KR101255869B1 - 폴리이소시아네이트 제조 장치 및 가스 처리 장치 - Google Patents

폴리이소시아네이트 제조 장치 및 가스 처리 장치 Download PDF

Info

Publication number
KR101255869B1
KR101255869B1 KR1020077022612A KR20077022612A KR101255869B1 KR 101255869 B1 KR101255869 B1 KR 101255869B1 KR 1020077022612 A KR1020077022612 A KR 1020077022612A KR 20077022612 A KR20077022612 A KR 20077022612A KR 101255869 B1 KR101255869 B1 KR 101255869B1
Authority
KR
South Korea
Prior art keywords
hydrogen chloride
gas
chlorine
liquid
hydrochloric acid
Prior art date
Application number
KR1020077022612A
Other languages
English (en)
Other versions
KR20070117633A (ko
Inventor
마사아키 사사키
히로후미 다카하시
고우지 마에바
다카오 나이토
고우이치로 데라다
다카시 야마구치
다쿠야 사에키
Original Assignee
미쓰이 가가쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005108592A external-priority patent/JP4712422B2/ja
Priority claimed from JP2005108593A external-priority patent/JP4750449B2/ja
Application filed by 미쓰이 가가쿠 가부시키가이샤 filed Critical 미쓰이 가가쿠 가부시키가이샤
Publication of KR20070117633A publication Critical patent/KR20070117633A/ko
Application granted granted Critical
Publication of KR101255869B1 publication Critical patent/KR101255869B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0706Purification ; Separation of hydrogen chloride
    • C01B7/0718Purification ; Separation of hydrogen chloride by adsorption
    • C01B7/0725Purification ; Separation of hydrogen chloride by adsorption by active carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/10Preparation of derivatives of isocyanic acid by reaction of amines with carbonyl halides, e.g. with phosgene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/306Alkali metal compounds of potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treating Waste Gases (AREA)

Abstract

본 발명은 부생된 염화수소로부터 염소를 안정적으로 제조할 수 있으면서, 염화카르보닐과 폴리아민을 안정적으로 반응시킬 수 있고, 뿐만 아니라, 부생된 염화수소 가스를 효율적으로 처리할 수 있는 폴리이소시아네이트 제조 장치를 제공한다.
염화수소 가스 제어부(32)가, 유량 제어 밸브(23)를 제어하여, 염화수소 정제탑(4)으로부터 제2 염화수소 가스 접속 라인(11)을 통해 염화수소 산화조(6)에 공급되는 염화수소의 공급량을 일정하게 하는 동시에, 염화수소 가스 제어부(32)가, 압력 센서(25)로부터 입력되는 염화수소 정제탑(4) 안의 압력에 기초하여, 압력 제어 밸브(22)를 제어하여, 염화수소 정제탑(4) 안의 압력이 일정하게 되도록, 염화수소 정제탑(4)에서 제1 염화수소 가스 접속 라인(10)을 통하여 염화수소 흡수탑(5)으로 염화수소 가스를 배출한다.
폴리이소시아네이트, 염화수소, 염소, 염화카르보닐, 폴리아민

Description

폴리이소시아네이트 제조 장치 및 가스 처리 장치{APPARATUS FOR POLYISOCYANATE PRODUCTION AND APPARATUS FOR GAS TREATMENT}
본 발명은, 폴리우레탄의 원료가 되는 폴리이소시아네이트의 제조 장치 및 가스와 처리액을 접촉시켜 가스를 처리하기 위한 가스 처리 장치에 관한 것이다.
폴리우레탄의 원료로서 이용되는 폴리이소시아네이트는 염화카르보닐과 폴리아민을 이소시아네이트화 반응시킴으로써 공업적으로 제조되고 있다.
이러한 이소시아네이트화 반응에서는, 폴리아민으로부터 대응하는 폴리이소시아네이트가 생성되는 동시에 염화수소 가스가 부생된다.
그리고, 이와 같이 부생된 염화수소 가스를 산화하여, 염소를 공업적으로 제조하는 것이 알려져 있다(예컨대, 하기 특허문헌 1 및 하기 특허문헌 2 참조).
또한, 화학 제품을 제조하는 플랜트에서는, 화학 공정에서 생성되는 유해 가스를 무해화하는 등의 가스 처리를 하기 위한 가스 처리 장치가 설비되어 있다. 이러한 가스 처리 장치는, 예컨대 충전탑, 스프레이탑, 스크러버 등으로 구성되며, 유해 가스를 처리하는 것은 제해탑(除害塔)이라고도 불리고 있다.
이러한 가스 처리 장치로서, 예컨대 도 4에 도시하는 제해탑이 알려져 있다(예컨대, 하기 특허문헌 3 참조).
이 제해탑(71)은 처리조(72), 저류 탱크(73) 및 펌프(74)를 갖추고 있다. 처리조(72) 내에는 기액 접촉의 효율을 향상시키기 위한 충전물이 충전되어 있는 기액 접촉실(75)이 형성되어 있다. 또한, 처리조(72) 내에는 기액 접촉실(75)의 위쪽에 샤워(76)가 설치되어 있다. 처리조(72)의 바닥부, 저류 탱크(73), 펌프(74) 및 샤워(76)는 순환 라인(77)에 의해서 접속되어 있다.
저류 탱크(73)에는 유해 가스를 무해화하기 위한 처리액이 저류되어 있고, 그 처리액은 펌프(74)에 의해서 순환 라인(77)을 통해 위쪽으로 퍼 올려져, 처리조(72) 내에서 샤워(76)로부터 기액 접촉실(75)에 살포되어, 기액 접촉실(75) 안을 통과한 후, 처리조(72)의 바닥부로부터 저류 탱크(73)로 되돌아가는 식으로 순환한다.
한편, 처리조(72)에는, 기액 접촉실(75)을 아래쪽에서 위쪽으로 향해서 흐르도록 하여 유해 가스가 공급되고 있으며, 유해 가스는 기액 접촉실(75) 내에서 샤워(76)로부터 살포되는 처리액과 상하 방향에서 대향하도록 하여, 효율적으로 기액 접촉하여 무해화되고, 그 후, 처리조(72)에서 대기로 방출된다.
하기 특허문헌 3에서는, 이와 같은 제해탑에 의해서 처리액으로서 수산화나트륨 수용액을 이용하여 유해 가스로서의 염화카르보닐 함유 가스를 무해화하고 있다.
<특허문헌 1>
일본 특허 공개 소62-275001호 공보
<특허문헌 2>
일본 특허 공개 2000-272906호 공보
<특허문헌 3>
일본 특허 공개 평6-319946호 공보
<발명이 해결하고자 하는 과제>
염화카르보닐과 폴리아민을 이소시아네이트화 반응시켜, 부생하는 염화수소 가스를 산소로 산화하여 염소를 제조하고, 얻어진 염소와 일산화탄소로 염화카르보닐을 제조하여 이소시아네이트화 반응에 제공함으로써, 폴리이소시아네이트의 제조를 시도한 바, 이소시아네이트화 반응이 여러 가지 이유에 의해 변동된 경우, 부생되는 염화수소 가스의 양이 변동되는 경우가 있다. 부생되는 염화수소 가스의 양이 변동되면, 염화수소 가스를 산화하는 공정에 공급되는 염화수소 가스의 양이 변동된다.
그러나, 염소를 공업적으로 안정적으로 제조하기 위해서는 부생되는 염화수소 가스를 산화하기 위한 염화수소 산화조에 염화수소 가스를 안정적으로 공급할 필요가 있다.
또한, 염화카르보닐과 폴리아민을 반응시키는 이소시아네이트화 반응조에서는 반응을 안정시키기 위해서 압력을 일정하게 할 필요가 있다.
그 때문에, 이소시아네이트화 반응조 등의 변동이 있더라도 염화수소 가스를 상기한 2개의 요인을 고려하면서 효율적으로 처리할 것이 요구되고 있다.
또한, 부생된 염화수소 가스를 산화하기 위한 염화수소 산화조에 트러블이 생기면, 부생된 염화수소 가스의 처리가 문제가 된다.
또한, 상기한 제해탑(71)에 있어서, 예컨대 펌프(74) 등에 트러블이 발생하면, 처리액이 순환 라인(77)을 순환하지 않게 되기 때문에, 처리조(72)에 있어서, 유해 가스와 처리액의 기액 접촉의 효율이 저하되고, 나아가서는 처리액을 퍼올리기가 중단되면, 기액 접촉실(75)에 잔류하는 처리액이 소비되어, 유해 가스를 무해화할 수 없게 될 우려도 생긴다.
본 발명의 목적은, 부생된 염화수소로부터 염소를 안정적으로 제조할 수 있으면서, 염화카르보닐과 폴리아민을 안정적으로 반응시킬 수 있고, 더구나, 부생된 염화수소 가스를 효율적으로 처리할 수 있는, 폴리이소시아네이트 제조 장치를 제공하는 데에 있다.
또한, 본 발명의 다른 목적은, 부생된 염화수소로부터 염소를 제조하기 위한 염소 제조 수단에 트러블이 생기더라도, 염화수소를 효율적으로 처리할 수 있는, 폴리이소시아네이트 제조 장치를 제공하는 데에 있다.
더욱이, 본 발명의 다른 목적은, 각별한 동력을 필요로 하지 않고도, 처리액을 기액 접촉실 내에 공급할 수 있는 가스 처리 장치를 제공하는 데에 있다.
<과제를 해결하기 위한 수단>
본 발명의 폴리이소시아네이트 제조 장치는, 염화카르보닐과 폴리아민을 반응시켜 폴리이소시아네이트를 제조하는 폴리이소시아네이트 제조 수단과, 상기 폴리이소시아네이트 제조 수단에 있어서 부생된 염화수소가 공급되어 염화수소를 정제하는 염화수소 정제 수단과, 상기 염화수소 정제 수단에 있어서 정제된 염화수소가 공급되어 염화수소를 산화하여 염소를 제조하는 염소 제조 수단과, 상기 염화수소 정제 수단에 있어서 정제된 염화수소가 공급되어 염화수소를 물에 흡수시켜 염산을 제조하는 염산 제조 수단과, 상기 염화수소 정제 수단으로부터 상기 염산 제조 수단에 공급되는 염화수소의 공급량을 조절하는 제1 조절 수단과, 상기 염화수소 정제 수단으로부터 상기 염소 제조 수단에 공급되는 염화수소의 공급량을 조절하는 제2 조절 수단과, 상기 염화수소 정제 수단으로부터 상기 염소 제조 수단에 공급되는 염화수소의 공급량이 일정하게 되도록 상기 제2 조절 수단을 제어하고, 상기 염화수소 정제 수단 내의 압력이 일정하게 되도록 상기 제1 조절 수단을 제어하는 제어 수단을 구비하는 것을 특징으로 한다.
이 폴리이소시아네이트 제조 장치에 의하면, 제어 수단에 의해서, 제2 조절 수단을 제어하여, 염화수소 정제 수단으로부터 염소 제조 수단에 공급되는 염화수소의 공급량을 일정하게 하고, 제1 조절 수단을 제어하여 염화수소 정제 수단 내의 압력이 일정하게 되도록 염화수소 정제 수단으로부터 염산 제조 수단에 공급되는 염화수소의 공급량을 조절한다. 그 때문에, 염소 제조 수단에 안정적으로 염화수소를 공급할 수 있으면서, 잉여의 염화수소를 염화수소 정제 수단으로부터 염산 제조 수단에 공급함으로써, 염화수소 정제 수단 내의 압력을 일정하게 할 수 있다.
그 결과, 부생된 염화수소로부터 염소를 안정적으로 제조할 수 있으면서, 염화수소 정제 수단 내의 압력, 나아가서는 폴리이소시아네이트 제조 수단 내의 압력을 일정하게 할 수 있고, 이로써, 염화카르보닐과 폴리아민을 안정적으로 반응시킬 수 있고, 더구나, 부생된 염화수소 가스를 효율적으로 처리할 수 있다.
또한, 이 폴리이소시아네이트 제조 장치에서는, 상기 염산 제조 수단에는 상기 염소 제조 수단에 있어서의 미산화의 염화수소 및 염산이 공급되는 것이 적합하다.
염소 제조 수단에 있어서의 미산화의 염화수소 및 염소 제조 수단에서 생성된 염산을 배출하지 않고 염산 제조 수단에 공급하면, 보다 효율적으로 염산을 제조할 수 있어, 잉여 염화수소의 유효한 이용을 도모할 수 있다.
또한, 이 폴리이소시아네이트 제조 장치에서는, 상기 염산 제조 수단은 제조되는 염산의 농도를 조절하기 위한 염산 농도 조절 수단을 갖추고 있는 것이 적합하다.
염산 농도 조절 수단에 의해서 제조되는 염산의 농도를 조절하면, 품질이 안정된 염산을 제조할 수 있다.
또한, 본 발명의 폴리이소시아네이트 제조 장치는, 염화카르보닐과 폴리아민을 반응시켜 폴리이소시아네이트를 제조하는 폴리이소시아네이트 제조 수단과, 상기 폴리이소시아네이트 제조 수단에 접속되어, 상기 폴리이소시아네이트 제조 수단에서 부생된 염화수소를 정제하는 염화수소 정제 수단과, 상기 염화수소 정제 수단에 접속되어, 상기 염화수소 정제 수단에서 정제된 염화수소를 산화하여, 염소를 제조하는 염소 제조 수단과, 상기 염화수소 정제 수단에 대하여 상기 염소 제조 수단과 병렬적으로 접속되어, 상기 염화수소 정제 수단으로부터 배출되는 염화수소를 무해화 처리하는 제1 무해화 처리 수단과, 상기 염화수소 정제 수단에 대하여 상기 염소 제조 수단과 선택적으로 접속되어, 상기 염화수소 정제 수단으로부터 배출되는 염화수소를 무해화 처리하는 제2 무해화 처리 수단과, 상기 염화수소 정제 수단의 이상을 검지하는 이상 검지 수단과, 상기 이상 검지 수단에 의해서 이상이 검지되지 않을 때에는, 상기 염화수소 정제 수단에 대하여 상기 염소 제조 수단을 접속하고, 상기 이상 검지 수단에 의해서 이상이 검지되었을 때에는, 상기 염화수소 정제 수단에 대하여 상기 제2 무해화 처리 수단을 접속하는 접속 전환 수단을 구비하는 것을 특징으로 한다.
이 폴리이소시아네이트 제조 장치에 의하면, 이상 검지 수단에 의해서 염화수소 정제 수단의 이상이 검지되지 않을 때에는, 염화수소 정제 수단에 의해서 정제된 염화수소는, 염소 제조 수단에 공급되어, 염소 제조 수단에 있어서 공급된 염화수소로부터 염소가 제조되는 동시에, 제1 무해화 처리 수단에 배출되어, 제1 무해화 처리 수단에 있어서 공급된 염화수소가 무해화된다.
한편, 염소 제조 수단이 이상이 되어, 이상 검지 수단에 의해서 염화수소 정제 수단의 이상이 검지되었을 때에는, 접속 전환 수단이, 염화수소 정제 수단에 대한 접속을, 염소 제조 수단에서 제1 무해화 처리 수단의 처리 능력에 따라서 제2 무해화 처리 수단으로 전환한다. 그러면, 그때까지 염소 제조 수단에 공급되고 있던 염화수소가 제2 무해화 처리 수단에 배출되어 제2 무해화 처리 수단에서 무해화된다.
그 결과, 염소 제조 수단이 정상적일 때에는, 염소 제조 수단에 안정적으로 염화수소를 공급하면서, 잉여의 염화수소를 제1 무해화 처리 수단에서 무해화할 수 있고, 염소 제조 수단에 트러블이 생겼을 때에는, 그때까지 염소 제조 수단에 공급되고 있던 염화수소를 제1 무해화 처리 수단의 처리 능력에 따라서 그 잉여분을 제2 무해화 처리 수단에서 무해화할 수 있어, 염화수소의 효율적인 처리를 달성할 수 있다.
또한, 이 폴리이소시아네이트 제조 장치에서는, 상기 접속 전환 수단은, 상기 염화수소 정제 수단에 대하여 상기 염소 제조 수단을 접속 또는 차단하는 제1 개폐 수단과, 상기 염화수소 정제 수단에 대하여 상기 제2 무해화 처리 수단을 접속 또는 차단하는 제2 개폐 수단과, 상기 제1 개폐 수단과 상기 제2 개폐 수단을 제어하는 제어 수단을 구비하고, 상기 제어 수단은, 상기 이상 검지 수단에 의해서 이상이 검지되지 않을 때에는, 상기 제1 개폐 수단을 제어하여, 상기 염화수소 정제 수단에 대하여 상기 염소 제조 수단을 접속하고, 상기 제2 개폐 수단을 제어하여, 상기 염화수소 정제 수단에 대하여 상기 제2 무해화 처리 수단을 차단하며, 상기 이상 검지 수단에 의해서 이상이 검지되었을 때에는, 상기 제1 개폐 수단을 제어하여, 상기 염화수소 정제 수단에 대하여 상기 염소 제조 수단을 차단하거나, 혹은 상기 염화수소 정제 수단에서 정제된 염화수소의 상기 염소 제조 수단에 대한 공급량을 급격히 저감시키고, 상기 제2 개폐 수단을 제어하여, 상기 염화수소 정제 수단에 대하여, 상기 제1 무해화 처리 수단의 처리 능력에 따라서, 상기 제2 무해화 처리 수단을 접속하는 것이 적합하다.
이상 검지 수단에 의해서 이상이 검지되지 않을 때에는, 제어 수단에 의해서, 제1 개폐 수단을 제어하여, 염화수소 정제 수단에 대하여 염소 제조 수단을 접속하고, 제2 개폐 수단을 제어하여, 염화수소 정제 수단에 대하여 상기 제2 무해화 처리 수단을 차단하며, 또한, 이상 검지 수단에 의해서 이상이 검지되었을 때에는, 제어 수단에 의해서, 제1 개폐 수단을 제어하여, 염화수소 정제 수단에 대하여 염소 제조 수단을 차단하거나, 혹은 염화수소 정제 수단에서 정제된 염화수소의 염소 제조 수단에 대한 공급량을 급격히 저감시키고, 제1 무해화 처리 수단의 처리 능력에 따라서, 제2 개폐 수단을 제어하여, 염화수소 정제 수단에 대하여 제2 무해화 처리 수단을 접속하면, 염소 제조 수단에 트러블이 생겼을 때에, 그때까지 염소 제조 수단에 공급되고 있던 염화수소를 제1 무해화 처리 수단의 처리 능력에 따라서 그 잉여분을 확실하게 제2 무해화 처리 수단에 배출하여 무해화할 수 있다.
또한, 이 폴리이소시아네이트 제조 장치에는, 상기 제1 무해화 처리 수단이, 염화수소를 물에 흡수시켜, 염산을 제조하는 염산 제조 수단인 것이 적합하다.
제1 무해화 처리 수단이 염산 제조 수단이면, 잉여의 염화수소를 무해화하면서, 그 잉여의 염화수소로부터 염산을 제조하여 재이용할 수 있다. 그 결과, 잉여 염화수소의 유효한 이용을 도모할 수 있다.
또한, 이 폴리이소시아네이트 제조 장치에서는, 상기 염산 제조 수단에는, 상기 염소 제조 수단에 있어서의 미산화의 염화수소 및 염산이 공급되는 것이 적합하다.
염소 제조 수단에 있어서의 미산화의 염화수소 또는 염소 제조 수단에 있어서 생성된 염산을 배출하지 않고 염산 제조 수단에 공급하면, 보다 효율적으로 염산을 제조할 수 있어, 잉여 염화수소의 유효한 이용을 도모할 수 있다.
또한, 이 폴리이소시아네이트 제조 장치에서는, 상기 염화수소 정제 수단으로부터 상기 염산 제조 수단에 공급되는 염화수소의 공급량을 조절하는 제1 조절 수단과, 상기 염화수소 정제 수단으로부터 상기 염소 제조 수단에 공급되는 염화수소의 공급량을 조절하는 제2 조절 수단과, 상기 염화수소 정제 수단으로부터 상기 염소 제조 수단에 공급되는 염화수소의 공급량이 일정하게 되도록 상기 제2 조절 수단을 제어하고, 상기 염화수소 정제 수단 내의 압력이 일정하게 되도록 상기 제1 조절 수단을 제어하는 제어 수단을 구비하는 것이 적합하다.
제어 수단에 의해서, 제2 조절 수단을 제어하여, 염화수소 정제 수단으로부터 염소 제조 수단에 공급되는 염화수소의 공급량을 일정하게 하고, 제1 조절 수단을 제어하여, 염화수소 정제 수단 내의 압력이 일정하게 되도록 염화수소 정제 수단으로부터 염산 제조 수단에 공급되는 염화수소의 공급량을 조절하면, 염소 제조 수단에 안정적으로 염화수소를 공급할 수 있으면서, 잉여의 염화수소를 염화수소 정제 수단으로부터 염산 제조 수단에 공급함으로써, 염화수소 정제 수단 내의 압력을 일정하게 할 수 있다.
그 결과, 부생된 염화수소로부터 염소를 안정적으로 제조할 수 있으면서, 염화수소 정제 수단 내의 압력, 나아가서는 폴리이소시아네이트 제조 수단 내의 압력을 일정하게 할 수 있으며, 이로써, 염화카르보닐과 폴리아민을 안정적으로 반응시킬 수 있고, 더구나, 부생된 염화수소 가스를 효율적으로 처리할 수 있다.
또한, 본 발명의 가스 처리 장치는, 가스와 처리액을 접촉시켜 가스를 처리하기 위한 가스 처리 장치로서, 가스와 처리액을 기액 접촉시키는 기액 접촉실과, 상기 기액 접촉실보다 위쪽에 배치되어, 처리액을 저류하는 저류실과, 상기 저류실 내의 처리액을 중력 낙하에 의해 상기 기액 접촉실 내에 공급하기 위한 처리액 공급 수단을 구비하는 것을 특징으로 한다.
이 가스 처리 장치에 의하면, 기액 접촉실보다 위쪽에 배치되어 있는 저류실로부터, 처리액 공급 수단에 의해서, 각별한 동력이 필요로 하지 않고도, 처리액이 중력 낙하에 의해 기액 접촉실 내에 공급된다. 그 때문에, 가령 저류실에 처리액을 공급하기 위한 동력원에 트러블이 생기더라도, 처리액은 저류실 내의 처리액이 없어질 때까지 처리액 공급 수단에 의해서 기액 접촉실 내에 공급된다.
그 결과, 동력원의 트러블에 기인한 처리액의 기액 접촉실에 대한 공급이 중단되더라도, 기액 접촉실에서의 처리액과 가스의 접촉을 계속할 수 있어, 가스의 처리가 계속되어 안전성의 향상을 보다 한층 더 도모할 수 있다.
또한, 본 발명의 가스 처리 장치에서는, 상기 기액 접촉실이 복수 설치되어 있으며, 복수의 상기 기액 접촉실에 대하여 가스를 각 상기 기액 접촉실에 직렬적으로 통과시키는 가스 통과 패스를 더욱 구비하고, 상기 처리액 공급 수단은, 상기 가스 통과 패스를 흐르는 가스의 유동 방향에 있어서, 적어도 최하류측의 상기 기액 접촉실에 대하여 처리액을 공급하는 것이 적합하다.
기액 접촉실을 복수 설치하여, 가스 통과 패스에 의해서 가스를 각 기액 접촉실에 직렬적으로 통과시키면, 가스의 처리를 다단 연속적으로 실시할 수 있다. 그 때문에, 가스의 효율적인 처리를 달성할 수 있다.
또한, 이와 같이, 기액 접촉실을 복수 설치하더라도, 처리액 공급 수단이, 가스 통과 패스를 흐르는 가스의 유동 방향에 있어서, 적어도 최하류측의 기액 접촉실에 대하여 처리액을 공급하기 때문에, 동력원의 트러블에 기인한 처리액의 기액 접촉실에 대한 공급이 중단되더라도, 적어도 최하류측의 기액 접촉실에 있어서, 처리액과 가스의 접촉을 계속할 수 있어, 가스의 처리가 계속되어 안전성의 향상을 보다 한층 더 도모할 수 있다.
또, 본 발명의 가스 처리 장치에서는, 상기 기액 접촉실에서 배출되는 처리액을 상기 저류실에 환류하기 위한 처리액 환류 수단을 더욱 구비하는 것이 적합하다.
처리액 환류 수단에 의해서 처리액을 환류하면, 처리액의 낭비를 없애, 운전 비용의 저감을 도모할 수 있다.
그리고, 본 발명의 가스 처리 장치는, 상기 가스가 염화카르보닐 함유 가스이며, 상기 처리액이 알칼리성 수용액인, 염화카르보닐 함유 가스를 무해화하기 위한 가스 처리 장치로서 적합하게 이용된다.
또한, 본 발명의 가스 처리 장치는, 상기 가스가 염화수소 함유 가스이며, 상기 처리액이 물 또는 알칼리성 수용액인, 염화수소 가스의 처리 장치로서도 적합하게 이용된다.
또한, 본 발명의 가스 처리 장치는, 상기 가스와 상기 처리액의 조합으로서, 암모니아 또는 알킬아민 함유 가스와 물 또는 산성 수용액과의 조합, SOx 또는 NOx 함유 가스와 물 또는 알칼리성 수용액과의 조합, 휘발성 유기 화합물 함유 가스와 유기 용매와의 조합 등의, 가스의 제해(무해화)·흡수·회수 등을 목적으로 한 가스 처리 장치로서도 적합하게 이용된다.
<발명의 효과>
본 발명의 폴리이소시아네이트 제조 장치에 따르면, 부생된 염화수소로부터 염소를 안정적으로 제조할 수 있으면서, 폴리이소시아네이트 제조 수단 내의 압력을 일정하게 할 수 있으며, 이로써, 염화카르보닐과 폴리아민을 안정적으로 반응시킬 수 있고, 더구나, 부생된 염화수소 가스를 효율적으로 처리할 수 있다.
또한, 본 발명의 폴리이소시아네이트 제조 장치에 따르면, 염소 제조 수단이 정상적일 때에는, 염소 제조 수단에 안정적으로 염화수소를 공급하면서, 잉여의 염화수소를 제1 무해화 처리 수단에서 무해화할 수 있으며, 염소 제조 수단에 트러블이 생겼을 때에는, 그때까지 염소 제조 수단에 공급되고 있던 염화수소를 제1 무해화 처리 수단의 처리 능력에 따라서 그 잉여분을 제2 무해화 처리 수단에서 무해화함으로써, 제1 무해화 처리 수단이 무해화 처리 능력의 여부에 관계없이 무해화할 수 있어, 염화수소의 효율적인 처리를 달성할 수 있다.
본 발명의 가스 처리 장치에 의하면, 동력원의 트러블에 기인한 처리액의 기액 접촉실에 대한 공급의 중단이 발생하더라도, 기액 접촉실에서의 처리액과 가스의 접촉을 계속할 수 있어, 가스의 처리가 계속되어 안전성의 향상을 보다 한층 더 도모할 수 있다.
도 1은 본 발명의 폴리이소시아네이트 제조 장치의 일 실시형태를 도시하는 개략 구성도이다.
도 2는 본 발명의 가스 처리 장치의 제1 실시형태로서의 제해탑을 도시하는 개략 구성도이다.
도 3은 본 발명의 가스 처리 장치의 제2 실시형태로서의 제해탑을 도시하는 개략 구성도이다.
도 4는 공지 문헌에 기재된 제해탑을 도시하는 개략 구성도이다.
<부호의 설명>
1 : 폴리이소시아네이트 제조 장치 3 : 이소시아네이트화 반응조
4 : 염화수소 정제탑 5 : 염화수소 흡수탑
6 : 염화수소 산화조 7 : 제해탑
21 : 농도 제어부 22 : 압력 제어 밸브
23 : 유량 제어 밸브 24 : 밸브
25 : 압력 센서 32 : 염화수소 가스 제어부
51 : 제해탑 55 : 기액 접촉실
56 : 저류실 57 : 처리액 공급관
61 : 유해 가스 유입관 62 : 처리 가스 유출관
63 : 환류관 64 : 수송관
도 1은 본 발명의 폴리이소시아네이트 제조 장치의 일 실시형태를 도시하는 개략 구성도이다.
도 1에 있어서, 이 폴리이소시아네이트 제조 장치(1)는, 염화카르보닐 제조 용 반응조(2), 폴리이소시아네이트 제조 수단으로서의 이소시아네이트화 반응조(3), 염화수소 정제 수단으로서의 염화수소 정제탑(4), 제1 무해화 처리 수단 및 염산 제조 수단으로서의 염화수소 흡수탑(5), 염소 제조 수단으로서의 염화수소 산화조(6) 및 제2 무해화 처리 수단으로서의 제해탑(7)을 갖추고 있다.
염화카르보닐 제조용 반응조(2)는, 염소(Cl2)와 일산화탄소(CO)를 반응시켜 염화카르보닐(COCl2)을 제조하기 위한 반응조라면, 특별히 제한되지 않으며, 예컨대, 활성탄 촉매를 충전한 고정 바닥 타입의 반응기 등으로 구성된다. 또한, 염화카르보닐 제조용 반응조(2)는 접속 라인(8)을 통해 이소시아네이트화 반응조(3)와 접속되어 있다.
염화카르보닐 제조용 반응조(2)에는, 원료로서 염소 가스 및 일산화탄소 가스가, 일산화탄소/염소(몰비)가 1.01/1∼10/1이 되는 비율로 공급된다. 염소가 지나치게 공급되면, 이소시아네이트화 반응조(3)에 있어서 과잉 염소에 의해서 폴리이소시아네이트의 방향환이나 탄화수소기가 크롤화되는 경우가 있다.
염소 가스 및 일산화탄소 가스의 공급량은 폴리이소시아네이트의 제조량이나 부생되는 염화수소 가스의 부생량에 따라서 적절하게 설정된다.
그리고, 염화카르보닐 제조용 반응조(2)에서는, 염소와 일산화탄소가 반응하여 염화카르보닐이 생성된다. 이 반응에서는, 염화카르보닐 제조용 반응조(2)를 예컨대, 0∼250℃, 0∼5 MPa-게이지로 설정한다.
얻어진 염화카르보닐은, 염화카르보닐 제조용 반응조(2)에 있어서, 적절하게 냉각에 의해 액화하여 액화 상태로 하여도 좋고, 적절한 용매에 흡수시켜 용액으로 할 수도 있다. 얻어진 염화카르보닐은, 그 속의 일산화탄소를 제거하여 필요에 따라서 염화카르보닐 제조용 반응조(2)에 재공급한다.
염화카르보닐의 적어도 일부를 액화 상태 및/또는 용액 상태로 하면, 염화카르보닐 중의 일산화탄소 농도를 저감할 수 있기 때문에, 후술하는 염화수소 산화 반응에 있어서, 염화수소 가스의 염소에의 전환율을 향상시킬 수 있다. 한편, 염화카르보닐을 액화하기 위해서는, 염화카르보닐 제조용 반응조(2)에 있어서, 예컨대, 상기한 고정 바닥 타입 반응기의 하류측에 응축기를 설치하여, 그 응축기에 의해 얻어진 염화카르보닐을 액화한다. 또한, 이 액화에 있어서는, 염화카르보닐 중의 일산화탄소 농도를 바람직하게는 1 중량% 이하로 한다.
그리고, 얻어진 염화카르보닐은 접속 라인(8)을 통해 이소시아네이트화 반응조(3)에 공급된다.
이소시아네이트화 반응조(3)는, 염화카르보닐과 폴리아민을 이소시아네이트화 반응시켜 폴리이소시아네이트를 제조하기 위한 반응조라면, 특별히 제한되지 않으며, 예컨대, 교반 날개가 장비된 반응기나 다공판을 갖는 반응탑이 이용된다. 또한, 바람직하게는 다단조(多段槽)로서 구성된다. 또한, 이소시아네이트화에는 적절하게 폴리이소시아네이트에 대하여 불활성의 용매나 가스가 이용된다. 이소시아네이트화 반응조(3)는 접속 라인(9)을 통해 염화수소 정제탑(4)에 접속되어 있다.
이소시아네이트화 반응조(3)에는, 원료로서 염화카르보닐 제조용 반응조(2)로부터 접속 라인(8)을 통해 염화카르보닐이 공급되는 동시에 폴리아민이 공급된 다.
염화카르보닐은, 염화카르보닐 제조용 반응조(2)로부터 가스 그대로 혹은 상기한 것과 같이 액화 상태 및/또는 용액 상태로 염화카르보닐/폴리아민(몰비)이 2/1∼60/1이 되는 비율로 공급된다.
폴리아민은, 폴리우레탄의 제조에 이용되는 폴리이소시아네이트에 대응하는 폴리아민이며, 특별히 제한되지 않고, 예컨대 폴리메틸렌폴리페닐렌폴리이소시아네이트(MDI)에 대응하는 폴리메틸렌폴리페닐렌폴리아민(MDA), 톨릴렌디이소시아네이트(TDI)에 대응하는 톨릴렌디아민(TDA) 등의 방향족 디아민, 예컨대 크실릴렌디이소시아네이트(XDI)에 대응하는 크실릴렌디아민(XDA), 테트라메틸크실릴렌디이소시아네이트(TMXDI)에 대응하는 테트라메틸크실릴렌디아민(TMXDA) 등의 방향 지방족 디아민, 예컨대 비스(이소시아나트메틸)노르보르난(NBDI)에 대응하는 비스(아미노메틸)노르보르난(NBDA), 3-이소시아나트메틸-3,5,5-트리메틸시클로헥실이소시아네이트(IPDI)에 대응하는 3-아미노메틸-3,5,5-트리메틸시클로헥실아민(IPDA), 4,4'-메틸렌비스(시클로헥실이소시아네이트)(H12MDI)에 대응하는 4,4'-메틸렌비스(시클로헥실아민)(H12MDA), 비스(이소시아나트메틸)시클로헥산(H6XDI)에 대응하는 비스(아미노메틸)시클로헥산(H6XDA) 등의 지환족 디아민, 예컨대 헥사메틸렌디이소시아네이트(HDI)에 대응하는 헥사메틸렌디아민(HDA) 등의 지방족 디아민 및 폴리메틸렌폴리페닐폴리이소시아네이트(크루드(Crude) MDI, 폴리메릭(Polymeric) MDI)에 대응하는 폴리메틸렌폴리페닐폴리아민 등에서 적절하게 선택된다.
이 폴리이소시아네이트 제조 장치(1)는, 방향족 디아민이나 폴리메틸렌폴리페닐폴리아민으로부터 방향족 디이소시아네이트나 폴리메틸렌폴리페닐폴리이소시아네이트를 제조하는 데에 적합하다.
폴리아민은 직접 공급하더라도 좋지만, 바람직하게는 미리 용매에 용해하여 5∼50 중량%의 용액으로서 공급한다.
용매로서는 특별히 제한되지 않지만, 예컨대 톨루엔, 크실렌 등의 방향족 탄화수소, 예컨대 클로로톨루엔, 클로로벤젠, 디클로로벤젠 등의 할로겐화탄화수소, 예컨대 초산부틸, 초산아밀 등의 에스테르류, 예컨대 메틸이소부틸케톤, 메틸에틸케톤 등의 케톤류 등을 들 수 있다. 바람직하게는 클로로벤젠 또는 디클로로벤젠을 들 수 있다.
그리고, 이소시아네이트화 반응조(3)에서는, 염화카르보닐과 폴리아민이 이소시아네이트화 반응하여 폴리이소시아네이트가 생성되어, 염화수소 가스(HCl 가스)가 부생된다. 이 이소시아네이트화 반응에서는, 이소시아네이트화 반응조(3)에 상기한 것과 같이 폴리아민과 함께 혹은 별도 단독으로 상기한 용매를 가하여, 예컨대 0∼250℃, 0∼5 MPa-게이지로 설정한다.
얻어진 폴리이소시아네이트는 탈가스, 탈용매, 타르커트 등의 후처리를 한 후, 정제하여 폴리우레탄의 원료로서 제공된다.
또한, 부생된 염화수소 가스는 접속 라인(9)을 통해 비말 동반하는 용매나 염화카르보닐과 함께 염화수소 정제탑(4)에 공급된다.
염화수소 정제탑(4)은, 부생된 염화수소 가스를 비말 동반하는 용매나 염화 카르보닐과 분리하여 정제할 수 있으면, 특별히 제한되지 않으며, 예컨대 응축기를 장비한 트레이탑이나 충전탑 등으로 구성된다.
또한, 염화수소 정제탑(4)은 제1 염화수소 가스 접속 라인(10)을 통해 염화수소 흡수탑(5)에 접속되어 있다. 또한, 염화수소 정제탑(4)은 제2 염화수소 가스 접속 라인(11)을 통해 염화수소 산화조(6)에 접속되어 있다. 또한, 염화수소 정제탑(4)은 제3 염화수소 가스 접속 라인(12)을 통해 제해탑(7)에 접속되어 있다.
또한, 염화수소 정제탑(4)에서 염화수소 흡수탑(5)으로 염화수소 가스를 공급하는 제1 염화수소 가스 접속 라인(10) 도중에는 그 염화수소 가스의 공급량을 조절하는 제1 조절 수단으로서의 압력 제어 밸브(22)가 개재되어 있다. 또한, 염화수소 정제탑(4)에서 염화수소 산화조(6)로 염화수소 가스를 공급하는 제2 염화수소 가스 접속 라인(11) 도중에는 그 염화수소 가스의 공급량을 조절하는 제1 개폐 수단인 제2 조절 수단으로서의 유량 제어 밸브(23)가 개재되어 있다. 또한, 염화수소 정제탑(4)에서 제해탑(7)에 염화수소 가스를 공급하는 제3 염화수소 가스 접속 라인(12) 도중에는 제2 개폐 수단인 밸브(24)가 개재되어 있다. 또한, 제3 염화수소 가스 접속 라인(12) 도중에는 밸브(24)의 상류측에 있어서 유량계(33)가 개재 장착되어 있다. 또한, 염화수소 정제탑(4)에는 탑 안의 압력을 검지하기 위한 이상 검지 수단으로서의 압력 센서(25)가 설치되어 있어, 탑 안의 압력이 예컨대 0.05∼0.6 MPa로 유지되고 있다.
또한, 압력 제어 밸브(22), 유량 제어 밸브(23), 밸브(24), 유량계(33) 및 압력 센서(25)는 제어 수단으로서의 염화수소 가스 제어부(32)에 접속되어 있다. 한편, 유량 제어 밸브(23), 밸브(24) 및 염화수소 가스 제어부(32)에 의해서 접속 전환 수단이 구성되어 있다. 염화수소 가스 제어부(32)에는 압력 센서(25)로부터의 염화수소 정제탑(4) 내의 압력이 입력된다.
그리고, 압력 센서(25)에 의해서 검지되는 염화수소 정제탑(4) 내의 압력이 소정 레벨(예컨대, 0.6 MPa) 이하이면, 염화수소 가스 제어부(32)는 염화수소 산화조(6)가 정상이라고 판단하여, 유량 제어 밸브(23)를 제어하여, 염화수소 정제탑(4)에 대하여 염화수소 산화조(6)를 접속하고, 밸브(24)를 제어하여, 염화수소 정제탑(4)에 대하여 제해탑(7)을 차단한다. 한편, 염화수소 산화조(6)의 이상에 의해 유량 제어 밸브(23)의 차단이나 유량 제어 밸브(23)의 개방도를 급격하게 저하시켜 유량계(33)의 유량이 급격하게 저하된 경우, 이소시아네이트 반응조(3)로부터 부생되는 염화수소 가스의 양이 염화수소 흡수탑(5)의 처리 능력을 넘고, 그에 따른 염화수소 정제탑(4) 내의 압력이 소정 레벨(예컨대, 0.6 MPa)을 넘으면, 밸브(24)를 제어하여, 염화수소 정제탑(4)에 대하여 제해탑(7)을 접속한다.
염화수소 정제탑(4)에서는, 염화카르보닐을 응축기로 응축시키거나 용매에 의해서 흡수시킴으로써, 염화카르보닐을 염화수소 가스로부터 분리하고, 또한 필요에 따라서 염화수소 가스 중의 미량의 용매를 활성탄 등의 흡착에 의해 염화수소 가스로부터 분리한다.
염화수소 정제탑(4)에 있어서, 바람직하게는 염화수소 가스 중의 유기물의 농도를 1 중량% 이하, 바람직하게는 100 ppm 이하로 하고, 또한, 염화수소 가스 중의 일산화탄소의 농도를 10 용량% 이하, 바람직하게는 3 용량% 이하로 한다. 염화 수소 가스 중의 불순물을 이 레벨로 저감함으로써, 후술하는 염화수소 산화 반응에 있어서, 촉매의 활성 저하나 부분 실활 등의 촉매에 대한 악영향을 저감 또는 예방할 수 있다. 또한, 원단위의 향상이나 염화수소 산화 반응의 향상이나, 염화수소 산화조(6)에 있어서의 온도 분포의 균일화 등을 달성할 수 있어, 염화수소 산화조(6)를 안정화시킬 수 있다. 또한, 염화수소 가스의 염소로의 전환율을 향상시킬 수 있다.
그리고, 정제된 염화수소 가스는, 염화수소 산화조(6)가 정상일 때에는, 염화수소 정제탑(4)에 대하여, 염화수소 산화조(6) 및 염화수소 흡수탑(5)이 병렬적으로 접속되어 있기 때문에, 그 대부분이 제2 염화수소 가스 접속 라인(11)을 통해 염화수소 산화조(6)에 공급되고, 잉여분이 염화수소 흡수탑(5)에 배출된다. 한편, 염화수소 산화조(6)에 공급되는 염화수소 가스와, 염화수소 흡수탑(5)에 배출되는 염화수소 가스의 비율은, 염화수소 산화조(6)에서의 염소 제조 능력이나 염화수소 흡수탑(5)에서의 염산 제조 능력에 기초하여 적절하게 결정된다.
염화수소 산화조(6)는, 염화수소 가스를 산화하여 염화수소 산화 반응에 의해서 염소(Cl2)를 제조하기 위한 반응조라면, 특별히 제한되지 않으며, 예컨대 촉매로서 산화크롬을 이용하는 유동 바닥 타입 반응기나, 촉매로서 산화루테늄을 이용하는 고정 바닥 타입 반응기 등으로 구성된다. 또한, 염화수소 산화조(6)는, 재공급 라인(13)을 통해 염화카르보닐 제조용 반응조(2)에 접속되는 동시에, 염산 접속 라인(14)을 통해 염화수소 흡수탑(5)에 접속되고 있다.
염화수소 산화조(6)를 유동 바닥 타입 반응기로 구성하는 경우에는, 예컨대 상기 일본 특허 공개 소62-275001호 공보에 준거하여 염화수소 가스 중의 염화수소 1 몰에 대하여 0.25 몰 이상의 산소를 공급하고, 산화크롬의 존재 하에 0.1∼5 MPa-게이지, 300∼500℃에서 반응시킨다. 염화수소 가스의 공급량은, 예컨대 0.2∼1.8 Nm3/h·kg-촉매이다.
또한, 염화수소 산화조(6)를 고정 바닥 타입 반응기로 구성하는 경우에는, 예컨대 상기 일본 특허 공개 2000-272906호 공보에 준거하여 염화수소 가스 중의 염화수소 1 몰에 대하여 0.25 몰 이상의 산소를 공급하고, 루테늄 함유 촉매의 존재 하에 0.1∼5 MPa, 200∼500℃에서 반응시킨다.
그리고, 염화수소 산화조(6)에서는, 염화수소 가스가 산소(O2)에 의해서 산화되고, 염소가 생성되어, 물(H2O)이 부생되기 때문에, 염소와 염산(염화수소의 수용액 : HCl/H2O)이 생성된다. 이 산화 반응에 있어서, 염화수소 가스의 염소에의 변환율은 예컨대 60% 이상, 바람직하게는 70∼95%이다.
그리고, 이 폴리이소시아네이트 제조 장치(1)에서는, 염화수소 산화조(6)에서 얻어진 염소가 재공급 라인(13)을 통해 염화카르보닐 제조용 반응조(2)에 공급되어, 염화카르보닐 제조용 반응조(2)에 있어서 염화카르보닐을 제조하기 위한 원료로서 이용된다. 이와 같이, 얻어진 염소를 염화카르보닐의 원료로서 재이용하면, 염소를 폴리이소시아네이트 제조 장치(1)의 계 밖으로 배출하지 않고, 순환하여 사용할 수 있기 때문에, 부생된 염화수소 가스를 유효하게 이용할 수 있는 동시에, 환경에 미치는 부하를 저감할 수 있다.
한편, 이 폴리이소시아네이트 제조 장치(1)에서는, 염화카르보닐 제조용 반응조(2)에는, 염화수소 산화조(6)로부터 재공급 라인(13)을 통해 공급되는 염소(재생 염소) 이외에, 별도 원료로서 준비되어 있는 염소(추가 염소)가 필요에 따라서 공급된다. 추가 염소는 외부로부터 구입하더라도 좋고, 혹은 전해법 등에 의한 독립된 염소 제조 설비를 설비하여, 그 설비로부터 공급할 수도 있다.
또한, 염화수소 산화조(6)에 있어서, 미산화(미반응)의 염화수소 가스나 부생된 염산은 염화수소 산화조(6) 내에서 소정 농도의 염산의 제조에 쓰이게 하여 공업 용도나 폴리메틸렌폴리페닐렌폴리아민(MDA)의 산 촉매 등으로서 다른 공정에 공급하더라도 좋지만, 예컨대 염산 접속 라인(14)을 통해 염화수소 흡수탑(5)에 공급된다.
즉, 염화수소 산화조(6)에서는, 일정한 변환율로 염화수소 가스가 염소로 변환되기 때문에, 염화수소 흡수탑(5)에는 염화수소 산화조(6)로부터 염산 접속 라인(14)을 통해 염소로 변환된 나머지의 염화수소 가스에 해당하는 미산화(미반응)의 염화수소 가스나 부생되는 염산이 일정 비율로 공급된다. 예컨대, 염화수소 산화조(6)에서의 변환율이 80%라면, 80%의 염화수소 가스가 염소로 변환되는 한편, 나머지 20%의 염화수소 가스에 해당하는 미산화(미반응)의 염화수소 가스나 부생되는 염산이 염화수소 산화조(6)로부터 염산 접속 라인(14)을 통해 염화수소 흡수탑(5)에 공급된다.
염화수소 흡수탑(5)은, 염화수소 가스를 물에 흡수시켜 염산(염화수소의 수 용액 : HClaq)을 조제할 수 있는 것이라면, 특별히 제한되지 않고, 공지의 흡수탑으로 구성된다.
염화수소 흡수탑(5)에서는, 염화수소 정제탑(4)으로부터 제1 염화수소 가스 접속 라인(10)을 통해 배출되는 염화수소 가스와, 염화수소 산화조(6)로부터 염산 접속 라인(14)을 통해 공급되는 미산화(미반응)의 염화수소 가스를 물에 흡수시켜 염산을 얻는다. 또한, 염화수소 산화조(6)로부터 염산 접속 라인(14)을 통해 공급되는 부생되는 염산이 이것에 더해진다. 얻어진 염산은 그대로 혹은 활성탄 등으로 정제하여 공업 용도 등으로 제공된다.
이와 같이, 염화수소 산화조(6)에 있어서의 미산화의 염화수소 가스 및 염화수소 산화조(6)에서 생성된 염산을 배출하지 않고 염화수소 흡수탑(5)에 공급하면, 효율적으로 염산을 제조할 수 있어, 잉여 염화수소 가스의 유효한 이용을 도모할 수 있다. 또한, 염화수소 산화조(6)에 있어서, 잉여 염화수소 가스로부터 염산을 제조하면, 잉여의 염화수소 가스를 무해화하면서, 그 잉여의 염화수소 가스로부터 염산을 제조하여 재이용할 수 있다. 그 결과, 잉여 염화수소 가스의 유효한 이용을 도모할 수 있다.
또한, 이 염화수소 흡수탑(5)에는, 염화수소 가스를 흡수시키기 위한 물을 공급하는 급수 라인(15)과, 얻어진 염산을 배출하기 위한 염산 배출 라인(16)과, 일단이 염산 배출 라인(16)에 접속되고, 타단이 염화수소 흡수탑(5)에 접속되는 염산 환류 라인(17)이 설치되어 있다. 또한, 급수 라인(15) 도중에는 급수 조절 밸브(18)가 개재되어 있고, 염산 환류 라인(17) 도중에는 환류 조절 밸브(19)가 개재 되어 있고, 염산 배출 라인(16) 도중에는 농도 센서(20)가 개재되어 있다. 한편, 급수 조절 밸브(18), 환류 조절 밸브(19) 및 농도 센서(20)가 염산 농도 조절 수단으로서의 농도 제어부(21)에 접속되어 있다.
이 염화수소 흡수탑(5)에서는, 급수 라인(15)으로부터 물을 공급하여, 염화수소 흡수탑(5)에서, 그 물에, 염화수소 정제탑(4)으로부터 제1 염화수소 가스 접속 라인(10)을 통해 배출되는 염화수소 가스와, 염화수소 산화조(6)로부터 염산 접속 라인(14)을 통해 공급되는 미산화(미반응)의 염화수소 가스를 흡수시킨 후, 염산 배출 라인(16)으로부터 얻어진 염산을 배출하고 있다. 또한, 얻어진 염산의 일부를 염산 배출 라인(16)으로부터 배출하지 않고, 염화수소 흡수탑(5)에 환류하고 있다.
그리고, 이 염화수소 흡수탑(5)에서는, 염산 배출 라인(16)으로부터 배출되는 염산의 농도가 농도 센서(20)에 의해서 모니터되고 있으며, 그 염산의 농도가 농도 제어부(21)에 입력된다. 농도 제어부(21)에서는, 입력된 염산의 농도에 기초하여, 급수 조절 밸브(18) 및 환류 조절 밸브(19)를 제어함으로써, 급수 라인(15)으로부터 공급되는 물의 공급량이나 염산 배출 라인(16)으로부터 환류되는 염산의 환류량을 조절함으로써, 염산 배출 라인(16)으로부터 배출되는 염산의 농도를 원하는 농도로 조절하고 있다.
이와 같이, 염산 배출 라인(16)으로부터 배출되는 염산의 농도를 원하는 농도로 조절하면, 품질이 안정된 염산을 얻을 수 있다. 한편, 이러한 염산의 농도 조절에 의해서 예컨대 30∼37 중량%의 염산으로 하여, 그대로 공업 용도로 이용된다.
제해탑(7)은 처리조(26), 저류 탱크(27) 및 펌프(28)를 갖추고 있다. 처리조(26) 내에는 기액 접촉의 효율을 향상시키기 위한 충전물이 충전되어 있는 기액 접촉실(29)이 마련되어 있다. 또한, 처리조(26) 내에는, 기액 접촉실(29)의 위쪽에 샤워(30)가 설치되어 있다. 처리조(26)의 바닥부, 저류 탱크(27), 펌프(28) 및 샤워(30)는 순환 라인(31)에 의해서 접속되어 있다.
저류 탱크(27)에는 염화수소 가스를 무해화하기 위한 수산화나트륨 수용액(NaOHaq.)이 저류되어 있고, 그 수산화나트륨 수용액은 펌프(28)에 의해서 순환 라인(31)을 통해 위쪽으로 퍼 올려지고, 처리조(26) 내에 있어서 샤워(30)로부터 기액 접촉실(29)에 살포되어, 기액 접촉실(29) 안을 통과한 후, 처리조(26)의 바닥부에서 저류 탱크(27)로 되돌아가는 식으로 순환한다. 또한, 순환 라인(31)으로부터 수산화나트륨 수용액을 일부 배출함으로써, 저류 탱크(27)의 수산화나트륨 농도를 소정의 농도, 예컨대 5∼30%로 조정한다.
한편, 처리조(26)에는, 기액 접촉실(29)을 아래쪽에서 위쪽으로 향하여 흐르도록 제3 염화수소 가스 접속 라인(12)이 접속되어 있으며, 염화수소 산화조(6)의 이상시에는, 염화수소 정제탑(4)에 대하여 제해탑(7) 및 염화수소 흡수탑(5)이 병렬적으로 접속되기 때문에, 제3 염화수소 가스 접속 라인(12)으로부터 배출되는 염화수소 가스는 제해탑(7)에 공급되어, 기액 접촉실(29) 내에서 샤워(30)로부터 살포되는 수산화나트륨 수용액과 상하 방향에서 대향하도록 효율적으로 기액 접촉하여 무해화되고, 그 후, 처리조(26)에서 대기로 방출된다.
이와 같이, 이 폴리이소시아네이트 제조 장치(1)에서는, 압력 센서(25)에 의 해서 염화수소 산화조(6)의 이상이 검지되지 않을 때에는, 염화수소 정제탑(4)에 의해서 정제된 염화수소 가스는 염화수소 산화조(6)에 공급되어, 염화수소 산화조(6)에서 공급된 염화수소 가스로부터 염소가 제조되는 동시에, 염화수소 흡수탑(5)에 배출되어, 염화수소 흡수탑(5)에서 배출된 염화수소 가스로부터 염산이 제조됨으로써 무해화된다.
한편, 염화수소 산화조(6)가 이상으로 되어, 염화수소 흡수탑(5)의 처리 능력을 넘어 압력 센서(25)에 의해서 염화수소 산화조(6)의 이상이 검지되었을 때에는, 염화수소 가스 제어부(32)가 밸브(24)를 제어하여, 염화수소 정제탑(4)의 압력을 소정 압력으로 하기 위해서, 염화수소 정제탑(4)의 염화수소를 제해탑(7)에 배출한다. 그러면, 그때까지 염화수소 산화조(6)에 공급되고 있던 염화수소 가스가 제해탑(7)으로 배출되어 제해탑(7)에서 무해화된다. 그 결과, 염화수소 산화조(6)가 정상적일 때에는, 염화수소 산화조(6)에 안정적으로 염화수소 가스를 공급하면서 잉여의 염화수소 가스를 염화수소 흡수탑(5)에 있어서 무해화할 수 있고, 염화수소 산화조(6)에 트러블이 생겼을 때에는, 그때까지 염화수소 산화조(6)에 공급되고 있던 염화수소 가스를 제해탑(7)에서 무해화함으로써, 염화수소 흡수탑(5)에서의 염산 제조 능력에 따라서 그때까지 염화수소 산화조(6)에 공급되고 있던 다량의 염화수소 가스를 무해화할 수 있어, 염화수소 가스의 효율적인 처리를 달성할 수 있다.
한편, 염화수소 산화조(6)의 이상이 검지되었을 때, 예컨대 염화수소 산화조(6)의 온도 이상이 검지되었을 때에는, 염화수소 산화조(6)에서는, 인터로크 제 어가 작동하여 염소의 제조가 정지된다. 또한, 제해탑(7)에서는, 소정 시간(예컨대, 30분 정도), 염화수소 가스를 제해할 수 있도록 설정되어 있어, 그 동안에, 이소시아네이트화 반응조(3)에 있어서의 폴리이소시아네이트의 제조가 안정적으로 셧다운되어, 안전하게 정지하는 것이 가능하게 된다.
또한, 이 폴리이소시아네이트 제조 장치(1)에서는, 염화수소 산화조(6)가 정상일 때에는, 염화수소 가스 제어부(32)가 유량 제어 밸브(23)를 제어하여 염화수소 정제탑(4)으로부터 제2 염화수소 가스 접속 라인(11)을 통해 염화수소 산화조(6)에 공급되는 염화수소 가스의 공급량을 일정(예컨대, 염화수소 정제탑(4)에 있어서 정제된 염화수소 가스가 100인 경우에는 90)하게 하고 있다. 또한, 이것과 동시에, 염화수소 가스 제어부(32)가 압력 센서(25)로부터 입력되는 염화수소 정제탑(4) 내의 압력에 기초하여 압력 제어 밸브(22)를 제어하여 염화수소 정제탑(4) 내의 압력이 일정하게 되도록, 염화수소 정제탑(4)으로부터 제1 염화수소 가스 접속 라인(10)을 통해 염화수소 흡수탑(5)에 염화수소 가스를 배출하고 있다(예컨대, 염화수소 정제탑(4)에 있어서 정제된 염화수소 가스가 100인 경우에는 제2 염화수소 가스 접속 라인(11)에 공급되는 90의 잔량 10이 배출됨).
염화수소 가스 제어부(32)에 의해서 유량 제어 밸브(23) 및 압력 제어 밸브(22)를 상기한 바와 같이 제어하면, 염화수소 산화조(6)에 염화수소 가스를 일정 유량으로 안정적으로 공급할 수 있으면서, 잉여의 염화수소 가스를 염화수소 정제탑(4)에서 염화수소 흡수탑(5)으로 배출함으로써, 염화수소 정제탑(4) 내의 압력, 나아가서는 이소시아네이트화 반응조(3) 내의 압력을 일정하게 할 수 있다. 그 결 과, 부생된 염화수소 가스로부터 염소를 안정적으로 제조할 수 있으면서, 이소시아네이트화 반응조(3) 내의 압력을 일정하게 할 수 있고, 이로써, 염화카르보닐과 폴리아민을 안정적으로 반응시킬 수 있으며, 더구나, 부생된 염화수소 가스를 효율적으로 처리할 수 있다.
한편, 이 폴리이소시아네이트 제조 장치(1)에서는, 농도 제어부(21)나 염화수소 가스 제어부(32)는 버스에 의해서 접속되어, 중앙 제어부에서 제어되고 있으며, 이로써, 폴리이소시아네이트 제조 장치(1)의 분산 제어 시스템이 구축되어 있다.
도 2는 본 발명의 가스 처리 장치의 제1 실시형태로서의 배출 가스를 제해하는 제해탑(51A)을 도시하는 개략 구성도이다.
도 2에 있어서, 이 제해탑(51A)은 화학 제품을 제조하는 플랜트에 있어서, 화학 처리 공정에서 생성되는 배출 가스로서의 유해 가스를 무해화하여, 대기로 방출하기 위해서 설비되어 있다. 유해 가스로서는, 예컨대 폴리이소시아네이트 제조 플랜트에 있어서, 폴리이소시아네이트의 제조 공정에서 생성되는 염화카르보닐 함유 가스나 염화수소 함유 가스 등을 들 수 있다. 그 때문에, 이 제해탑(51A)은 상기한 폴리이소시아네이트 제조 장치(1)의 제해탑(7)으로서 이용할 수 있다.
이 제해탑(51A)은 처리조(52), 저류 탱크(53) 및 동력원으로서의 송액 펌프(54)를 갖추고 있다.
처리조(52)는 상단부 및 하단부가 폐쇄되어 상하 방향으로 뻗는 밀폐된 원통 형상을 하며, 기액 접촉실(55), 저류실(56) 및 처리액 공급 수단으로서의 처리액 공급관(57)을 갖추고 있다.
처리조(52)에는, 그 하측에 있어서 처리조(52) 안을 상하 방향으로 구획하는 충전물 지지판(58)이 설치되는 동시에, 그 상측에 있어서 충전물 지지판(58)으로부터 위쪽으로 간격을 두고서 기액 접촉실(55)과 저류실(56)을 구획하기 위해서 처리조(52) 안을 상하 방향으로 구획하는 저류실 바닥판(59)이 설치되어 있다. 한편, 충전물 지지판(58)에는 다수의 통기(통액) 구멍이 천공되어 있다.
기액 접촉실(55)은 충전물 지지판(58)과 저류실 바닥판(59) 사이의 처리조(52)의 내부 공간으로서 구획되어 있다. 이 기액 접촉실(55)에 있어서 충전물 지지판(58)의 위에는 라시히 링이나 벨새들 등의 충전물이 저류실 바닥판(59)과의 사이에 간극이 형성될 정도로 충전되어 있다.
저류실(56)은 저류실 바닥판(59)으로부터 위쪽의 처리조(52)의 내부 공간으로서 구획되어 있다.
처리액 공급관(57)은 그 일단부가 저류실(56)의 하부에 접속되는 동시에, 그 타단부가 기액 접촉실(55)에 삽입되어, 충전물의 위쪽에 배치되어 있다. 이 처리액 공급관(57) 도중에는 처리액 공급관(57) 안을 흐르는 처리액의 유량을 제한하기 위한 제한 오리피스(60)가 개재되어 있다. 한편, 처리액 공급관(57)의 하단부에는, 도시하지 않지만, 처리액을 충전물에 대하여 균일하게 살포할 수 있도록 샤워 또는 액분산기가 설치되어 있다.
또한, 이 처리조(52)에는, 충전물 지지판(58)의 아래쪽, 즉 기액 접촉실(55)의 하측에, 유해 가스를 처리조(52) 내에 유입시키기 위한 유해 가스 유입관(61)이 접속되어 있다. 또한, 이 처리조(52)에는, 저류실 바닥판(59)의 아래쪽, 즉 기액 접촉실(55) 내의 충전물의 위쪽에, 무해화된 유해 가스(이하, 처리 가스라고 함)를 처리조(52)로부터 유출시키기 위한 처리 가스 유출관(62)이 접속되어 있다.
저류 탱크(53)에는 유해 가스를 무해화하기 위한 처리액이 저류되어 있다. 이 처리액은 예컨대, 유해 가스가 상기한 것과 같은 염화카르보닐 함유 가스나 염화수소 함유 가스인 경우에는, 수산화나트륨 수용액이나 수산화칼륨 수용액 등의 알칼리성 수용액이 이용된다. 또한, 저류 탱크(53)에는 처리액의 순환량에 따라서 적절하게 처리액이 보급된다.
저류 탱크(53)에는 그 일단부가 처리조(52)의 하단부에 접속되어 있는 환류관(63)의 타단부가 접속되어 있고, 저류 탱크(53)는 이 환류관(63)을 통해 처리조(52)에 접속되어 있다. 또한, 저류 탱크(53)에는 그 일단부가 처리조(52)의 위쪽의 저류실(56)에 접속되어 있는 수송관(64)의 타단부가 접속되어 있고, 저류 탱크(53)는 이 수송관(64)을 통해 저류실(56)에 접속되어 있다.
송액 펌프(54)는 액체 수송할 수 있는 펌프라면, 특별히 제한되지 않으며, 왕복 펌프, 원심 펌프, 회전 펌프 등으로 구성되어 있다. 송액 펌프(54)는 수송관(64) 도중에 개재되어 있다.
이어서, 이 제해탑(51A)의 정상 연속 운전에 관해서 설명한다.
이 제해탑(51A)에 있어서, 송액 펌프(54)를 구동시키면, 처리액이 저류 탱크(53)로부터 퍼 올려져, 수송관(64)을 통해 저류실(56)에 수송된다.
저류실(56) 내에 수송된 처리액은 처리액 공급관(57)에 유입되어, 제한 오리 피스(60)에 의해서 유량이 제한된 후, 중력 낙하에 의해 처리액 공급관(57)으로부터 유출되어, 기액 접촉실(55) 내에 있어서 충전물의 위쪽에서 충전물에 대하여 살포된다. 이 때, 저류실(56)에 오버플로 라인을 설치하여, 오버플로된 처리액을 아울러 기액 접촉실(55) 내에 살포하더라도 좋다.
한편, 이 처리조(52)에는, 유해 가스 유입관(61)으로부터 유해 가스가 유입되어, 충전물 지지판(58)의 통기공을 통해 기액 접촉실(55) 내로 유입되어, 충전물의 간극을 아래쪽에서 위쪽으로 향하여 통과한다. 그러면, 유해 가스는, 위쪽에서 살포되는 처리액과, 기액 접촉실(55) 내에 있어서 상하 방향에서 대향하도록 하여 효율적으로 기액 접촉하여 무해화된다. 예컨대, 유해 가스가 염화카르보닐 함유 가스이며, 처리액이 수산화나트륨 수용액인 경우에는, 이들이 기액 접촉하면, 염화나트륨과 탄산나트륨을 일으켜 무해화된다. 그 후, 무해화된 유해 가스, 즉 처리 가스는 처리 가스 유출관(62)을 통해 대기로 방출된다.
그 후, 충전물 지지판(58)의 통기공을 통해 기액 접촉실(55) 내에서 낙하하는 처리액은 처리조(52)의 하단부에서 환류관(63)을 통해 저류 탱크(53)로 되돌아가며, 이와 같이, 이 제해탑(51A)에서는, 수송관(64)과 환류관(63)에 의해서 처리액 환류 수단으로서의 순환 라인(67)이 형성되어, 처리액은 송액 펌프(54)의 구동에 의해서 순환 라인(67)을 순환한다.
이와 같이, 처리액을 순환시키면, 처리액의 낭비를 없애어, 운전 비용의 저감을 도모할 수 있다.
이 제해탑(51A)에서는, 통상은 상기한 정상 연속 운전이 계속된다. 그리고, 이 제해탑(51A)에서는, 정전이나 고장 등의 트러블에 의해 송액 펌프(54)의 구동이 정지되어 버려, 처리액이 순환 라인(67)을 순환하지 않게 되었을 때라도, 기액 접촉실(55)의 위쪽에는 저류실(56)이 배치되어 있으며, 그 저류실(56)에 저류되어 있는 처리액이 각별한 동력을 필요로 하지 않고도, 처리액 공급관(57)을 통해 기액 접촉실(55) 내로 중력 낙하한다. 그리고, 처리액은, 저류실(56) 내의 처리액이 없어질 때까지, 처리액 공급관(57)을 통해 기액 접촉실(55) 내에 공급된다. 그 때문에, 송액 펌프(54)의 트러블에 기인한 처리액의 기액 접촉실(55)에 대한 공급이 중단되더라도, 기액 접촉실(55)에서의 처리액과 유해 가스와의 기액 접촉을 계속할 수 있어, 유해 가스의 처리가 계속되어 안전성의 향상을 보다 한층 더 도모할 수 있다.
한편, 저류실(56) 내의 처리액이 없어진 경우라도, 기액 접촉실(55)에는 처리액이 잔류하고 있기 때문에, 그 잔류하는 처리액이 소비될 때까지 동안에는 유해 가스를 무해화할 수 있다.
그리고, 저류실(56)에 저류되어 있는 처리액에 의해서 유해 가스가 무해화되고 있는 사이에 정전이 된 경우에는 보조 전원으로 전환하거나, 고장인 경우에는 다른 송액 펌프를 구동시키거나 함으로써 다시 처리액을 순환시킬 수 있다.
한편, 상기한 설명에 있어서, 유해 가스 유입관(61)으로부터 처리조(52) 내에 유입되는 유해 가스의 유량과, 송액 펌프(54)에 의해서 순환시키는 처리액의 유량은 유해 가스나 처리액의 종류나 무해화하기 위한 처리의 종류에 따라서 적절하게 결정된다.
또한, 저류실(56)에 있어서의 처리액의 저류량도 유해 가스나 처리액의 종류나 플랜트의 처리량에 따라서 적절하게 결정된다.
도 3은 본 발명의 가스 처리 장치의 제2 실시형태로서의 제해탑(51B)을 도시하는 개략 구성도이다. 한편, 도 3에 있어서, 도 2에 도시하는 부재와 같은 부재에는 동일한 부호를 붙이고 그 설명을 생략한다.
이 제해탑(51B)은 제1단 제해탑(51a) 및 제2단 제해탑(51b)이 유해 가스의 유동 방향에 있어서 직렬적으로 접속되는 2단 연속식 제해탑으로서 구성되어 있다.
제1단 제해탑(51a)은, 제1실시형태의 제해탑(51)과 마찬가지로, 처리조(52), 저류 탱크(53) 및 송액 펌프(54)를 갖추고 있다.
단, 제1단 제해탑(51a)의 처리조(52)에는 처리액 공급관(57)이 설치되어 있지 않으며, 그 대신에 수송관(64)의 일단부가 기액 접촉실(55)에 삽입되어, 충전물의 위쪽에 배치되어 있다(단, 필요에 따라서, 처리액 공급관(57)을 제1단 제해탑(51a)에 설치하더라도 좋음). 한편, 수송관(64)의 일단부에는, 도시하지 않지만, 처리액을 충전물에 대하여 균일하게 살포할 수 있도록 샤워 또는 액분산기가 설치되어 있다.
또한, 제2단 제해탑(51b)도, 제1 실시형태와 마찬가지로, 처리조(52), 저류 탱크(53) 및 송액 펌프(54)를 갖추고 있다. 이 제2단 제해탑(51b)은 제1 실시형태의 제해탑(51)과 같은 구성을 갖추고 있다.
또한, 이 제해탑(51B)에서는, 제1단 제해탑(51a)의 처리 가스 유출관(62)이 가스 통과 패스로서 제2단 제해탑(51b)의 유해 가스 유입관(61)으로 되어, 제2단 제해탑(51b)의 처리조(52)에 있어서의 기액 접촉실(55)의 하측에 접속되어 있다.
또한, 이 제해탑(51B)에서는, 제1단 제해탑(51a)의 저류실(56)과 제2단 제해탑(51b)의 저류실(56)이 저류실 연락관(65)을 통해 서로 접속되어 있다. 저류실 연락관(65)은 그 일단부가 제1단 제해탑(51a)의 저류실(56)에 접속되어 있고, 그 타단부가 제2단 제해탑(51b)의 처리액 공급관(57)의 도중(제한 오리피스(60)의 상류측)에 접속되어 있다. 이 저류실 연락관(65)에 의해서, 제1단 제해탑(51a)의 저류실(56)과 제2단 제해탑(51b)의 저류실(56)이 연락되어, 제2단 제해탑(51b)에서의 제해에 이용된다.
또한, 이 제해탑(51B)에서는, 제1단 제해탑(51a)의 저류 탱크(53)와 제2단 제해탑(51b)의 저류 탱크(53)가 저류 탱크 연락관(66)을 통해 서로 접속되어 있다. 저류 탱크 연락관(66)은 그 일단부가 제1단 제해탑(51a)의 저류 탱크(53)에 접속되어 있고, 그 타단부가 제2단 제해탑(51b)의 저류 탱크(53)에 접속되어 있다. 이 저류 탱크 연락관(66)에 의해서 제1단 제해탑(51a)의 저류 탱크(53)와 제2단 제해탑(51b)의 저류 탱크(53)가 연락되어, 각 저류 탱크(53)의 처리액의 액면 레벨(수위)이 동일하게 되도록 각 저류 탱크(53)의 처리액이 동등하게 증감된다.
이어서, 이 제해탑(51B)의 정상 연속 운전에 관해서 설명한다.
이 제해탑(51B)에 있어서, 제1단 제해탑(51a)에서는, 송액 펌프(54)를 구동시키면, 처리액이 저류 탱크(53)로부터 퍼 올려져, 수송관(64)을 통해 기액 접촉실(55) 내에서 충전물의 위쪽에서 충전물에 대하여 살포된다.
그리고, 살포된 처리액은, 유해 가스 유입관(61)으로부터 유입되어 기액 접 촉실(55) 내의 충전물의 간극을 아래쪽에서 위쪽으로 향하여 통과하는 유해 가스와 상하 방향에서 대향하도록 하여 효율적으로 기액 접촉하여 무해화된다. 한편, 이 제해탑(51B)에서는, 제1단 제해탑(51a)에서의 유해 가스의 무해화율을 100% 미만이 되도록 조건 설정하고 있으며, 다음 제2단 제해탑(51b)에서의 유해 가스의 무해화에 의해서 유해 가스를 100% 무해화하고 있다.
그 후, 제1단 제해탑(51a)에서 무해화된 유해 가스, 즉 처리 가스는 제1단 제해탑(51a)의 처리 가스 유출관(62)(제2단 제해탑(51b)의 유해 가스 유입관(61))을 통해 제2단 제해탑(51b)의 처리조(52)에 유입된다.
또한, 처리액은, 처리조(52)의 하단부에서 환류관(63)을 통해 저류 탱크(53)로 되돌아가, 수송관(64)과 환류관(63)으로 형성되는 순환 라인(67)을 순환한다.
또한, 제2단 제해탑(51b)에서는, 송액 펌프(54)를 구동시키면, 처리액이 저류 탱크(53)로부터 퍼 올려져, 수송관(64)을 통해 저류실(56)에 수송된다.
저류실(56) 안으로 수송된 처리액은 처리액 공급관(57)에 유입되어, 제한 오리피스(60)에 의해서 유량이 제한된 후, 중력 낙하에 의해 처리액 공급관(57)으로부터 유출되어, 기액 접촉실(55) 내에서 충전물의 위쪽에서 충전물에 대하여 살포된다. 이 때, 저류실(56)에 오버플로 라인을 설치하여, 오버플로된 처리액을 아울러 기액 접촉실(55) 내에 살포하더라도 좋다.
그리고, 살포된 처리액은, 제1단 제해탑(51a)의 처리 가스 유출관(62)(제2단 제해탑(51b)의 유해 가스 유입관(61))으로부터 유입되어 기액 접촉실(55) 내의 충전물의 간극을 아래쪽에서 위쪽으로 향하여 통과하는 유해 가스와 상하 방향에서 대향하도록 효율적으로 기액 접촉하여 100% 무해화된다.
그 후, 제2단 제해탑(51b)에서 무해화된 유해 가스, 즉 처리 가스는 처리 가스 유출관(62)을 통해 대기로 개방된다.
또한, 처리액은, 처리조(52)의 하단부로부터 환류관(63)을 통해 저류 탱크(53)로 되돌아가, 수송관(64)과 환류관(63)으로 형성되는 순환 라인(67)을 순환한다.
그리고, 이 제해탑(51B)에 있어서도, 정전이나 고장 등의 트러블에 의해 각 송액 펌프(54)의 구동이 정지해 버려, 처리액이 각 순환 라인(67)을 순환하지 않게 되었을 때라도, 처리 가스가 대기로 개방되기 직전의 제2단 제해탑(51b)(즉, 다단 연속식 제해탑에 있어서, 유해 가스의 유동 방향에 있어서의 최하류측의 제해탑)에 있어서, 저류실(56)에 저류되어 있는 처리액이 각별한 동력을 필요로 하지 않고도, 처리액 공급관(57)을 통해 기액 접촉실(55) 내에 중력 낙하하여, 처리액과 유해 가스의 기액 접촉을 계속하기 때문에, 제1 실시형태의 제해탑(51A)과 마찬가지로, 송액 펌프(54)의 트러블에 기인한 처리액의 기액 접촉실(55)에 대한 공급이 중단되더라도, 기액 접촉실(55)에서의 처리액과 유해 가스의 기액 접촉을 계속할 수 있어, 유해 가스의 처리가 계속되어 안전성의 향상을 보다 한층 더 도모할 수 있다.
또한, 이 제해탑(51B)에서는, 제1단 제해탑(51a)에서의 유해 가스의 무해화율을 100% 미만이 되도록 조건 설정하고, 다음 제2단 제해탑(51b)에서의 유해 가스의 무해화에 의해서 유해 가스를 100% 무해화하기 때문에, 유해 가스의 무해화를 다단 연속적으로 실시할 수 있다. 그 때문에, 유해 가스의 효율적인 처리를 달성할 수 있다.
한편, 제2실시형태의 제해탑(51B)에서는, 제2단 제해탑(51b)에만 처리액 공급관(57)을 설치하여 처리액을 중력 낙하시켰지만, 제1단 제해탑(51a)에도 처리액 공급관(57)을 설치하여 처리액을 중력 낙하시키는 것도 가능하다. 그러나, 처리 가스가 대기로 개방되기 직전의 제2단 제해탑(51b)(즉, 다단 연속식 제해탑에 있어서, 유해 가스의 유동 방향에 있어서의 최하류측의 제해탑)에만 처리액 공급관(57)을 설치하여 처리액을 중력 낙하시키도록 하면, 유해 가스 처리의 안전성의 향상을 보다 한층 더 도모하면서, 장치 구성의 간략화를 도모할 수 있다.
본 발명의 폴리이소시아네이트 제조 장치는, 폴리우레탄의 원료가 되는 폴리이소시아네이트의 제조 설비로서 적합하게 이용된다.
또한, 본 발명의 가스 처리 장치는, 화학 제품을 제조하는 플랜트 등의 화학 공정에서 생성되는 유해 가스를 무해화하는 등, 가스를 처리하기 위한 처리 설비로서 적합하게 이용된다.

Claims (12)

  1. 염화카르보닐과 폴리아민을 반응시켜 폴리이소시아네이트를 제조하는 폴리이소시아네이트 제조 수단과,
    상기 폴리이소시아네이트 제조 수단에 있어서 부생된 염화수소가 공급되어, 염화수소를 정제하는 염화수소 정제 수단과,
    상기 염화수소 정제 수단에 있어서 정제된 염화수소가 공급되어, 염화수소를 산화하여, 염소를 제조하는 염소 제조 수단과,
    상기 염화수소 정제 수단에 있어서 정제된 염화수소가 공급되어, 염화수소를 물에 흡수시켜, 염산을 제조하는 염산 제조 수단과,
    상기 염화수소 정제 수단으로부터 상기 염산 제조 수단에 공급되는 염화수소의 공급량을 조절하는 제1 조절 수단과,
    상기 염화수소 정제 수단으로부터 상기 염소 제조 수단에 공급되는 염화수소의 공급량을 조절하는 제2 조절 수단과,
    상기 염화수소 정제 수단으로부터 상기 염소 제조 수단에 공급되는 염화수소의 공급량이 일정하게 되도록 상기 제2 조절 수단을 제어하고, 상기 염화수소 정제 수단 내의 압력이 일정하게 되도록 상기 제1 조절 수단을 제어하는 제어 수단을 구비하는 것을 특징으로 하는 폴리이소시아네이트 제조 장치.
  2. 제1항에 있어서, 상기 염산 제조 수단에는, 상기 염소 제조 수단에 있어서의 미산화의 염화수소 및 염산이 공급되는 것을 특징으로 하는 폴리이소시아네이트 제조 장치.
  3. 제1항에 있어서, 상기 염산 제조 수단은, 제조되는 염산의 농도를 조절하기 위한 염산 농도 조절 수단을 구비하고 있는 것을 특징으로 하는 폴리이소시아네이트 제조 장치.
  4. 염화카르보닐과 폴리아민을 반응시켜 폴리이소시아네이트를 제조하는 폴리이소시아네이트 제조 수단과,
    상기 폴리이소시아네이트 제조 수단에 접속되어, 상기 폴리이소시아네이트 제조 수단에 있어서 부생된 염화수소를 정제하는 염화수소 정제 수단과,
    상기 염화수소 정제 수단에 접속되어, 상기 염화수소 정제 수단에 있어서 정제된 염화수소를 산화하여, 염소를 제조하는 염소 제조 수단과,
    상기 염화수소 정제 수단에 대하여 상기 염소 제조 수단과 병렬적으로 접속되어, 상기 염화수소 정제 수단으로부터 배출되는 염화수소를 무해화 처리하는 제1 무해화 처리 수단과,
    상기 염화수소 정제 수단에 대하여 상기 염소 제조 수단과 선택적으로 접속되어, 상기 염화수소 정제 수단으로부터 배출되는 염화수소를 무해화 처리하는 제2 무해화 처리 수단과,
    상기 염화수소 정제 수단의 이상을 검지하는 이상 검지 수단과,
    상기 이상 검지 수단에 의해서 이상이 검지되지 않을 때에는, 상기 염화수소 정제 수단에 대하여 상기 염소 제조 수단을 접속하고,
    상기 이상 검지 수단에 의해서 이상이 검지되었을 때에는, 상기 염화수소 정제 수단에 대하여 상기 제2 무해화 처리 수단을 접속하는 접속 전환 수단을 구비하는 것을 특징으로 하는 폴리이소시아네이트 제조 장치.
  5. 제4항에 있어서, 상기 접속 전환 수단은,
    상기 염화수소 정제 수단에 대하여 상기 염소 제조 수단을 접속하거나 또는 차단하는 제1 개폐 수단과,
    상기 염화수소 정제 수단에 대하여 상기 제2 무해화 처리 수단을 접속하거나 또는 차단하는 제2 개폐 수단과,
    상기 제1 개폐 수단과 상기 제2 개폐 수단을 제어하는 제어 수단을 구비하고,
    상기 제어 수단은, 상기 이상 검지 수단에 의해서 이상이 검지되지 않을 때에는, 상기 제1 개폐 수단을 제어하여 상기 염화수소 정제 수단에 대하여 상기 염소 제조 수단을 접속하고, 상기 제2 개폐 수단을 제어하여, 상기 염화수소 정제 수단에 대하여 상기 제2 무해화 처리 수단을 차단하며,
    상기 이상 검지 수단에 의해서 이상이 검지되었을 때에는, 상기 제1 개폐 수단을 제어하여 상기 염화수소 정제 수단에 대하여 상기 염소 제조 수단을 차단하거나, 또는 상기 염화수소 정제 수단에 있어서 정제된 염화수소의 상기 염소 제조 수 단에 대한 공급량을 급격하게 저감시키고, 상기 제2 개폐 수단을 제어하여, 상기 염화수소 정제 수단에 대하여, 상기 제1 무해화 처리 수단의 처리 능력에 따라서, 상기 제2 무해화 처리 수단을 접속하는 것을 특징으로 하는 폴리이소시아네이트 제조 장치.
  6. 제4항에 있어서, 상기 제1 무해화 처리 수단이, 염화수소를 물에 흡수시켜, 염산을 제조하는 염산 제조 수단인 것을 특징으로 하는 폴리이소시아네이트 제조 장치.
  7. 제6항에 있어서, 상기 염산 제조 수단에는, 상기 염소 제조 수단에 있어서의 미산화의 염화수소 및 염산이 공급되는 것을 특징으로 하는 폴리이소시아네이트 제조 장치.
  8. 제6항에 있어서, 상기 염화수소 정제 수단으로부터 상기 염산 제조 수단에 공급되는 염화수소의 공급량을 조절하는 제1 조절 수단과,
    상기 염화수소 정제 수단으로부터 상기 염소 제조 수단에 공급되는 염화수소의 공급량을 조절하는 제2 조절 수단과,
    상기 염화수소 정제 수단으로부터 상기 염소 제조 수단에 공급되는 염화수소의 공급량이 일정하게 되도록, 상기 제2 조절 수단을 제어하고, 상기 염화수소 정제 수단 내의 압력이 일정하게 되도록, 상기 제1 조절 수단을 제어하는 제어 수단 을 구비하는 것을 특징으로 하는 폴리이소시아네이트 제조 장치.
  9. 가스와 처리액을 접촉시켜, 가스를 처리하기 위한 가스 처리 장치로서,
    가스와 처리액을 기액 접촉시키는 기액 접촉실과,
    상기 기액 접촉실보다 위쪽에 배치되어, 처리액을 저류하는 저류실과,
    상기 저류실 내의 처리액을 중력 낙하에 의해 상기 기액 접촉실 내에 공급하기 위한 처리액 공급 수단을 구비하고,
    상기 기액 접촉실, 상기 저류실 및 상기 처리액 공급 수단은 처리조에 구비되고,
    상기 처리조에는, 상기 처리조 내를 상하 방향으로 구획하는 충전물 지지판과,
    상기 충전물 지지판의 상측에 설치되고, 상기 처리조 내를 상하 방향으로 구획하는 저류실 바닥판이 설치되어 있고,
    상기 기액 접촉실은 상기 충전물 지지판과 상기 저류실 바닥판과의 사이의 상기 처리조의 내부 공간으로서 구획되고,
    상기 저류실은, 상기 저류실 바닥판으로부터 위쪽의 상기 저류실의 내부 공간으로서 구획되어 있는 것을 특징으로 하는 가스 처리 장치
  10. 제9항에 있어서, 상기 기액 접촉실이 복수 설치되어 있고,
    복수의 상기 기액 접촉실에 대하여, 가스를 상기 각 기액 접촉실에 직렬적으로 통과시키는 가스 통과 패스를 더욱 구비하고,
    상기 처리액 공급 수단은, 상기 가스 통과 패스를 흐르는 가스의 유동 방향에 있어서, 적어도 최하류측의 상기 기액 접촉실에 대하여 처리액을 공급하는 것을 특징으로 하는 가스 처리 장치.
  11. 제9항에 있어서, 상기 기액 접촉실에서 배출되는 처리액을 상기 저류실에 환류하기 위한 처리액 환류 수단을 더욱 구비하는 것을 특징으로 하는 가스 처리 장치.
  12. 제9항에 있어서, 상기 가스가 염화카르보닐 함유 가스이며, 상기 처리액이 알칼리성 수용액인 것을 특징으로 하는 가스 처리 장치.
KR1020077022612A 2005-04-05 2006-03-17 폴리이소시아네이트 제조 장치 및 가스 처리 장치 KR101255869B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005108592A JP4712422B2 (ja) 2005-04-05 2005-04-05 ポリイソシアネート製造装置
JPJP-P-2005-00108593 2005-04-05
JPJP-P-2005-00108592 2005-04-05
JP2005108593A JP4750449B2 (ja) 2005-04-05 2005-04-05 ポリイソシアネート製造装置
PCT/JP2006/305344 WO2006109416A1 (ja) 2005-04-05 2006-03-17 ポリイソシアネート製造装置およびガス処理装置

Publications (2)

Publication Number Publication Date
KR20070117633A KR20070117633A (ko) 2007-12-12
KR101255869B1 true KR101255869B1 (ko) 2013-04-17

Family

ID=37086707

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077022612A KR101255869B1 (ko) 2005-04-05 2006-03-17 폴리이소시아네이트 제조 장치 및 가스 처리 장치

Country Status (7)

Country Link
US (2) US7718145B2 (ko)
EP (2) EP2468387B1 (ko)
KR (1) KR101255869B1 (ko)
CN (1) CN101811990B (ko)
HU (2) HUE025903T2 (ko)
TW (2) TWI408151B (ko)
WO (1) WO2006109416A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718145B2 (en) * 2005-04-05 2010-05-18 Mitsui Chemicals, Inc. Polyisocyanate production system and gas treatment apparatus
ES2350799T3 (es) * 2006-01-27 2011-01-27 Basf Se Procedimiento para la obtención de cloruro de hidrógeno libre de hidrocarburos (clorados), y de hidrocarburos (clorados) libres de fosgeno, a partir de un flujo de cloruro de hidrógeno que contiene hidrocarburos (clorados) y fosgeno.
DE102008015406A1 (de) 2008-03-22 2009-09-24 Bayer Materialscience Ag Verfahren zur Regeneration eines mit Schwefel in Form von Schwefelverbindungen vergifteten, Ruthenium oder Rutheniumverbindungen enthaltenden Katalysators
WO2010039972A2 (en) * 2008-10-02 2010-04-08 Dow Global Technologies Inc. Apparatus, systems, and methods for purification of isocyanate mixtures
RU2500460C1 (ru) * 2012-07-20 2013-12-10 Андрей Владиславович Курочкин Устройство для аминовой очистки газа и способ ее осуществления
JP5667253B2 (ja) * 2013-08-01 2015-02-12 三井化学株式会社 塩化カルボニルの製造装置およびポリイソシアネートの製造装置
PT2949622T (pt) 2014-05-27 2022-05-02 Covestro Intellectual Property Gmbh & Co Kg Processo para processar cloreto de hidrogénio a partir da produção de isocianatos
CN105435589A (zh) * 2015-11-12 2016-03-30 中国石油化工股份有限公司 一种用于装船作业的盐酸回收系统及回收方法
EP3403723A1 (de) 2017-05-19 2018-11-21 Covestro Deutschland AG Verfahren zur regeneration eines vergifteten, ruthenium oder rutheniumverbindungen enthaltenden katalysators
JP7218311B2 (ja) * 2017-07-03 2023-02-06 コベストロ、ドイチュラント、アクチエンゲゼルシャフト H官能性反応物をホスゲンと反応させて化学製品を製造するための製造施設およびその稼働方法
CN113181859B (zh) * 2020-01-14 2022-07-12 万华化学集团股份有限公司 一种成盐反应器及制备异氰酸酯的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547117A (en) * 1978-09-29 1980-04-03 Hitachi Ltd Gas-liquid contacting apparatus
JP2002136828A (ja) * 2000-11-07 2002-05-14 Fuji Photo Film Co Ltd 気液接触装置及び気液接触方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2418931A (en) * 1945-11-09 1947-04-15 Socony Vacuum Oil Co Inc Recovery of halogens
JPS531136A (en) * 1977-04-25 1978-01-07 Toyo Kogyo Co Apparatus for plating inner surface of hollow article
CH658198A5 (de) * 1983-01-04 1986-10-31 Sulzer Ag Fluessigkeitsverteiler in einer stoff- und waermeaustauschkolonne.
CH660308A5 (de) 1983-03-01 1987-04-15 Sulzer Ag Vorrichtung zur fluessigkeitsverteilung in einer stoff- und waermeaustauschkolonne.
US4774070A (en) * 1986-02-19 1988-09-27 Mitsui Toatsu Chemicals, Incorporated Production process of chlorine
JPS62275001A (ja) 1986-02-21 1987-11-30 Mitsui Toatsu Chem Inc 塩素の工業的製造方法
JPH0280310A (ja) * 1988-06-01 1990-03-20 Mitsui Toatsu Chem Inc 三弗化窒素ガスの精製方法
US5074331A (en) * 1990-11-06 1991-12-24 Marathon Oil Company Method and means for redistributing reactor flow
US5466605A (en) * 1993-03-15 1995-11-14 Arizona Board Of Regents Method for detection of chemical components
JPH06319946A (ja) 1993-05-18 1994-11-22 Mitsui Toatsu Chem Inc 除害塔における有毒ガスの除害方法
US6010612A (en) * 1993-11-22 2000-01-04 E.I. Du Pont De Nemours And Company Production of isocyanate using chlorine recycle
US5715173A (en) * 1994-06-27 1998-02-03 Dainippon Screen Mfg. Co., Ltd. Concentration controlling method and a substate treating apparatus utilizing same
US5980845A (en) * 1994-08-24 1999-11-09 Cherry; Doyle Regeneration of hydrogen sulfide scavengers
JPH0975916A (ja) * 1995-09-18 1997-03-25 Kimura Chem Plants Co Ltd 気液接触装置及び浮上分離装置
IN190134B (ko) 1995-12-28 2003-06-21 Du Pont
JP4192354B2 (ja) 1999-01-22 2008-12-10 住友化学株式会社 塩素の製造方法
KR101513298B1 (ko) * 1999-01-22 2015-04-17 스미또모 가가꾸 가부시끼가이샤 염소의 제조 방법
JP4081591B2 (ja) 1999-07-12 2008-04-30 住友化学株式会社 塩素の製造方法
DE10235476A1 (de) * 2002-08-02 2004-02-12 Basf Ag Integriertes Verfahren zur Herstellung von Isocyanaten
DE10250131A1 (de) 2002-10-28 2004-05-06 Basf Ag Verfahren zur Herstellung von Chlor aus Salzsäure
DE10260084A1 (de) * 2002-12-19 2004-07-01 Basf Ag Auftrennung eines Stoffgemisches aus Clorwasserstoff und Phosgen
US20050046052A1 (en) * 2003-07-11 2005-03-03 Kenichi Okada Exhaust gas treating tower
US20070232827A1 (en) * 2004-05-25 2007-10-04 Basf Aktiengesellschaft Isocyanate Production Method
US7718145B2 (en) 2005-04-05 2010-05-18 Mitsui Chemicals, Inc. Polyisocyanate production system and gas treatment apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547117A (en) * 1978-09-29 1980-04-03 Hitachi Ltd Gas-liquid contacting apparatus
JP2002136828A (ja) * 2000-11-07 2002-05-14 Fuji Photo Film Co Ltd 気液接触装置及び気液接触方法

Also Published As

Publication number Publication date
US8158086B2 (en) 2012-04-17
EP1867631A4 (en) 2011-08-17
EP1867631A1 (en) 2007-12-19
US7718145B2 (en) 2010-05-18
EP2468387A1 (en) 2012-06-27
US20080138252A1 (en) 2008-06-12
TW200640971A (en) 2006-12-01
TWI484996B (zh) 2015-05-21
CN101811990A (zh) 2010-08-25
EP1867631B1 (en) 2015-12-09
KR20070117633A (ko) 2007-12-12
TWI408151B (zh) 2013-09-11
US20090293732A1 (en) 2009-12-03
WO2006109416A1 (ja) 2006-10-19
HUE025903T2 (en) 2016-05-30
HUE027010T2 (en) 2016-10-28
EP2468387B1 (en) 2015-10-21
CN101811990B (zh) 2012-02-22
TW201311337A (zh) 2013-03-16

Similar Documents

Publication Publication Date Title
KR101255869B1 (ko) 폴리이소시아네이트 제조 장치 및 가스 처리 장치
JP4750449B2 (ja) ポリイソシアネート製造装置
KR20160111390A (ko) 포스겐 발생기의 시동 및 가동정지 방법
US20100226833A1 (en) Polyisocyanate production method and polyisocyanate production system
US20110228630A1 (en) Reduced Transit Static Mixer Configuration
JP4712422B2 (ja) ポリイソシアネート製造装置
US6409981B1 (en) Process for removing chlorine from gas stream
JP5336828B2 (ja) 塩化カルボニルの製造方法および製造装置、ならびに、ポリイソシアネートの製造方法および製造装置
KR101531730B1 (ko) 플래쉬 탱크, 탈압 장치 및 폴리아이소사이아네이트 제조장치
JP4723882B2 (ja) ポリイソシアネートの製造方法
TW201514131A (zh) 催化劑製備及氫化方法
JP5667253B2 (ja) 塩化カルボニルの製造装置およびポリイソシアネートの製造装置

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160401

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190329

Year of fee payment: 7