JP3897751B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP3897751B2
JP3897751B2 JP2003385282A JP2003385282A JP3897751B2 JP 3897751 B2 JP3897751 B2 JP 3897751B2 JP 2003385282 A JP2003385282 A JP 2003385282A JP 2003385282 A JP2003385282 A JP 2003385282A JP 3897751 B2 JP3897751 B2 JP 3897751B2
Authority
JP
Japan
Prior art keywords
oil
flow path
compressor
valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003385282A
Other languages
Japanese (ja)
Other versions
JP2005147511A (en
Inventor
英次 神吉
啓介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003385282A priority Critical patent/JP3897751B2/en
Publication of JP2005147511A publication Critical patent/JP2005147511A/en
Application granted granted Critical
Publication of JP3897751B2 publication Critical patent/JP3897751B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Description

本発明は、容量調整可能な油冷式2段スクリュ圧縮機及び過冷却器を用いた冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus using an oil-cooled two-stage screw compressor capable of adjusting capacity and a supercooler.

従来、油冷式2段圧縮機及び過冷却器を用いた冷凍装置は公知である(例えば、特許文献1参照。)。
特開平4−28975号公報
Conventionally, a refrigeration apparatus using an oil-cooled two-stage compressor and a supercooler is known (for example, see Patent Document 1).
JP-A-4-28975

特許文献1には、油冷式2段圧縮機、油回収器、ホットガス除霜装置、凝縮器、過冷却器、膨張弁、蒸発器及び上記ホットガス除霜装置を経て上記圧縮機に戻る冷媒循環流路と上記油回収器内の油を油冷却器を経て上記圧縮機内の給油箇所に導く油流路とを備えた冷凍装置が開示されている。また、この冷凍装置には、上記冷媒循環流路における上記凝縮器と上記過冷却器との間の部分から分岐した後、二手に分かれ、一方は油冷却用開閉弁、膨張弁を経て上記油冷却器を通過し、上記圧縮機の中間圧力部に至り、他方は過冷却用開閉弁、膨張弁を経て上記過冷却器を通過し、上記圧縮機の中間圧力部に至る分岐流路と、上記冷媒循環流路における上記油回収器と上記ホットガス除霜装置との間の部分から分岐してホットガス用開閉弁を経て上記冷媒循環流路における上記膨張弁と上記蒸発器との間の部分に合流するホットガス除霜流路とが設けられている。   In Patent Document 1, an oil-cooled two-stage compressor, an oil recovery device, a hot gas defroster, a condenser, a supercooler, an expansion valve, an evaporator, and the hot gas defroster are returned to the compressor. A refrigeration apparatus is disclosed that includes a refrigerant circulation channel and an oil channel that guides oil in the oil recovery unit to an oil supply location in the compressor through an oil cooler. Further, this refrigeration apparatus branches from the portion between the condenser and the supercooler in the refrigerant circulation flow path, and then splits into two hands, one of which passes through the oil cooling on-off valve and the expansion valve, and the oil Passing through the cooler, reaching the intermediate pressure part of the compressor, the other passing through the supercooler via the supercooling on-off valve and expansion valve, the branch flow path to the intermediate pressure part of the compressor, Branching from a portion between the oil recovery unit and the hot gas defrosting device in the refrigerant circulation channel, and via a hot gas on / off valve, between the expansion valve and the evaporator in the refrigerant circulation channel A hot gas defrosting channel that joins the part is provided.

そして、この冷凍装置では、上記蒸発器を除霜するホットガス除霜時に、上記圧縮機の中間圧力を制御するために、上記ホットガス用開閉弁が開かれるとともに、一定時間の間、上記油冷却用開閉弁及び上記過冷却用開閉弁が閉じられ、油冷却用膨張弁、過冷却用膨張弁に供給される液冷媒が止められるようになっている。   In the refrigeration apparatus, the hot gas on-off valve is opened to control the intermediate pressure of the compressor at the time of hot gas defrosting for defrosting the evaporator, and the oil for a certain period of time. The cooling on-off valve and the supercooling on-off valve are closed, and the liquid refrigerant supplied to the oil cooling expansion valve and the supercooling expansion valve is stopped.

特許文献1に記載の冷凍装置は、吐出圧力と中間圧力との差圧(=吐出圧力−中間圧力)を利用して圧縮機内の軸受への給油を行う自己給油方式によるものである。このような冷凍装置の場合、一般的に、運転中、蒸発器での負荷が大きくなると、上記圧縮機の吸込圧力が上昇するため、上記差圧が減少する状態が発生する。そして、この減少が続くと、やがて潤滑不足による上記軸受での油切れを起こし、軸受部での損傷事故を招くおそれがある。   The refrigeration apparatus described in Patent Document 1 is based on a self-lubricating system that supplies oil to a bearing in a compressor using a differential pressure (= discharge pressure-intermediate pressure) between a discharge pressure and an intermediate pressure. In the case of such a refrigeration apparatus, generally, when the load on the evaporator increases during operation, the suction pressure of the compressor increases, so that a state in which the differential pressure decreases occurs. If this decrease continues, the oil in the bearing will eventually run out due to insufficient lubrication, which may cause a damage accident in the bearing.

そこで、特許文献1に記載の冷凍装置では、ホットガス除霜運転へ移行する直後から一定時間の間、上記油冷却用開閉弁及び上記過冷却用開閉弁が閉状態とされるようになっているが、この一定時間を何に基づいて決定されるかについては特許文献1には明示されていない。ただし、この特許文献1に記載の冷凍装置は、飽和湿りガスを圧縮機の中間ケーシング部に吸入し、飽和湿りガスと低段吐出ガスと混合し、そのガスを上記圧縮機に内蔵された電動機の冷却に供したうえで、高段側へ送る構成となっている。電動機の過熱を回避するためには、ガスの供給を長時間にわたって停止することはできず、つまりは、上記油冷却用開閉弁、上記過冷却用開閉弁が閉となる上記一定時間を長時間に設定することができない。ところが、その一方で、上記一定時間を短くする程、上記差圧が減少し過ぎる危険性が増すという問題が生じる。   Therefore, in the refrigeration apparatus described in Patent Document 1, the oil cooling on / off valve and the supercooling on / off valve are closed for a certain time immediately after the transition to the hot gas defrosting operation. However, what is determined based on this fixed time is not explicitly disclosed in Patent Document 1. However, the refrigeration apparatus described in Patent Document 1 sucks saturated wet gas into an intermediate casing portion of a compressor, mixes the saturated wet gas with low-stage discharge gas, and mixes the gas with the electric motor built in the compressor. After being used for cooling, it is sent to the higher stage. In order to avoid overheating of the electric motor, the gas supply cannot be stopped for a long time. That is, the oil cooling on-off valve and the over-cooling on-off valve are closed for a long time. Can not be set. However, on the other hand, there is a problem that the risk that the differential pressure is excessively reduced increases as the fixed time is shortened.

また、上記差圧が減少し過ぎる状態は、ホットガス除霜時以外に、通常の冷凍運転時に蒸発器での負荷が過大になった際にも生じる。さらに特許文献1に記載の冷凍装置には設けられていないが、圧縮機の吐出側と吸込み側とを直結するバイパス流路が設けられた冷凍装置もあり、このバイパス流路により吐出ガスを吸込み側に戻すホットガスバイパス運転の際にも、上記差圧減の状態は生じる。このような差圧減の状態に対して、特許文献1に記載のように、一定時間の間、上記油冷却用開閉弁及び上記過冷却用開閉弁が閉状態としても、上記同様の問題が生じる。   Further, the state in which the differential pressure is excessively reduced occurs not only during hot gas defrosting but also when the load on the evaporator becomes excessive during normal refrigeration operation. Further, although not provided in the refrigeration apparatus described in Patent Document 1, there is also a refrigeration apparatus provided with a bypass flow path that directly connects the discharge side and the suction side of the compressor, and the discharge gas is sucked through the bypass flow path. Also in the hot gas bypass operation to return to the side, the above-described state of the differential pressure reduction occurs. Even if the oil cooling on-off valve and the supercooling on-off valve are closed for a certain period of time as described in Patent Document 1, the same problem as described above is caused against such a state in which the differential pressure is reduced. Arise.

本発明は、上記従来の問題をなくすことを課題としてなされたもので、吐出圧力と中間圧力との間で自己給油に必要な差圧を確保し、圧縮機における潤滑不足によるトラブルの発生を防止することを可能とした冷凍装置を提供しようとするものである。   The present invention has been made with the object of eliminating the above-mentioned conventional problems, ensuring a differential pressure necessary for self-lubrication between discharge pressure and intermediate pressure, and preventing troubles due to insufficient lubrication in the compressor. It is an object of the present invention to provide a refrigeration apparatus that can do this.

上記課題を解決するために、本発明は、油冷式2段スクリュ圧縮機に続いて、少なくとも油回収器、凝縮器、過冷却器、主膨張弁及び蒸発器が介設された冷媒循環流路と上記油回収器内の油を油冷却器を介して上記圧縮機内の給油箇所に導く油流路とを備え、上記過冷却器には、上記冷媒循環流路における上記凝縮器と上記主膨張弁との間の部分から分岐し、過冷却用開閉弁、過冷却用膨張弁を経由した過冷却用流路が通過し、この分岐流路は上記圧縮機の中間圧力部に通じるように設けられた冷凍装置において、上記油流路の油流路部分への分岐部に介在する流路切換え部での流路切換えにより作動し、上記圧縮機をフルロード状態かアンロード状態にする容量調整手段と、上記中間圧力部の圧力を検出し、検出圧力を示す中間圧力信号を出力する中間圧力検出器と、上記圧縮機の吐出圧力を検出し、検出圧力を示す吐出圧力信号を出力する吐出圧力検出器と、上記中間圧力検出器及び吐出圧力検出器から検出圧力を示す圧力信号を受け、吐出圧力と中間圧力の差圧を算出し、この差圧が上記圧縮機内での自己給油に必要な範囲にある場合には、上記圧縮機をフルロード状態とし、かつ上記過冷却用開閉弁を開とし、上記差圧が上記範囲から減少してゆく場合には、この差圧がまず第1設定値に達すると、上記圧縮機をアンロード状態とし、さらに上記差圧が減少し、上記第1設定値よりも小さい第2設定値に達すると上記過冷却用開閉弁を閉とする制御をする演算制御部とを設けた構成とした。   In order to solve the above-mentioned problems, the present invention provides a refrigerant circulation flow in which at least an oil recovery unit, a condenser, a supercooler, a main expansion valve, and an evaporator are interposed after an oil-cooled two-stage screw compressor. And an oil passage for guiding oil in the oil recovery device to an oil supply location in the compressor via an oil cooler, and the supercooler includes the condenser and the main in the refrigerant circulation passage. Branch from the portion between the expansion valve and the supercooling on / off valve and the supercooling flow path via the supercooling expansion valve pass, and this branch flow path leads to the intermediate pressure part of the compressor. In the refrigeration apparatus provided, the capacity that operates by switching the flow path at the flow path switching section interposed in the branch section of the oil flow path to the oil flow path portion, and makes the compressor full load state or unload state An intermediate pressure signal indicating the detected pressure is detected by adjusting means and the pressure of the intermediate pressure portion. An intermediate pressure detector, a discharge pressure detector for detecting a discharge pressure of the compressor and outputting a discharge pressure signal indicating the detected pressure, and a pressure indicating a detected pressure from the intermediate pressure detector and the discharge pressure detector In response to the signal, the differential pressure between the discharge pressure and the intermediate pressure is calculated, and when this differential pressure is within the range necessary for self-lubricating in the compressor, the compressor is brought into a full load state and the supercooling is performed. When the on-off valve is opened and the differential pressure decreases from the range, when the differential pressure reaches the first set value, the compressor is unloaded and the differential pressure is further reduced. In addition, an arithmetic control unit is provided that performs control to close the overcooling on-off valve when the second set value smaller than the first set value is reached.

さらに、本発明は、上記構成に加えて、上記演算制御部が、上記第2設定値以下の状態からの上記差圧の増大時に、上記第2設定値よりも大きい第3設定値に達すると上記過冷却用開閉弁を開とする制御を行う構成とした。   Further, in the present invention, in addition to the above configuration, when the arithmetic control unit reaches a third set value larger than the second set value when the differential pressure increases from a state equal to or lower than the second set value. It was set as the structure which performs control which opens the said on-off valve for supercooling.

さらに、本発明は、上記構成に加えて、上記演算制御部が、上記過冷却用開閉弁の開状態下、上記第1設定値以下の状態からの上記差圧の増大時に、上記第1設定値よりも大きい第4設定値に達すると上記圧縮機をフルロード状態にする制御を行う構成とした。   Furthermore, in addition to the above-described configuration, the present invention may be configured such that the arithmetic control unit performs the first setting when the differential pressure increases from a state equal to or lower than the first set value while the overcooling on-off valve is open. When the fourth set value larger than the value is reached, the compressor is controlled to be in a full load state.

本発明に係る冷凍装置によれば、油潤滑に必要な差圧を確保でき、圧縮機の運転範囲が拡大されるとともに、潤滑不足によるトラブルの発生を防止することが可能になるという効果を奏する。   According to the refrigeration apparatus of the present invention, the differential pressure necessary for oil lubrication can be ensured, and the operation range of the compressor can be expanded, and the occurrence of trouble due to insufficient lubrication can be prevented. .

さらに、上記第2設定値よりも大きい第3設定値に達すると上記過冷却用開閉弁を開とする制御により過冷却用開閉弁でのハンチングが防止できるという効果を奏する。   Further, when the third set value that is larger than the second set value is reached, there is an effect that the hunting at the supercooling on / off valve can be prevented by the control to open the supercooling on / off valve.

さらに、上記第1設定値よりも大きい第4設定値に達すると上記圧縮機をフルロード状態にする制御により流路切換え部でのハンチングが防止できるという効果を奏する。   Furthermore, when the fourth set value that is larger than the first set value is reached, there is an effect that hunting at the flow path switching unit can be prevented by controlling the compressor to be in a full load state.

次に、本発明の実施形態を図面にしたがって説明する。
図1は、本発明に係る冷凍装置1を示し、この冷凍装置1には油冷式2段スクリュ圧縮機11、油分離回収器12、凝縮器13、過冷却器14、主開閉弁15、主膨張弁16及び蒸発器17が介設された冷媒循環流路Iが形成されている。
油冷式2段スクリュ圧縮機11は、モータ21により駆動される第1段圧縮機22、及び第2段圧縮機23を備え、第1段圧縮機22の吐出口と第2段圧縮機23の吸込口とは中間流路24により連通している。この第1段圧縮機22については、図2〜4を参照して、さらに詳しく後述する。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a refrigeration apparatus 1 according to the present invention. This refrigeration apparatus 1 includes an oil-cooled two-stage screw compressor 11, an oil separation and recovery unit 12, a condenser 13, a supercooler 14, a main on-off valve 15, A refrigerant circulation channel I in which the main expansion valve 16 and the evaporator 17 are interposed is formed.
The oil-cooled two-stage screw compressor 11 includes a first-stage compressor 22 and a second-stage compressor 23 driven by a motor 21, and the discharge port of the first-stage compressor 22 and the second-stage compressor 23. The suction port is in communication with the intermediate flow path 24. The first stage compressor 22 will be described in more detail later with reference to FIGS.

第2段圧縮機23の吐出側に位置する油分離回収器12内には油分離エレメント25が設けられ、その下方は油溜まり部26となっている。この油溜まり部26には油流路IIが接続され、油溜まり部26の油が油冷却器27を経て、その一部は流路切換え部28を経て、さらに油流路部分IIaを経て第1段圧縮機22内のリフト弁47の背面側の空間に導かれ得るようになっている。また、残りの油は、油流路部分IIcを経て、第1段圧縮機22内のガス圧縮空間、軸受・軸封部に、油流路部分IIdを経て第2段圧縮機23内のガス圧縮空間、軸受・軸封部に導かれている。なお、流路切換え部28を経て、さらに油流路部分IIaを経て第1段圧縮機22内のリフト弁47の背面側の空間に油を導き得るようにした構成については、さらに詳しく後述する。   An oil separation element 25 is provided in the oil separation / recovery unit 12 located on the discharge side of the second stage compressor 23, and an oil reservoir 26 is provided below the oil separation element 25. An oil flow path II is connected to the oil reservoir 26, and the oil in the oil reservoir 26 passes through an oil cooler 27, a part of which passes through a flow path switching unit 28, and further passes through an oil flow path portion IIa. It can be guided to the space on the back side of the lift valve 47 in the first stage compressor 22. The remaining oil passes through the oil passage portion IIc, enters the gas compression space in the first stage compressor 22 and the bearing / shaft seal portion, and passes through the oil passage portion IId to the gas in the second stage compressor 23. It is led to the compression space, bearing and shaft seal. The configuration in which oil can be guided to the space on the back side of the lift valve 47 in the first stage compressor 22 through the flow path switching unit 28 and further through the oil flow path portion IIa will be described in more detail later. .

過冷却器14と主開閉弁15との間における冷媒循環流路Iの部分では、過冷却用開閉弁31、過冷却用膨張弁32を経た後、過冷却器14を通過して中間流路24に至る過冷却用流路IIIが分岐している。
中間流路24には中間圧力検出可能に中間圧力検出器33が設けられ、第2段圧縮機23の吐出側には吐出圧力検出可能に吐出圧力検出器34が設けられている。中間圧力検出器33による検出圧力を示す中間圧力信号、及び吐出圧力検出器34による検出圧力を示す吐出圧力信号のそれぞれは演算制御部35に入力され、演算制御部35により両圧力の差圧ΔP(=吐出圧力Pd−中間圧力Pm)に基づき、後述するように過冷却用開閉弁31の開閉、及び流路切換え部28における流路切換えの制御が行われる。
In the portion of the refrigerant circulation flow path I between the supercooler 14 and the main on-off valve 15, after passing through the supercooling on-off valve 31 and the supercooling expansion valve 32, it passes through the supercooler 14 and passes through the intermediate flow path. The subcooling flow path III reaching 24 is branched.
An intermediate pressure detector 33 is provided in the intermediate flow path 24 so that the intermediate pressure can be detected, and a discharge pressure detector 34 is provided on the discharge side of the second stage compressor 23 so that the discharge pressure can be detected. Each of the intermediate pressure signal indicating the detected pressure by the intermediate pressure detector 33 and the discharge pressure signal indicating the detected pressure by the discharge pressure detector 34 is input to the arithmetic control unit 35, and the differential pressure ΔP between the two pressures by the arithmetic control unit 35. Based on (= discharge pressure Pd−intermediate pressure Pm), control of opening / closing of the supercooling on / off valve 31 and channel switching in the channel switching unit 28 is performed as described later.

図2〜4に示すように、第1段圧縮機22は、蒸発器17からの冷媒ガスが流入する吸込口41が一方に形成され、中間流路24に続く吐出口42が他方に形成されたケーシング43内に回転可能に収容された互いに噛合う雌雄一対のスクリュロータ、即ち雌ロータ44及び雄ロータ45を有している。また、ケーシング43の吐出側には有底孔46が穿設され、この内部に進退可能にリフト弁47が嵌挿されており、有底孔46のスクリュロータ側端部は雌ロータ44の端面の一部に開口し、かつ吸込口41と有底孔46と連通させる貫通孔48にも開口している。さらに、油流路IIは一例として三方切換弁を用いた流路切換え部28にて、二手に分岐し、その内の一方の油流路部分IIaは有底孔46の底部に面したリフト弁47の背面側における有底孔46内の空間に通じ、他方の油流路部分IIbは吸込口41に通じている。そして、流路切換え部28における流路切換えにより、分岐前の油流路IIの部分が油流路部分IIaに連通し、油流路部分IIbとは遮断された状態になるか、或いは油流路部分IIbが分岐前の油流路IIの部分とは遮断され、油流路部分IIaに連通した状態となる。   As shown in FIGS. 2 to 4, in the first stage compressor 22, the suction port 41 into which the refrigerant gas from the evaporator 17 flows is formed on one side, and the discharge port 42 following the intermediate flow path 24 is formed on the other side. And a pair of male and female screw rotors, ie, a female rotor 44 and a male rotor 45, which are rotatably accommodated in a casing 43. Further, a bottomed hole 46 is formed on the discharge side of the casing 43, and a lift valve 47 is fitted therein so as to be able to advance and retreat. The end of the bottomed hole 46 on the screw rotor side is the end face of the female rotor 44. And a through hole 48 that communicates with the suction port 41 and the bottomed hole 46 is also opened. Furthermore, the oil flow path II is bifurcated by a flow path switching unit 28 using a three-way switching valve as an example, and one of the oil flow path portions IIa is a lift valve facing the bottom of the bottomed hole 46. 47 communicates with the space in the bottomed hole 46 on the back side, and the other oil passage portion IIb communicates with the suction port 41. Then, by switching the flow path in the flow path switching unit 28, the portion of the oil flow path II before branching communicates with the oil flow path portion IIa and is disconnected from the oil flow path portion IIb, or the oil flow The path portion IIb is cut off from the portion of the oil flow path II before branching, and is in a state of communicating with the oil flow path portion IIa.

なお、図2では、分岐前の油流路IIの部分が油流路部分IIaに連通し、油流路部分IIbとは遮断された状態を示している。この場合、高圧の油がリフト弁47の背面側の空間に充満し、リフト弁47が前進して雌ロータ44の端面及び貫通孔48の右方端面を閉じている。従って、圧縮された冷媒ガスが雌ロータ44の右方端面から漏れ出て貫通孔48を介して吸込口41に戻ることはなく、第1段圧縮機22はフルロード状態となる。従って、油冷式2段スクリュ圧縮機11自体もフルロード状態となる。   FIG. 2 shows a state in which the portion of the oil passage II before branching communicates with the oil passage portion IIa and is blocked from the oil passage portion IIb. In this case, high-pressure oil fills the space on the back side of the lift valve 47, and the lift valve 47 moves forward to close the end face of the female rotor 44 and the right end face of the through hole 48. Therefore, the compressed refrigerant gas does not leak from the right end surface of the female rotor 44 and return to the suction port 41 through the through hole 48, and the first stage compressor 22 is in a full load state. Accordingly, the oil-cooled two-stage screw compressor 11 itself is also in a full load state.

一方、図4では、油流路部分IIbが分岐前の油流路IIの部分とは遮断され、油流路部分IIaに連通した状態を示している。この場合、リフト弁47の前面には雌ロータ44の歯溝部において圧縮された冷媒ガスの圧力が作用するとともに、リフト弁47の背面側の油は油流路部分IIa及びIIbを介して吸込口41に逃がされるため、リフト弁47は後退し、
雌ロータ44の右方端面と貫通孔48とが連通する。従って、圧縮された冷媒ガスは、矢印Xで示すように、雌ロータ44の右方端面から有底孔46の開口部及び貫通孔48を介して吸込口41に逃がされ、第1段圧縮機22はアンロード状態となる。従って、油冷式2段スクリュ圧縮機11自体もアンロード状態となる。
なお、図2及び4において、流路切換え部28である三方切換弁の黒塗り部分は流路が閉じられていることを示し、白抜きの部分は流路が開かれていることを示している。
On the other hand, FIG. 4 shows a state in which the oil passage portion IIb is disconnected from the portion of the oil passage II before branching and communicates with the oil passage portion IIa. In this case, the pressure of the refrigerant gas compressed in the tooth groove portion of the female rotor 44 acts on the front surface of the lift valve 47, and the oil on the back surface side of the lift valve 47 is sucked through the oil passage portions IIa and IIb. 41, the lift valve 47 moves backward,
The right end surface of the female rotor 44 and the through hole 48 communicate with each other. Accordingly, the compressed refrigerant gas is released from the right end surface of the female rotor 44 to the suction port 41 through the opening of the bottomed hole 46 and the through hole 48 as indicated by the arrow X, and is compressed in the first stage. The machine 22 is in an unloaded state. Accordingly, the oil-cooled two-stage screw compressor 11 itself is also unloaded.
2 and 4, the black portion of the three-way switching valve that is the flow path switching unit 28 indicates that the flow path is closed, and the white portion indicates that the flow path is open. Yes.

次に、運転中の冷凍装置1について説明する。
冷媒循環流路Iにおいて、第1段圧縮機22の吸込口41より吸込まれた冷媒ガスは圧縮され、吐出口42から中間流路24を経て、油流路IIからの油を伴って第2段圧縮機23の図示しない吸込口より吸込まれ、さらに第2段圧縮機23により圧縮されて図示しない吐出口から油とともに油分離回収器12に向けて吐出される。また、中間流路24では上述した油の他に、過冷却器14を通過してきた過冷却用流路IIIからの冷媒も合流するようになっている。
Next, the refrigeration apparatus 1 in operation will be described.
In the refrigerant circulation flow path I, the refrigerant gas sucked from the suction port 41 of the first stage compressor 22 is compressed, passes through the intermediate flow path 24 from the discharge port 42, and is second with oil from the oil flow path II. The air is sucked in from a suction port (not shown) of the stage compressor 23, further compressed by the second stage compressor 23, and discharged from the discharge port (not shown) together with oil toward the oil separator / collector 12. In addition to the oil described above, the intermediate channel 24 also joins the refrigerant from the supercooling channel III that has passed through the supercooler 14.

油分離回収器12では、圧縮された冷媒ガスと油とが分離され、冷媒ガスは油分離エレメント25を通過して凝縮器13へと流動してゆく一方、分離された油は滴下し、油溜まり部26に回収される。凝縮器13に流入した冷媒ガスは熱を放出して凝縮して冷媒液となり、凝縮器13を出て、過冷却器14を通過する。そして、この冷媒液の一部は過冷却用流路IIIに分流し、過冷却用開閉弁31及び過冷却用膨張弁32を経て、絞り膨張させられて温度を下げ、過冷却器14において冷媒循環流路I中の冷媒液を過冷却した後、自身は冷媒ガスに変化して上述したように中間流路24の冷媒ガスに合流する。そして、この過冷却された冷媒循環流路I中の冷媒液は、過冷却用流路IIIに分流する上述した一部の冷媒液を除き、主開閉弁15及び主膨張弁16を経て絞り膨張させられ、温度を下げた後、蒸発器17で外部から熱を奪い、蒸発して冷媒ガスとなって第1段圧縮機22の吸込口41に戻る。そして、以後、上記同様の循環を繰り返す。   In the oil separator / collector 12, the compressed refrigerant gas and oil are separated, and the refrigerant gas flows through the oil separation element 25 and flows to the condenser 13, while the separated oil drops, and the oil Collected in the reservoir 26. The refrigerant gas flowing into the condenser 13 releases heat and condenses into a refrigerant liquid, exits the condenser 13, and passes through the subcooler 14. A part of this refrigerant liquid is diverted to the supercooling flow path III and is expanded through the supercooling on-off valve 31 and the supercooling expansion valve 32 to reduce the temperature. After the refrigerant liquid in the circulation channel I is supercooled, it changes to the refrigerant gas and merges with the refrigerant gas in the intermediate channel 24 as described above. Then, the refrigerant liquid in the supercooled refrigerant circulation flow path I is throttled and expanded through the main on-off valve 15 and the main expansion valve 16 except for the above-described part of the refrigerant liquid that is divided into the supercooling flow path III. After the temperature is lowered, the evaporator 17 takes heat from the outside, evaporates and becomes refrigerant gas, and returns to the suction port 41 of the first stage compressor 22. Thereafter, the same circulation as described above is repeated.

一方、油溜まり部26の油は油流路IIに流入し、油冷却器27で冷却されて、一部の油は分流して第1段圧縮機22内のガス圧縮空間、軸受・軸封部と、第2段圧縮機23内のガス圧縮空間、軸受・軸封部に、それぞれ給油される。また、この分流した油を除く残りの油は流路切換え部28に導かれ、以下のように制御される流路切換え部28により第1段圧縮機22内に供給されるともに、第1段圧縮機22をフルロード状態或いはアンロード状態とするリフト弁47により、第1段圧縮機22の容量調整を行わせる働きをする。   On the other hand, the oil in the oil reservoir 26 flows into the oil flow path II and is cooled by the oil cooler 27, and a part of the oil is diverted to the gas compression space in the first stage compressor 22, the bearing / shaft seal. And the gas compression space in the second stage compressor 23 and the bearing / shaft seal are respectively supplied with oil. Further, the remaining oil excluding the diverted oil is guided to the flow path switching unit 28 and supplied into the first stage compressor 22 by the flow path switching unit 28 controlled as follows. The lift valve 47 that puts the compressor 22 in a full load state or an unload state serves to adjust the capacity of the first stage compressor 22.

ついで、図5(横軸:差圧ΔP、縦軸:(上段)流路切換え部の状態、(下段)過冷却用開閉弁の状態)を参照しつつ、運転中における演算制御部35による流路切換え部28及び過冷却用開閉弁31に対する制御について説明する。
油冷式2段スクリュ圧縮機11、特に第2段圧縮機23において、軸受・軸封部へは吐出圧力と中間圧力との差圧ΔPによって自己給油がなされるようになっており、運転中、差圧ΔPを自己給油可能な状態に保つ範囲の値、例えば第1設定値P1より大きく保つ必要がある。このため、リフト弁47が前進位置にあるフルロード状態で、かつ過冷却用流路IIIにも冷媒を流している状態での運転中において、差圧ΔPが第1設定値P1より大きい状態から徐々に小さくなってゆき、第1設定値P1に達すると、まず演算制御部35からの制御信号により流路切換え部28において流路切換えが行われ、油冷式2段スクリュ圧縮機11は容量調整されてリフト弁47が後退したアンロード状態に移行する。この結果、第1段圧縮機22の吸込み圧力が高い場合でも、第1段圧縮機22からの圧縮された冷媒ガスの吐出は抑制され、油冷式2段スクリュ圧縮機11は中間圧力が低下し易い状態となる。なお、図5における縦軸の“FL”は油冷式2段スクリュ圧縮機11をフルロード状態にする流路切換え部28の状態を意味し、“UL”は油冷式2段スクリュ圧縮機11をアンロード状態にする流路切換え部28の状態を意味している。
Next, with reference to FIG. 5 (horizontal axis: differential pressure ΔP, vertical axis: (upper stage) state of flow path switching unit, (lower stage) state of on / off valve for supercooling), flow by arithmetic control unit 35 during operation Control for the path switching unit 28 and the supercooling on-off valve 31 will be described.
In the oil-cooled two-stage screw compressor 11, particularly the second-stage compressor 23, the bearing / shaft seal is self-lubricated by the differential pressure ΔP between the discharge pressure and the intermediate pressure, and is in operation. In addition, it is necessary to keep the differential pressure ΔP larger than a value within a range in which the differential pressure ΔP can be self-lubricated, for example, the first set value P1. For this reason, the differential pressure ΔP is greater than the first set value P1 during the operation in the full load state where the lift valve 47 is in the forward position and the refrigerant is also flowing through the supercooling flow path III. When it gradually decreases and reaches the first set value P1, the flow path switching unit 28 first switches the flow path according to the control signal from the arithmetic control unit 35, and the oil-cooled two-stage screw compressor 11 has the capacity. After the adjustment, the lift valve 47 moves back to the unloaded state. As a result, even when the suction pressure of the first stage compressor 22 is high, the discharge of the compressed refrigerant gas from the first stage compressor 22 is suppressed, and the oil-cooled two-stage screw compressor 11 has a reduced intermediate pressure. It will be easy to do. Note that “FL” on the vertical axis in FIG. 5 means the state of the flow path switching unit 28 that brings the oil-cooled two-stage screw compressor 11 into a full load state, and “UL” means the oil-cooled two-stage screw compressor. 11 represents the state of the flow path switching unit 28 that puts 11 into the unloaded state.

さらに、差圧ΔPが小さくなってゆく傾向が止まらず、差圧ΔPが第1設定値P1よりも小さい第2設定値P2(<P1)に達すると、演算制御部35からの制御信号により過冷却用開閉弁31が閉の状態にされ、過冷却用流路IIIから中間流路24への冷媒の供給も停止させられる。この結果、油冷式2段スクリュ圧縮機11はより一層中間圧力が低下し易い状態となり、自己給油に必要な差圧ΔPが確保され、油冷式2段スクリュ圧縮機11の運転範囲の拡大、及び軸受に対する油潤滑の不足によるトラブルの発生防止がなされるようになっている。   Furthermore, when the differential pressure ΔP does not stop decreasing and the differential pressure ΔP reaches the second set value P2 (<P1) that is smaller than the first set value P1, the control signal from the arithmetic control unit 35 causes an excess. The cooling on-off valve 31 is closed, and the supply of refrigerant from the subcooling channel III to the intermediate channel 24 is also stopped. As a result, the oil-cooled two-stage screw compressor 11 is in a state in which the intermediate pressure is more likely to decrease, and the differential pressure ΔP necessary for self-lubricating is ensured, and the operating range of the oil-cooled two-stage screw compressor 11 is expanded. And troubles due to insufficient oil lubrication of the bearings are prevented.

なお、第1設定値P1は、軸受の潤滑が十分なされるのに、さらには軸封部の軸封効果を十分発揮するのに必要な給油を実現し得る差圧の下限値を、第2設定値P2は、自己給油可能な差圧の下限値を、それぞれ経験則的に導いたうえ、それら下限値に基づいて設定されるのが望ましい。   The first set value P1 is a lower limit value of the differential pressure that can realize the lubrication necessary for sufficiently exhibiting the shaft seal effect of the shaft seal portion even when the bearing is sufficiently lubricated. The set value P2 is desirably set based on empirically derived lower limit values of the differential pressure that can be self-lubricated and based on these lower limit values.

上述した制御の結果、差圧ΔPが上昇傾向に転じ、まず第2設定値P2よりも大きく、第1設定値P1以下の第3設定値P3(P2<P3≦P1)に達すると、過冷却用開閉弁31が開の状態にされ、過冷却用流路IIIから中間流路24への冷媒の供給が始められる。このように、第2設定値P2と第3設定値P3との間で差があるようにすることにより、過冷却用開閉弁31でのハンチングが防止される。さらに、差圧ΔPが上昇し続けて第1設定値P1よりも大きい第4設定値P4(>P1)に達すると、流路切換え部28において流路切換えが行われ、油冷式2段スクリュ圧縮機11は容量調整されてリフト弁47が前進したフルロード状態に移行する。このように、第1設定値P1と第4設定値P4との間で差があるようにすることにより、流路切換え部28でのハンチングが防止される。
換言すれば、第3設定値P3及び第4設定値P4は、前者については第2設定値P2との関係において、また後者については第1設定値P1との関係において、過冷却用開閉弁31及び流路切換え部28でハイチングが生じないように定められ、ヒステリシス制御が行われる。
As a result of the above-described control, when the differential pressure ΔP starts to increase and first reaches a third set value P3 (P2 <P3 ≦ P1) that is greater than the second set value P2 and equal to or less than the first set value P1, supercooling The on-off valve 31 is opened, and the supply of refrigerant from the subcooling channel III to the intermediate channel 24 is started. In this way, by making a difference between the second set value P2 and the third set value P3, hunting at the supercooling on-off valve 31 is prevented. Further, when the differential pressure ΔP continues to increase and reaches a fourth set value P4 (> P1) that is larger than the first set value P1, the channel switching is performed in the channel switching unit 28, and an oil-cooled two-stage screw is performed. The capacity of the compressor 11 is adjusted, and the compressor 11 shifts to a full load state in which the lift valve 47 advances. Thus, hunting in the flow path switching unit 28 is prevented by making a difference between the first set value P1 and the fourth set value P4.
In other words, the third set value P3 and the fourth set value P4 are related to the second set value P2 for the former, and the first set value P1 for the latter. In addition, the flow path switching unit 28 is determined so as not to cause humming, and hysteresis control is performed.

本発明は、流路切換え部28を上述した三方切換え弁が用いられたものに限定するものでなく、三方切換え弁以外に、例えば図6及び7に示すように二つの開閉弁、第1開閉弁51と第2開閉弁52からなる流路切換え部28Aをも含むものである。なお、図6及び7は、図2及び4とは、流路切換え部28に代えて流路切換え部28Aを適用しただけであり、機能的には何等変わらず、その他の構成についても実質的に同一であり、図6及び7において図2及び4と互いに共通する部分については同一番号を付して説明を省略する。   The present invention does not limit the flow path switching unit 28 to the one using the above-described three-way switching valve. In addition to the three-way switching valve, for example, as shown in FIGS. A flow path switching unit 28 </ b> A including the valve 51 and the second opening / closing valve 52 is also included. 6 and 7 differ from FIGS. 2 and 4 only in that the flow path switching unit 28A is applied instead of the flow path switching unit 28, and there is no functional change, and the other configurations are substantially the same. 6 and 7 that are common to FIGS. 2 and 4 are assigned the same reference numerals and description thereof is omitted.

この第1段圧縮機22では、分岐前の油流路IIに第1開閉弁51が介設され、ここから分岐した油流路部分IIbに第2開閉弁52が介設されており、図6に示すように第2開閉弁52のみが閉じられることにより第1段圧縮機22Aはフルロード状態となり、図7に示すように第1開閉弁51のみが閉じられることにより第1段圧縮機22Aはアンロード状態となる。
なお、図6及び7に示す第1開閉弁51及び第2開閉弁52については、上記同様、閉じられている場合は黒塗りで示し、開かれている場合は白抜きで示している。
In the first stage compressor 22, a first on-off valve 51 is provided in the oil passage II before branching, and a second on-off valve 52 is provided in the oil passage portion IIb branched therefrom. As shown in FIG. 6, only the second on-off valve 52 is closed so that the first stage compressor 22A is in a full load state, and only the first on-off valve 51 is closed as shown in FIG. 22A enters an unload state.
The first on-off valve 51 and the second on-off valve 52 shown in FIGS. 6 and 7 are shown in black when they are closed, and are shown in white when they are open, as described above.

また、冷媒の過冷却部についても、本発明は、図1中二点鎖線で示す枠内の構成に代えて図8に示す構成を採用した冷凍装置をも含むものである。
図8に示す冷媒の過冷却部では、過冷却用流路IIIの冷媒循環流路Iからの分岐点が過冷却器14の一次側になっており、この点を除き、他の構成については、上記二点鎖線で示す枠内の構成と実質的に同一である。そして、この同一部分については、図8において上記枠内の構成と同一番号が付してある。
Further, the present invention also includes a refrigerating apparatus that employs the configuration shown in FIG. 8 instead of the configuration in the frame indicated by the two-dot chain line in FIG.
In the refrigerant supercooling section shown in FIG. 8, the branch point from the refrigerant circulation flow path I of the supercooling flow path III is the primary side of the supercooler 14. The configuration in the frame indicated by the two-dot chain line is substantially the same. And about this same part, the same number as the structure in the said frame is attached | subjected in FIG.

さらに、本発明は容量調整手段を上述したリフト弁47に限定するものでなく、容量調整手段として周知のスライド弁或いはピストン弁を用いた冷凍装置をも含むものである。
ちなみに、スライド弁は、雌雄スクリュロータの噛合い部において、スクリュロータを収容するケーシング内のロータ室の曲面壁部の一部をなし、スクリュロータの軸と平行な方向に進退して、スクリュロータの歯溝部に閉じ込められたガスの吸込口への戻り量を増減させることによりスクリュ圧縮機の容量調整をするものである。
また、ピストン弁は、スクリュロータを収容するケーシング内のロータ室の曲面壁部の一部をなし、スクリュロータの径方向に進退して、スクリュロータの歯溝部に閉じ込められたガスの吸込口への戻り量を増減させることによりスクリュ圧縮機の容量調整をするものである。
Further, the present invention does not limit the capacity adjusting means to the lift valve 47 described above, but also includes a refrigeration apparatus using a known slide valve or piston valve as the capacity adjusting means.
Incidentally, the slide valve forms a part of the curved wall portion of the rotor chamber in the casing housing the screw rotor at the meshing portion of the male and female screw rotors, and advances and retreats in the direction parallel to the axis of the screw rotor. The capacity of the screw compressor is adjusted by increasing or decreasing the return amount of the gas confined in the tooth gap portion to the suction port.
The piston valve forms a part of the curved wall portion of the rotor chamber in the casing that houses the screw rotor, and advances and retreats in the radial direction of the screw rotor to the gas suction port confined in the tooth groove portion of the screw rotor. The screw compressor capacity is adjusted by increasing / decreasing the return amount.

本発明に係る冷凍装置のブロック図である。It is a block diagram of the freezing apparatus which concerns on this invention. 図1に示す冷凍装置における流路切換え部とともに第1段圧縮機の概略を示す断面図である。It is sectional drawing which shows the outline of a 1st stage compressor with the flow-path switching part in the freezing apparatus shown in FIG. フルロード状態における図2のIII−III線断面図である。It is the III-III sectional view taken on the line of FIG. 2 in a full load state. アンロード状態における図2に対応する断面図である。FIG. 3 is a cross-sectional view corresponding to FIG. 2 in an unloaded state. 図1に示す冷凍装置における差圧と流路切換え部及び過冷却用開閉弁の作動状態との関係を示す図である。It is a figure which shows the relationship between the differential pressure | voltage in the refrigeration apparatus shown in FIG. 1, and the operation state of a flow-path switching part and the overcooling on-off valve. 他の流路切換え部を適用した図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 which applied the other flow-path switching part. 図6に示す流路切換え部を適用した図4に対応する断面図である。It is sectional drawing corresponding to FIG. 4 to which the flow-path switching part shown in FIG. 6 is applied. 図1に示す冷凍装置における過冷却部の他の構成を示すブロック図である。It is a block diagram which shows the other structure of the supercooling part in the freezing apparatus shown in FIG.

符号の説明Explanation of symbols

1 冷凍装置 11 油冷式2段スクリュ圧縮機
12 油分離回収器 13 凝縮器
14 過冷却器 15 主開閉弁
16 主膨張弁 17 蒸発器
21 モータ 22 第1段圧縮機
23 第2段圧縮機 24 中間流路
25 油分離エレメント 26 油溜まり部
27 油冷却器 28,28A 流路切換え部
31 過冷却用開閉弁 32 過冷却用膨張弁
33 中間圧力検出器 34 吐出圧力検出器
35 演算制御部 41 吸込口
42 吐出口 43 ケーシング
44 雌ロータ 45 雄ロータ
46 有底孔 47 リフト弁
48 貫通孔 51 第1開閉弁
52 第2開閉弁 I 冷媒循環流路
II 油流路 IIa,IIb,IIc,IId 油流路部分
III 過冷却用流路 X 矢印
DESCRIPTION OF SYMBOLS 1 Refrigeration apparatus 11 Oil-cooled two-stage screw compressor 12 Oil separation and recovery machine 13 Condenser 14 Supercooler 15 Main on-off valve 16 Main expansion valve 17 Evaporator 21 Motor 22 First stage compressor 23 Second stage compressor 24 Intermediate flow path 25 Oil separation element 26 Oil pool part 27 Oil cooler 28, 28A Flow path switching part 31 Supercooling on-off valve 32 Supercooling expansion valve 33 Intermediate pressure detector 34 Discharge pressure detector 35 Operation control part 41 Suction Port 42 Discharge port 43 Casing 44 Female rotor 45 Male rotor 46 Bottomed hole 47 Lift valve 48 Through hole 51 First on-off valve 52 Second on-off valve I Refrigerant circulation flow path
II Oil channel IIa, IIb, IIc, IId Oil channel part
III Supercooling flow path X Arrow

Claims (3)

油冷式2段スクリュ圧縮機に続いて、少なくとも油回収器、凝縮器、過冷却器、主膨張弁及び蒸発器が介設された冷媒循環流路と上記油回収器内の油を油冷却器を介して上記圧縮機内の給油箇所に導く油流路とを備え、
上記過冷却器には、上記冷媒循環流路における上記凝縮器と上記主膨張弁との間の部分から分岐し、過冷却用開閉弁、過冷却用膨張弁を経由した過冷却用流路が通過し、
この分岐流路は上記圧縮機の中間圧力部に通じるように設けられた冷凍装置において、
上記油流路の油流路部分への分岐部に介在する流路切換え部での流路切換えにより作動し、上記圧縮機をフルロード状態かアンロード状態にする容量調整手段と、
上記中間圧力部の圧力を検出し、検出圧力を示す中間圧力信号を出力する中間圧力検出器と、
上記圧縮機の吐出圧力を検出し、検出圧力を示す吐出圧力信号を出力する吐出圧力検出器と、
上記中間圧力検出器及び吐出圧力検出器から検出圧力を示す圧力信号を受け、吐出圧力と中間圧力の差圧を算出し、この差圧が上記圧縮機内での自己給油に必要な範囲にある場合には、上記圧縮機をフルロード状態とし、かつ上記過冷却用開閉弁を開とし、上記差圧が上記範囲から減少してゆく場合には、この差圧がまず第1設定値に達すると、上記圧縮機をアンロード状態とし、さらに上記差圧が減少し、上記第1設定値よりも小さい第2設定値に達すると上記過冷却用開閉弁を閉とする制御をする演算制御部とを設けたことを特徴とする冷凍装置。
Following the oil-cooled two-stage screw compressor, at least the oil recovery unit, the condenser, the supercooler, the main expansion valve, and the refrigerant circulation passage in which the evaporator is interposed and the oil in the oil recovery unit are oil-cooled. An oil flow path that leads to an oil supply point in the compressor through a vessel,
The supercooler has a supercooling flow path that branches from a portion between the condenser and the main expansion valve in the refrigerant circulation flow path and that passes through a supercooling on-off valve and a supercooling expansion valve. Pass through
In the refrigeration apparatus provided so that this branch flow path leads to the intermediate pressure part of the compressor,
A capacity adjusting means that operates by switching a flow path at a flow path switching section interposed in a branch section of the oil flow path to an oil flow path portion, and sets the compressor to a full load state or an unload state;
An intermediate pressure detector that detects the pressure of the intermediate pressure section and outputs an intermediate pressure signal indicating the detected pressure;
A discharge pressure detector that detects a discharge pressure of the compressor and outputs a discharge pressure signal indicating the detected pressure;
When the pressure signal indicating the detected pressure is received from the intermediate pressure detector and the discharge pressure detector, the differential pressure between the discharge pressure and the intermediate pressure is calculated, and this differential pressure is within the range necessary for self-lubrication in the compressor When the compressor is in a full load state and the on / off valve for supercooling is opened, and the differential pressure decreases from the range, the differential pressure first reaches the first set value. An arithmetic control unit that controls the supercooling on-off valve to be closed when the compressor is unloaded, and the differential pressure decreases and reaches a second set value that is smaller than the first set value. A refrigeration apparatus comprising:
上記演算制御部が、上記第2設定値以下の状態からの上記差圧の増大時に、上記第2設定値よりも大きい第3設定値に達すると上記過冷却用開閉弁を開とする制御を行うことを特徴とする請求項1に記載の冷凍装置。   When the differential pressure increases from the state equal to or lower than the second set value, the arithmetic control unit performs control to open the overcooling on / off valve when the third set value larger than the second set value is reached. The refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is performed. 上記演算制御部が、上記過冷却用開閉弁の開状態下、上記第1設定値以下の状態からの上記差圧の増大時に、上記第1設定値よりも大きい第4設定値に達すると上記圧縮機をフルロード状態にする制御を行うことを特徴とする請求項1または2に記載の冷凍装置。
When the arithmetic control unit reaches a fourth set value larger than the first set value when the differential pressure increases from a state equal to or lower than the first set value under the open state of the overcooling on-off valve, The refrigeration apparatus according to claim 1 or 2, wherein the compressor is controlled to be in a full load state.
JP2003385282A 2003-11-14 2003-11-14 Refrigeration equipment Expired - Lifetime JP3897751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003385282A JP3897751B2 (en) 2003-11-14 2003-11-14 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003385282A JP3897751B2 (en) 2003-11-14 2003-11-14 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2005147511A JP2005147511A (en) 2005-06-09
JP3897751B2 true JP3897751B2 (en) 2007-03-28

Family

ID=34693405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003385282A Expired - Lifetime JP3897751B2 (en) 2003-11-14 2003-11-14 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3897751B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453815C (en) 2005-10-17 2009-01-21 株式会社神户制钢所 Double stage screw rod compressor and double stage compressing refrigerator using same
JP5144897B2 (en) * 2006-03-27 2013-02-13 三洋電機株式会社 Refrigeration cycle equipment
DE102006016318B4 (en) * 2006-04-06 2008-06-05 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Screw compressor with relief valve
JP4898546B2 (en) * 2007-05-10 2012-03-14 日立アプライアンス株式会社 Refrigeration equipment
DK2229562T3 (en) * 2008-01-17 2018-10-15 Carrier Corp Carbon dioxide refrigerant vapor compression system
JP5197255B2 (en) * 2008-09-08 2013-05-15 株式会社神戸製鋼所 Ammonia refrigeration equipment
JP5372880B2 (en) * 2010-09-22 2013-12-18 株式会社神戸製鋼所 Two-stage compression refrigeration system
JP5634228B2 (en) * 2010-11-12 2014-12-03 三菱電機株式会社 Screw refrigerator

Also Published As

Publication number Publication date
JP2005147511A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP5966364B2 (en) Refrigeration equipment
JP4559283B2 (en) 2-stage screw refrigerator
JP3897751B2 (en) Refrigeration equipment
US20090308086A1 (en) Refrigerant system with multi-speed pulse width modulated compressor
JP3684071B2 (en) Screw refrigeration system
JP2017223235A (en) Oil cooling type air compressor and control method therefor
JP6080031B2 (en) Refrigeration equipment
JP2010002173A (en) Refrigerator
JP2007170683A (en) Air conditioner
KR101429363B1 (en) Oil-cooled two-stage compressor and heat pump
JP3443443B2 (en) Screw refrigerator
JP4269459B2 (en) Freezer refrigerator
WO2013153970A1 (en) Two-stage oil-cooled compressor device
JP3495899B2 (en) Screw refrigerator
JPH11294906A (en) Refrigerating system
CN108072198B (en) Compressor assembly, control method thereof and refrigerating/heating system
JP6467682B2 (en) Refrigeration equipment
KR20120101296A (en) Two-stage screw compression type refrigerating device
EP2417357A1 (en) Screw compressor specially suitable to be connected in parallel in compression units
JP2018004220A (en) Refrigerator
JP3541110B2 (en) Screw refrigerator
JP2006317024A (en) Refrigerating device
JP7412639B2 (en) heat source unit
JPH10238869A (en) Refrigerating plant
US11300335B2 (en) Refrigeration apparatus including lubrication of compressor with refrigerant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3897751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term