KR101061633B1 - 금속막 성막 방법 및 컴퓨터 판독 가능한 기록 매체 - Google Patents

금속막 성막 방법 및 컴퓨터 판독 가능한 기록 매체 Download PDF

Info

Publication number
KR101061633B1
KR101061633B1 KR1020080080928A KR20080080928A KR101061633B1 KR 101061633 B1 KR101061633 B1 KR 101061633B1 KR 1020080080928 A KR1020080080928 A KR 1020080080928A KR 20080080928 A KR20080080928 A KR 20080080928A KR 101061633 B1 KR101061633 B1 KR 101061633B1
Authority
KR
South Korea
Prior art keywords
film
titanium
forming
gas
supply
Prior art date
Application number
KR1020080080928A
Other languages
English (en)
Other versions
KR20090032963A (ko
Inventor
겐사쿠 나루시마
아키라 구마가이
사토시 와카바야시
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20090032963A publication Critical patent/KR20090032963A/ko
Application granted granted Critical
Publication of KR101061633B1 publication Critical patent/KR101061633B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

질화 타이타늄막을 성막하는 공정만으로 실리사이드화 반응이 일어나기 쉽게 함으로써 스루풋을 비약적으로 향상시킨다.
웨이퍼 상에 타이타늄 화합물 가스와 환원 가스와 질소 가스를 공급하면서 플라즈마를 생성함으로써 웨이퍼 상에 질화 타이타늄막을 성막하는 공정을 갖고, 이 공정에서 질소 가스는 그 공급 개시부터 소정의 설정 유량에 이르기까지(시간 Ts), 그 공급 유량을 서서히 증가시키도록 공급함으로써, 실리콘 함유 표면에 타이타늄 실리사이드막을 형성하면서 웨이퍼 상에 질화 타이타늄막을 성막한다.

Description

금속막 성막 방법 및 컴퓨터 판독 가능한 기록 매체{METHOD FOR FORMING METAL FILM AND COMPUTER-READABLE RECORDING MEDIUM}
본 발명은 반도체 웨이퍼나 FPD(Flat Panel Display) 기판 등의 기판상에 질화 타이타늄막을 성막하는 금속막 성막 방법 및 컴퓨터 판독 가능한 기록 매체에 관한 것이다.
고집적화가 진행된 최근의 반도체 디바이스는 복수의 배선층으로 이루어지는 이른바 다층 배선 구조를 갖고 있다. 그리고 실리콘(Si) 기판과 배선층 사이에는 콘택트 홀이 형성되고, 상측 배선과 하측 배선 사이에는 비아홀이 형성되어 있다. 이러한 콘택트 홀 및 비아홀에는 텅스텐(W)이나 구리(Cu) 등의 금속이 매립되어서, 실리콘 기판과 배선층 및 상측 배선층과 하측 배선층이 전기적으로 접속된다. 또한, 이 금속의 매립에 앞서서, 콘택트 홀 내 및 비아홀 내에는 질화 타이타늄(TiN)막 등의 금속 배리어층을 형성하여, 홀 내에 매립되는 상기 금속이 베이스층으로 확산해서 베이스층과 반응해 버리는 일을 방지하고 있다.
특히 최근에는 반도체 디바이스의 고집적화에 따라, 콘택트 홀은 구경과 깊 이의 비인 어스펙트비가 매우 커졌기 때문에, 상술한 바와 같은 TiN막 등의 배리어층의 형성에는 스텝 커버리지가 좋은 CVD(화학적 증착)법이 채용되고 있다.
구체적으로는 예컨대, 콘택트 홀 내에 배리어층으로서 TiN막만을 성막하는 경우에는 4염화 타이타늄(TiCl4) 가스와 질소(N2) 가스 등을 Si 기판상에 공급하여 플라즈마를 발생시키는 PECVD(Plasma Enhanced Chemical Vapor Deposition)법 등에 의해서 콘택트 홀내를 포함해서 실리콘 기판의 표면 전체에 질화 타이타늄막을 성막한다(예컨대 특허 문헌 1, 2 참조).
그런데, 이러한 콘택트 홀 내의 확산층과의 콘택트 저항을 낮추기 위해서는 예컨대, 상기 배리어층과 확산층 사이에 TiSix(타이타늄 실리사이드) 등의 실리사이드막을 두어서, 배리어층과 확산층의 계면에 있어서의 일함수를 조절함으로써, 이 일함수차에 근거하는 쇼트키 장벽을 낮추는 것이 바람직하다.
그렇지만, 상술한 바와 같이 배리어층으로서 TiN막만을 PECVD 법으로 성막하는 경우에는 이러한 실리사이드막이 형성되기 어렵다고 하는 문제가 있다. 즉, 종래에는 실리콘 기판상에 4염화 타이타늄(TiCl4) 가스와 함께 질소(N2) 가스를 공급하여 플라즈마를 발생시키기 때문에, 4염화 타이타늄(TiCl4) 가스는 플라즈마에 의해 활성화된 질소 라디칼(활성 질소)과의 반응이 지배적으로 되기 때문에, 홀 바닥부에서의 실리콘 함유 표면과의 실리사이드화 반응이 일어나기 어려워서, 실리사이드막도 형성되기 어렵다.
여기서, 예컨대 질소 가스를 공급하지 않고 4염화 타이타늄 가스를 공급하면 서 Ti막을 성막한 후에, 그 Ti막의 표면을 질화하는 공정과, 또한 TiN막을 성막하는 공정의 2단계로 배리어층을 형성하는 일이 있다(예컨대 특허 문헌 3 참조). 이에 의하면, Ti막을 성막하는 공정에서 4염화 타이타늄 가스에 의한 실리콘 함유 표면과의 실리사이드화 반응도 일어나기 쉽게 되기 때문에, 홀 바닥부에 실리사이드막도 형성되기 쉽다.
여기서, Ti막 성막과 TiN막 성막의 2단계의 공정으로 형성한 배리어막 상에 텅스텐이 매립된 일반적인 콘택트 구조를 갖는 실리콘 웨이퍼의 막 구조를 도 14에 나타낸다. 이러한 콘택트 구조를 얻기 위해서는, 실리콘 기판(10) 상의 절연막(20)에 형성된 콘택트 홀(30)에 텅스텐막(60)을 매립하기 전에, 다음과 같은 방법으로 배리어막을 형성한다.
즉, 우선 콘택트 홀(30) 내를 포함해서 실리콘 기판(10)의 표면 전체에 타이타늄막을 형성한다. 구체적으로는 실리콘 기판(10) 상에 예컨대, 4염화 타이타늄(TiCl4) 가스와 수소(H2) 가스를 공급하여 플라즈마를 발생시키는 PECVD 법 등에 의해서 타이타늄막을 형성한다. 이 때, 질소(N2) 가스는 공급되지 않기 때문에, 콘택트 홀(30) 내의 바닥부에도 4염화 타이타늄(TiCl4) 가스나 플라즈마 중에 생성된 저차(低次) 염화물의 전구체 TiClx(X=2, 3)가 닿기 쉽다. 이 때문에, 실리사이드화 반응이 진행해서 콘택트 홀(30) 내의 바닥부에 노출하는 실리콘 함유 표면, 즉 불순물 확산층(12)의 표면에는 자기 정합적으로 타이타늄 실리사이드(TiSix)막(70)이 형성된다. 이어서, 실리콘 기판상에 암모니아(NH3) 가스를 공급하여 타이타늄막 을 질화해서 질화 타이타늄막(40)을 형성한다.
다음으로, 이 실리콘 기판상에 예컨대 4염화 타이타늄 가스와 암모니아 가스를 공급하여 열 CVD 법에 의해서 질화 타이타늄막(50)을 형성한다. 이와 같이 2단계에서 배리어막을 형성한 후, 실리콘 기판상에 예컨대, 모노실레인(SiH4) 가스와 수소 가스의 양쪽 또는 한쪽의 가스와 6불화텅스텐(WF6) 가스를 이용하여 열 CVD 법에 의해 텅스텐 막(60)을 형성한다.
특허 문헌 1 : 일본 특허 공개 평 6-140348호 공보
특허 문헌 2 : 일본 특허 공개 평 8-170174호 공보
특허 문헌 3 : 일본 특허 공개 평 8-8212호 공보
그러나, 상술한 바와 같이 Ti막 성막과 TiN막 성막의 2단계의 공정으로 배리어막을 형성하는 경우에는 실리콘 함유 표면(예컨대 불순물 확산층(12))상에 실리사이드막이 형성되기 쉽게 되지만, 공정이 많은 만큼 스루풋도 저하된다고 하는 문제가 있다. 또한, 실리콘 함유 표면상에 실리사이드막을 형성하기 위해서, Ti막을 성막 처리를 한 후에 그 Ti막을 질화하기 때문에, 질화에 관한 시간만큼 처리 시간도 많이 필요하게 된다.
또한, 최근에는 반도체 디바이스가 더욱 고집적화 및 고속화됨에 따라, 기판상에 형성되는 회로의 전기적 특성 향상의 요구가 점점 더 높아졌다. 상기 콘택트 구조에 있어서도, 콘택트 저항을 보다 낮게 억제하는 등, 콘택트 특성의 향상이 요구되고 있다. 이것에는, 콘택트를 구성하는 실리사이드막의 막 두께, 표면 모폴로지 등을 제어할 수 있으면 매우 유효하다고 생각된다.
그런데, 상술한 바와 같은 종래의 방법에서는, 배리어막으로서 TiN막만을 성막하는 경우는 물론, Ti막과 TiN막에 의해 배리어막을 성막하는 경우에도, 원하는 막 두께나 표면 모폴로지 등을 갖는 실리사이드막을 형성하는 것은 곤란했다.
그래서, 본 발명은 이러한 문제를 감안해서 이루어진 것으로, 그 목적으로 하는 것은, 금속 배리어막 등의 금속막을 성막할 때에, 질화 타이타늄막을 성막하는 공정만으로 실리사이드화 반응이 일어나기 쉽게 할 수 있고, 원하는 실리사이드막을 형성하면서 질화 타이타늄막을 성막할 수 있으며, 이러한 금속막을 성막할 때 의 스루풋을 비약적으로 향상시킬 수 있는 금속막 성막 방법 및 컴퓨터 판독 가능한 기록 매체를 제공하는 것에 있다.
본 발명자 등은 질화 타이타늄막을 성막하는 공정만으로도, 가스의 공급 방법을 개선함으로써, 실리사이드막이 형성되기 쉽게 할 수 있음과 아울러 실리사이드화 반응까지 제어할 수 있다는 것을 발견하고, 본 발명은 이것을 금속 배리어막 등의 금속막의 성막 처리에 적용함으로써 상기 과제를 해결할 수 있는 것이다.
상기 과제를 해결하기 위해서, 본 발명의 한 관점에 따라서는, 실리콘 함유 표면을 갖는 기판상에 금속막을 성막하는 금속막 성막 방법으로서, 상기 기판상에 타이타늄 화합물 가스와 환원 가스와 질소 가스를 공급하면서 플라즈마를 생성함으로써 상기 기판상에 질화 타이타늄막을 성막하는 공정을 가지며, 상기 공정에서 상기 질소 가스는 그 공급 개시부터 소정의 설정 유량에 이르기까지 그 공급 유량을 서서히 증가시키도록 공급함으로써, 상기 실리콘 함유 표면에 타이타늄 실리사이드막을 형성하면서 상기 기판상에 질화 타이타늄막을 성막하는 것을 특징으로 하는 금속막 성막 방법이 제공된다. 이 경우, 예컨대 질소 가스의 공급 개시부터 그 공급 유량이 설정 유량에 이르기까지 공급 유량의 시간 경과에 따른 변화율을 일정하게 해도 되고, 그 공급 유량의 시간 경과에 따른 변화율을 시간 경과와 함께 서서히 크게 하도록 해도 된다.
상기 과제를 해결하기 위해서, 본 발명의 다른 관점에 의하면, 실리콘 함유 표면을 갖는 기판상에 금속막을 성막하는 금속막 성막 방법을 컴퓨터에 실행시키기 위한 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체로서, 상기 금속막 성막 방법은, 상기 기판상에 타이타늄 화합물 가스와 환원 가스와 질소 가스를 공급하면서 플라즈마를 생성함으로써 상기 기판상에 질화 타이타늄막을 성막하는 공정을 갖고, 상기 공정에서 상기 질소 가스는 그 공급 개시부터 소정의 설정 유량에 이르기까지 그 공급 유량을 서서히 증가시키도록 공급함으로써, 상기 실리콘 함유 표면에 타이타늄 실리사이드막을 형성하면서 상기 기판상에 질화 타이타늄막을 성막하는 것을 특징으로 하는 컴퓨터 판독 가능한 기록 매체가 제공된다.
이러한 본 발명에 의하면, 질소 가스의 공급이 개시되면, 처음에는 질소 가스의 공급량이 억제된 상태로 4염화 타이타늄 가스와 환원 가스가 공급된다. 이 때에는 기판상에는 플라즈마에 의해서 활성화된 질소(질소 라디칼, 질소 이온 등)도 적기 때문에, 기판상의 실리콘 함유 표면에는 4염화 타이타늄 가스나 전구체 TiClx에 의한 실리사이드화 반응이 지배적으로 되어, 실리콘 함유 표면상에 타이타늄 실리사이드 막이 형성되기 쉽게 된다. 그리고, 질소 가스의 공급 유량은 서서히 증가하기 때문에, 점차적으로 실리사이드화 반응보다 4염화 타이타늄과 활성 질소의 반응이 지배적으로 되어, 타이타늄 실리사이드막 상에는 질화 타이타늄막이 서서히 형성되기 시작한다.
한편, 기판상의 실리콘 함유 표면 이외의 부분에서는 질소 가스의 공급 개시부터 4염화 타이타늄과 활성 질소의 반응이 일어나기 시작하기 때문에, 질화 타이 타늄막도 질소 가스의 공급 개시부터 서서히 형성된다. 그 후에는 질소 가스의 공급량이 설정 유량에 이르면, 4염화 타이타늄과 활성 질소의 반응이 가속되기 때문에 기판상의 전체에 걸쳐서 질화 타이타늄막의 형성도 가속된다.
이와 같이, 금속 배리어막 등의 금속막을 성막할 때에, 질화 타이타늄막을 성막하는 공정만으로 실리사이드화 반응이 일어나기 쉽게 할 수 있기 때문에, 원하는 실리사이드막을 형성하면서 질화 타이타늄막을 성막할 수 있다. 또한, 종래 같은 타이타늄막의 성막 공정을 불필요하게 할 수 있기 때문에, 금속막을 성막할 때의 스루풋을 비약적으로 향상시킬 수 있다.
또한, 상기 질소 가스의 공급 개시부터 그 공급 유량이 설정 유량에 이르기까지의 시간을 변경함으로써, 상기 타이타늄 실리사이드막의 형성을 제어하도록 할 수도 있다. 질소 가스가 설정 유량에 이르기까지의 시간을 변경함으로써, 상기 실리사이드화 반응의 속도나 시간을 제어할 수 있기 때문에, 원하는 막 두께나 표면 모폴로지 등을 갖는 타이타늄 실리사이드막을 형성할 수 있다.
또한, 상기 질소 가스의 공급을 개시하는 타이밍을 변경함으로써, 상기 타이타늄 실리사이드막의 형성을 제어하도록 할 수도 있다. 이 경우의 질소 가스의 공급을 개시하는 타이밍은 예컨대, 기판상에 타이타늄 화합물 가스와 환원 가스를 공급하여 상기 플라즈마를 생성하는 타이밍과 같은 시기로 해도 되고, 또한 기판상에 타이타늄 화합물 가스와 환원 가스를 공급하고 상기 플라즈마를 생성하는 타이밍으로부터 소정 시간 지연시키도록 해도 된다. 이렇게 해도, 상기 실리사이드화 반응의 속도나 시간을 제어할 수 있기 때문에, 원하는 막 두께나 표면 모폴로지 등을 갖는 타이타늄 실리사이드막을 형성할 수 있다. 또한, 상기 기판상에 타이타늄 화합물 가스와 환원 가스는 상기 플라즈마를 생성하기 전에 공급을 개시하도록 할 수도 있고, 상기 플라즈마를 생성과 동시에 공급을 개시할 수도 있다.
상기 과제를 해결하기 위해서, 본 발명의 다른 관점에 의하면, 실리콘 함유 표면상의 절연막에 상기 실리콘 함유 표면까지 이르는 홀이 형성된 기판상에 금속막을 성막하는 금속막 성막 방법으로서, 상기 기판상에 타이타늄 화합물 가스와 환원 가스와 질소 가스를 공급하면서 플라즈마를 생성함으로써, 질화 타이타늄막을 성막하는 공정을 갖고, 상기 공정에서 상기 질소 가스는 그 공급 개시부터 소정의 설정 유량에 이르기까지 그 공급 유량을 서서히 증가시키도록 공급함으로써, 상기 홀의 바닥부에 노출된 상기 실리콘 함유 표면에 타이타늄 실리사이드막을 형성하면서 상기 기판상에 질화 타이타늄막을 성막하는 것을 특징으로 하는 금속막 성막 방법이 제공된다.
상기 과제를 해결하기 위해서, 본 발명의 다른 관점에 의하면, 실리콘 함유 표면상의 절연막에 상기 실리콘 함유 표면까지 이르는 홀이 형성된 기판상에 금속막을 성막하는 금속막 성막 방법을 컴퓨터에 실행시키기 위한 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체로서, 상기 금속막 성막 방법은 상기 기판상에 타이타늄 화합물 가스와 환원 가스와 질소 가스를 공급하면서 플라즈마를 생성함으로써 질화 타이타늄막을 성막하는 공정을 갖고, 상기 공정에서 상기 질소 가스는 그 공급 개시부터 소정의 설정 유량에 이르기 때까지 그 공급 유량을 서서히 증가시키도록 공급함으로써, 상기 홀의 바닥부에 노출된 상기 실리콘 함유 표면에 타이타늄 실리사이드막을 형성하면서 상기 기판상에 질화 타이타늄막을 성막하는 것을 특징으로 하는 컴퓨터 판독 가능한 기록 매체가 제공된다.
이러한 본 발명에 의하면, 질소 가스의 공급을 개시하고 나서 그 유량이 소정의 설정 유량에 이르기까지의 사이, 플라즈마에 의해서 활성화된 질소 라디칼이 홀 바닥부에 노출되어 있는 실리콘 함유 표면에 도달하는 비율은 홀의 어스펙트비에 의존한다. 이로써, 홀 바닥부의 실리콘 함유 표면과 4염화 타이타늄과의 실리사이드화 반응은 홀의 어스펙트비에 의존하여 진행하고, 이에 따라 타이타늄 실리사이드막이 형성된다.
따라서, 상기 질소 가스의 공급을 개시하는 타이밍을 상기 홀의 형상에 따라 변경하도록 하는 것이 바람직하다. 이 경우, 홀이 어스펙트비가 작을수록, 상기 질소 가스의 공급을 개시하는 타이밍을 지연시키는 것이 바람직하다. 홀의 형상은 예컨대, 홀의 구경 및 어스펙트비에 의해서 정의된다. 홀의 구경이 크고 어스펙트비가 작은 경우에는, 홀 바닥부에 노출되어 있는 실리콘 함유 표면에는 플라즈마에 의해서 활성화된 질소가 도달하기 쉽다. 따라서, 예컨대 홀의 어스펙트비가 작을수록, 상기 질소 가스의 공급을 개시하는 타이밍을 지연시킴으로써, 질소 가스의 공급을 개시하고 즉시 많은 활성 질소가 실리콘 함유 표면에 도달하지 않도록 할 수 있다. 이에 의해서, 홀 형상에 관계없이 원하는 타이타늄 실리사이드막을 형성할 수 있다.
한편, 기판상의 실리콘 함유 표면 이외의 부분에는 질소 가스의 공급 개시부터 4염화 타이타늄과 활성 질소의 반응이 일어나기 시작하기 때문에, 질화 타이타 늄막도 질소 가스의 공급 개시부터 서서히 형성된다. 그 후에는 질소 가스의 공급량이 설정 유량에 이르면, 4염화 타이타늄과 활성 질소와의 반응이 가속되기 때문에 홀내를 포함한 기판상의 전체에 걸쳐 질화 타이타늄막의 형성도 가속한다.
또한, 본 명세서에서 1sccm은 (10-6/60)m3/sec으로 한다.
본 발명에 의하면, 금속 배리어막 등의 금속막을 성막할 때에, 질화 타이타늄막을 성막하는 공정만으로 실리사이드화 반응이 일어나기 쉽게 할 수 있다. 이로써, 질화 타이타늄막을 성막하는 공정만으로 원하는 실리사이드막을 형성하면서 질화 타이타늄막을 성막할 수 있어, 이러한 금속막을 성막할 때의 스루풋을 비약적으로 향상시킬 수 있다.
이하에 첨부 도면을 참조하면서, 본 발명의 바람직한 실시의 형태에 대해서 구체적으로 설명한다. 또한, 본 명세서 및 도면에 있어서, 실질적으로 동일한 기능 구성을 갖는 구성 요소에 대해서는, 동일한 부호를 붙임으로써 중복 설명을 생략한다.
(기판 처리 장치의 구성예)
본 발명에 관한 금속막 성막 방법을 실행 가능한 처리실을 구비한 기판 처리 장치의 실시예에 대하여 도면을 참조하면서 설명한다. 도 1은 본 실시예에 관한 기판 처리 장치의 일례를 나타내는 개략 구성도이다. 도 1에 나타낸 바와 같이, 기판 처리 장치(100)는 대략 다각형상(예컨대, 육각형상)으로 형성된 공통 반송실(처리실측 반송실)(102), 진공 흡인 가능하게 구성된 복수(예컨대 4개)의 처리실(104A~104D), 진공 흡인 가능하게 구성된 2개의 로드록실(108A, 108B), 대략 직사각형상인 반입측 반송실(110), 피처리 기판의 일례로서의 반도체 실리콘 웨이퍼(이하, 간단히 「웨이퍼」라고도 한다)(W)를 복수개 수용할 수 있는 카세트를 탑재하는 복수(예컨대, 3개)의 도입 포트(112A~112C), 및 웨이퍼(W)를 회전하고 그 편심량을 광학적으로 구하여 위치 맞춤을 하는 오리엔터(114)를 갖는다.
처리실(104A~104D)은 각각, 공통 반송실(102) 주위에 게이트 밸브(106A~106D)를 통해서 연결되어 있다. 각 처리실(104A~104D)에는 웨이퍼(W)를 탑재하는 탑재대(105A~105D)가 마련되어 있다. 각 처리실(104A~104D)은 각각, 탑재대(105A~105D)에 탑재된 웨이퍼(W)에 대하여 소정의 처리를 실시할 수 있도록 구성되어 있다.
공통 반송실(102) 내에는 웨이퍼(W)를 유지하는 2개의 피크(116A, 116B)를 갖고 굴신 및 선회 가능하게 구성된 처리실측 반송 기구(진공압측 반송 기구)(116)가 마련되어 있다. 또한 공통 반송실(102)에는 2개의 로드록실(108A, 108B)을 통해서 반입측 반송실(110)이 연결되어 있다. 로드록실(108A)은 공통 반송실(102)과 반입측 반송실(110)에 게이트 밸브(107A)를 통해서 접속되어 있고, 로드록실(108B)은 공통 반송실(102)과 반입측 반송실(110)에 게이트 밸브(107B)를 통해서 접속되어 있다.
또한, 공통 반송실(102)과 2개의 로드록실(108A, 108B) 중 어느 하나, 예컨대 로드록실(108A)과의 연결부의 반송구(109A)는 웨이퍼(W)를 공통 반송실(102)내에 반입하는 반입구로서 이용되고, 다른 로드록실(108B)과의 연결부의 반송구(109B)는 웨이퍼(W)를 공통 반송실(102) 밖으로 반출하는 반출구로서 이용된다.
상기 반입측 반송실(110) 내에는 웨이퍼(W)를 유지하는 2개의 피크(118A, 118B)를 갖고 굴신, 선회, 승강 및 직선 이동 가능하게 구성된 반입측 반송 기구(대기압측 반송 기구)(118)가 마련되어 있다.
그리고, 기판 처리 장치(100)에는 제어부(200)가 접속되어 있어서, 이 제어부(200)에 의해서 기판 처리 장치(100)의 각 부가 제어된다.
(제어부의 구성예)
기판 처리 장치(100)의 제어부(200)의 구성예를 도면을 참조하면서 설명한다. 제어부(200)는 도 2에 나타낸 바와 같이, CPU(중앙 처리 장치)(210), CPU(210)가 각부를 제어하는 데이터 등을 저장하는 ROM(Read-Only Memory)(220), CPU(210)가 행하는 각종 데이터 처리를 위해 사용되는 메모리 에어리어 등을 마련한 RAM(Random-Access Memory)(230), 조작 화면이나 선택 화면 등을 표시하는 액정 디스플레이 등으로 구성되는 표시 수단(240), 오퍼레이터에 의한 여러가지 데이터 의 입출력 등을 행할 수 있는 입출력 수단(250), 예컨대 버저와 같은 경보기 등으로 구성되는 통지 수단(260), 기판 처리 장치(100)의 각부를 제어하기 위한 각종 컨트롤러(270), 기판 처리 장치(100)에 적용되는 각종 프로그램 데이터를 저장하는 프로그램 데이터 기억 수단(280), 및 프로그램 데이터에 근거하는 프로그램 처리를 실행할 때에 사용하는 각종 설정 정보를 기억하는 설정 정보 기억 수단(290)을 구비한다. 프로그램 데이터 기억 수단(280)과 설정 정보 기억 수단(290)은 예컨대 플래시 메모리, 하드 디스크, CD-ROM 등의 기록 매체로 구성되고, 필요에 따라 CPU(210)에 의해서 데이터가 판독된다.
프로그램 데이터 기억 수단(280)에는 예컨대 처리실측 반송 기구(116)와 반입측 반송 기구(118)의 동작을 제어하는 반송 프로그램(282)과, 각 처리실(104)에 있어서의 웨이퍼(W)에 관한 프로세스 처리시에 실행되는 프로세스 처리 프로그램(284)의 기억 영역이 확보되어 있다. 또한, 설정 정보 기억 수단(290)에는 예컨대, 처리실측 반송 기구(116)와 반입측 반송 기구(118)가 액세스하는 포인트의 위치 좌표 등의 반송 설정 정보(292)와, 프로세스 처리에 있어서의 처리실내 압력, 가스 유량, 고주파 전력 등의 레시피 데이터 등의 프로세스 처리 설정 정보(294)를 기억하는 기억 영역이 확보되어 있다.
이들 CPU(210), ROM(220), RAM(230), 표시 수단(240), 입출력 수단(250), 통지 수단(260), 각종 컨트롤러(270), 프로그램 데이터 기억 수단(280), 및 설정 정보 기억 수단(290)은 제어 버스, 시스템 버스, 데이터 버스 등의 버스 라인에 의해서 전기적으로 접속되어 있다.
(처리실의 구성예)
다음으로, 도 1에 나타내는 기판 처리 장치(100)에 있어서의 처리실의 구성예를 설명한다. 기판 처리 장치(100)는 웨이퍼(W)에 형성된 콘택트 홀 바닥부에 노출된 실리콘 함유 표면상의 자연 산화막 등의 이물질을 물성분이나 감압하에서 플라즈마를 이용하지 않고서 제거하는 이물질 제거 처리, 이 이물질 제거 처리가 실시된 웨이퍼(W)의 실리콘 함유 표면상에 타이타늄 실리사이드막을 형성하면서 질화 타이타늄막을 형성하는 질화 타이타늄막 형성 처리, 질화 타이타늄막 상에 텅스텐막을 형성하는 텅스텐막 형성 처리를 웨이퍼(W)를 대기에 노출시키지 않고 연속 실행할 수 있도록 구성되어 있다.
여기서는 예컨대 처리실(104A~104D) 중 어느 하나의 처리실을 이물질 제거 처리가 가능하도록 구성하고, 다른 하나의 처리실을 본 실시예에 관한 질화 타이타늄막 성막 공정으로서의 질화 타이타늄막 형성 처리가 가능하도록 구성하며, 또 다른 하나의 처리실을 텅스텐막 형성 처리가 가능하도록 구성한 경우를 예로 든다. 또한, 이물질 제거 처리를 생성물 생성 처리(예컨대 COR(Chemical Oxide Removal) 처리)와, 생성물 제거 처리(예컨대 PHT(Post Heat Treatment) 처리)의 2단계로 나누어서 행하는 경우에는 처리실(104A~104D) 중 어느 2개의 실을 각각 할당하도록 해도 된다. 이와 같이, 기판 처리 장치(100)에서 실시하는 프로세스 처리의 내용에 따라 각 처리실(104A~104D)을 구성한다.
예컨대, COR 처리와 PHT 처리를 별도의 처리실에서 실행하는 경우에는 처리실(104A~104D)을 각각 COR 처리실, PHT 처리실, 질화 타이타늄막 형성 처리실 및 텅스텐막 형성 처리실로 구성할 수 있다. 그리고 각 처리실(104A~104D)에서의 처리는 각각, 제어부(200)에 의해서 제어된다. 보다 구체적으로는 제어부(200)의 CPU(210)가 프로그램 데이터 기억 수단(280)으로부터 필요한 프로세스 처리 프로그램(284)을 판독함과 아울러, 설정 정보 기억 수단(290)으로부터 프로세스 처리 설정 정보(294)로서 예컨대, 프로세스 레시피 정보 등을 판독해서 소정의 프로세스 처리를 실행한다.
(질화 타이타늄막 형성 처리실의 구성예)
여기서, 본 실시예에 관한 질화 타이타늄막 형성 처리를 실행 가능한 처리실의 구성예에 대해서 도면을 참조하면서 설명한다. 질화 타이타늄막 형성 처리실은 상기한 바와 같이, 웨이퍼(W)의 실리콘 표면상에 타이타늄 실리사이드막을 형성하면서 질화 타이타늄막을 형성하는 처리를 행하기 위한 것이다. 이 질화 타이타늄막 형성 처리실에서는, 예컨대 도 3에 나타내는 바와 같은 평행 평판형의 PECVD 처리 유닛(300)을 이용할 수 있다. 이 PECVD 처리 유닛(300)은 기밀하게 구성된 대략 원통 형상의 처리 용기로 이루어지는 처리실(311)을 갖고 있다.
처리실(311) 안에는 웨이퍼(W)를 수평으로 지지하기 위한 서셉터(312)가 그 중앙 하부에 마련된 원통 형상의 지지 부재(313)에 의해 지지된 상태로 배치되어 있다. 이 서셉터(312)는 질화 알루미늄(AlN) 등의 세라믹으로 이루어지고, 그 바깥 가장자리부에는 웨이퍼(W)를 가이드하기 위한 가이드 링(314)이 마련되어 있다.
또한, 서셉터(312)에는 히터 엘리먼트(315)가 매립되어 있고, 이 히터 엘리 먼트(315)는 히터 전원(340)으로부터 급전받아서 웨이퍼(W)를 소정 온도로 가열한다. 서셉터(312)에는 하부 전극(316)이 히터 엘리먼트(315) 위에 매설되어 있고, 하부 전극(316)은 예컨대, 접지(도시 생략)되어 있다.
처리실(311)의 천정벽(311A)에는 절연 부재(319)를 사이에 두고 샤워 헤드(320)가 마련되어 있다. 이 샤워 헤드(320)는 크게 나누면 상부분인 베이스 부재(321)와 하부분인 샤워 플레이트(322)로 구성되어 있다.
베이스 부재(321)에는 히터 엘리먼트(323)가 매설되어 있고, 이 히터 엘리먼트(323)는 히터 전원(34l)으로부터 급전받아서, 샤워 헤드(320)를 소정 온도로 가열하는 것이 가능하게 되어 있다.
샤워 플레이트(322)에는 처리실(311) 내에 가스를 토출하는 다수의 토출 구멍(324)이 형성되어 있다. 각 토출 구멍(324)은 베이스 부재(321)와 샤워 플레이트(322) 사이에 형성되는 가스 확산 공간(325)에 연통하고 있다. 베이스 부재(321)의 중앙부에는 처리 가스를 가스 확산 공간(325)에 공급하기 위한 가스 도입 포트(326)가 마련되어 있다. 가스 도입 포트(326)는 후술하는 가스 공급 수단(330)의 혼합 가스 공급 라인(338)에 접속되어 있다.
가스 공급 수단(330)은 타이타늄 화합물 가스인 4염화 타이타늄 가스를 공급하는 4염화 타이타늄 가스 공급원(331), 아르곤(Ar) 가스를 공급하는 아르곤 가스 공급원(332), 환원 가스인 수소 가스를 공급하는 수소 가스 공급원(333), 질소(N2) 가스를 공급하는 질소 가스 공급원(334)을 갖고 있다.
그리고, 4염화 타이타늄 가스 공급원(331)에는 4염화 타이타늄 가스 공급 라인(331L)이 접속되어 있고, 아르곤 가스 공급원(332)에는 아르곤 가스 공급 라인(332L)이 접속되어 있으며, 수소 가스 공급원(333)에는 수소 가스 공급 라인(333L)이 접속되어 있고, 질소 가스 공급원(334)에는 질소 가스 공급 라인(334L)이 접속되어 있다. 각 가스 공급 라인(331L~334L)에는 각각 매스 플로우 컨트롤러(MFC)(331C~334C) 및 이 매스 플로우 컨트롤러(331C~334C)를 사이에 두고 2개의 밸브(331V~334V)가 마련되어 있다.
가스 혼합부(337)는 상기한 각 처리 가스를 혼합하여 샤워 헤드(320)에 공급하는 기능을 갖는 것으로, 그 가스 유입측에는 각 가스 공급 라인(331L~334L)을 통해서 처리 가스 공급원(331~334)가 접속되어 있고, 그 가스 유출측에는 혼합 가스 공급 라인(338)을 통해서 샤워 헤드(320)가 접속되어 있다.
프로세스시에는 4염화 타이타늄 가스, 아르곤 가스, 수소 가스 및 질소 가스 중에서 선택된 1종류의 가스 또는 복수의 가스의 혼합 가스가 샤워 헤드(320)의 가스 도입 포트(326)와 가스 확산 공간(325)을 경유하여, 복수의 토출 구멍(324)으로부터 처리실(311) 내로 공급된다.
또한 본 실시예에 관한 샤워 헤드(320)는 처리 가스를 미리 혼합하여 처리실(311) 내에 공급하는 이른바 프리 믹스 타입으로 구성되어 있지만, 각 처리 가스를 독립적으로 처리실(311)내에 공급하는 이른바 포스트 믹스 타입을 이용하도록 해도 된다.
샤워 헤드(320)에는 정합기(342)를 통해서 고주파 전원(343)이 접속되어 있 어서, 성막시에 이 고주파 전원(343)으로부터 샤워 헤드(320)로, 예컨대 450kHz의 고주파 전력을 공급함으로써, 샤워 헤드(320) 및 하부 전극(316)의 사이에 고주파 전계가 생겨서, 처리실(311) 내에 공급된 처리 가스가 플라즈마화하여, 웨이퍼(W) 상에 예컨대, 타이타늄 실리사이드막과 질화 타이타늄막이 형성된다. 즉, 샤워 헤드(320), 정합기(342), 고주파 전원(343) 및 하부 전극(316)은 플라즈마 생성 수단을 구성한다.
처리실(311)의 바닥벽(311B)의 중앙부에는 원형의 구멍(317)이 형성되어 있고, 바닥벽(311B)에는 이 구멍(317)을 덮도록 아래쪽을 향해서 돌출하는 배기실(350)이 마련되어 있다. 배기실(35O)의 측면에는 배기관(351)이 접속되어 있고,이 배기관(351)에는 배기 장치(352)가 접속되어 있다. 그리고 이 배기 장치(352)를 작동시킴으로써 처리실(311) 내를 소정의 진공도까지 감압할 수 있다.
서셉터(312)에는 웨이퍼(W)를 지지하여 승강시키기 위한 3개(2개만 도시)의 웨이퍼 지지 핀(360)이 서셉터(312)의 표면에 대하여 나오고 들어가는 것이 가능하게 마련되고, 이들 웨이퍼 지지 핀(360)은 지지판(361)에 고정되어 있다. 그리고, 웨이퍼 지지 핀(360)은 에어 실린더 등의 구동 기구(362)에 의해 지지판(361)을 통해서 승강한다.
처리실(311)의 측벽(311C)에는 공통 반송실(102)과의 사이에서 웨이퍼(W)의 반입 반출을 행하기 위한 반입 반출구(318)와, 이 반입 반출구(318)를 개폐하는 게이트 밸브(311G)가 마련되어 있다.
이러한 구성을 갖는 PECVD 처리 유닛(300)의 전체 동작의 제어, 예컨대 각종 처리 가스의 공급 개시와 정지의 제어, 처리 가스의 유량 제어, 웨이퍼(W)의 온도 제어, 처리실(311) 내의 압력 제어는 상기한 제어부(200)에 의해서 행해진다. 예컨대, 밸브(331V~334V)는 제어부(200)로부터의 제어 신호에 따라서 개폐 동작하고, 이로써 가스 혼합부(337)에서 혼합되는 처리 가스가 선택된다. 또한, 매스 플로우 컨트롤러(331C~334C)는 제어부(200)로부터의 제어 신호에 따라서 각 가스 공급 라인(331L~334L)에 흐르는 처리 가스의 유량을 제어하고, 이로써 가스 혼합부(337)에서의 처리 가스의 혼합비가 조절된다.
(웨이퍼 처리의 구체예)
다음으로, 상술한 본 실시예에 관한 기판 처리 장치(100)가 행하는 웨이퍼에 관한 처리에 대해서 도면을 참조하면서 설명한다. 도 4는 본 실시예에 관한 웨이퍼 처리의 공정을 나타내는 흐름도이다. 또한, 도 5a~도 5c는 공정마다의 웨이퍼(400)의 막 구조를 나타내는 단면도이다.
기판 처리 장치(100)는, 예컨대 도 5a에 나타내는 것 같은 막 구조를 갖는 웨이퍼(400)에 대하여 처리를 행한다. 웨이퍼(400)는, 실리콘 베어 웨이퍼(410)상에 산화 실리콘(Si02)막 등의 층간 절연막(420)을 형성하고, 에칭에 의해 콘택트 홀(430)을 형성하며, 콘택트 홀(430)의 바닥부에 실리콘 함유 표면(412)을 노출시킨 것이다. 또한, 미리 실리콘 베어 웨이퍼(410)에 불순물 확산층을 형성하고, 그 표면을 실리콘 함유 표면으로서 노출시키도록 해도 된다.
우선, 도 4에 나타낸 바와 같이 스텝 S100에서, 실리콘 함유 표면(412)의 이물질(예컨대 에칭 잔사 등의 콘타미네이션, 파티클, 자연 산화막 등)을 제거하는 이물질 제거 처리를 행한다. 이로써, 실리콘 함유 표면(412)은 자연 산화막 등의 이물질이 없는, 플랫하고 균일한 면이 된다. 본 실시예에서는 예컨대, 감압하에서 플라즈마를 이용하지 않는 이물질 제거 처리를 실행한다. 이 이물질 제거 처리는 예컨대, 실리콘 웨이퍼에 부착한 자연 산화막을 포함하는 이물질과 가스 성분을 화학 반응시켜 생성물을 생성하는 생성물 생성 처리와, 실리콘 웨이퍼 상에 생성된 생성물을 열 처리에 의해 제거하는 생성물 제거 처리의 2단계로 이루어진다.
그리고 본 실시예에서는 생성물 생성 처리에서의 COR 처리를 처리실(104A)에서 행하고, 또한 생성물 제거 처리로서의 PHT 처리를 처리실(104B)에서 행한다. COR 처리에 의하면, 실리콘 웨이퍼 상에 부착된 이물질 예컨대, 자연 산화막 등의 산화막과 예컨대, 암모니아 가스 및 불화수소(HF) 가스 등의 가스 분자가 화학 반응하여, 생성물(주로 (NH4)2SiF6)이 생성된다. 그리고, PHT 처리에 의하면, COR 처리가 실시된 실리콘 웨이퍼가 가열되어, COR 처리의 화학 반응에 의해서 실리콘 웨이퍼 상에 생성된 생성물이 기화(승화)하여 실리콘 웨이퍼로부터 제거된다.
이와 같이 본 실시예에서는 감압하에서 플라즈마를 이용하지 않는 이물질 제거 처리가 실행되기 때문에, 다음으로 행하는 질화 타이타늄막 형성 처리에 있어서 막의 밀착성, 강도를 향상시킬 수 있다. 또한, 본 실시예에 관한 이물질 제거 처리에서는 플라즈마를 이용하지 않기 때문에, 타이타늄막의 베이스가 되는 실리콘 함유 표면(412)에 플라즈마에 기인한 손상이 미치지 않고, 또한 실리콘 함유 표면(412)이 깎여 버리는 일도 없다. 따라서, 실리콘 함유 표면(412)의 평활성이 손상되지 않고, 결과로서 저 저항의 콘택트를 형성할 수 있다.
다음으로, 웨이퍼(400)를 대기에 노출시키지 않고 처리실(104C)로 반송하고, 스텝 S110에서, 웨이퍼(400)에 대하여 타이타늄 실리사이드막과 질화 타이타늄막의 형성 처리를 연속적으로 행한다. 이로써, 도 5b에 나타낸 바와 같이, 실리콘 함유 표면(412)에 타이타늄 실리사이드막(440)이 형성되고, 그 타이타늄 실리사이드막(440) 및 층간 절연막(420)의 표면을 덮는 질화 타이타늄막(450)이 형성된다.
이 스텝 S110에 있어서, 타이타늄 실리사이드막(440)과 질화 타이타늄막(450)을 연속적으로 형성하기 위해서, 4염화 타이타늄 가스, 아르곤 가스, 수소 가스 및 질소 가스를 소정의 유량으로 혼합하고, 이 혼합 가스를 처리실(311) 내에 공급하면서 플라즈마를 형성한다.
본 실시예에서는 질화 타이타늄막을 성막하는 공정만이라도, 가스의 공급의 방법을 개선함으로써 실리사이드막이 형성되기 쉽게 할 수 있음과 아울러, 실리사이드화 반응까지 제어할 수 있다는 점에 착안해서, 이것을 이용하는 것이다. 구체적으로는 예컨대, 처리실(311)내에 소정의 유량으로 조정된 4염화 타이타늄 가스, 아르곤 가스 및 수소 가스를 혼합하여 공급하면서 처리실(311) 내에 플라즈마를 생성함과 아울러, 처리실(311) 내에 질소 가스를, 그 유량이 소정의 값에 이르기까지 그 유량을 서서히 증가시키면서 공급한다. 이와 같이 질소 가스의 처리실(311)로의 공급의 방법을 개선함으로써, 실리콘 함유 표면(412)에 원하는 막 두께나 표면 모폴로지를 갖는 타이타늄 실리사이드막(440)을 형성하면서, 그 타이타늄 실리사이드막(440) 및 층간 절연막(420)의 표면을 포함하는 웨이퍼(400) 상 전체에 걸쳐 질화 타이타늄막(450)을 형성할 수 있다. 또한, 이 PECVD 처리 유닛(300)에서 실시되는 질화 타이타늄막 형성 처리의 상세에 대해서는 후술한다.
다음으로, 웨이퍼(400)를 대기에 노출시키지 않고 처리실(104D)로 반송하고, 스텝 S120에서 웨이퍼(400)에 대하여 텅스텐막 형성 처리를 행한다. 이로써, 도 5c에 나타낸 바와 같이, 질화 타이타늄막(450) 위에 텅스텐막(460)이 형성되어, 콘택트 홀(430) 내에 텅스텐이 매립된다.
이와 같게 하여, 본 실시예에 관한 웨이퍼 처리에 의하면, 실리콘 함유 표면(412)에 원하는 막질 및 막 두께의 타이타늄 실리사이드막(440)을 형성할 수 있기 때문에, 매우 콘택트 특성이 양호한 콘택트 구조를 얻을 수 있다. 또한, 종래 실시되고 있던 타이타늄막의 질화 처리 공정이 불필요하게 되기 때문에, 그 만큼 스루풋의 향상이 실현된다.
또한, 타이타늄 실리사이드막(440)과 질화 타이타늄막(450)을 단일의 처리실(311)에서 성막할 수 있다. 따라서, 기판 처리 장치(100)에 별도의 처리실을 추가할 필요가 없어서, 풋프린트를 축소할 수 있다. 또한, 기판 처리 장치(100)에서 병렬적으로 성막 처리 가능한 웨이퍼(W)의 매수를 늘릴 수 있고, 이로써 스루풋을 더욱 향상시킬 수 있다.
(질화 타이타늄막 형성 처리의 구체예)
상술한 각 프로세스 처리 중 본 발명의 주요 프로세스 처리인 질화 타이타늄막 형성 처리의 구체예에 대하여 도면을 참조하면서 구체적으로 설명한다. 상술 한 바와 같이, 이 질화 타이타늄막 형성 처리는 웨이퍼(400)의 실리콘 함유 표면상에 타이타늄 실리사이드막을 형성하면서 웨이퍼(400)의 표면 전체에 걸쳐서 질화 타이타늄막을 형성하기 위한 것으로, PECVD 처리 유닛(300)(처리실(104C))에서 실시된다. 이 질화 타이타늄막 형성 처리에 있어서의 각 처리 가스의 처리실(311)로의 공급 타이밍의 구체예를 도 6에 나타낸다.
질화 타이타늄막 형성 처리를 행하는데 있어서, 처리실(311) 내에 웨이퍼(400)를 반입한 후, 처리실(311) 내의 압력을 예컨대, 667Pa로 조정함과 아울러, 서셉터(312)에 마련되어 있는 히터 엘리먼트(315)에 히터 전원(340)으로부터 전력을 공급하여 웨이퍼(400)를 소정 온도로 조정한다. 또한, 처리실(311) 내에 수소 가스와 아르곤 가스의 공급을 개시해 둔다. 이 때 수소 가스는 소정의 설정 유량, 예컨대 4000sccm로 조정하고, 아르곤 가스는 소정의 설정 유량, 예컨대 1600sccm로 조정한다.
이 상태에서, 시각 t1에서 소정의 설정 유량 예컨대, 12sccm의 4염화 타이타늄 가스의 공급을 개시한다. 계속해서 시각 t2에서 샤워 헤드(상부 전극)(320)에 예컨대 800W의 고주파 전력을 인가하여 처리실(311)내에 플라즈마를 생성한다. 또한, 이 시각 t1부터 시각 t2까지의 시간은 예컨대, 1s로 설정된다.
또한 시각 t2에서, 처리실(311) 내에 플라즈마를 생성하는 타이밍에 질소 가 스의 공급을 개시한다. 이 때, 처리실(311) 내에 질소 가스를, 소정의 설정 유량(예컨대, 200sccm)에 이르기까지 그 공급 유량을 제로부터 서서히 증가시키면서 공급한다. 이 때, 예컨대 질소 가스의 공급 개시부터 설정 유량에 이르기까지 공급 유량의 시간 경과에 따른 변화율을 일정하게 하도록 할 수도 있고, 또한 질소 가스의 공급 개시부터 설정 유량에 이르기까지 공급 유량의 시간 경과에 따른 변화율을 시간 경과와 함께 서서히 크게 하도록 해도 된다. 또한, 질소 가스의 공급 유량을 단계적으로 증가시켜 가도 된다. 도 6은 질소 가스의 공급 유량의 시간 경과에 따른 변화율을 일정하게 한 경우의 예이다.
이러한 질소 가스의 공급 유량을 제어하기 위한 데이터는 예컨대, 각종 설정 정보로서 설정 정보 기억 수단(290)에 미리 기억해 두고, 제어부(200)는 필요한 데이터를 판독함으로써 질소 가스의 공급 유량을 제어하도록 할 수도 있다. 예컨대 시각 t2부터 질소 가스의 유량이 소정의 설정 유량에 이르기까지의 시간 Ts을 그 설정 유량과 함께 설정 정보 기억 수단(290)에 설정해 둔다. 그리고, 제어부(200)는 상기 데이터에 의한 제어 신호에 따라서 질소 가스의 매스 플로우 컨트롤러(334C)를 제어하여, 시각 t2부터 시간 Ts가 경과할 때까지, 질소 가스의 유량을 Osccm에서 설정 유량까지 증가시킨다. 또한, 그 외에 설정 정보 기억 수단(290)에 처리실(311) 내에 공급하는 질소 가스의 유량의 시간 경과에 따른 변화량(예컨대 단위 시간당 증가량)을 설정해 두고, 이 시간 경과에 따른 변화량에 따라서 질소 가스의 공급 유량을 제어할 수도 있다.
이와 같이 질소 가스의 유량을 서서히 증가시킴으로써, 처리실(311) 내에서 의 질소 분자의 양(질소의 농도)이 점차 증가해 간다. 처리실(311) 내에 공급된 질소 가스는 플라즈마에 의해서 활성화되어, 활성 질소(질소 이온, 질소 라디컬 등)가 생성되기 때문에, 질소 가스의 유량의 증가에 따라 웨이퍼(400)의 표면에 공급되는 활성 질소의 양도 서서히 증가한다.
이와 같이 질소 가스가 설정 유량에 이르기까지의 시간 Ts에서는 웨이퍼(400)의 표면 중 콘택트 홀(430)의 바닥부에 노출되고 있는 실리콘 함유 표면(412)에서는 이 실리콘 함유 표면(412)까지 이르는 활성 질소의 공급량이 억제된다. 이로써, 실리콘 함유 표면(412)에 포함되는 실리콘과 4염화 타이타늄의 실리사이드화 반응(여기서는 타이타늄의 실리콘 환원 반응)이 지배적으로 된다. 더욱이, 질소 가스의 공급 개시 당초에는 활성 질소가 거의 없기 때문에 실리사이드화 반응이 일어나기 쉬워서, 실리콘 함유 표면(412)에는 타이타늄 실리사이드막(440)이 형성되기 쉽게 된다. 이러한 실리사이드화 반응로서는 예컨대, 하기 화학 반응식(1)에 나타내는 것과 같은 것이 대표적이다.
TiCl2+2Si→TiSi2+Cl2 ··· (1)
또한, 질소 가스가 설정 유량에 이르기까지의 시간 Ts의 설정 시간을 변경함으로써, 실리콘 함유 표면(412)의 실리사이드화 반응의 속도나 시간을 제어할 수 있기 때문에, 원하는 막 두께나 표면 모폴로지 등을 갖는 타이타늄 실리사이드막을 형성할 수 있다. 예컨대 시간 Ts를 보다 긴 시간으로 설정하면, 도 6에 파선으로 나타내는 바와 같이 처리실(311) 내에 공급하는 질소 가스의 유량의 단위 시간당 증가량을 줄일 수 있다. 이로써, 실리콘 함유 표면(412)의 실리사이드화 반응이 지배적으로 되는 시간을 길게 할 수 있기 때문에, 실리콘 함유 표면(412)에 형성되는 타이타늄 실리사이드막(440)의 막 두께를 보다 두껍게 할 수 있다.
반대로, 시간 Ts를 보다 짧은 시간으로 설정하면, 도시는 하지 않지만 처리실(311) 내에 공급되는 질소 가스의 유량의 단위 시간당 증가량을 크게 할 수 있다. 이로써, 실리콘 함유 표면(412)의 실리사이드화 반응이 지배적으로 되는 시간을 짧게 할 수 있기 때문에, 실리콘 함유 표면(412)에 형성되는 타이타늄 실리사이드막(440)의 막 두께를 보다 얇게 할 수 있다.
이와 같이, 질소 가스의 유량이 소정의 설정 유량에 이르기까지는 시간 경과에 따라 서서히 질소 가스의 유량이 증가하기 때문에, 또한 시간 경과에 따라 점차, 상술한 실리사이드화 반응보다 타이타늄의 질소 환원 반응(4염화 타이타늄에 포함되는 타이타늄과 활성 질소(N*)와의 반응)이 지배적으로 되어 간다. 이로써, 실리콘 함유 표면에는 타이타늄 실리사이드막(440)이 형성되면서, 질화 타이타늄막이 서서히 형성되어 간다. 이러한 타이타늄의 질소 환원 반응으로서는 예컨대 하기 화학 반응식 (2)에 나타내는 바와 같은 것이 대표적이다.
TiCl2+N*→TiN+Cl2 ··· (2)
또한, 웨이퍼(400)의 표면 중 실리콘 함유 표면(412) 이외의 부분, 예컨대 콘택트 홀(430)의 측벽을 포함하는 층간 절연막(420)의 표면에는 질소 가스의 공급 개시부터 타이타늄의 질소 환원 반응(예컨대, 화학 반응식(2))이 일어나기 시작하 기 때문에, 질화 타이타늄막도 질소 가스의 공급 개시부터 서서히 형성된다.
그리고, 시간 Ts이 경과하여 질소 가스의 유량이 소정의 설정 유량에 이르면, 성막 처리를 종료하는 시각 t3까지 일정한 설정 유량으로 질소 가스가 공급되기 때문에, 타이타늄의 질소 환원 반응(예컨대, 화학 반응식(2))이 지배적인 상태로 그 반응도 가속한다. 이로써, 타이타늄 실리사이드막(440) 및 층간 절연막(420)의 표면을 포함하는 웨이퍼(400)의 표면 전체에 걸쳐서 질화 타이타늄막(450)의 형성이 가속된다.
또한, 이 시각 t3까지의 시간을 조정함으로써 원하는 막 두께의 질화 타이타늄막(450)을 형성할 수 있다. 구체적으로는 시각 t3까지의 시간을 길게 하면, 그 만큼, 형성되는 질화 타이타늄막(450)의 막 두께를 두껍게 할 수 있다.
다음으로, 이 시각 t3이 되면, 플라즈마를 제거함과 아울러, 4염화 타이타늄 가스와 질소 가스의 처리실(311) 내로의 공급을 정지한다. 시각 t3 이후, 소정 시간만큼 수소 가스와 아르곤 가스를 처리실(311) 내로 공급을 계속하여, 처리실(311) 내에 잔류하고 있는 4염화 타이타늄 가스와 질소 가스를 퍼지한다. 이상과 같이 하여, 웨이퍼(400) 상에 질화 타이타늄막 형성 처리가 완료한다. 그 후, 웨이퍼(400)를 처리실(104C)로부터 처리실(104D)로 반송하고, 웨이퍼(400)에 대하여 텅스텐막 형성 처리를 행한다.
(실험 결과)
다음으로, 본 실시예에 관한 질화 타이타늄막 형성 처리에 있어서의 실험 결 과에 대하여 비교예와 비교하면서 설명한다. 우선, 질소 가스를 시각 t2부터 설정 유량까지 서서히 증가하면서 공급한 본 실시예의 경우(Ts=10s)와, 질소 가스를 시각 t2에서 처음부터 설정 유량으로 공급한 비교예의 경우(Ts=0s)에 대해서 타이타늄 실리사이드막의 형성 상황을 확인한 실험의 결과를 도 7에 나타낸다.
이 실험에서는 실리콘막과 산화 실리콘막에 대하여 상기한 질화 타이타늄막 형성 처리를 실시하여, 산화 실리콘막 상에 형성된 막의 두께에 관한 실리콘막 상에 형성된 막의 두께의 비율을 구함으로써, 타이타늄 실리사이드막의 형성 상황을 확인했다. 즉, 이 막 두께의 비율이 "1.00"일 때에는 타이타늄 실리사이드막이 형성되지 않고 있다는 것을 나타내고, 막 두께의 비율이 "1.00"보다 클수록 막 두께가 두꺼운 타이타늄 실리사이드막이 형성되고 있다는 것을 나타낸다.
도 7에 나타내는 실험 결과에 의하면, 질소 가스를 처음부터 설정 유량으로 공급한 비교예의 경우(Ts=0s)에는 상기 막 두께의 비율은 "1.08"로, "1.00"에 매우 가깝다. 이에 의하면, 타이타늄 실리사이드막은 거의 형성되지 않고 있다는 것이 추찰된다.
이에 대해서, 질소 가스를 설정 유량까지 서서히 증가하면서 공급한 본 실시예의 경우(Ts=10s)에는 상기 막 두께의 비율은 "1.23"로, "1.00"보다도 커진다. 이에 의하면, 타이타늄 실리사이드막이 형성되어 있는 것이 추찰된다.
또한, 이 결과를 확인하기 위해서, 도 6의 경우와 같은 처리 조건으로 웨이퍼(400)에 대하여 질화 타이타늄막 형성 처리를 실시하여 획득된 막 구조를, 주사형 전자 현미경(SEM:Scanning Electron Microscope)을 이용하여 해석해 보았다. 도 8a는 그 SEM 화상을 나타내고 있다. 또한, 도 8b는 도 8a의 화상의 중의 파선으로 둘러싸인 영역 즉, 콘택트 홀 바닥부의 확대 화상을 나타내고 있다.
도 8a, 도 8b에 나타내는 SEM 화상으로부터 분명한 바와 같이, 본 실시예에 관한 질화 타이타늄막 형성 처리에 의하면, 웨이퍼(400)의 실리콘 함유 표면(412)(Si)상에는 타이타늄 실리사이드막(440)(TiSi2)이 형성되어 있고, 타이타늄 실리사이드막(440) 위에는 질화 타이타늄막(450)(TiNx(0≤x≤1))이 형성되어 있다. 이 때의 타이타늄 실리사이드막(440)의 막 두께는 2㎚였다.
이상의 실험 결과로부터, 질소 가스를 처음부터 설정 유량으로 공급한 경우에는 거의 타이타늄 실리사이드막(440)이 형성되지 않는 데 비해서, 질소 가스를 설정 유량까지 서서히 증가하면서 공급하는 경우에는 어느 정도의 막 두께를 갖는 타이타늄 실리사이드막(440)이 형성되어 있다는 것을 알 수 있다.
또한, 본 실시예에 관한 질화 타이타늄막 형성 처리에 의하면, 콘택트 홀의 형상, 예컨대 구경 및 어스펙트비에 맞게, 원하는 타이타늄 실리사이드막(440)을 형성할 수 있다. 도 9a와 도 9b에 각각 콘택트 홀의 형상이 다른 웨이퍼(500, 502)의 구조를 나타낸다. 웨이퍼(500, 502)는 모두 실리콘 베어 웨이퍼(510) 상에 산화 실리콘(SiO2)막 등의 층간 절연막(520)을 형성하고, 에칭에 의해 콘택트 홀(530, 532)을 형성하여, 콘택트 홀(530, 532)의 바닥부에 실리콘 함유 표면(512)을 노출시킨 것이다. 단, 도 9a에 나타내는 웨이퍼(500)에 형성되어 있는 콘택트 홀(530)은 상대적으로 구경이 좁고 어스펙트비가 크며, 도 9b에 나타내는 웨이 퍼(502)에 형성되어 있는 콘택트 홀(532)은 상대적으로 구경이 넓고 어스펙트비가 작다.
웨이퍼(500)의 콘택트 홀(530)과 같이 구경이 좁고 어스펙트비가 큰 경우에는 도 6에 나타낸 바와 같이, 시각 t2에 플라즈마 형성과 동기하여 처리실(311) 내에 질소 가스의 공급을 개시해도, 그 공급량이 적은 동안에는 대부분의 활성 질소가 콘택트 홀(530)의 바닥부의 실리콘 함유 표면(512)에 도달하기 전에 예컨대, 콘택트 홀(530)의 측벽에 충돌하여 실활하기 때문에, 상기 실리사이드화 반응(예컨대, 화학 반응식(1))이 상기 타이타늄의 질소 환원 반응(예컨대, 화학 반응식(2))보다 지배적으로 되므로, 실리콘 함유 표면(512)에 원하는 막 두께의 타이타늄 실리사이드막(440)을 형성할 수 있다.
이에 대해서, 웨이퍼(502)의 콘택트 홀(532)과 같이 구경이 넓고 어스펙트비가 작은 경우에는 도 6에 나타낸 바와 같이, 시각 t2에 플라즈마를 생성하는 것과 같은 시기에 처리실(311) 내에 질소 가스의 공급을 개시하면, 그 공급 개시 직후에 활성 질소가 콘택트 홀(530)의 바닥부의 실리콘 함유 표면(512)에 도달하기 쉽기 때문에, 상기 타이타늄의 질소 환원 반응(예컨대 화학 반응식(2))이 상기 실리사이드화 반응(예컨대 화학 반응식(1))보다 지배적으로 되어, 실리콘 함유 표면(512)에 타이타늄 실리사이드막(440)이 거의 형성되지 않고, 질화 타이타늄막(450)이 형성되어 버린다.
그래서, 웨이퍼(502)의 콘택트 홀(532)과 같이 구경이 넓고 어스펙트비가 작은 경우에는 도 10에 나타낸 바와 같이, 시각 t2에 플라즈마를 생성한 후, 소정의 시간 Td만큼 늦춰 처리실(311) 내에 질소 가스의 공급을 개시하도록 한다. 이와 같이 처리실(311) 내로의 질소 가스의 공급 개시의 타이밍을 늦춤으로써, 실리콘 함유 표면(512)에 활성 질소가 공급되지 않는 기간(시간 Td)을 얻을 수 있어, 그 사이에 실리콘 함유 표면(512) 상에 원하는 막 두께의 타이타늄 실리사이드막(440)을 형성할 수 있다. 시간 Td이 경과한 후에는 처리실(311) 내에 질소 가스가 공급되기 때문에, 타이타늄 실리사이드막(440) 및 층간 절연막(420)의 표면에 질화 타이타늄막(450)을 형성할 수 있다.
또한, 웨이퍼(502)의 콘택트 홀(532)과 같이 구경이 넓고 어스펙트비가 작은 경우, 시간 Td를 설정하는 일없이(Td=0s), 시간 Ts를 길게 조정하는 것만으로도 질화 타이타늄막(450)을 형성하는 것도 가능하다.
이와 같이 본 실시예에 의하면, 콘택트 홀의 형상에 따라 시간 Td와 시간 Ts를 조정할 수 있다. 이로써, 어떠한 콘택트 홀이라도 원하는 타이타늄 실리사이드막(440)을 형성할 수 있다.
또한 본 실시예에 의하면, 시간 Td와 시간 Ts를 조정하여 타이타늄 실리사이드막(440)의 성막 속도를 제어하는 것도 가능해진다. 따라서, 모폴로지가 양호한 타이타늄 실리사이드막(440)을 형성할 수 있다.
또한, 시간 Td를 마련함으로써, 실리콘 함유 표면에 형성되는 타이타늄 실리사이드막(440)의 막 두께를 보다 두껍게 할 수 있다. 이것을 확인하기 위해서, 도 10에 나타내는 처리 조건(Td=10s)으로 웨이퍼(400)에 대하여 질화 타이타늄막 형성 처리를 실시하여 획득된 막 구조를 SEM을 이용하고 해석해 보았다. 도 11a는 그 SEM 화상을 나타내고 있다. 또한, 도 11b는 도 11a의 화상의 중의 파선으로 둘러싸인 영역 즉, 콘택트 홀 바닥부의 확대 화상을 나타내고 있다.
도 11a, 도 11b에 나타내는 SEM 화상과 상기한 도 8a, 도 8b를 비교하면 분명한 바와 같이, 시간 Td를 마련함으로써, 웨이퍼(400)의 실리콘 함유 표면(412)(Si)상에는 보다 두꺼운 타이타늄 실리사이드막(440)(TiSi2)이 형성된다. 이 때의 타이타늄 실리사이드막(440)의 막 두께는 4㎚였다. 상기한 바와 같이, 시간 Td가 없는 경우에는 타이타늄 실리사이드막(440)의 막 두께는 2㎚이기 때문에, 10s의 시간 Td를 마련함으로써, 2배의 막 두께의 타이타늄 실리사이드막(440)을 얻을 수 있다. 시간 Td를 더욱 길게 함으로써 보다 두꺼운 타이타늄 실리사이드막(440)을 얻는 것도 가능해진다.
(질화 타이타늄막의 특성)
이어서, 본 실시예에 관한 질화 타이타늄막 형성 처리에서 형성되는 질화 타이타늄막의 특성에 대하여 설명한다. 우선, 본 실시예에 의해 형성되는 질화 타이타늄막의 비저항에 대해서 도 12를 참조하면서 설명한다. 도 12는 질화 타이타늄막의 막 두께와 비저항의 관계를 나타내는 그래프이다. 이 도 12에 있어서 흑색 원은 본 실시예와 같이 타이타늄막 형성 과정을 거치지 않고 형성한 질화 타이타늄막(PECVD-TiN)의 특성을 나타내고 있고, 백색 원은 타이타늄막을 성막한 후에 그것을 질화하는 비교예로서의 질화 타이타늄막 형성 방법에 의해서 형성한 질화 타이 타늄막(PECVD-Ti(N))의 특성을 나타내고 있다. 즉, 비교예의 질화 타이타늄막 형성 방법은 우선 웨이퍼 상에 타이타늄막을 형성함으로써, 콘택트 홀의 바닥부의 실리콘 함유 표면에 자기 정합적으로 타이타늄 실리사이드막을 형성하고, 그 후에 암모니아 가스를 이용하여 PECVD 법 등에 타이타늄막을 질화함으로써 질화 타이타늄막이 형성한 경우이다.
도 12에 나타낸 바와 같이, 본 실시예와 같이 타이타늄막 형성 과정을 거치지 않고 형성되는 질화 타이타늄막은 타이타늄막 형성 과정을 거쳐서 형성되는 비교예의 질화 타이타늄막에 비하여, 막 두께가 100Å보다 두꺼운 경우에는 비저항의 값이 작게 된다. 일반적으로, 콘택트 홀 내에는 배리어층으로서 100Å 이상의 막 두께의 질화 타이타늄막을 형성한다. 따라서, 본 실시예에 의하면, 종래보다 비저항이 작은 질화 타이타늄막을 형성할 수 있다. 그 결과, 콘택트 저항이 보다 낮게 억제된, 전기적 특성이 양호한 콘택트 구조를 얻을 수 있다.
다음으로, 본 실시예에 의해 형성되는 질화 타이타늄막의 성막 속도에 대해서 도 13을 참조하면서 설명한다. 도 13은 본 실시예에 있어서 형성된 질화 타이타늄막의 성막 속도와, 상기 비교예의 질화 타이타늄막 형성 방법에 따라서 형성된 질화전의 타이타늄막의 성막 속도를 나타내는 그래프이다. 도 13에 있어서 흑색 원은 본 실시예에 의한 질화 타이타늄막(PECVD-TiN)의 성막 속도를 나타내고 있고, 백색 원은 상기 비교예의 타이타늄막(PECVD-Ti)의 성막 속도를 나타내고 있다.
도 13에 나타낸 바와 같이, 본 실시예에서 형성된 질화 타이타늄막은 비교예의 질화 타이타늄막 형성 방법에 의해서 형성된 타이타늄막에 비하여, 높은 성막 속도로 형성된다. 이것은 이하의 이유에 의한다고 생각된다. 질화 타이타늄막과 타이타늄막은 모두 4염화 타이타늄 가스를 이용하여 형성되는데, 타이타늄막의 경우, 성막과 동시에 조금이라도 4염화 타이타늄 가스에 의해서 그 표면이 에칭되어 버린다. 즉, 종래, 타이타늄막은 약간 에칭되면서 성막되어 있었다. 이에 대하여, 본 실시예에서 형성된 질화 타이타늄막은 안정되어 있기 때문에, 4염화 타이타늄 가스에 의해서 에칭되지 않고 성막되어 있었다. 따라서, 질화 타이타늄막의 성막 속도는 타이타늄막의 성막 속도보다 높아진다.
더욱이, 본 실시예에 의하면, 타이타늄막을 형성하지 않고 질화 타이타늄막을 직접 형성한다. 즉, 종래 실시되고 있던 암모니아 가스에 의한 타이타늄막의 질화 처리 공정이 불필요하다. 따라서, 종래 콘택트 홀 내에 질화 타이타늄막을 형성하기 위해서 예컨대, 140s 걸렸던 것이, 본 실시예에 의하면 100s로 단축시킬 수 있다. 이로써 기판 처리 장치(100)의 스루풋을 향상시킬 수 있다.
그런데, 복수 장의 웨이퍼(W)를 순차적으로, 처리실(311) 내로 반송하여 질화 타이타늄막을 형성하는 경우, 그에 앞서서 처리실(311) 내의 분위기를 갖추는 작업을 한다. 구체적으로는 이 작업에서는 처리실(311)의 내벽이나 서셉터(312) 표면 등에 질화 타이타늄의 증착물을 형성하는 이른바 프리코트가 행해진다. 종래, 웨이퍼(W)에 대한 질화 타이타늄막의 형성과 유사하게, 이 프리코트에 있어서도, 우선 타이타늄막을 형성한 후에 이것을 질화하여 질화 타이타늄막을 형성하고, 이것을 복수회 반복하고 있었다. 이 때문에, 이 프리코트에는 수 시간이 필요했다. 본 실시예에 관한 질화 타이타늄막의 형성 방법은 이 프리코트에도 적용 가능 하다. 이 경우, 대폭적인 시간 단축이 가능해진다. 이에 의해서도 스루풋의 향상을 실현한다.
이상과 같이, 본 실시예에 의하면, 금속 배리어막 등의 금속막을 성막할 때에, 질화 타이타늄막을 성막하는 공정만으로 실리사이드화 반응이 일어나기 쉽게 할 수 있다. 이로써, 원하는 실리사이드막을 형성하면서 질화 타이타늄막을 성막할 수 있어서, 이러한 금속막을 성막할 때의 스루풋을 비약적으로 향상시킬 수 있다. 또한, 콘택트 홀 내에 비저항이 작은 질화 타이타늄막을 형성할 수 있다. 따라서, 전기적 특성이 우수한 콘택트를 얻을 수 있다. 또한, 질화 타이타늄막을 형성하는 공정뿐이기 때문에, 단일의 처리실에서 성막할 수 있다.
또한, 상기 각 처리실(104A~104D) 중 어느 처리실도 COR 처리실, PHT 처리실, 질화 타이타늄막 형성 처리실, 텅스텐막 형성 처리실로 구성할 수 있다. 또한 웨이퍼(500)의 반송 순서도, 각 처리실(104A~104D) 중 COR 처리실, PHT 처리실, 질화 타이타늄막 형성 처리실, 텅스텐막 형성 처리실의 순서로 반송하면, 반드시 처리실(104A~104D)의 순서가 아니어도 된다. 또한, COR 처리실, PHT 처리실 및 텅스텐막 형성 처리실을 별도의 기판 처리 장치에 구성하도록 할 수도 있다.
또한, 도 6과 도 10에 나타낸 바와 같이, 본 실시예에서는 플라즈마 생성 타이밍보다 먼저 4염화 타이타늄 가스와 환원 가스를 공급하도록 한 경우에 대해서 설명했지만, 이에 한정되는 것이 아니라, 플라즈마 생성의 타이밍에 4염화 타이타늄 가스와 환원 가스를 공급하도록 할 수도 있다.
상기 실시예에 의해 상술한 본 발명에 관해서는 복수의 기기로부터 구성되는 시스템에 적용해도 되고, 하나의 기기로 이루어지는 장치에 적용할 수도 있다. 상술한 실시예의 기능을 실현하는 소프트웨어의 프로그램을 기억한 기억 매체 등의 매체를 시스템 또는 장치에 공급하고, 그 시스템 또는 장치의 컴퓨터(또는 CPU나 MPU)가 기억 매체 등의 매체에 저장된 프로그램을 판독해서 실행하는 것으로도, 본 발명이 달성될 수 있다.
이 경우, 기억 매체 등의 매체로부터 판독된 프로그램 자체가 상술한 실시예의 기능을 실현하게 되고, 그 프로그램을 기억한 기억 매체 등의 매체는 본 발명을 구성하게 된다. 프로그램을 공급하기 위한 기억 매체로서는 예컨대, 플로피(등록 상표) 디스크, 하드 디스크, 광 디스크, 광자기 디스크, CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, DVD+RW, 자기 테이프, 비휘발성의 메모리 카드, 또는 ROM 등을 이용할 수 있다. 또한, 프로그램의 공급 매체에는 인터넷이나 인트라넷 등의 전기 통신 회선이 포함된다.
또한, 컴퓨터가 판독한 프로그램을 실행함으로써, 상술한 실시예의 기능이 실현될 뿐만 아니라, 그 프로그램의 지시에 근거하여, 컴퓨터상에서 가동되고 있는 오퍼레이션 시스템 등이 실제로의 처리의 일부 또는 전부를 행하고, 그 처리에 의해서 상술한 실시예의 기능이 실현되는 경우도 본 발명에 포함된다.
아울러, 기억 매체 등의 매체로부터 판독된 프로그램이 컴퓨터에 삽입된 기능 확장 보드나 컴퓨터에 접속된 기능 확장 유닛에 구비된 메모리에 기입된 후, 그 프로그램의 지시에 근거하여, 그 기능 확장 보드나 기능 확장 유닛에 구비된 CPU 등이 실제로의 처리의 일부 또는 전부를 행하고, 그 처리에 의해서 상술한 실시예 의 기능이 실현되는 경우도, 본 발명에 포함된다.
이상, 첨부 도면을 참조하면서 본 발명의 바람직한 실시예에 대해서 설명했지만, 본 발명은 이러한 예에 한정되지 않는다. 당업자라면, 특허 청구의 범위에 기재된 범주 내에서, 각종의 변경예 또는 수정예를 도출할 수 있는 것은 분명하고, 이들에 대해서도 당연히 본 발명의 기술적 범위에 속하는 것으로 이해된다.
예컨대, 상기 실시예에 있어서는 타이타늄 화합물 가스로서 4염화 타이타늄 가스를 이용한 경우를 예로 들어 설명했지만, 이에 한정되는 것이 아니라, 다른 타이타늄 화합물 가스를 채용할 수도 있다. 예컨대 유기 타이타늄으로서 TDMAT(다이메틸아미노 타이타늄), TDEAT(다이에틸아미노 타이타늄) 등을 이용할 수도 있다.
본 발명은 반도체 웨이퍼, FPD 기판 등의 피처리 기판상에 질화 타이타늄막을 성막하는 성막 방법 및 컴퓨터 판독 가능한 기록 매체에 적용 가능하다.
도 1은 본 발명의 실시예에 관한 기판 처리 장치의 구성예를 도시하는 횡단면도,
도 2는 동 실시예에 있어서의 제어부의 구성예를 도시하는 블록도,
도 3은 동 실시예에 있어서의 질화 타이타늄 성막 처리를 실행 가능한 처리실의 구성예를 도시하는 종단면도,
도 4는 동 실시예에 관한 기판 처리 장치에 있어서 웨이퍼에 대하여 실행되는 일련의 처리 공정을 나타내는 흐름도,
도 5a는 동 실시예에 관한 기판 처리 장치에 있어서의 일련의 처리가 실행되기 전의 웨이퍼의 막 구조를 나타내는 종단면도,
도 5b는 동 실시예에 있어서의 질화 타이타늄막 형성 처리가 실시된 후의 웨이퍼의 막 구조를 나타내는 종단면도,
도 5c는 동 실시예에 있어서의 텅스텐막 형성 처리가 실시된 후의 웨이퍼의 막 구조를 나타내는 종단면도,
도 6은 동 실시예에 있어서의 질화 타이타늄막 형성 처리의 구체예를 나타내는 타이밍 차트,
도 7은 질소 가스의 공급의 방법을 변경한 경우의 타이타늄 실리사이드막 형성 상황을 설명하기 위한 그래프,
도 8a은 도 6에 나타내는 처리 조건으로 웨이퍼에 대하여 질화 타이타늄막 형성 처리를 실시하고, 주사형 전자 현미경을 이용해서 그 막 구조를 해석하여 획 득된 화상을 나타내는 도면,
도 8b는 도 8a에 나타내는 화상의 일부 확대도,
도 9a는 어스펙트비가 큰 콘택트 홀을 갖는 웨이퍼의 막 구조를 나타내는 종단면도,
도 9b는 어스펙트비가 작은 콘택트 홀을 갖는 웨이퍼의 막 구조를 나타내는 종단면도,
도 10은 동 실시예에 관한 질화 타이타늄막 형성 처리의 다른 구체예를 나타내는 타이밍 차트,
도 11a는 도 10에 나타내는 처리 조건으로 웨이퍼에 대하여 질화 타이타늄막 형성 처리를 실시하고, 주사형 전자 현미경을 이용해서 그 막 구조를 해석하여 획득된 화상을 나타내는 도면,
도 11b는 도 11a에 나타내는 화상의 일부 확대도,
도 12는 질화 타이타늄막의 막 두께와 비저항의 관계를 그래프로 한 도면,
도 13은 질화 타이타늄막의 성막 속도와 타이타늄막의 성막 속도를 그래프로 한 도면,
도 14는 종래의 일반적인 콘택트 구조를 나타내는 모식도.
도면의 주요 부분에 대한 부호의 설명
100 : 기판 처리 장치 102 : 공통 반송실
104(104A~104D) : 처리실 105(105A~105D) : 탑재대
106A~106D : 게이트 밸브 107A, 107B : 게이트 밸브
108(108A, 108B) : 로드록실 109(109A, 109B) : 반송구
110 : 반입측 반송실 112(112A~112C) : 도입 포트
114 : 오리엔타 116 : 처리실측 반송 기구
118 : 반입측 반송 기구 200 : 제어부
210 : CPU 220 : ROM
230 : RAM 240 : 표시 수단
250 : 입출력 수단 260 : 통지 수단
270 : 각종 컨트롤러 280 : 프로그램 데이터 기억 수단
282 : 반송 처리 프로그램 284 : 프로세스 처리 프로그램
290 : 설정 정보 기억 수단 292 : 반송 설정 정보
294 : 프로세스 처리 설정 정보 300 : PECVD 처리 유닛
311 : 처리실 311G : 게이트 밸브
312 : 서셉터 313 : 지지 부재
314 : 가이드 링 315, 323 : 히터 엘리먼트
316 : 하부 전극 317 : 구멍
318 : 반입 반출구 319 : 절연 부재
320 : 샤워 헤드 321 : 베이스 부재
322 : 샤워 플레이트 324 : 토출 구멍
325 : 가스 확산 공간 326 : 가스 도입 포트
330 : 가스 공급 수단 331 : 4염화 타이타늄 가스 공급원
331C~334C : 매스 플로우 컨트롤러 331V~334V : 밸브
331L : 4염화 타이타늄 가스 공급 라인
332 : 아르곤 가스 공급원 332L : 아르곤 가스 공급 라인
333 : 수소 가스 공급원 333L : 수소 가스 공급 라인
334 : 질소 가스 공급원 334L : 질소 가스 공급 라인
337 : 가스 혼합부 338 : 혼합 가스 공급 라인
340, 341 : 히터 전원 342 : 정합기
343 : 고주파 전원 350 : 배기실
351 : 배기관 352 : 배기 장치
360 : 웨이퍼 지지 핀 361 : 지지판
362 : 구동 기구 400, 500, 502 : 웨이퍼
410, 510 : 실리콘 베어 웨이퍼 412, 512 : 실리콘 함유 표면
420, 520 : 층간 절연막 430, 530, 532 : 콘택트 홀
440 : 타이타늄 실리사이드막 450 : 질화 타이타늄막
460 : 텅스텐막

Claims (13)

  1. 실리콘 함유 표면을 갖는 기판 상에 금속막을 성막하는 금속막 성막 방법으로서,
    상기 기판상에 타이타늄 화합물 가스와 환원 가스와 질소 가스를 공급하면서 플라즈마를 생성함으로써 상기 기판상에 질화 타이타늄막을 성막하는 공정을 갖고,
    상기 공정에서 상기 질소 가스는 그 공급 개시부터 소정의 설정 유량에 이르기까지 그 공급 유량을 증가시키도록 공급함으로써, 상기 실리콘 함유 표면에 타이타늄 실리사이드막을 형성하면서 상기 기판상에 질화 타이타늄막을 성막하는 것
    을 특징으로 하는 금속막 성막 방법.
  2. 제 1 항에 있어서,
    상기 질소 가스의 공급 개시부터 상기 설정 유량에 이르기까지 공급 유량의 시간 경과에 따른 변화율을 일정하게 하는 것을 특징으로 하는 금속막 성막 방법.
  3. 제 1 항에 있어서,
    상기 질소 가스의 공급 개시부터 상기 설정 유량에 이르기까지 공급 유량의 시간 경과에 따른 변화율을 시간 경과와 함께 커지게 하는 것을 특징으로 하는 금속막 성막 방법.
  4. 제 1 항에 있어서,
    상기 질소 가스의 공급 개시부터 상기 설정 유량에 이르기까지의 시간을 변경함으로써, 상기 타이타늄 실리사이드막의 형성을 제어하는 것을 특징으로 하는 금속막 성막 방법.
  5. 제 1 항에 있어서,
    상기 질소 가스의 공급을 개시하는 타이밍을 변경함으로써, 상기 타이타늄 실리사이드막의 형성을 제어하는 것을 특징으로 하는 금속막 성막 방법.
  6. 제 5 항에 있어서,
    상기 질소 가스의 공급을 개시하는 타이밍은, 상기 기판상에 타이타늄 화합물 가스와 환원 가스를 공급하여 상기 플라즈마를 생성하는 타이밍과 같은 시기인 것을 특징으로 하는 금속막 성막 방법.
  7. 제 5 항에 있어서,
    상기 질소 가스의 공급을 개시하는 타이밍은, 상기 기판상에 타이타늄 화합물 가스와 환원 가스를 공급하여 상기 플라즈마를 생성하는 타이밍으로부터 소정 시간 지연시키는 것을 특징으로 하는 금속막 성막 방법.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    상기 기판상에 타이타늄 화합물 가스와 환원 가스는, 상기 플라즈마를 생성하기 전에 공급을 개시하는 것을 특징으로 하는 금속막 성막 방법.
  9. 실리콘 함유 표면상의 절연막에 상기 실리콘 함유 표면까지 이르는 홀이 형성된 기판상에 금속막을 성막하는 금속막 성막 방법으로서,
    상기 기판상에 타이타늄 화합물 가스와 환원 가스와 질소 가스를 공급하면서 플라즈마를 생성함으로써 질화 타이타늄막을 성막하는 공정을 갖고,
    상기 공정에서 상기 질소 가스는 그 공급 개시부터 소정의 설정 유량에 이르기까지 그 공급 유량을 증가시키도록 공급함으로써, 상기 홀의 바닥부에 노출된 상기 실리콘 함유 표면에 타이타늄 실리사이드막을 형성하면서 상기 기판상에 질화 타이타늄막을 성막하는 것
    을 특징으로 하는 금속막 성막 방법.
  10. 제 9 항에 있어서,
    상기 질소 가스의 공급을 개시하는 타이밍은 상기 홀의 형상에 따라 변경하는 것을 특징으로 하는 금속막 성막 방법.
  11. 제 10 항에 있어서,
    상기 홀의 어스펙트비가 작을수록, 상기 질소 가스의 공급을 개시하는 타이밍을 지연시키는 것을 특징으로 하는 금속막 성막 방법.
  12. 실리콘 함유 표면을 갖는 기판상에 금속막을 성막하는 금속막 성막 방법을 컴퓨터에 실행시키기 위한 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체로서,
    상기 금속막 성막 방법은, 상기 기판상에 타이타늄 화합물 가스와 환원 가스와 질소 가스를 공급하면서 플라즈마를 생성함으로써 상기 기판상에 질화 타이타늄막을 성막하는 공정을 갖고,
    상기 공정에서 상기 질소 가스는 그 공급 개시부터 소정의 설정 유량에 이르기까지 그 공급 유량을 증가시키도록 공급함으로써, 상기 실리콘 함유 표면에 타이타늄 실리사이드막을 형성하면서 상기 기판상에 질화 타이타늄막을 성막하는 것
    을 특징으로 하는 컴퓨터 판독 가능한 기록 매체.
  13. 실리콘 함유 표면상의 절연막에 상기 실리콘 함유 표면까지 이르는 홀이 형성된 기판상에 금속막을 성막하는 금속막 성막 방법을 컴퓨터에 실행시키기 위한 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체로서,
    상기 금속막 성막 방법은, 상기 기판상에 타이타늄 화합물 가스와 환원 가스와 질소 가스를 공급하면서 플라즈마를 생성함으로써 질화 타이타늄막을 성막하는 공정을 갖고,
    상기 공정에서 상기 질소 가스는 그 공급 개시부터 소정의 설정 유량에 이르기까지 그 공급 유량을 증가시키도록 공급함으로써, 상기 홀의 바닥부에 노출된 상기 실리콘 함유 표면에 타이타늄 실리사이드막을 형성하면서 상기 기판상에 질화 타이타늄막을 성막하는 것
    을 특징으로 하는 컴퓨터 판독 가능한 기록 매체.
KR1020080080928A 2007-09-28 2008-08-19 금속막 성막 방법 및 컴퓨터 판독 가능한 기록 매체 KR101061633B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007255539A JP5171192B2 (ja) 2007-09-28 2007-09-28 金属膜成膜方法
JPJP-P-2007-00255539 2007-09-28

Publications (2)

Publication Number Publication Date
KR20090032963A KR20090032963A (ko) 2009-04-01
KR101061633B1 true KR101061633B1 (ko) 2011-09-01

Family

ID=40516492

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080080928A KR101061633B1 (ko) 2007-09-28 2008-08-19 금속막 성막 방법 및 컴퓨터 판독 가능한 기록 매체

Country Status (3)

Country Link
JP (1) JP5171192B2 (ko)
KR (1) KR101061633B1 (ko)
CN (1) CN101397653B (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6329199B2 (ja) * 2016-03-30 2018-05-23 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP6909618B2 (ja) 2017-04-19 2021-07-28 株式会社日立ハイテクサイエンス イオンビーム装置
US10714334B2 (en) 2017-11-28 2020-07-14 Taiwan Semiconductor Manufacturing Co., Ltd. Conductive feature formation and structure
JP7080111B2 (ja) * 2018-06-19 2022-06-03 東京エレクトロン株式会社 金属膜の形成方法及び成膜装置
KR102489560B1 (ko) * 2018-11-28 2023-01-18 주식회사 원익아이피에스 박막 증착 장치 및 박막 증착 방법
CN111254411B (zh) * 2020-01-20 2021-12-03 长江存储科技有限责任公司 金属薄膜的制备方法及金属薄膜结构

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210712A (ja) 2000-01-28 2001-08-03 Asahi Kasei Microsystems Kk 半導体装置の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3225706B2 (ja) * 1993-08-25 2001-11-05 ソニー株式会社 半導体装置におけるバリアメタル層の形成方法
JP3214422B2 (ja) * 1997-12-02 2001-10-02 日本電気株式会社 半導体装置の製造装置および半導体装置の製造方法
JP4451097B2 (ja) * 2002-10-17 2010-04-14 東京エレクトロン株式会社 成膜方法
KR100735938B1 (ko) * 2004-04-09 2007-07-06 동경 엘렉트론 주식회사 Ti막 및 TiN막의 성막 방법, 접촉 구조체 및 컴퓨터 판독 가능한 기억 매체
KR100578221B1 (ko) * 2004-05-06 2006-05-12 주식회사 하이닉스반도체 확산방지막을 구비하는 반도체소자의 제조 방법
JP5046506B2 (ja) * 2005-10-19 2012-10-10 東京エレクトロン株式会社 基板処理装置,基板処理方法,プログラム,プログラムを記録した記録媒体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210712A (ja) 2000-01-28 2001-08-03 Asahi Kasei Microsystems Kk 半導体装置の製造方法

Also Published As

Publication number Publication date
JP5171192B2 (ja) 2013-03-27
CN101397653B (zh) 2011-04-13
JP2009088210A (ja) 2009-04-23
CN101397653A (zh) 2009-04-01
KR20090032963A (ko) 2009-04-01

Similar Documents

Publication Publication Date Title
JP5207615B2 (ja) 成膜方法および基板処理装置
JP5046506B2 (ja) 基板処理装置,基板処理方法,プログラム,プログラムを記録した記録媒体
US6821572B2 (en) Method of cleaning a chemical vapor deposition chamber
US6841203B2 (en) Method of forming titanium film by CVD
US6051281A (en) Method of forming a titanium film and a barrier metal film on a surface of a substrate through lamination
KR101061633B1 (ko) 금속막 성막 방법 및 컴퓨터 판독 가능한 기록 매체
US20090071404A1 (en) Method of forming titanium film by CVD
KR20060097070A (ko) 성막 처리 방법
KR100885834B1 (ko) 질화티타늄막의 성막
KR101102739B1 (ko) 성막 방법, 기판 처리 장치, 및 반도체 장치
TWI750364B (zh) 形成鈦矽化物區域之方法
JP2006332139A (ja) 成膜方法およびコンピュータにより読み取り可能な記憶媒体
JP2006294861A (ja) 成膜方法、前処理方法および成膜システム
US6537621B1 (en) Method of forming a titanium film and a barrier film on a surface of a substrate through lamination
JP4366805B2 (ja) 埋め込み方法
KR101217393B1 (ko) 성막 방법, 플라즈마 처리 장치 및 기억 매체
JP3767429B2 (ja) チタン膜及びチタンナイトライド膜の連続成膜方法及びクラスタツール装置
WO2024070685A1 (ja) 成膜方法、成膜装置、および成膜システム
JP2008300436A (ja) バリヤ層の形成方法及び処理システム

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140808

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150730

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160727

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee