高圧ガスの作用により、付勢部材14のプレテンション及び低圧通路のガス圧力に抵抗し、これにより、ピン13が下向きに移動しながら前記第2スライディングベーン11上のピン溝111から離れるため、ピン13が、第2スライディングベーン11を制限しないロック解除位置にあり(この場合、前記ピン13が第2位置にある)、前記第2スライディングベーン11は、その背部の高圧ガスの作用により第2ローリングピストン9に押し付けられ、第2スライディングベーン11の頭部が第2ローリングピストン9の外面と接触し、これにより、第2シリンダ3(可変容積シリンダ)の正常な圧縮過程を実現する。   When high-pressure gas is introduced into the pressure switching pipe 12, the pin 13 resists the pretension of the biasing member 14 and the gas pressure in the low-pressure passage by the action of the high-pressure gas, so that the pin 13 faces downward. In order to move away from the pin groove 111 on the second sliding vane 11 while moving, the pin 13 is in an unlocked position that does not restrict the second sliding vane 11 (in this case, the pin 13 is in the second position), The second sliding vane 11 is pressed against the second rolling piston 9 by the action of the high-pressure gas at the back, and the head of the second sliding vane 11 comes into contact with the outer surface of the second rolling piston 9, thereby A normal compression process of the cylinder 3 (variable volume cylinder) is realized.

圧力切替管12内に低圧が導入される場合、前記ピン13の頭部(上端)と尾部(下端)は圧力バランスされており、前記ピン13は、前記付勢部材14のプレテンションの作用により、前記第2スライディングベーン11に近づくように上向きに移動し、前記第2スライディングベーン11が前記ピン溝111のピン13の頭部に対向する位置に運転する場合、前記ピン13の頭部が第2スライディングベーン11のピン溝111内に挿入されることで、前記第2スライディングベーン11を係止し、この場合、前記第2スライディングベーン11は前記第2ローリングピストン9から分離されるため、前記第2シリンダ3が正常に運転することができなくなり、第2シリンダ3(可変容積シリンダ)の取り外しを実現する。   When a low pressure is introduced into the pressure switching pipe 12, the head (upper end) and tail (lower end) of the pin 13 are pressure balanced, and the pin 13 is moved by the pretensioning action of the biasing member 14. When the second sliding vane 11 moves upward so as to approach the second sliding vane 11 and the second sliding vane 11 is driven to a position facing the head of the pin 13 of the pin groove 111, the head of the pin 13 is The second sliding vane 11 is locked by being inserted into the pin groove 111 of the two sliding vanes 11, and in this case, since the second sliding vane 11 is separated from the second rolling piston 9, The second cylinder 3 cannot operate normally, and the second cylinder 3 (variable volume cylinder) is removed.

図1〜3に示す従来構造は、圧力切替管12内に高圧ガスが導入される場合、図3に示すように、密閉空洞18内の高圧冷媒ガスによって密閉空洞18内の冷凍機油が排出される欠陥がある。ピン13がピン孔17内を上下摺動することを確保するために、ピン13とピン孔17との間に必ず一定の隙間が保たれ、冷凍機油が排出された場合、潤滑油の隙間シールを実現できないため、高圧冷媒ガスがピン13の外壁とピン孔17の内壁との間の隙間に沿って、図3の矢印で示される方向に外へ漏れる。高圧冷媒ガスは、ピン13の外壁とピン孔17の内壁との間の隙間及びピン13より下方の低圧通路15を介して、第2シリンダ3の吸入孔16に入り、高圧冷媒ガスの膨張で、第2シリンダ3が実際にガス循環を行う量が減少し、漏れたガスの圧縮が繰り返され、冷却能力が低下するとともに、余分な電力消費が発生するため、従来の可変容量圧縮機が2シリンダで運転する際の運転性能が低下してしまう。   1-3, when high pressure gas is introduced into the pressure switching pipe 12, the refrigerating machine oil in the sealed cavity 18 is discharged by the high pressure refrigerant gas in the sealed cavity 18, as shown in FIG. There is a defect. In order to ensure that the pin 13 slides up and down in the pin hole 17, a certain gap is always maintained between the pin 13 and the pin hole 17, and when the refrigeration oil is discharged, a gap seal for the lubricating oil is used. Therefore, the high-pressure refrigerant gas leaks outward in the direction indicated by the arrow in FIG. 3 along the gap between the outer wall of the pin 13 and the inner wall of the pin hole 17. The high-pressure refrigerant gas enters the suction hole 16 of the second cylinder 3 through the gap between the outer wall of the pin 13 and the inner wall of the pin hole 17 and the low-pressure passage 15 below the pin 13, and is expanded by the expansion of the high-pressure refrigerant gas. The amount of actual gas circulation by the second cylinder 3 is reduced, the compression of the leaked gas is repeated, the cooling capacity is lowered, and extra power consumption occurs. Operation performance when operating with a cylinder will be reduced.

本発明は、上述した従来技術に説明された可変容量圧縮機に対して、本発明における可変容量圧縮機のスライディングベーン制御構造を設けるように改良したものであり、つまり、本発明のスライディングベーン制御構造は、上述した構造及び部材を備えた可変容量圧縮機に適用される。以下、本発明における可変容量圧縮機のスライディングベーン制御構造を詳しく説明するが、重複を回避するために、上述の構造と同一の部分についてその説明を省略する。   The present invention is an improvement of the variable displacement compressor described in the prior art described above by providing the sliding vane control structure of the variable displacement compressor of the present invention, that is, the sliding vane control of the present invention. The structure is applied to a variable capacity compressor provided with the structure and members described above. Hereinafter, the sliding vane control structure of the variable capacity compressor according to the present invention will be described in detail. However, in order to avoid duplication, the description of the same parts as those described above will be omitted.

図4に示すように、本発明の1つの好適な実施例において、可変容量圧縮機の第2シリンダ103が下部軸受105より上方に設けられ、下部軸受105の下方にはカバープレート107が設けられている。下部軸受105には、階段状となるピン孔117が設けられており、前記ピン孔117は、下端寄りの部分の内径が上側の部分の内径よりも小さく形成されることで、前記ピン孔117の下端寄りの部分にて径方向内側に延びる段差面が形成され、該段差面にシールガスケット109が設けられ、該シールガスケット109は、金属製シールガスケット又はゴム製シールガスケットであることが好ましいが、これに限られない。該シールガスケット109は環状のシールガスケットであり、かつ中心に貫通孔が設けられている。下側に凹溝1131が設けられているピン113は、前記ピン孔17内に設けられ、前記ピン113の下端面は、前記段差面におけるシールガスケット109の上面に当接可能である。前記ピン113の凹溝1131内には、前記シールガスケット109上の貫通孔を貫通してカバープレート107と接触する付勢部材114が設けられており、前記付勢部材114は、ばねであることが好ましく、前記ピン113に対して上向きの付勢力を付与する。前記ピン113の下端は、カバープレート107における低圧通路115に連通し、さらに第2シリンダ103の吸入孔116に連通する。前記シールガスケット109は、金属製又はゴム製である。   As shown in FIG. 4, in one preferred embodiment of the present invention, the second cylinder 103 of the variable capacity compressor is provided above the lower bearing 105 and a cover plate 107 is provided below the lower bearing 105. ing. The lower bearing 105 is provided with a pin hole 117 having a stepped shape, and the pin hole 117 is formed such that the inner diameter of the portion near the lower end is smaller than the inner diameter of the upper portion. A step surface extending inward in the radial direction is formed at a portion near the lower end, and a seal gasket 109 is provided on the step surface, and the seal gasket 109 is preferably a metal seal gasket or a rubber seal gasket. Not limited to this. The seal gasket 109 is an annular seal gasket and has a through hole at the center. The pin 113 provided with a concave groove 1131 on the lower side is provided in the pin hole 17, and the lower end surface of the pin 113 can contact the upper surface of the seal gasket 109 on the step surface. In the concave groove 1131 of the pin 113, there is provided a biasing member 114 that passes through a through hole on the seal gasket 109 and contacts the cover plate 107, and the biasing member 114 is a spring. It is preferable that an upward biasing force is applied to the pin 113. The lower end of the pin 113 communicates with the low pressure passage 115 in the cover plate 107 and further communicates with the suction hole 116 of the second cylinder 103. The seal gasket 109 is made of metal or rubber.

本発明の上述した実施例における可変容量圧縮機の第2シリンダ103が正常に運転する場合、前記ピン113より上方の密閉空洞(未図示)内に高圧冷媒ガスが導入され、高圧冷媒ガスの作用により、ピン113は、付勢部材114のプレテンション及び低圧通路におけるガス圧力の作用に抵抗し、前記ピン113は、ピン孔117内で第2位置に下向きに移動することで、ピン113が前記第2シリンダ103のスライディングベーンから分離すると同時に、前記ピン113の下端が前記シールガスケット109の上面に強く圧着され、前記ピン113の下端にて面シールが形成される。この場合、第2シリンダ103は正常な圧縮動作を行う。該高圧冷媒ガスがピン113とピン孔117との間の隙間に沿って下向きに流れるが、ピン113の下端がシールガスケット109に強く圧着されているため、ピン113とピン孔17の段差面にて面シール構造が形成され、さらに、ピン113とピン孔117との間の隙間と、ピン113の下側の低圧通路115との間に面シールが形成される。該面シール構造のシール性能は、ピン113とピン孔117との間の隙間シールよりも遥かに優れているため、冷媒の漏れ量を大幅に低減し、そのうえ、圧縮機の性能を効果的に向上させる。   When the second cylinder 103 of the variable capacity compressor in the above-described embodiment of the present invention operates normally, high-pressure refrigerant gas is introduced into a sealed cavity (not shown) above the pin 113, and the action of the high-pressure refrigerant gas. Thus, the pin 113 resists the action of the pretension of the urging member 114 and the gas pressure in the low pressure passage, and the pin 113 moves downward to the second position in the pin hole 117, so that the pin 113 is Simultaneously with the separation from the sliding vane of the second cylinder 103, the lower end of the pin 113 is strongly pressed against the upper surface of the seal gasket 109, and a face seal is formed at the lower end of the pin 113. In this case, the second cylinder 103 performs a normal compression operation. The high-pressure refrigerant gas flows downward along the gap between the pin 113 and the pin hole 117, but the lower end of the pin 113 is strongly pressed against the seal gasket 109. Thus, a face seal structure is formed, and a face seal is formed between the gap between the pin 113 and the pin hole 117 and the low pressure passage 115 below the pin 113. Since the sealing performance of the face seal structure is far superior to the gap seal between the pin 113 and the pin hole 117, the amount of refrigerant leakage is greatly reduced, and the performance of the compressor is effectively improved. Improve.

図5に示すように、本発明の他の好適な実施例において、可変容量圧縮機の第2シリンダ203が下部軸受205より上方に設けられ、下部軸受205の下方にはシール用仕切り板218及びカバープレート207が順に設けられている。下部軸受205にピン孔217が設けられ、ピン孔217内に凹溝2131付きのピン213が設けられている。ピン213の凹溝2131の天壁とピン213より下方のシール用仕切り板218との間には、プレテンションを発生可能な付勢部材214、例えば、ばねが設けられている。前記シール用仕切り板218における前記ピン孔17上の凹溝2131に対応する位置にて第1貫通孔219が設けられている。ピン213の下端をシール用仕切り板218の上面に当接させることができるように、前記貫通孔219の水平面における最大サイズがピン213の外径よりも小さく形成されることが好ましい。前記付勢部材214の底部をシール用仕切り板218の上面に当接させることができるように、前記貫通孔219の水平面における最大サイズが前記凹溝2131の水平面における最大サイズよりも小さく形成されることがより好ましい。前記貫通孔219が丸孔である場合、その直径が最大サイズとなる。前記カバープレート207には、第2シリンダの吸入孔216に連通する低圧通路215が設けられており、前記低圧通路215が前記第2シリンダ203の吸入孔216に連通することができるように、前記シール用仕切り板218に第2貫通孔220が設けられることが好ましい。前記低圧通路215及び第1貫通孔219、第2貫通孔220は、唯一な方式で設置されるのではなく、様々な構造形式が可能であり、前記ピン213の下側が前記第2シリンダ203の吸入孔216に連通するようにすればよい。前記シール用仕切り板218は、機械加工されたものであるかプレス加工されたものであることが好ましい。   As shown in FIG. 5, in another preferred embodiment of the present invention, the second cylinder 203 of the variable capacity compressor is provided above the lower bearing 205, and below the lower bearing 205 is a sealing partition plate 218 and A cover plate 207 is provided in order. A pin hole 217 is provided in the lower bearing 205, and a pin 213 with a concave groove 2131 is provided in the pin hole 217. An urging member 214 capable of generating pretension, for example, a spring, is provided between the top wall of the concave groove 2131 of the pin 213 and the sealing partition plate 218 below the pin 213. A first through hole 219 is provided at a position corresponding to the groove 2131 on the pin hole 17 in the seal partition plate 218. It is preferable that the maximum size of the through hole 219 in the horizontal plane is smaller than the outer diameter of the pin 213 so that the lower end of the pin 213 can be brought into contact with the upper surface of the sealing partition plate 218. The maximum size of the through hole 219 in the horizontal plane is smaller than the maximum size of the concave groove 2131 in the horizontal plane so that the bottom of the urging member 214 can be brought into contact with the upper surface of the sealing partition plate 218. It is more preferable. When the through hole 219 is a round hole, its diameter is the maximum size. The cover plate 207 is provided with a low pressure passage 215 that communicates with the suction hole 216 of the second cylinder, and the low pressure passage 215 communicates with the suction hole 216 of the second cylinder 203. A second through hole 220 is preferably provided in the seal partition plate 218. The low-pressure passage 215, the first through-hole 219, and the second through-hole 220 are not installed in a unique manner, but can have various structural types, and the lower side of the pin 213 is the second cylinder 203. What is necessary is just to communicate with the suction hole 216. The seal partition plate 218 is preferably machined or pressed.

本発明の上述した実施例における可変容量圧縮機の第2シリンダ203が正常に運転する場合、前記ピン213より上方の密閉空洞(未図示)内に高圧冷媒ガスが導入される。高圧冷媒ガスの作用により、前記ピン213は、付勢部材のプレテンション及び低圧通路におけるガス圧力の作用に抵抗し、ピン213は、ピン孔17内で第2位置に下向きに移動することで、ピン213が前記第2シリンダ203のスライディングベーンから分離し、この場合、第2シリンダ203は正常な圧縮動作を行う。該高圧冷媒ガスは、ピン213とピン孔217との間の隙間に沿って下向きに流れるが、ピン213の底部端面とシール用仕切り板218との間に面接触が形成され、前記ピン213の下端にて面シールが形成され、両端の圧力差の作用によりピン213の下端がシール用仕切り板218の上端面に強く圧着されているため、ピン213の下端とシール用仕切り板218の上端面との間に面シールが形成され、該面シール構造のシール性能は、ピン213とピン孔217との間の隙間シールよりも遥かに優れているため、冷媒の漏れ量を大幅に低減し、そのうえ、圧縮機の性能を向上させる。   When the second cylinder 203 of the variable capacity compressor in the above-described embodiment of the present invention operates normally, high-pressure refrigerant gas is introduced into a sealed cavity (not shown) above the pin 213. By the action of the high-pressure refrigerant gas, the pin 213 resists the action of the pretension of the urging member and the gas pressure in the low-pressure passage, and the pin 213 moves downward in the pin hole 17 to the second position, The pin 213 is separated from the sliding vane of the second cylinder 203. In this case, the second cylinder 203 performs a normal compression operation. The high-pressure refrigerant gas flows downward along the gap between the pin 213 and the pin hole 217, but surface contact is formed between the bottom end surface of the pin 213 and the sealing partition plate 218, A face seal is formed at the lower end, and the lower end of the pin 213 is strongly pressed against the upper end surface of the seal partition plate 218 by the action of the pressure difference between the two ends. Therefore, the lower end of the pin 213 and the upper end surface of the seal partition plate 218 Since the face seal structure is far superior to the gap seal between the pin 213 and the pin hole 217, the amount of refrigerant leakage is greatly reduced. In addition, the performance of the compressor is improved.

本願では、ピンと低圧通路との間に面シール構造が設けられており、面シールによるシール効果が隙間シールよりも遥かに優れ、冷媒の漏れ量を大幅に低減し、そのうえ、可変容積シリンダが運転モードにある場合の圧縮機の効率を向上させ、圧縮機の性能を最適化する。そして、本願では、上述した面シール構造が設けられ、シール効果が優れているため、ピン孔の加工精度要求を下げ、ピン孔の加工コスト及び組立費用を低減し、圧縮機の生産品質の安定化を図る。   In the present application, a face seal structure is provided between the pin and the low pressure passage, and the sealing effect by the face seal is far superior to the gap seal, greatly reducing the amount of refrigerant leakage, and the variable volume cylinder is operated. Improve compressor efficiency when in mode and optimize compressor performance. In the present application, since the above-described face seal structure is provided and the sealing effect is excellent, the pin hole processing accuracy requirement is lowered, the pin hole processing cost and the assembly cost are reduced, and the production quality of the compressor is stabilized. Plan

特に定義されていない限り、本文に使用される技術用語及び科学用語は、当業者が通常に理解したものと意味が同じである。本文に使用される用語は、具体的な実施目的を説明するためのものに過ぎず、本発明を制限することは意図していない。本文に記載された「部件」等の用語は、単一の部品を表してもよいし、複数の部品の組み合わせを表してもよい。また、本文に記載された「取り付ける」、「設置」等の用語は、1つの部材が他の部材に直接接続されることを意味してもよいし、1つの部材が中間部材を介して他の部材に接続されることを意味してもよい。本文では、1つの実施形態に説明された特徴は、他の実施形態に適用されない場合又は特に説明された場合を除き、単独で又は他の特徴と組み合わせて他の実施形態に適用されることができる。   Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. The terminology used herein is for the purpose of describing particular implementation purposes only and is not intended to be limiting of the invention. Terms such as “part” described in the text may represent a single part or a combination of a plurality of parts. In addition, terms such as “attach” and “installation” described in the text may mean that one member is directly connected to another member, and one member is connected to the other via an intermediate member. It may mean that it is connected to the member. In this text, features described in one embodiment may be applied to other embodiments, alone or in combination with other features, unless otherwise described or otherwise specifically described. it can.

本発明を上述した実施形態によって説明したが、上述した実施形態は、列挙及び説明用に過ぎず、本発明を説明された実施形態の範囲内に制限することは意図していないのは、理解されるべきである。本発明の教唆に基づいて、他に様々な変形や修正が可能であり、これらの変形や修正はすべて本発明の権利範囲内にあるのは、当業者が理解することができる。
While the invention has been described in terms of the above-described embodiments, it will be understood that the above-described embodiments are merely for listing and description purposes and are not intended to limit the invention to the scope of the described embodiments. It should be. It will be understood by those skilled in the art that various other variations and modifications are possible based on the teachings of the present invention, and all these variations and modifications are within the scope of the present invention.

Claims (7)

スライディングベーン(11)の下側に設けられ、前記スライディングベーン(11)を係止可能な第1位置と前記スライディングベーン(11)から分離可能な第2位置を有するピン(213)を備え、
前記ピンの下方に低圧通路(215)が設けられている可変容積シリンダのスライディングベーン制御構造であって、
前記ピン(213)と低圧通路(215)との間に面シール構造が設けられ、前記ピン(213)が第2位置にある場合、前記ピン(213)の下端にて面シールが形成され
前記ピン(213)の下側にシール用仕切り板(218)が設けられ、前記ピン(213)の下端は、前記シール用仕切り板(218)の上面に当接可能であり、前記ピン(213)の下端と前記シール用仕切り板(218)の上面との間に前記面シールが形成されている、
ことを特徴とするスライディングベーン制御構造。
A pin ( 213) provided on a lower side of the sliding vane (11) and having a first position capable of locking the sliding vane (11) and a second position separable from the sliding vane (11);
A variable vane cylinder sliding vane control structure in which a low pressure passage ( 215) is provided below the pin,
When a face seal structure is provided between the pin ( 213) and the low pressure passageway ( 215), and the pin ( 213) is in the second position, a face seal is formed at the lower end of the pin ( 213). Formed ,
A seal partition plate (218) is provided below the pin (213), and a lower end of the pin (213) can be brought into contact with an upper surface of the seal partition plate (218), and the pin (213) ) And the upper surface of the sealing partition plate (218), the face seal is formed.
A sliding vane control structure characterized by that.
前記ピン(213)の下部に凹溝(2131)が設けられ、前記シール用仕切り板(218)の前記凹溝(2131)に対応する位置にて第1貫通孔(219)が設けられている、
ことを特徴とする請求項に記載のスライディングベーン制御構造。
A concave groove (2131) is provided in the lower portion of the pin (213), and a first through hole (219) is provided at a position corresponding to the concave groove (2131) of the sealing partition plate (218). ,
The sliding vane control structure according to claim 1 .
前記第1貫通孔(219)の水平面における最大サイズが、前記ピン(213)の最大外径よりも小さく形成される、
ことを特徴とする請求項に記載のスライディングベーン制御構造。
A maximum size in a horizontal plane of the first through hole (219) is formed smaller than a maximum outer diameter of the pin (213);
The sliding vane control structure according to claim 2 , wherein:
前記第1貫通孔(219)の水平面における最大サイズが、前記凹溝(2131)の水平面における最大サイズよりも小さく形成される、
ことを特徴とする請求項に記載のスライディングベーン制御構造。
The maximum size in the horizontal plane of the first through hole (219) is formed smaller than the maximum size in the horizontal plane of the concave groove (2131).
The sliding vane control structure according to claim 2 , wherein:
前記シール用仕切り板(218)に第2貫通孔(220)が設けられ、前記第2貫通孔(220)によって、前記低圧通路(215)が可変容積シリンダ(203)の吸入孔(216)に連通可能である、
ことを特徴とする請求項に記載のスライディングベーン制御構造。
The sealing partition plate (218) a second through-hole (220) is provided, by the second through hole (220), the suction hole (216) of said low pressure passage (215) is variable volume cylinder (203) Can communicate with the
The sliding vane control structure according to claim 2 , wherein:
請求項1乃至のいずれかに記載のスライディングベーン制御構造が設けられている、ことを特徴とする可変容積シリンダ。 Sliding vane control structure according to any one of claims 1 to 5 is provided, a variable volume cylinder, characterized in that. 請求項に記載の可変容積シリンダが設けられている、ことを特徴とする可変容量圧縮機。 The variable capacity compressor according to claim 6 , wherein the variable capacity cylinder is provided.
JP2018527862A 2015-12-18 2016-09-14 Sliding vane control structure of variable volume cylinder, variable volume cylinder and variable capacity compressor Active JP6609051B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510965018.X 2015-12-18
CN201510965018.XA CN105464978A (en) 2015-12-18 2015-12-18 Sliding piece control structure for variable capacity air cylinder, variable capacity air cylinder and variable capacity compressor
PCT/CN2016/099111 WO2017101537A1 (en) 2015-12-18 2016-09-14 Sliding vane control structure for variable-capacity air cylinder, variable-capacity air cylinder and variable-capacity compressor

Publications (2)

Publication Number Publication Date
JP2019500536A JP2019500536A (en) 2019-01-10
JP6609051B2 true JP6609051B2 (en) 2019-11-20

Family

ID=55603042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018527862A Active JP6609051B2 (en) 2015-12-18 2016-09-14 Sliding vane control structure of variable volume cylinder, variable volume cylinder and variable capacity compressor

Country Status (5)

Country Link
EP (1) EP3392507B1 (en)
JP (1) JP6609051B2 (en)
KR (1) KR102029610B1 (en)
CN (1) CN105464978A (en)
WO (1) WO2017101537A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105464978A (en) * 2015-12-18 2016-04-06 珠海格力节能环保制冷技术研究中心有限公司 Sliding piece control structure for variable capacity air cylinder, variable capacity air cylinder and variable capacity compressor
CN107476979A (en) * 2017-08-10 2017-12-15 珠海格力节能环保制冷技术研究中心有限公司 The assembly method of compressor, air conditioner and compressor
CN109058108B (en) * 2018-09-18 2023-10-03 珠海格力节能环保制冷技术研究中心有限公司 Variable volume cylinder assembly, compressor pump body and compressor
CN109958625B (en) * 2018-12-20 2020-01-07 珠海格力电器股份有限公司 Deformation control method and system for elastic part of pin and variable-capacity compressor
CN111075721B (en) * 2019-12-26 2021-11-19 珠海格力节能环保制冷技术研究中心有限公司 Pump body subassembly and variable volume compressor

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612085A (en) * 1979-07-12 1981-02-05 Sanyo Electric Co Ltd Capacity controller for multicylinder rotary compressor
DE2946906C2 (en) * 1979-11-21 1985-02-14 Bitzer Kühlmaschinenbau GmbH & Co KG, 7032 Sindelfingen Rotary compressor
JPS5910792A (en) * 1982-07-09 1984-01-20 Hitachi Ltd Rotary compressor
JPH05106576A (en) * 1991-08-05 1993-04-27 Daikin Ind Ltd Multi-cylinder sealed type rotary compressor
KR20050011549A (en) * 2003-07-23 2005-01-29 삼성전자주식회사 Capacity-Variable Type Rotary Compressor
KR100577200B1 (en) * 2003-12-20 2006-05-10 엘지전자 주식회사 Rotary Type Compressor Having Dual Capacity
ES2549673T3 (en) * 2005-02-23 2015-10-30 Lg Electronics, Inc. Rotary compressor of variable capacity type and cooling system that has the same
KR100620040B1 (en) * 2005-02-23 2006-09-11 엘지전자 주식회사 Modulation apparatus for rotary compressor and airconditioner with this
CN202579193U (en) 2012-05-22 2012-12-05 珠海格力节能环保制冷技术研究中心有限公司 Two-stage variable-capacity compressor
CN103573628B (en) * 2012-08-10 2016-02-03 珠海格力节能环保制冷技术研究中心有限公司 Compressor
CN203285689U (en) * 2013-05-20 2013-11-13 珠海格力节能环保制冷技术研究中心有限公司 Rolling rotor type compressor
CN104179685A (en) * 2013-05-20 2014-12-03 珠海格力节能环保制冷技术研究中心有限公司 Rolling rotor compressor and its operation control method
JP2014206173A (en) * 2014-07-04 2014-10-30 ▲荒▼田 哲哉 Discharge mechanism of positive-displacement compressor
CN103953544B (en) * 2014-04-10 2016-01-27 珠海格力节能环保制冷技术研究中心有限公司 Compressor and air conditioner
CN103982426B (en) * 2014-05-15 2016-08-17 珠海格力节能环保制冷技术研究中心有限公司 rolling rotor compressor and pump body structure thereof
CN204344461U (en) * 2014-12-19 2015-05-20 珠海格力节能环保制冷技术研究中心有限公司 Compressor
CN205446037U (en) * 2015-12-18 2016-08-10 珠海格力节能环保制冷技术研究中心有限公司 Gleitbretter control structure, varactor cylinder and variable volume compressor of varactor cylinder
CN105464978A (en) * 2015-12-18 2016-04-06 珠海格力节能环保制冷技术研究中心有限公司 Sliding piece control structure for variable capacity air cylinder, variable capacity air cylinder and variable capacity compressor

Also Published As

Publication number Publication date
KR20180081778A (en) 2018-07-17
CN105464978A (en) 2016-04-06
EP3392507A1 (en) 2018-10-24
EP3392507A4 (en) 2019-07-24
WO2017101537A1 (en) 2017-06-22
EP3392507B1 (en) 2023-06-07
JP2019500536A (en) 2019-01-10
KR102029610B1 (en) 2019-10-07

Similar Documents

Publication Publication Date Title
JP6609051B2 (en) Sliding vane control structure of variable volume cylinder, variable volume cylinder and variable capacity compressor
KR101973307B1 (en) Scroll compressor
US8147215B2 (en) Reciprocating-piston compressor having non-contact gap seal
CN103486032B (en) Two-stage variable capacity compressor and air conditioner
US10233929B2 (en) Rotary compressor having two cylinders
CN103807131A (en) Piston-type compressor
CN102230471B (en) Rotary compressor with variable volume
JP2010065635A (en) Scroll compressor
US10502210B2 (en) Variable-capacity compressor and refrigeration device having same
CN205101227U (en) Rotary compression mechanism and compressor and system comprising same
JP2023019120A (en) Piston and reciprocating compressor
JP5386566B2 (en) Scroll compressor
CN205446037U (en) Gleitbretter control structure, varactor cylinder and variable volume compressor of varactor cylinder
WO2016121021A1 (en) Screw compressor
CN109058108B (en) Variable volume cylinder assembly, compressor pump body and compressor
US8991297B2 (en) Compressors with improved sealing assemblies
US20170074259A1 (en) Compressor Piston Shape to Reduce Clearance Volume
JP6350916B2 (en) Rotary compressor
CN105822553A (en) Multi-cylinder rotary compressor
CN111373147B (en) Reciprocating compressor
CN103291620B (en) Multi-cylindrical rotary compressor and controlling method thereof
CN109595166B (en) Compressor
JP2023019119A (en) Piston and reciprocating compressor
Kawamura et al. A Study on High Efficiency Wing-vane Compressor-Part. 3: Experimental Evaluation of the Prototype
KR20200110722A (en) Gasket for compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180524

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20181018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191024

R150 Certificate of patent or registration of utility model

Ref document number: 6609051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250