KR101300054B1 - 게르마늄 함유막을 성막하는 장치의 사용 방법 - Google Patents
게르마늄 함유막을 성막하는 장치의 사용 방법 Download PDFInfo
- Publication number
- KR101300054B1 KR101300054B1 KR1020100014517A KR20100014517A KR101300054B1 KR 101300054 B1 KR101300054 B1 KR 101300054B1 KR 1020100014517 A KR1020100014517 A KR 1020100014517A KR 20100014517 A KR20100014517 A KR 20100014517A KR 101300054 B1 KR101300054 B1 KR 101300054B1
- Authority
- KR
- South Korea
- Prior art keywords
- film
- gas
- germanium
- cleaning
- forming
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 157
- 229910052732 germanium Inorganic materials 0.000 title claims abstract description 65
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 239000007789 gas Substances 0.000 claims abstract description 222
- 238000006243 chemical reaction Methods 0.000 claims abstract description 143
- 230000008569 process Effects 0.000 claims abstract description 113
- 238000004140 cleaning Methods 0.000 claims abstract description 108
- 239000006227 byproduct Substances 0.000 claims abstract description 26
- 239000000047 product Substances 0.000 claims abstract description 26
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 230000001590 oxidative effect Effects 0.000 claims abstract description 14
- 238000005530 etching Methods 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims description 38
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 37
- 238000010438 heat treatment Methods 0.000 claims description 32
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 27
- 229910052710 silicon Inorganic materials 0.000 claims description 27
- 239000010703 silicon Substances 0.000 claims description 27
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 19
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 18
- 230000015572 biosynthetic process Effects 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 11
- 239000011737 fluorine Substances 0.000 claims description 11
- 229910052731 fluorine Inorganic materials 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 7
- 229910052736 halogen Inorganic materials 0.000 claims description 7
- 150000002367 halogens Chemical class 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 6
- 229910001882 dioxygen Inorganic materials 0.000 claims description 6
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 230000003213 activating effect Effects 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 2
- 239000010408 film Substances 0.000 description 124
- 235000012431 wafers Nutrition 0.000 description 62
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 21
- 239000000758 substrate Substances 0.000 description 18
- QUZPNFFHZPRKJD-UHFFFAOYSA-N germane Chemical compound [GeH4] QUZPNFFHZPRKJD-UHFFFAOYSA-N 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 14
- 239000004065 semiconductor Substances 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 11
- 229920005591 polysilicon Polymers 0.000 description 11
- 239000010453 quartz Substances 0.000 description 10
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 8
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 8
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- 238000011109 contamination Methods 0.000 description 7
- 125000004429 atom Chemical group 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000001272 nitrous oxide Substances 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- -1 for example Inorganic materials 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052986 germanium hydride Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
- C23C16/4405—Cleaning of reactor or parts inside the reactor by using reactive gases
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/24—Deposition of silicon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/28—Deposition of only one other non-metal element
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/30—Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
게르마늄 함유막을 성막하는 장치의 사용 방법은, 반응 용기 내에 수납된 제품용 피처리체 상에 CVD에 의해 게르마늄을 함유하는 제1 제품막을 형성하는 제1 성막 처리와, 성막 부생성물을 에칭하는 제1 클리닝 처리와, 반응 용기 내에 잔류하는 게르마늄을 제거하는 제2 클리닝 처리와, 반응 용기 내에 수납된 제품용 피처리체 상에 CVD에 의해 게르마늄을 함유하지 않는 제2 제품막을 형성하는 제2 성막 처리를 이 순서로 행한다. 제2 클리닝 처리에서는, 제품용 피처리체를 수납하지 않는 반응 용기 내를 배기하면서, 반응 용기 내에 산화 가스 및 수소 가스를 포함하는 제2 클리닝 가스를 공급함과 함께 반응 용기 내를 가열하여 제2 클리닝 가스를 활성화한다.
Description
본 발명은, 반도체 웨이퍼 등의 피처리체상에 Ge(게르마늄)을 포함하는 막을 형성하는 반도체 처리용 성막 장치의 사용 방법에 관한 것이다. 여기에서, 반도체 처리란, 웨이퍼나 LCD(Liquid Crystal Display)와 같은 FPD(Flat Panel Display)용 유리 기판 등의 피처리체상에 반도체층, 절연층, 도전층 등을 소정의 패턴으로 형성함으로써, 당해 피처리체상에 반도체 디바이스나, 반도체 디바이스에 접속되는 배선, 전극 등을 포함하는 구조물을 제조하기 위해 실시되는 여러 가지 처리를 의미한다.
종래부터, 예를 들면 트랜지스터의 게이트 전극의 재료로서, 폴리실리콘(poly-silicon)이 사용된다. 폴리실리콘 게이트 전극에서는, 바이어스 전압을 인가했을 때에 공핍(depletion)화되기 쉽다. 게이트 절연막의 박막화에 수반하여 이것이 현저해지며, 디바이스의 특성을 악화시키는 요인의 하나가 되고 있다. 이 문제를 해결하기 위해, 실리콘을 대신하여 도펀트(dopant)의 활성화율이 높은 실리콘 게르마늄을 적용하는 것이 검토되고 있다. 실리콘 게르마늄막은 또한, 다이오드 등 다른 디바이스에 사용하는 것도 검토되고 있다. 예를 들면, 일본공개특허공보 2003-77845호에는, 실리콘 게르마늄막을 반도체 웨이퍼의 표면상에 형성하는 방법이 개시된다. 이 방법에서는, 종(vertical)형 열처리 장치에 있어서, 모노실란(SiH4) 가스와 모노 게르만(GeH4) 가스를 공급하여, CVD(Chemical Vapor Deposition)에 의해 실리콘 게르마늄막을 형성한다.
1개의 종형 열처리 장치에 있어서, 제1 로트(lot)의 웨이퍼에 대하여 실리콘 게르마늄막을 성막한 후, 제2 로트의 웨이퍼에 대하여 다른 박막, 예를 들면 실리콘막을 성막하는 경우가 있다. 통상, 나중에 행해지는 열처리에 의해 형성되는 막, 예를 들면 실리콘막에 있어서, 앞의 열처리에 있어서의 처리 가스 중의 게르마늄은 오염 물질이 된다. 실리콘막 중에 게르마늄이 포함됨으로써, 형성되는 디바이스의 특성이 저하된다.
나중에 행해지는 열처리가 실리콘막의 성막인 경우, 실리콘막의 성막 처리를 실시하기 전에 소위 프리코팅(pre-coating) 처리를 행하여 반응 용기의 내면 등을 프리코팅막에 의해 피복한다. 프리코팅막에 의해, 반응 용기 내에 부착된 실리콘 게르마늄을 주성분(50% 이상을 의미함)으로 하는 부생성물막으로부터 게르마늄이 처리 분위기로 비산(scattering)하는 것이 방지된다.
그러나, 후술하는 바와 같이, 본 발명자들에 의하면, 종래의 이 종류의 반도체 처리용 성막 장치의 사용 방법에서는, 게르마늄 오염의 문제에 관하여 개선의 여지가 있다는 것이 발견되고 있다.
본 발명은, 게르마늄 오염의 문제를 확실하게 해소하는 것이 가능한 반도체 처리용 성막 장치의 사용 방법을 제공하는 것을 목적으로 한다.
본 발명의 제1 시점은, 게르마늄 함유막을 성막하는 장치의 사용 방법으로서, 반응 용기 내에 수납된 제품용 피(被)처리체 상에 CVD에 의해 게르마늄을 함유하는 제1 제품막을 형성하는 제1 성막 처리를 행하는 공정으로서, 상기 반응 용기 내에 게르마늄 소스 가스를 공급함과 함께 상기 반응 용기 내를 가열하여 상기 게르마늄 소스 가스를 활성화하고, 상기 제1 성막 처리에 의해 상기 반응 용기 내에 게르마늄을 포함하는 성막 부생성물이 부착되는, 공정과, 상기 제1 성막 처리 후에, 상기 성막 부생성물을 에칭하는 제1 클리닝 처리를 행하는 공정으로서, 제품용 피처리체를 수납하지 않는 상기 반응 용기 내를 배기하면서, 상기 반응 용기 내에 할로겐을 포함하는 제1 클리닝 가스를 공급함과 함께 상기 반응 용기 내를 가열하여 상기 제1 클리닝 가스를 활성화하는, 공정과, 상기 제1 클리닝 처리 후에, 상기 반응 용기 내에 잔류하는 게르마늄을 제거하는 제2 클리닝 처리를 행하는 공정으로서, 제품용 피처리체를 수납하지 않는 상기 반응 용기 내를 배기하면서, 상기 반응 용기 내에 산화 가스 및 수소 가스를 포함하는 제2 클리닝 가스를 공급함과 함께 상기 반응 용기 내를 가열하여 상기 제2 클리닝 가스를 활성화하고, 상기 산화 가스는 산소 가스, 오존 가스 및, 질소와 산소와의 화합물 가스로 이루어지는 군으로부터 선택되는, 공정과, 상기 제2 클리닝 처리 후에, 상기 반응 용기 내에 수납된 제품용 피처리체 상에 CVD에 의해 게르마늄을 함유하지 않는 제2 제품막을 형성하는 제2 성막 처리를 행하는 공정으로서, 상기 반응 용기 내에 성막 처리 가스를 공급함과 함께 상기 반응 용기 내를 가열하여 상기 성막 처리 가스를 활성화하는, 공정을 구비한다.
본 발명의 제2 시점은, 게르마늄 함유막을 성막하는 장치의 사용 방법으로서, 상기 성막 장치는, 복수의 피처리체를 상하로 간격을 두고 적층한 상태로 수납하도록 구성된 반응 용기와, 상기 반응 용기 내에서 상기 피처리체를 지지하는 지지 부재와, 상기 반응 용기의 주위에 설치된 상기 피처리체를 가열하기 위한 히터와, 상기 반응 용기 내를 배기하는 배기계와, 상기 반응 용기 내에 실리콘 소스 가스, 게르마늄 소스 가스, 상기 반응 용기 내를 클리닝하기 위한 가스를 공급하는 가스 공급계와, 상기 장치의 동작을 제어하는 제어부를 구비하고, 상기 방법은, 상기 반응 용기 내에 수납된 제품용 피처리체 상에 CVD에 의해 실리콘 게르마늄을 함유하는 제1 제품막을 형성하는 제1 성막 처리를 행하는 공정으로서, 상기 반응 용기 내에 상기 실리콘 소스 가스 및 상기 게르마늄 소스 가스를 공급함과 함께 상기 반응 용기 내를 가열하여 상기 실리콘 소스 가스 및 상기 게르마늄 소스 가스를 활성화하고, 상기 제1 성막 처리에 의해 상기 반응 용기 내에 실리콘 게르마늄을 포함하는 성막 부생성물이 부착되는, 공정과, 상기 제1 성막 처리 후에, 상기 성막 부생성물을 에칭하는 제1 클리닝 처리를 행하는 공정으로서, 제품용 피처리체를 수납하지 않는 상기 반응 용기 내를 배기하면서, 상기 반응 용기 내에 불소 및 수소를 포함하는 제1 클리닝 가스를 공급함과 함께 상기 반응 용기 내를 가열하여 상기 제1 클리닝 가스를 활성화하는, 공정과, 상기 제1 클리닝 처리 후에, 상기 반응 용기 내에 잔류하는 게르마늄을 제거하는 제2 클리닝 처리를 행하는 공정으로서, 제품용 피처리체를 수납하지 않는 상기 반응 용기 내를 배기하며서, 상기 반응 용기 내에 산화 가스 및 수소 가스를 포함하는 제2 클리닝 가스를 공급함과 함께 상기 반응 용기 내를 가열하여 상기 제2 클리닝 가스를 활성화하고, 상기 산화 가스는 산소 가스, 오존 가스 및, 질소와 산소와의 화합물 가스로 이루어지는 군으로부터 선택되는, 공정과, 상기 제2 클리닝 처리 후에, 상기 반응 용기 내에 수납된 제품용 피처리체상에 CVD에 의해 실리콘을 함유하고 그리고 게르마늄을 함유하지 않는 제2 제품막을 형성하는 제2 성막 처리를 행하는 공정으로서, 상기 반응 용기 내에 상기 실리콘 소스 가스를 공급함과 함께 상기 반응 용기 내를 가열하여 상기 실리콘 소스 가스를 활성화하는, 공정을 구비한다.
도 1은 본 발명의 실시 형태에 따른 종형 열처리 장치(성막 장치)를 나타내는 종단면도이다.
도 2A, 도 2B, 도 2C는 도 1에 나타낸 장치의 사용 방법을 나타내는 설명도이다.
도 3A, 도 3B는 도 1에 나타낸 장치의 사용 방법을 나타내는 설명도이다.
도 4는 본 발명의 실시 형태에 따른 장치의 사용 방법을 적용하여 게르마늄을 제거한 실험 결과를 나타내는 그래프이다.
도 2A, 도 2B, 도 2C는 도 1에 나타낸 장치의 사용 방법을 나타내는 설명도이다.
도 3A, 도 3B는 도 1에 나타낸 장치의 사용 방법을 나타내는 설명도이다.
도 4는 본 발명의 실시 형태에 따른 장치의 사용 방법을 적용하여 게르마늄을 제거한 실험 결과를 나타내는 그래프이다.
(발명을 실시하기 위한 최량의 형태)
본 발명자들은, 본 발명의 개발의 과정에서, 종래의 이 종류의 반도체 처리용 성막 장치의 사용 방법에 있어서의 문제에 대해서 연구했다. 그 결과, 본 발명자들은, 이하 서술하는 바와 같은 인식을 얻었다.
전술한 바와 같이, 1개의 종형 열처리 장치에 있어서, 제1 로트의 웨이퍼에 대하여 실리콘 게르마늄막의 성막 처리를 행한 후, 제2 로트의 웨이퍼에 대하여 실리콘막의 성막 처리를 행하는 경우, 제2 로트의 처리 직전에 실리콘막에 의한 프리코팅 처리를 행하여 반응 용기의 내면 등을 피복한다. 그러나, 열 CVD로 실리콘 게르마늄막을 성막하는 처리 온도는, 열 CVD로 폴리실리콘막을 성막하는 처리 온도보다도 낮다. 이 때문에, 예를 들면 히터로부터 떨어진 반응 용기 하방의 로(furnace) 입구 부근 등, 온도가 낮아지는 장소에서는, 폴리실리콘막이 충분히 형성되지 않아, 실리콘 게르마늄을 주성분으로 하는 부생성물막을 피복할 수 없는 경우가 있다.
한편, 반응 용기 내에 부착하는 실리콘 산화물이나 질화물을 주성분으로 하는 부생성물막을 제거하기 위해, 할로겐, 예를 들면 불소를 포함하는 클리닝 가스를 반응 용기 내에 공급하여 부생성물막을 에칭하는 것이 행해진다. 그러나, 실리콘 게르마늄을 주성분으로 하는 부생성물막의 경우에는, 예를 들면 불소 가스에 의해 에칭을 행해도 반응 용기의 내벽이나 웨이퍼 보트의 표면부에 게르마늄이 잔류해 버린다.
이 때문에, 종래, 1개의 종형 열처리 장치에 있어서, 제1 로트의 웨이퍼에 대하여 실리콘 게르마늄막의 성막 처리를 행한 후, 제2 로트의 웨이퍼에 대하여 실리콘막의 성막 처리를 행하는 경우, 양 처리 사이에서, 실리콘 게르마늄을 주성분으로 하는 부생성물막을 에칭하여 제거하는 공정을 행하는 일 없이, 프리코팅 처리를 행하고 있다. 또한, 가령, 부생성물막을 에칭 제거하고 나서 프리코팅 처리를 행하는 경우에도, 로 입구 부근 등, 온도가 낮아 폴리실리콘막이 형성되기 어려운 부위에서는, 잔류하는 게르마늄을 충분히 피복할 수 없다.
따라서, 본 발명자들은, 이러한 잔류 게르마늄을 확실하게 제거하는 것에 시점을 옮겨 실험을 거듭하여, 산화 가스 및 수소 가스의 활성종(active species)이, 이 제거 처리에 효과가 있다는 것을 발견했다. 본 발명자들은, 이러한 잔류 게르마늄을 제거하는 기술을 개시하는 선행 문헌을 모르지만, 이하의 문헌은 참고 재료를 제공하고 있다. 즉, 일본공개특허공보 2008-283126호(제0030단락∼제0031단락, 도 1, 도 2)에는, 반응 용기의 재질인 석영 중에 포함되어 있는 구리 등의 금속을 제거하는 방법이 개시된다. 이 방법에서는, 우선, 반응 용기 내에 클리닝 가스를 공급하여 부생성물막을 제거함으로써 반응 용기의 석영 내면을 노출시킨다. 다음으로, 반응 용기 내에 수소 가스 및 산소 가스를 공급하여, 이들 가스의 활성종을 이용하여 석영 표면 내에 포함되는 금속을 제거한다.
이하, 이러한 인식에 기초하여 구성된 본 발명의 실시 형태에 대해서 도면을 참조하여 설명한다. 또한, 이하의 설명에 있어서, 대략 동일한 기능 및 구성을 갖는 구성 요소에 대해서는, 동일한 부호를 부여하여, 중복 설명은 필요한 경우에만 행한다.
도 1은 본 발명의 실시 형태에 따른 종형 열처리 장치(성막 장치)를 나타내는 종단면도이다. 이 종형 열처리 장치(1)는, 예를 들면 CVD에 의해 실리콘 게르마늄막(SiGe막)과 실리콘막(Si막)의 성막을 행하는 것이 가능한 성막 장치로서 구성된다.
도 1에 나타내는 바와 같이, 이 열처리 장치(성막 장치)(1)는, 예를 들면 석영에 의해 종형의 원통 형상으로 형성된 반응 용기(2)를 포함한다. 반응 용기(2)의 하단은, 로 입구로서 개구되어, 그 로 입구(21)의 주연(periphery)부에는 플랜지(22)가 일체로 형성된다. 반응 용기(2)의 하방에는, 플랜지(22)의 하면에 맞닿아 로 입구(21)를 기밀하게 막는 예를 들면 석영제의 덮개체(23)가 설치된다. 덮개체(23)는, 보트 엘리베이터(도시하지 않음)에 의해 상하 방향으로 개폐 가능하게 설치된다. 덮개체(23)의 중앙부에는, 회전축(24)이 관통하여 설치되고, 그 상단부에는, 기판 지지(holding) 기구인 웨이퍼 보트(25)가 탑재된다.
웨이퍼 보트(25)는, 3개 이상, 예를 들면 4개의 지주(26; strut)를 구비한다. 지주(26)에는, 복수매, 예를 들면 125매의 피처리 기판인 반도체 웨이퍼(W)를 선반 형상으로 지지할 수 있도록 홈(슬롯)이 형성된다. 125매의 웨이퍼(W) 중, 상하 양단부에는 복수매의 더미(dummy) 웨이퍼가 배치되고, 그 사이에 제품 웨이퍼가 배치된다. 회전축(24)의 하부에는, 회전축(24)을 회전시키는 모터(M)가 설치되고, 따라서, 웨이퍼 보트(25)는 모터(M)에 의해 회전된다. 덮개체(23)의 위에는, 회전축(24)을 둘러싸도록 보온 유닛(27)이 설치된다.
반응 용기(2)의 상방에는, 반응 용기(2) 내를 배기하기 위한 배기구(4)가 형성된다. 배기구(4)에는, 반응 용기(2) 내를 소망하는 진공도로 감압 배기 가능한, 진공 펌프(41) 및 압력 제어 기구(42)를 구비한 배기관이 접속된다. 반응 용기(2)의 주위에는, 반응 용기(2) 내를 가열하기 위한 히터(31)를 구비한 가열로(3)가 설치된다. 히터(31)는 카본 와이어 히터로 이루어지며, 이는 컨태미네이션(contamination)이 적은 고(高)청정 프로세스와, 급속한 승온강온을 가능하게 한다.
반응 용기(2)의 하부의 플랜지(22)에는, 반응 용기(2) 내의 웨이퍼(W)에 처리 가스를 공급하기 위한 제1∼제3 L자형의 인젝터(51∼53)가 삽입된다. 도1 에 있어서, 편의상, 3개의 인젝터(51∼53)가 플랜지(22)의 동일한 위치로부터 삽입되도록 나타난다. 그러나, 실제로는 이들 인젝터(51∼53)는, 예를 들면 플랜지(22)의 둘레 방향을 따라 등간격으로 횡으로 나란히 배치되고, 그리고, 메인터넌스(maintenance)성을 좋게 하기 위해 반응 용기(2)의 둘레 방향에 있어서 한 곳에 몰려서 배치된다.
인젝터(51∼53)는 그 길이가 다르며, 그 선단부의 가스 공급구(선단 개구)가 다른 높이로 배치된다. 가장 낮은 제1 인젝터(51)의 선단부는, 예를 들면 웨이퍼 보트(25)에 있어서의 웨이퍼(W)의 지지 범위의 하단부 부근에 위치한다. 한가운데의 제2 인젝터(52)의 선단부는, 예를 들면 웨이퍼(W)의 지지 범위의 중단(中段)보다도 조금 낮은 곳에 위치한다. 가장 높은 제3 인젝터(53)의 선단부는, 예를 들면 웨이퍼(W)의 지지 범위의 최상단과 제2 인젝터(52)의 선단부와의 사이에 위치한다. 또한 각 인젝터(51∼53)는, 도 1의 레이아웃에 한정되는 것은 아니고, 실험 결과 등에 기초하여 적절한 길이로 설정된다.
플랜지(22) 밖으로 신장하는(extending) 인젝터(51∼53)의 기단(proximal end)측에는, 각각 가스 공급로인 가스 공급관(61∼63)이 접속된다. 가스 공급관(61)의 기단측에는, 가스 공급관(61a, 61b)이 접속된다. 가스 공급관(62)의 기단측에는, 가스 공급관(62a, 62b)이 접속된다. 가스 공급관(63)의 기단측에는, 가스 공급관(63a, 63b)이 접속된다. 가스 공급관(61a, 62a, 63a)은, 실란계의 가스, 예를 들면 모노실란 가스(SiH4 가스)의 공급원(64)에 접속된다. 가스 공급관(61b, 62b, 63b)은, 게르만계의 가스, 예를 들면 모노게르만 가스(GeH4 가스)의 공급원(65)에 접속된다. 이 예에서는, 모노게르만 가스는 수소에 의해 10%로 희석된 것이 사용된다.
모노실란 가스가 흐르는 가스 공급관(61a, 62a, 63a)에는, 각각 유량 조정부인 매스플로우 컨트롤러(M11∼M13)와 밸브(V11∼V13)가 설치된다. 모노게르만 가스가 흐르는 가스 공급관(61b, 62b, 63b)에는, 각각 매스플로우 컨트롤러(M21∼M23)와 밸브(V21∼V23)가 설치된다. 인젝터(51∼53)로부터 공급되는 혼합 가스는, 각각 독립하여 모노실란 가스 및 모노게르만 가스의 유량이 조정될 수 있다.
또한, 반응 용기(2)의 하부의 플랜지(22)에는, 복수의 클리닝 가스를 반응 용기(2) 내에 공급하는 L자형의 인젝터(54)가 설치된다. 클리닝 가스는, 성막할 때에 생성되고, 그리고 반응 용기(2)의 내부에 부착된 반응 생성물의 부생성물막을 제거하기 위해 사용되며, 여기에서, 부생성물막은, 성막의 종류에 따라 SiGe 또는 Si를 주성분(50% 이상을 의미함)으로 하는 것이 된다. 인젝터(54)의 선단부의 가스 공급구(선단 개구)는, 웨이퍼 보트(25)에 있어서의 웨이퍼(W)의 지지 범위의 하단부 부근에 위치한다.
플랜지(22) 밖으로 신장하는 인젝터(54)의 후단(後端)의 기단측에는, 클리닝 가스 공급관(71)에 접속된다. 클리닝 가스 공급관(71)에는, 밸브(V5)와 매스플로우 컨트롤러(M5)를 통하여 할로겐 함유 가스의 공급원(74)이 접속된다. 가스 공급원(74)으로부터는, 예를 들면 할로겐계의 산성 가스인 불소(F2) 가스나 불화 수소(HF) 가스가 공급된다. 본 실시 형태에서는, 할로겐 함유 가스로서 불소 가스를 사용하기 때문에, 도 1에 있어서는, 가스 공급원(74)은 편의상 「F2」를 붙여서 나타난다.
또한, 클리닝 가스 공급관(71)에는, 밸브(V3)와 매스플로우 컨트롤러(M3)를 통하여 수소(H2) 가스의 공급원(72)이 접속된다. 또한, 클리닝 가스 공급관(71)에는, 밸브(V4)와 매스플로우 컨트롤러(M4)를 통하여 산화 가스인 아산화질소(N2O) 가스의 공급원(73)이 접속된다. 가스 공급원(72, 73)은, 가스 혼합부(70)를 통하여 클리닝 가스 공급관(71)에 접속되어, 수소 가스 및 아산화질소 가스가 충분히 혼합된 상태에서 클리닝 가스 공급관(71)에 공급된다. 또한, 클리닝 가스 공급관(71)에는, 밸브(V6)와 매스플로우 컨트롤러(M6)를 통하여 질소 가스의 공급원(75)이 접속된다.
따라서, 클리닝 가스 공급관(71)으로부터는, 불소 가스, 수소 가스, 아산화질소 가스, 질소 가스를 소정의 유량으로 선택적으로 공급할 수 있다. 본 실시 형태에서는, SiGe를 주성분으로 하는 부생성물막을 에칭하는 제1 클리닝 가스로서, 불소 가스 및 질소 가스의 혼합물 또는 불소 가스, 수소 가스 및, 질소 가스의 혼합물을 이용하고, 잔류 게르마늄(Ge)을 제거하는 제2 클리닝 가스로서, 수소 가스 및 아산화질소 가스의 혼합물을 이용한다.
즉, 종형 열처리 장치(1)는, SiGe막을 성막하는 열처리를 실행하고, 다음으로 Ge를 포함하지 않는 막, 예를 들면 Si막을 성막하는 열처리를 실행한다. 이 후자의 열처리 전에, 제1 클리닝 가스에 의해 SiGe를 주성분으로 하는 부생성물막을 에칭하고, 다음으로, 제2 클리닝 가스에 의해 잔류하는 게르마늄(Ge)을 반응 용기(2) 내로부터 제거한다.
본 실시 형태에서는, 제1 및 제2 클리닝 가스를 공통의 배관(71)이나 인젝터(54)를 이용하여 반응 용기(2) 내에 공급한다. 그러나, 제1 및 제2 클리닝 가스를 각각 전용의 공급 배관이나 인젝터를 이용하여 반응 용기(2) 내에 공급하도록 해도 좋다.
또한, 이 종형 열처리 장치(1)는, 히터(31), 압력 제어 기구(42), 가스 공급원(64, 65, 72, 73, 74, 75) 등의 동작을 제어하는 제어부(8)를 갖는다. 제어부(8)는, 예를 들면 CPU와, 프로그램을 기억하는 기억부를 구비한 컴퓨터로 이루어진다. 프로그램에는 당해 종형 열처리 장치(1)를 제어하여 웨이퍼(W)로의 성막이나 반응 용기(2) 내의 클리닝을 실행하는 데에 필요한 각종 동작을 지휘하기 위한 스텝(명령)군이 편성되어 있다. 이 프로그램은, 예를 들면 하드디스크, 콤팩트 디스크, 마그넷 옵티컬(magneto-optical) 디스크, 메모리 카드 등의 기억 매체에 격납되어, 그로부터 컴퓨터에 인스톨(install)된다.
다음으로, 전술한 종형 열처리 장치(1)의 사용 방법의 일 예에 대해서 서술한다. 우선, 웨이퍼(W)를 소정 매수 웨이퍼 보트(25)에 선반 형상으로 올려놓고, 보트 엘리베이터(도시하지 않음)를 상승시킨다. 이에 따라 웨이퍼 보트(25)를 반응 용기(2) 내에 반입함과 함께, 플랜지(22)의 로 입구(21)를 덮개체(23)에 의해 닫는다(도 1에 나타내는 상태).
다음으로, 배기관을 통하여 진공 펌프(41)에 의해 반응 용기(2) 내를 진공 배기하고, 압력 제어 기구(42)에 의해 웨이퍼 보트(25)를 배치한 처리 영역의 압력을, 예를 들면 10Pa∼130Pa(133Pa=1Torr)의 감압 분위기로 조정한다. 또한, 히터(31)에 의해 반응 용기(2)를 가열하여, 처리 영역을, 예를 들면 300℃∼650℃의 프로세스 온도로 안정시킨다. 다음으로, 공급원(64, 65)으로부터의 각각의 모노실란 가스 및 모노게르만 가스를, 가스 공급관(61∼63) 및 인젝터(51∼53)에 의해 혼합한다. 그리고, 이 혼합 가스를, 각 인젝터(51∼53)의 선단 공급구로부터 반응 용기(2)의 처리 영역에 공급한다(도 2A).
처리 가스인 모노실란 가스와 모노게르만 가스와의 혼합비는, 각 인젝터(51∼53)에서 각각 다르도록 설정된다. 인젝터(51)에서의 혼합비는, 모노실란 가스/모노게르만 가스=1200sccm/600sccm이다. 인젝터(52)에서의 혼합비는, 모노실란 가스/모노게르만 가스=300sccm/190sccm이다. 인젝터(53)에서의 혼합비는, 모노실란 가스/모노게르만 가스=300sccm/220sccm이다. 즉, 본 실시 형태에 있어서, 혼합 가스 중의 모노실란 가스의 모노게르만 가스에 대한 비[모노실란 가스/모노게르만 가스]는, 상측에 공급구를 갖는 인젝터일수록 낮아지도록 설정된다. 또한 기술한 바와 같이 여기에 기재한 모노게르만 가스란, 모노게르만 가스를 수소로 10%로 희석한 가스이다.
이렇게 하여 공급된 모노실란 가스 및 모노게르만 가스는, 처리 영역에서 열분해하여 반응해, SiGe막(실리콘 게르마늄막)이 웨이퍼(W)의 표면에 형성된다. 성막의 기간 중에, 각 웨이퍼(W) 면 내에 있어서 균일한 SiGe막을 성막할 수 있도록, 웨이퍼 보트(25)가 모터(M)에 의해 회전한다.
또한, 모노게르만은 활성화 에너지가 낮아 분해 반응성이 크다. 이 때문에,모노게르만을 단독으로 반응 용기(2) 내에 저부로부터 공급하면, 웨이퍼 보트(25)의 상측에서 모노게르만이 부족해진다. 이에 대하여, 도 1에 나타내는 장치에서는, 서로 높이가 다른 3개의 인젝터(51∼53)가 설치된다. 이 때문에, 하측에 형성한 인젝터(51)로부터 공급한 모노게르만의 부족분이 인젝터(52, 53)로부터의 모노게르만에 의해 보상된다.
모노실란 가스, 모노게르만 가스를 따로따로 공급하는 것이 아니라, 미리 혼합하여 각 인젝터(51∼53)로부터 반응 용기(2) 내에 공급한다. 이 때문에, 모노게르만은, 활성화 에너지가 작아 분해 반응성이 낮은 모노실란에 의해 희석된 후 처리 영역 내에 공급된다. 이 경우, 모노게르만의 과잉의 분해 반응이 모노실란에 의해 억제된다.
이렇게 하여, SiGe의 퇴적을 소정 시간 행한 후, 처리 가스의 공급을 정지하여, 반응 용기(2) 내를 N2 가스 등의 불활성 가스로 치환한다. 그 후, 웨이퍼 보트(25)를 반응 용기(2)로부터 반출한다.
상기 SiGe막의 성막에 있어서, 반응 용기(2)나 웨이퍼 보트(25) 등 처리 가스가 공급되는 분위기에 노출되는 각종 부재의 표면에 SiGe를 주성분(50% 이상을 의미함)으로 하는 반응 생성물이 부착된다. 반응 생성물은 이들 부재의 표면상에서 부생성물막을 형성하며, 그 두께는 성막을 반복하는 동안에 커진다.
본 실시 형태에 있어서는, 제1 로트의 웨이퍼에 대하여 전술한 SiGe막의 성막 처리를 행한 후, 제2 로트의 웨이퍼에 대하여 Si막의 성막 처리를 행한다. 이 때문에, 제1 및 제2 로트의 처리 사이에서, 반응 용기(2) 내에 클리닝을 행하여, Ge 오염을 방지한다.
구체적으로는, SiGe막의 성막 처리 후, N2 가스로 퍼지(purge)된 반응 용기(2) 내에, 웨이퍼(W)를 지지하고 있지 않은 빈 웨이퍼 보트(25)를 반입함과 함께 로 입구(21)를 덮개체(23)로 닫는다. 그리고 반응 용기(2) 내의 배기를 계속하면서, 제1 클리닝 처리와 제2 클리닝 처리를 이 순서로 행한다. 제1 클리닝 처리에서는, 반응 용기(2) 내의 SiGe를 주성분으로 하는 부생성물막을 에칭한다. 제2 클리닝 처리에서는, 반응 용기 내에 잔류하는 Ge를 제거한다.
제1 클리닝 처리에 있어서는, 반응 용기(2) 내를 1064Pa∼199950Pa, 예를 들면 13300Pa으로 감압함과 함께, 200℃∼400℃, 예를 들면 300℃ 정도의 온도로 설정한다. 그리고, 클리닝 가스 공급관(71)으로부터 반응 용기(2) 내로 제1 클리닝 가스를 공급한다. 예를 들면, 제1 클리닝 가스는, F2 가스가 2000sccm, N2 가스가 8000sccm으로 설정된 혼합 가스 또는 F2 가스가 2000sccm, H2 가스가 2000sccm, N2 가스가 8000sccm으로 설정된 혼합 가스로 이루어진다.
가열된 반응 용기(2) 내에 제1 클리닝 가스가 공급되면, 당해 혼합 가스가 활성화되어, 불소 라디칼이 생성된다. 이러한 라디칼에 의해 반응 용기(2)의 내면이나 웨이퍼 보트(25) 등, 반응 용기(2) 내의 각종 부재의 표면상의 부생성물막이 에칭 제거된다(도 2B). 부생성물막의 에칭을 소정 시간 행한 후, 반응 용기(2) 내에 공급하는 가스를 제1 클리닝 가스로부터 N2 가스로 전환하여 제1 클리닝 처리를 종료한다.
다음으로, 제2 클리닝 처리에 있어서는, 반응 용기(2) 내를 13.3Pa∼931Pa, 바람직하게는 13.3Pa∼133Pa, 예를 들면 46.55Pa까지 감압함과 함께, 750℃∼950℃, 예를 들면 850℃의 온도로 설정한다. 그리고, 클리닝 가스 공급관(71)으로부터 반응 용기(2) 내로 제2 클리닝 가스를 공급한다. 예를 들면, 제2 클리닝 가스는, H2 가스가 1000sccm, N2O 가스가 1700sccm으로 설정된 혼합 가스 또는 H2 가스가 1700sccm, N2O 가스가 2000sccm으로 설정된 혼합 가스로 이루어진다.
가열된 반응 용기(2) 내에 제2 클리닝 가스가 공급되면, 당해 혼합 가스가 활성화되고, 수소 라디칼이나 산소 라디칼 등이 생성된다. 이러한 라디칼은, 반응 용기(2) 내에 잔류하는 Ge와 반응하여 가스 중에 취입되어, 반응 용기(2) 밖으로 배출된다(도 2C). 잔류 Ge의 제거를 소정 시간, 예를 들면 5시간 행한 후, 반응 용기(2) 내에 공급하는 가스를 제2 클리닝 가스로부터 N2 가스로 전환하여 제2 클리닝 처리를 종료한다.
다음으로, 빈 웨이퍼 보트(25)를 반응 용기(2) 내에 둔 채로, 반응 용기(2) 내의 압력 및 온도를 Si막의 성막시의 조건, 예를 들면, 13.3Pa∼133Pa, 예를 들면 26.6Pa의 압력, 400℃∼650℃, 예를 들면 620℃의 온도로 조정한다. 그리고, 공급원(64)으로부터의 모노실란 가스를 예를 들면 80sccm으로 인젝터(51∼53)로부터 반응 용기(2) 내에 공급하여, 반응 용기(2) 내면이나 웨이퍼 보트(25)의 표면 등을, 프리코팅막(여기에서는 폴리실리콘막)으로 피복하는 프리코팅 처리를 행한다(도 3A). 예를 들면, 프리코팅 처리는 100분간 행하고, 1㎛의 프리코팅막을 성막한다. 제2 클리닝 처리 후에 프리코팅 처리를 행하고, 각종 부재 표면에 잔존하는 미량의 금속 성분을 프리코팅막으로 덮어 감춤으로써, 다음에 형성되는 Si막에 대한 컨태미네이션을 확실하게 방지할 수 있다.
프리코팅 처리가 종료되면, 웨이퍼 보트(25)를 언로드(unload)한다. 구체적으로는, 반응 용기(2)에 소정량의 질소 가스를 공급하여, 반응 용기(2)의 압력을 상압으로 되돌린다. 그리고, 덮개체(23)를 하강시킴으로부터, 빈 웨이퍼 보트(25)를 반응 용기(2)로부터 언로드한다.
그 후, Si 제품막을 형성하기 위한 소정 매수의 다른 로트의 웨이퍼(W)를 웨이퍼 보트(25)에 선반 형상으로 올려놓고, 보트 엘리베이터(도시하지 않음)를 상승시킨다. 이에 따라 웨이퍼 보트(25)를 반응 용기(2) 내에 반입함과 함께, 플랜지(22)의 로 입구(21)를 덮개체(23)에 의해 닫는다(도 1에 나타내는 상태).
다음으로, 배기관을 통하여 진공 펌프(41)에 의해 반응 용기 내를 진공 배기하고, 압력 제어 기구(42)에 의해 반응 용기(2) 내의 압력을 감압 분위기로 조정한다. 또한, 웨이퍼 보트(25)를 배치한 반응 용기(2)의 처리 영역을, 히터(31)에 의해 프로세스 온도로 안정시킨다. 다음으로, 공급원(64)으로부터의 모노실란 가스를, 인젝터(51∼53)로부터 반응 용기(2)의 처리 영역에 공급한다(도 3B).
또한, Si 제품막으로서 폴리실리콘막을 형성하는 경우, 프로세스 압력은 13.3Pa∼133Pa, 예를 들면 26.6Pa, 프로세스 온도는400℃∼650℃, 예를 들면 620℃로 하고, 모노실란 가스를 예를 들면 300sccm으로 공급한다. 또한, Si 제품막으로서 아모퍼스(amorphous) 실리콘막을 형성하는 경우, 프로세스 압력은 13.3Pa∼266Pa, 예를 들면 26.6Pa∼66.5Pa, 프로세스 온도는 300℃∼570℃, 예를 들면 530℃로 하고, 모노실란 가스를 예를 들면 200sccm∼1000sccm으로 공급한다.
이렇게 하여 공급된 모노실란 가스는, 처리 영역에서 열분해되어, Si막(Si 제품막)이 웨이퍼(W)의 표면에 형성된다. 성막의 기간 중, 각 웨이퍼(W)면 내에 있어서 균일한 Si막을 성막할 수 있도록, 웨이퍼 보트(25)가 모터(M)에 의해 회전한다.
이렇게 하여, Si의 퇴적을 소정 시간 행한 후, 처리 가스의 공급을 정지하고, 반응 용기(2) 내를 N2 가스 등의 불활성 가스로 치환한다. 그 후, 웨이퍼 보트(25)를 반응 용기(2)로부터 반출한다.
도 2A∼도 3B를 참조하여 설명한 바와 같이, 본 발명의 실시 형태에 따른 전술한 종형 열처리 장치(1)의 사용 방법에 있어서는, SiGe막의 성막 처리→제1 클리닝 처리→제2 클리닝 처리→프리코팅 처리→Si막의 성막 처리의 순서로 각 처리가 실행된다. 여기에서 폴리실리콘막의 프리코팅 처리는 예를 들면 620℃ 정도의 온도에서 행해지는 것에 대하여, SiGe막의 성막 처리는 이 온도보다도 낮은, 예를 들면 300℃∼500℃의 온도에서 행해진다.
비교예로서, 전술한 일련의 처리에 있어서, 예를 들면 제1 클리닝 처리를 행한 후에, 제2 클리닝 처리를 행하지 않고 프리코팅 처리를 행한다고 가정한다. 이 경우, 전술한 바와 같이 반응 용기(2)의 로 입구 부근 등, 온도가 낮고, 폴리실리콘막이 형성되기 어려운 부위에서는 잔류 Ge를 충분히 피복할 수 없다. 이 때문에, 당해 부위에 남아 있는 Ge에 의해, 후단에서 성막되는 Si막이 오염되어 버린다.
또한, 다른 비교예로서, 전술의 일련의 처리에 있어서, 제2 클리닝 처리를 제1 클리닝 처리 전에 행한다고 가정한다. 이 경우, 반응 용기(2) 내에 퇴적되는 SiGe을 주성분으로 하는 부생성물막이 산소 라디칼에 의해 산화되어, 산화막이 형성된다. 이러한 산화막은 제1 클리닝 가스로는 에칭되기 어렵기 때문에, 부생성물막의 에칭 제거를 행할 수 없게 되어 버린다.
전술한 바와 같은 이유로, 도 2A∼도 3B를 참조하여 설명한 순서로 처리를 행하는 것이 바람직한 것이 된다.
상기 실시 형태에 있어서, 제2 클리닝 처리에 있어서 잔류 Ge를 제거하기 위해 N2O 가스를 이용하고 있다. 이 이유는, 통상, Si막을 성막하는 종형 열처리 장치에 있어서는, Si막의 그레인(grain)의 입경을 작게 하기 위해 Si막 중에 O를 불순물로서 도입할 목적으로 N2O 가스의 공급 라인이 존재할 가능성이 있기 때문이다. 그러나, 잔류 Ge의 제거에 이용 가능한 산화 가스로서는 다른 가스가 사용 가능하며, 예를 들면, 산소 가스, 오존 가스 및, 질소와 산소의 다른 화합물 가스(NO나 NO2 등)가 사용 가능하다.
<실험>
전술한 종형 열처리 장치(1)에 있어서, 전술한 실시 형태의 실시예(PE)에 따른 사용 방법과, 비교예(CE1, CE2, CE3)에 따른 사용 방법을 실행하여, 실시 형태의 효과를 확인했다. 실시예(PE) 및 비교예(CE1, CE2, CE3)에 있어서, 공통되게, 웨이퍼 보트(25)의 상단측과 하단측에 지지한 석영 기판의 표면에 약 5㎛ 두께의 SiGe막을 형성하는 성막 처리를 행하였다. 실시예(PE)에서는, 이 성막 처리 후에, 이하에 나타내는 내용으로, 도 2A, 도 2B를 참조하여 설명한 순서 및 조건으로 제1 및 제2 클리닝 처리를 행하였다. 또한, 비교예(CE1, CE2, CE3)에서는, 이 성막 처리 후에, 이하에 나타내는 내용으로 다른 처리를 행하였다. 그 후에, 기판상에 잔존하는 단위 표면적당의 Ge 원자수[개/㎠]를 계측했다. Ge의 원자수의 계측에는 ICP-MS(Inductively Coupled Plasma Mass Spectrometer)를 이용했다.
(비교예 CE1)
SiGe 성막 후의 석영 기판을 불질산액(hydrofluoric and nitric acid solution) 중에 수분간 침지(immersion)하는 웨트(wet) 세정을 행하였다.
(비교예 CE2)
석영 기판의 표면을 1㎛의 막두께의 폴리실리콘막으로 피복하는 코팅을 행하였다.
(비교예 CE3)
웨이퍼 보트(25)상에 올려놓은 석영 기판을 수납한 상태의 반응 용기(2) 내에 제1 클리닝 가스(F2+N2)를 공급하여, SiGe막을 에칭하는 제1 클리닝 처리를 약 1시간 실시했다.
(실시예 PE)
비교예(CE3)와 동일한 제1 클리닝 처리를 행한 후, 웨이퍼 보트(25)상에 올려놓은 석영 기판을 수납한 상태의 반응 용기(2) 내에 제2 클리닝 가스(H2+N2O)를 공급하여, 잔류 Ge를 제거하는 제2 클리닝 처리를 약 5시간 실시했다.
<실험 결과>
도 4는, 실시예(PE) 및 비교예(CE1, CE2, CE3)에 관한 실험 결과를 나타내는 그래프이다. 도 4에 있어서, 횡축에 나타낸 T의 부호는 웨이퍼 보트(25)의 상단측에 지지된 기판의 계측 결과를 나타내고, B의 부호는 웨이퍼 보트(25)의 하단측에 지지된 기판의 계측 결과를 나타낸다. 종축은 계측된 Ge 원자수[개/㎠]를 나타낸다.
(비교예 CE1 : 웨트 세정)
웨이퍼 보트(25)의 상단측, 하단측의 기판 모두에서 1.0×1012[개/㎠] 이상의 Ge 원자가 계측되었다. 따라서, 웨트 세정만으로는 Ge를 충분히 제거할 수 없는 것을 알 수 있다. 또한, 세정조 내의 세정액도 Ge에 의해 오염되었다.
(비교예 CE2 : 폴리실리콘막에 의한 코팅)
웨이퍼 보트(25)의 상단측의 기판에서는 3.0×1012[개/㎠] 이상, 하단측의 기판에서는 1.0×1011[개/㎠] 이상의 Ge 원자가 계측되었다. 따라서, Ge가 잔존하는 상태에서 프리코팅 처리를 행해도 Ge 오염을 방지하는 효과가 거의 없다고 말할 수 있다.
(비교예 CE3 : 제1 클리닝 처리)
웨이퍼 보트(25)의 상단측, 하단측의 기판 모두에서 1.0×1011∼2.0×1011[개/㎠] 정도의 Ge 원자가 계측되었다. 따라서, 이 경우에도 Ge의 충분한 제거 효과는 볼 수 없다고 말할 수 있다.
(실시예 PE : 제1 및 제2 클리닝 처리)
웨이퍼 보트(25)의 상단측, 하단측의 기판 모두에서도 3.0×108[개/㎠] 정도의 Ge 원자가 계측되었다. 이 값은 ICP-MS의 계측 하한치에 가까운 값이며, 비교예와 비교하여 Ge의 제거 효과는 극적으로 개선되었다. 즉, 본 발명의 실시 형태에 따른 제1 및 제2 클리닝 처리는, Ge 오염의 방지에 효과가 있다는 것이 확인되었다.
상기 실시 형태에서는, 성막 장치로서, 단관(single tube) 구조의 배치(batch)식 처리 장치가 사용된다. 대신에, 본 발명은, 예를 들면, 처리 용기가 내관과 외관으로 구성된 이중관 구조의 배치식 종형 처리 장치에 적용될 수 있다. 또한, 본 발명은 배치식 횡형 처리 장치나 매엽식(single-substrate)의 처리 장치에 적용될 수도 있다. 피처리 기판은 반도체 웨이퍼(W)에 한정되는 것은 아니고, 예를 들면, LCD용의 유리 기판이라도 좋다.
Claims (20)
- 게르마늄 함유막을 성막하는 장치의 사용 방법으로서,
반응 용기 내에 수납된 제품용 피(被)처리체 상에 CVD에 의해 게르마늄을 함유하는 제1 제품막을 형성하는 제1 성막 처리를 행하는 공정으로서, 상기 반응 용기 내에 게르마늄 소스 가스를 공급함과 함께 상기 반응 용기 내를 가열하여 상기 게르마늄 소스 가스를 활성화하고, 상기 제1 성막 처리에 의해 상기 반응 용기 내에 게르마늄을 포함하는 성막 부생성물이 부착되는, 공정과,
상기 제1 성막 처리 후에, 상기 성막 부생성물을 에칭하는 제1 클리닝 처리를 행하는 공정으로서, 제품용 피처리체를 수납하지 않는 상기 반응 용기 내를 배기하면서, 상기 반응 용기 내에 할로겐을 포함하는 제1 클리닝 가스를 공급함과 함께 상기 반응 용기 내를 가열하여 상기 제1 클리닝 가스를 활성화하는 공정과,
상기 제1 클리닝 처리 후에, 상기 반응 용기 내에 잔류하는 게르마늄을 제거하는 제2 클리닝 처리를 행하는 공정으로서, 제품용 피처리체를 수납하지 않는 상기 반응 용기 내를 배기하면서, 상기 반응 용기 내에 산화 가스 및 수소 가스를 포함하는 제2 클리닝 가스를 공급함과 함께 상기 반응 용기 내를 가열하여 상기 제2 클리닝 가스를 활성화하고, 상기 산화 가스는 산소 가스, 오존 가스 및, 질소와 산소와의 화합물 가스로 이루어지는 군으로부터 선택되는, 공정과,
상기 제2 클리닝 처리 후에, 상기 반응 용기 내에 수납된 제품용 피처리체 상에 CVD에 의해 게르마늄을 함유하지 않는 제2 제품막을 형성하는 제2 성막 처리를 행하는 공정으로서, 상기 반응 용기 내에 성막 처리 가스를 공급함과 함께 상기 반응 용기 내를 가열하여 상기 성막 처리 가스를 활성화하는, 공정
을 구비하는 게르마늄 함유막을 성막하는 장치의 사용 방법. - 제1항에 있어서,
상기 제2 클리닝 처리와 상기 제2 성막 처리의 사이에, 상기 반응 용기의 내면을 상기 제2 제품막과 동일한 조성의 피복막으로 피복하는 프리코팅 처리를 행하는 공정을 추가로 구비하는 게르마늄 함유막을 성막하는 장치의 사용 방법. - 제2항에 있어서,
상기 프리코팅 처리는, 상기 제1 성막 처리보다 높은 처리 온도를 사용하는 게르마늄 함유막을 성막하는 장치의 사용 방법. - 제1항에 있어서,
상기 제1 클리닝 가스의 상기 할로겐은 불소인 게르마늄 함유막을 성막하는 장치의 사용 방법. - 제1항에 있어서,
상기 제2 클리닝 가스의 상기 산화 가스는 질소와 산소의 화합물 가스로 이루어지는 게르마늄 함유막을 성막하는 장치의 사용 방법. - 제1항에 있어서,
상기 제2 클리닝 처리는, 750℃∼950℃의 처리 온도 및 13.3Pa∼931Pa의 처리 압력을 사용하는 게르마늄 함유막을 성막하는 장치의 사용 방법. - 제6항에 있어서,
상기 제1 클리닝 처리는, 200℃∼400℃의 처리 온도 및 1064Pa∼199950Pa의 처리 압력을 사용하는 게르마늄 함유막을 성막하는 장치의 사용 방법. - 제1항에 있어서,
상기 제1 성막 처리는, 상기 게르마늄 소스 가스와 함께 실리콘 소스 가스를 공급하여, 상기 제1 제품막으로서 실리콘 게르마늄막을 형성하는 게르마늄 함유막을 성막하는 장치의 사용 방법. - 제8항에 있어서,
상기 제1 성막 처리는, 300℃∼650℃의 처리 온도 및 10Pa∼130Pa의 처리 압력을 사용하는 게르마늄 함유막을 성막하는 장치의 사용 방법. - 제8항에 있어서,
상기 제2 성막 처리는, 상기 성막 처리 가스로서 상기 실리콘 소스 가스를 공급하는 게르마늄 함유막을 성막하는 장치의 사용 방법. - 게르마늄 함유막을 성막하는 장치의 사용 방법으로서,
상기 장치는,
복수의 피처리체를 상하로 간격을 두고 적층한 상태로 수납하도록 구성된 반응 용기와,
상기 반응 용기 내에서 상기 피처리체를 지지하는 지지 부재와,
상기 반응 용기의 주위에 설치된 상기 피처리체를 가열하기 위한 히터와,
상기 반응 용기 내를 배기하는 배기계와,
상기 반응 용기 내에 실리콘 소스 가스, 게르마늄 소스 가스, 상기 반응 용기 내를 클리닝하기 위한 가스를 공급하는 가스 공급계와,
상기 장치의 동작을 제어하는 제어부를 구비하고,
상기 방법은,
상기 반응 용기 내에 수납된 제품용 피처리체 상에 CVD에 의해 실리콘 게르마늄을 함유하는 제1 제품막을 형성하는 제1 성막 처리를 행하는 공정으로서, 상기 반응 용기 내에 상기 실리콘 소스 가스 및 상기 게르마늄 소스 가스를 공급함과 함께 상기 반응 용기 내를 가열하여 상기 실리콘 소스 가스 및 상기 게르마늄 소스 가스를 활성화하고, 상기 제1 성막 처리에 의해 상기 반응 용기 내에 실리콘 게르마늄을 포함하는 성막 부생성물이 부착되는, 공정과,
상기 제1 성막 처리 후에, 상기 성막 부생성물을 에칭하는 제1 클리닝 처리를 행하는 공정으로서, 제품용 피처리체를 수납하지 않는 상기 반응 용기 내를 배기하면서, 상기 반응 용기 내에 불소 및 수소를 포함하는 제1 클리닝 가스를 공급함과 함께 상기 반응 용기 내를 가열하여 상기 제1 클리닝 가스를 활성화하는, 공정과,
상기 제1 클리닝 처리 후에, 상기 반응 용기 내에 잔류하는 게르마늄을 제거하는 제2 클리닝 처리를 행하는 공정으로서, 제품용 피처리체를 수납하지 않는 상기 반응 용기 내를 배기하면서, 상기 반응 용기 내에 산화 가스 및 수소 가스를 포함하는 제2 클리닝 가스를 공급함과 함께 상기 반응 용기 내를 가열하여 상기 제2 클리닝 가스를 활성화하고, 상기 산화 가스는 산소 가스, 오존 가스 및, 질소와 산소와의 화합물 가스로 이루어지는 군으로부터 선택되는, 공정과,
상기 제2 클리닝 처리 후에, 상기 반응 용기 내에 수납된 제품용 피처리체상에 CVD에 의해 실리콘을 함유하고 그리고 게르마늄을 함유하지 않는 제2 제품막을 형성하는 제2 성막 처리를 행하는 공정으로서, 상기 반응 용기 내에 상기 실리콘 소스 가스를 공급함과 함께 상기 반응 용기 내를 가열하여 상기 실리콘 소스 가스를 활성화하는, 공정
을 구비하는 게르마늄 함유막을 성막하는 장치의 사용 방법. - 제11항에 있어서,
상기 제2 클리닝 처리와 상기 제2 성막 처리의 사이에, 상기 반응 용기의 내면을 상기 제2 제품막과 동일한 조성의 피복막으로 피복하는 프리코팅 처리를 행하는 공정을 추가로 구비하는 게르마늄 함유막을 성막하는 장치의 사용 방법. - 제12항에 있어서,
상기 프리코팅 처리는, 상기 제1 성막 처리보다 높은 처리 온도를 사용하는 게르마늄 함유막을 성막하는 장치의 사용 방법. - 제11항에 있어서,
상기 제2 클리닝 처리는, 750℃∼950℃의 처리 온도 및 13.3Pa∼931Pa의 처리 압력을 사용하는 게르마늄 함유막을 성막하는 장치의 사용 방법. - 제14항에 있어서,
상기 제1 클리닝 처리는, 200℃∼400℃의 처리 온도 및 1064Pa∼199950Pa의 처리 압력을 사용하는 게르마늄 함유막을 성막하는 장치의 사용 방법. - 제11항에 있어서,
상기 제1 성막 처리는, 300℃∼650℃의 처리 온도 및 10Pa∼130Pa의 처리 압력을 사용하는 게르마늄 함유막을 성막하는 장치의 사용 방법. - 제11항에 있어서,
상기 제2 제품막은 실리콘막인 게르마늄 함유막을 성막하는 장치의 사용 방법. - 제17항에 있어서,
상기 제2 성막 처리는, 400℃∼650℃의 처리 온도 및 13.3Pa∼133Pa의 처리 압력을 사용하는 게르마늄 함유막을 성막하는 장치의 사용 방법. - 제12항에 있어서,
상기 피복막은 실리콘막인 게르마늄 함유막을 성막하는 장치의 사용 방법. - 제11항에 있어서,
상기 제2 클리닝 가스의 상기 산화 가스는 질소와 산소의 화합물 가스로 이루어지는 게르마늄 함유막을 성막하는 장치의 사용 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009036831A JP5067381B2 (ja) | 2009-02-19 | 2009-02-19 | 熱処理装置の運転方法 |
JPJP-P-2009-036831 | 2009-02-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100094951A KR20100094951A (ko) | 2010-08-27 |
KR101300054B1 true KR101300054B1 (ko) | 2013-08-29 |
Family
ID=42560308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100014517A KR101300054B1 (ko) | 2009-02-19 | 2010-02-18 | 게르마늄 함유막을 성막하는 장치의 사용 방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8518488B2 (ko) |
JP (1) | JP5067381B2 (ko) |
KR (1) | KR101300054B1 (ko) |
CN (1) | CN101814431B (ko) |
TW (1) | TWI439566B (ko) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5751895B2 (ja) * | 2010-06-08 | 2015-07-22 | 株式会社日立国際電気 | 半導体装置の製造方法、クリーニング方法および基板処理装置 |
JP6125846B2 (ja) * | 2012-03-22 | 2017-05-10 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム |
JP6035166B2 (ja) | 2013-02-26 | 2016-11-30 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置およびプログラム |
JP5847783B2 (ja) * | 2013-10-21 | 2016-01-27 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体 |
JP6322131B2 (ja) * | 2014-12-24 | 2018-05-09 | 東京エレクトロン株式会社 | シリコン膜の成膜方法および成膜装置 |
JP2018170387A (ja) * | 2017-03-29 | 2018-11-01 | 東京エレクトロン株式会社 | 成膜方法及び縦型熱処理装置 |
JP6779165B2 (ja) * | 2017-03-29 | 2020-11-04 | 東京エレクトロン株式会社 | 金属汚染防止方法及び成膜装置 |
JP7190875B2 (ja) * | 2018-11-16 | 2022-12-16 | 東京エレクトロン株式会社 | ポリシリコン膜の形成方法及び成膜装置 |
TW202146699A (zh) * | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成矽鍺層之方法、半導體結構、半導體裝置、形成沉積層之方法、及沉積系統 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0166989B1 (ko) * | 1993-07-01 | 1999-01-15 | 할 크리스버그 | 개선된 반도체 물질 및 그 위에 형성된 장치의 스위칭 속도 제어방법 |
KR20050037953A (ko) * | 2003-10-20 | 2005-04-25 | 도쿄 엘렉트론 가부시키가이샤 | 성막 장치 및 성막 방법 |
KR20060050618A (ko) * | 2004-08-25 | 2006-05-19 | 동경 엘렉트론 주식회사 | 반도체 처리용의 성막장치 및 그것의 사용 방법 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4717681A (en) * | 1986-05-19 | 1988-01-05 | Texas Instruments Incorporated | Method of making a heterojunction bipolar transistor with SIPOS |
JP2833684B2 (ja) * | 1993-09-29 | 1998-12-09 | セントラル硝子株式会社 | 薄膜形成装置のクリーニング方法 |
JP4258476B2 (ja) * | 1994-06-15 | 2009-04-30 | セイコーエプソン株式会社 | 薄膜半導体装置の製造方法 |
JP3164046B2 (ja) * | 1997-12-12 | 2001-05-08 | 日本電気株式会社 | 炉芯管の洗浄機構 |
JP2000323420A (ja) * | 1999-05-14 | 2000-11-24 | Sony Corp | 半導体装置の製造方法 |
KR100375102B1 (ko) * | 2000-10-18 | 2003-03-08 | 삼성전자주식회사 | 반도체 장치의 제조에서 화학 기상 증착 방법 및 이를수행하기 위한 장치 |
JP4669605B2 (ja) * | 2000-11-20 | 2011-04-13 | 東京エレクトロン株式会社 | 半導体製造装置のクリーニング方法 |
JP2003077845A (ja) | 2001-09-05 | 2003-03-14 | Hitachi Kokusai Electric Inc | 半導体装置の製造方法および基板処理装置 |
JP2004103805A (ja) * | 2002-09-09 | 2004-04-02 | Sharp Corp | 半導体基板の製造方法、半導体基板及び半導体装置 |
JP2005123532A (ja) * | 2003-10-20 | 2005-05-12 | Tokyo Electron Ltd | 成膜装置及び成膜方法 |
JP2006114780A (ja) * | 2004-10-15 | 2006-04-27 | Tokyo Electron Ltd | 薄膜形成装置の洗浄方法、薄膜形成装置及びプログラム |
JP4974815B2 (ja) | 2006-10-04 | 2012-07-11 | 東京エレクトロン株式会社 | 薄膜形成装置の洗浄方法、薄膜形成方法及び薄膜形成装置 |
JP4438850B2 (ja) * | 2006-10-19 | 2010-03-24 | 東京エレクトロン株式会社 | 処理装置、このクリーニング方法及び記憶媒体 |
JP2008198656A (ja) * | 2007-02-08 | 2008-08-28 | Shin Etsu Chem Co Ltd | 半導体基板の製造方法 |
JP5554469B2 (ja) * | 2007-05-14 | 2014-07-23 | 東京エレクトロン株式会社 | 薄膜形成装置の洗浄方法、薄膜形成方法及び薄膜形成装置 |
JP2008283148A (ja) * | 2007-05-14 | 2008-11-20 | Tokyo Electron Ltd | 薄膜形成装置の洗浄方法、薄膜形成方法及び薄膜形成装置 |
-
2009
- 2009-02-19 JP JP2009036831A patent/JP5067381B2/ja active Active
-
2010
- 2010-02-09 TW TW099103941A patent/TWI439566B/zh not_active IP Right Cessation
- 2010-02-11 CN CN201010115677.1A patent/CN101814431B/zh active Active
- 2010-02-17 US US12/707,193 patent/US8518488B2/en active Active
- 2010-02-18 KR KR1020100014517A patent/KR101300054B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0166989B1 (ko) * | 1993-07-01 | 1999-01-15 | 할 크리스버그 | 개선된 반도체 물질 및 그 위에 형성된 장치의 스위칭 속도 제어방법 |
KR20050037953A (ko) * | 2003-10-20 | 2005-04-25 | 도쿄 엘렉트론 가부시키가이샤 | 성막 장치 및 성막 방법 |
KR20080089327A (ko) * | 2003-10-20 | 2008-10-06 | 도쿄엘렉트론가부시키가이샤 | 성막 장치 및 성막 방법 |
KR20060050618A (ko) * | 2004-08-25 | 2006-05-19 | 동경 엘렉트론 주식회사 | 반도체 처리용의 성막장치 및 그것의 사용 방법 |
Also Published As
Publication number | Publication date |
---|---|
JP5067381B2 (ja) | 2012-11-07 |
US20100210094A1 (en) | 2010-08-19 |
US8518488B2 (en) | 2013-08-27 |
CN101814431A (zh) | 2010-08-25 |
CN101814431B (zh) | 2014-08-20 |
JP2010192757A (ja) | 2010-09-02 |
KR20100094951A (ko) | 2010-08-27 |
TWI439566B (zh) | 2014-06-01 |
TW201038761A (en) | 2010-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101300054B1 (ko) | 게르마늄 함유막을 성막하는 장치의 사용 방법 | |
KR102166792B1 (ko) | 금속 층들 상에 실리콘 옥사이드를 증착하기 위한 방법들 및 장치 | |
KR101848562B1 (ko) | 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램 | |
US7351668B2 (en) | Film formation method and apparatus for semiconductor process | |
KR101140069B1 (ko) | 반도체 처리용의 성막 방법 및 장치 및 컴퓨터로 판독가능한 매체 | |
KR101314002B1 (ko) | SiCN막 성막 방법 | |
KR100861851B1 (ko) | 실리콘 산화막 형성 방법 및 장치 | |
US7964516B2 (en) | Film formation apparatus for semiconductor process and method for using same | |
US8178448B2 (en) | Film formation method and apparatus for semiconductor process | |
KR100890684B1 (ko) | 반도체 처리용 성막 방법 | |
US20140199839A1 (en) | Film-forming method for forming silicon oxide film on tungsten film or tungsten oxide film | |
US20060207504A1 (en) | Film formation method and apparatus for semiconductor process | |
US20080014758A1 (en) | Film formation apparatus for semiconductor process and method for using the same | |
CN110581067A (zh) | 蚀刻方法及蚀刻装置 | |
KR20150097413A (ko) | 클리닝 방법, 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램 | |
KR100983452B1 (ko) | 실리콘 질화막의 형성 방법 | |
JP2018022716A (ja) | 窒化膜の形成方法および形成装置 | |
KR20080001646A (ko) | 성막 장치 및 그 사용 방법 | |
US9460913B2 (en) | Film-forming method for forming silicon oxide film on tungsten film or tungsten oxide film | |
US9466476B2 (en) | Film-forming method for forming silicon oxide film on tungsten film or tungsten oxide film | |
JP5549761B2 (ja) | 熱処理装置のクリーニング方法 | |
US20240105443A1 (en) | Method of processing substrate, method of manufacturing semiconductor device, substrate processing system, and recording medium | |
JP5293866B2 (ja) | 熱処理装置の運転方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160721 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170720 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180801 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190730 Year of fee payment: 7 |