KR101028017B1 - 폴리머 후처리 공정을 이용한 무색 투명 fto 전도막제조 방법 - Google Patents

폴리머 후처리 공정을 이용한 무색 투명 fto 전도막제조 방법 Download PDF

Info

Publication number
KR101028017B1
KR101028017B1 KR1020070098568A KR20070098568A KR101028017B1 KR 101028017 B1 KR101028017 B1 KR 101028017B1 KR 1020070098568 A KR1020070098568 A KR 1020070098568A KR 20070098568 A KR20070098568 A KR 20070098568A KR 101028017 B1 KR101028017 B1 KR 101028017B1
Authority
KR
South Korea
Prior art keywords
polymer
fto
film
post
coating
Prior art date
Application number
KR1020070098568A
Other languages
English (en)
Other versions
KR20090033526A (ko
Inventor
김상학
오선미
김창열
류도형
송철규
조광연
허승헌
Original Assignee
현대자동차주식회사
기아자동차주식회사
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사, 한국세라믹기술원 filed Critical 현대자동차주식회사
Priority to KR1020070098568A priority Critical patent/KR101028017B1/ko
Priority to JP2007308592A priority patent/JP2009087912A/ja
Priority to US12/006,208 priority patent/US20090084488A1/en
Publication of KR20090033526A publication Critical patent/KR20090033526A/ko
Application granted granted Critical
Publication of KR101028017B1 publication Critical patent/KR101028017B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2029/00Use of polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2029/00Use of polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals or derivatives thereof as moulding material
    • B29K2029/04PVOH, i.e. polyvinyl alcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/77Coatings having a rough surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

본 발명은 폴리머 후처리 공정을 이용한 무색 투명 FTO 전도막 제조 방법에 관한 것으로서, 더욱 상세하게는 흐릿하며 광학적 착색이 있어 투과율이 낮고 시각적 방해가 있는 FTO(F-dopped Tin Oxide) 투명 전도막을 간단한 후처리 공정을 통하여 투과율을 높이고 무색에 가까운 FTO 막을 제조할 수 있도록 한 폴리머 후처리 공정을 이용한 무색 투명 FTO 전도막 제조 방법에 관한 것이다.
이를 위해, 본 발명은 유리기판을 400~600℃로 가열한 후, SiO2 베리어 막을 형성하는 단계와; 스프레이/초음파 분무법을 이용하여 상기 베리어 막 위에 FTO 막을 형성하는 단계와; 상기 FTO 막에 폴리머를 코팅 또는 접합시키는 후처리 공정을 실시하는 단계; 를 포함하여 이루어진 것을 특징으로 하는 폴리머 후처리 공정을 이용한 무색 투명 FTO 전도막 제조 방법을 제공한다.
폴리머, 후처리 공정, FTO, 전도막, 유리기판, 베리어 막, 무색 투명

Description

폴리머 후처리 공정을 이용한 무색 투명 FTO 전도막 제조 방법{Preparation of non-colored and high transparent F-dopped Tin oxide film by postprocessing of polymer}
본 발명은 폴리머 후처리 공정을 이용한 무색 투명 FTO 전도막 제조 방법에 관한 것으로서, 더욱 상세하게는 흐릿하며 광학적 착색이 있어 투과율이 낮고 시각적 방해가 있는 FTO(F-dopped Tin Oxide) 투명 전도막을 간단한 후처리 공정을 통하여 투과율을 높이고 무색에 가까운 FTO 막을 제조할 수 있도록 한 폴리머 후처리 공정을 이용한 무색 투명 FTO 전도막 제조 방법에 관한 것이다.
투명전도(TCO: Transparent conducting oxide)막은 말 그대로 투명하면서 전기를 잘 통하는 물질로서, 디스플레이 분야, 투명 발열체 분야에서 필수적으로 사용되고 있는 소재이다.
적용 분야별로 다르지만, 상기 TCO의 투과율은 최소 75% 이상, 면저항이 5 Ω 이하로 되어야 시각적 방해가 없는 디스플레이 재료, 투명 발열재료가 될 수 있 으며, 그 일례로는 자동차용 발열 전면 유리가 있다.
자동차용 전면 발열 유리창은 운전자의 시야를 방해하지 않고(투과율 75% 이상), 그리고 빠른 시간 내에 전기적으로 열을 발생시켜 서리와 습기를 제거시켜야한다(저저항).
이때, 투과율 75%, 면저항 5Ω의 의미는 상기 TCO 막의 두께가 적어도 500 nm ~ 800 nm 이상이 되어야 한다는 의미이며, 막이 두꺼워질수록 투과율은 떨어지며 투과율을 높이기 위하여 막의 두께를 줄이면 저항이 떨어지는 관계가 있다.
일반적으로 TCO 막의 두께가 가시광 영역의 파장 크기가 될 때, 광학적 착색이 발생하고, 또한 대면적화에 따른 막의 불균일성은 다양한 입사광의 산란, 간섭, 회절에 의하여 다양한 색, 즉 무지개 같은 색깔을 나타나게 한다.
더구나, 막의 표면이 거칠다면 입사광이 막 표면에서 난반사에 의하여 흐릿하게 보이게 되는데, 이를 헤이즈(Haze)라 한다.
이러한 현상들을 광학적 비고유 물성(extrinsic property)이라 하며 고유물성과 구분이 되며, 이를 첨부한 도 1의 모델들을 참조로 좀 더 자세히 살펴보면 다음과 같다.
상기 TCO 막의 두께가 가시광 영역에 해당 하는 경우(도 1의 (a)참조), TCO 막의 두께가 불균일한 경우(도 1의 (b)참조), TCO 막의 표면이 거친 경우(도 1의 (c) 참조), 모두 FTO 막의 광학적 물성을 떨어뜨린다.
상기 헤이즈의 발생은 저저항→ 고품질 FTO 결정 성장→ 거친 표면→ 입사광의 난반사→ 헤이즈(Haze) 관계에서 보듯 필연적으로 생기게 되며, 따라서 고품질 TCO의 대면적화는 크든 작든 광학적 착색과 헤이즈를 발생시키는 문제점이 있다.
본 발명은 상기와 같이 TCO중 FTO(F-Dopped Tin Oxide)에 대하여 광학적인 착색과 헤이즈에 의한 투과율 감소 현상이 발생되는 문제점을 감안하여, 가시광선 영역에 투과율이 좋은 폴리머를 스핀코팅, 딥코팅, UV-경화법 그리고 판형 폴리머의 진공 혹은 열압착 과정을 통하여 이루어지는 간단한 후처리 공정을 통해 무색에 가까운 고투과율 고품질 FTO 막, 즉 투명하고도 색이 없는 투명 전도막 필름을 제조할 수 있도록 한 폴리머 후처리 공정을 이용한 무색 투명 FTO 전도막 제조 방법을 제공하는데 그 목적이 있다.
상기한 목적을 달성하기 위한 본 발명은: 유리기판을 400~600℃로 가열한 후, SiO2 베리어 막을 형성하는 단계와; 스프레이/초음파 분무법을 이용하여 상기 베리어 막 위에 FTO 막을 형성하는 단계와; 상기 FTO 막에 폴리머를 코팅 또는 접합시키는 후처리 공정을 실시하는 단계; 를 포함하여 이루어진 것을 특징으로 하는 폴리머 후처리 공정을 이용한 무색 투명 FTO 전도막 제조 방법을 제공한다.
바람직한 일 구현예로서, 상기 폴리머를 코팅하는 후처리 공정은 상기 FTO막 위에 폴리머 용액을 떨어뜨린 후, 스핀 코팅하거나 딥 코팅하는 공정인 것을 특징으로 한다.
바람직한 다른 구현예로서, 상기 폴리머 접합공정은 단순 열압착 공정 및 진공 가압 공정중 하나의 공정으로 진행되는 것을 특징으로 한다.
또한, 상기 단순 열압착 공정은 크기가 작은 FTO 기판에 대하여 실시되는 공정으로서, FTO 막이 코팅된 작은 크기의 유리기판과, 그리고 같은 크기의 일반 유리기판 사이에 폴리머 시트(sheet)를 끼운 후, 80~110℃에서 열 압착을 시키는 공정인 것을 특징으로 한다.
또한, 상기 진공 가압 공정에서는 큰 기판 또는 곡면 기판에 대하여 실시되는 공정으로서, 상기 FTO 막과 일반 유리기판 사이에 폴리머 시트를 끼운 다음, 유동성이 있는 폴리머 케이스 속에 넣어 80~110℃에서 10~40분간 일차적으로 진공 열처리 한 후, 2차적으로 2~20기압의 가스 가압 분위기에서 80~110℃로 한 시간 정도 열처리를 하는 공정인 것을 특징으로 한다.
바람직하게는, 상기 폴리머는 PVA(Poly vinyl alcohol), PVB(Poly vinyl butyral), PMMA(Poly methyl methacrylate)중 선택된 어느 하나인 것을 특징으로 한다.
상기한 과제 해결 수단을 통하여, 본 발명은 다음과 같은 효과를 제공할 수 있다.
스프레이 분무법 및 초음파 분무법에 의하여 분무된 FTO 전구체가 가열된 기판에 상온상압 CVD 원리에 의하여 FTO 막이 형성되는 단계와, 나아가 가시광 영역에서 투과율이 좋은 폴리머를 스핀/딥 코팅 및 폴리머 판의 열압착시키는 일련의 후처리공정을 통하여 광학적 착색 효과가 감소되고 및 투과율이 상승된 FTO막을 얻어낼 수 있다.
이하, 본 발명을 보다 상세하게 설명하기로 한다.
전술한 바와 같이, FTO 막의 흐릿함은 거친 표면에 의한 표면 난반사 때문에 일어나며, 광학적 착색은 FTO 막두께의 불균일성에 기인한 입사광의 간섭과 산란 때문에 발생하는 바, 본 발명에서는 이러한 후천적으로 생겨나는 FTO의 비고유 광학물성(저투과율, 착색)을 간단한 후처리 공정을 통하여 소거시키고 FTO 원래의 고유물성(고투과율 무색)을 얻어낼 수 있도록 한 폴리머 후처리 공정을 이용한 무색 투명 FTO 전도막 제조 방법을 제공하고자 한 것이다.
기존의 투명전도막은 사실상 품질 개량 측면 즉, 고유물성(Intrinsic property)에서 거의 한계치에 와 있고, 이를 감안하여 본 발명은 간단한 폴리머 후처리 공정을 통하여 기존의 FTO의 품질을 한층 더 높일 수 있도록 한 것이며, 또한 FTO의 고유 물성(intrinsic property)이 아닌 비고유물성(extrinsic property)을 개선하는 공정이며, 결과적으로 FTO의 광학적 비고유 물성을 개량함으로써 고품질의 소재를 공급할 수 있도록 한 것이다.
여기서, 본 발명의 무색 투명 FTO 전도막 제조 방법을 순서대로 설명하면 다음과 같다.
본 발명의 제조 방법은 크게 FTO 막 제조공정과, 폴리머를 이용한 후처리 공정 등 총 2가지 공정으로 크게 나눌 수 있다.
상기 FTO 막 제조공정은 일반 유리기판을 400~600℃로 가열한 후, SiO2 베리어 막을 형성하는 공정과, 스프레이/초음파 분무법을 이용하여 상기 베리어 막 위에 FTO 막을 형성하는 공정을 포함하는 일련의 과정이다.
상기 폴리머를 이용한 후처리 공정은 폴리머 코팅공정과, 폴리머 접합공정 등 2가지가 사용된다.
상기 폴리머 코팅공정은 상기와 같이 제조된 FTO막 위에 폴리머 용액을 떨어뜨린 후, 스핀 코팅하거나 딥 코팅하는 공정이다.
상기 폴리머 접합공정도 작은 기판인 경우는 단순 열압착 공정과, 큰 기판 혹은 곡면 기판인 경우 진공 가압 공정으로 진행된다.
상기 단순 열압착 공정은 크기가 작은 기판, 즉 FTO 막이 코팅된 작은 크기의 유리기판과, 그리고 같은 크기의 일반 유리기판 사이에 폴리머 시트(sheet)를 끼운 후, 80~110℃에서 열 압착을 시키는 공정이다.
그러나, 큰 기판 혹은 곡면 기판인 경우 단순 열 압착만으로는 유리가 깨지거나 폴리머 사이의 공기를 완전히 제거할 수 없으므로, 상기 진공 가압 공정을 이용한다.
따라서, 진공 가압 공정에서는 샘플, 즉 큰 기판 또는 곡면 기판으로 제조된 FTO 막과 일반 유리기판 사이에 폴리머 시트를 끼운 샘플을 유동성이 있는 폴리머 케이스 속에 넣어 80~110℃에서 10~40분간 일차적으로 진공 열처리 한 후, 2차적으로 2~20기압의 가스 가압 분위기에서 80~110℃로 한 시간 정도 열처리를 하는 공정이다.
위와 같은 과정에서 폴리머 사이의 공기는 완전히 제거되고, 폴리머가 사이에 끼워진 FTO 막과 일반 유리기판간의 압착이 이루어지게 된다.
상기 FTO 막은 FTO용 프리커서 용액을 스프레이 코팅 혹은 초음파 분무법을 통하여 마이크로 액적 상태로 분무시킨 후, 달구어진 유리기판 위에 도포하여 제조하였는 바, 이 과정은 파이로 졸(Pyro-sol) 과정이라 하며 일종의 상압 CVD(Chemical Vapor Deposition)로 널리 알려져 있다.
FTO 프리커서 용액은 SnCl4ㆍ5H20를 에탄올 용매에 녹여 0.68M이 되게 하고, F 도핑제로서 NH4F를 3차 증류수에 녹여 2.3M로 한 후, 이 두 용액을 혼합 교반시킨 다음, 필터링하여 제조하였다.
또한, 다양한 FTO막을 제조하기 위하여 상기 용액 조성 이외에도 에틸렌 글리콜(Ethylene glycol)를 첨가제로 하여 1에서 10% (무게비)를 넣기도 하며, 물과 에탄올의 조성을 변화시키기도 하며, F 도핑량을 조절하기 위하여 NH4F의 량을 0.1에서 3M까지 변화시키거나 불산(HF)를 0-2M 첨가하기도 한다.
따라서, 상기 FTO 막 제조용 프리커서 용액은 위에서 보여준 조성에 한정되 는 것은 아니다.
그러나, 본 발명은 FTO 막 제조 자체에 있는 것이 아니라 FTO 막 제조를 위한 후처리 공정에 특징이 있는 바, 본 발명의 이해를 돕기 위해 상기한 조성, 즉 SnCl4ㆍ5H20(0.68 M)/EtOH+NH4F(2.3M)/H2O를 예시로 설명하기로 한다.
기판으로 사용된 일반 유리는 400~600℃로 가열시, Na, K 등과 같은 불순물들이 기판위로 기어 올라와서 유리기판의 표면을 오염시키는 바, 이는 FTO막을 유리가판상에 코팅하더라도 막 접착력과 막의 품질저하를 가져온다.
따라서, 상기 유리기판과 FTO막 사이에 불순물 유입을 차단하는 베리어 막 (Barrier layer) 코팅을 해야 한다.
일반적으로, SiO2와 TiO2 등과 같은 세라믹 막을 많이 사용하나, 본 발명에서는 대표적으로 SiO2 베리어 막을 5~50 nm 정도로 딥코팅과 스프레이 코팅법을 이용하여 형성시킨다.
즉, 작은 기판인 경우 딥 코팅법을 이용하고, 큰 기판 및 곡면 기판인 경우 스프레이 코팅법을 이용하여 SiO2 베리어 막을 형성시킨다.
상기 딥 코팅법에서는 실리카졸[에탄올(95%): Tetraethyl silicate: Nitric acid=90:11:0.5 (부피비)]를 제조하여 150 mm/min 속도로 딥 코팅한 후, 200~300℃에서 5분간 열처리 하여, SiO2 베리어 막을 형성한다.
상기 스프레이 코팅법은 대면적 기판이나 곡면인 진 유리기판인 경우 실시하 는 바, 실란시약류(SiH4, SiH2Cl2, Si(OC2H5)2)를 공기 중에서 혹은 산소분위기 중에서 400~600℃로 가열된 유리기판에 CVD 원리(스프레이)를 이용하여 간단히 베리어 막을 형성시킬 수 있다.
고품질 유리를 사용하는 경우 즉, Na, K등의 불순물이 적은 유리 기판을 사용하는 경우(예, 보로실리케이트 글래스)에는 베리어막을 형성시키지 않아도 된다.
여기서, FTO 막 제조 공정을 자세히 살펴보면 다음과 같다.
상기와 같이 SiO2 배리어 막이 코팅된 유리 기판을 400~600℃에서 스프레이 코팅법, 초음파 분무 코팅법, 초음파 스프레이 분무법 등 3가지 방법을 이용하여 FTO 막 형성을 위한 코팅 공정이 진행된다.
상기 스프레이 코팅법은 미세한 노즐부를 통하여 외부의 가스가 팽창되어 나갈 때, 액체를 끌어당기는 힘이 생겨 액상 프리커서를 마이크로 액적으로 분무시키는 방법이다.
상기 초음파 분무법은 일반 초음파 가습기처럼 액상 전구체를 초음파 진동자로 진동시켜 무화시킨 후, 단순히 캐리어 기체로 운반시켜서 코팅하는 방법이다.
상기 초음파 스프레이 분무법은 초음파 진동자 부분을 스프레이 노즐처럼 변화시켜서 무화된 프리커서를 스프레이 원리에 의하여 분사시켜서 코팅하는 방법이다.
이어서, 후처리공정으로서, 상기와 같이 FTO 막에 폴리머 코팅 또는 폴리머 접합 공정이 진행되어, 보다 투명한 FTO막을 구현할 수 있다.
즉, 전술한 바와 같이 폴리머 코팅공정은 상기와 같이 FTO막 위에 폴리머 용액을 떨어뜨린 후, 스핀 코팅하거나 딥 코팅하는 공정으로 진행되고, 상기 폴리머 접합공정은 단순 열압착 공정 또는 진공 가압 공정으로 진행된다.
한편, 스핀 코팅을 통하여 얻어진 폴리머 막의 두께는 수학식 (1)의 원리에 의하여 80~130 nm 범위로 정하였고, 막의 두께는 스핀 코터의 rpm을 조정하여 얻을 수 있다.
Dpva = (λ/4)*(1/n)
Dpva: PVA의 막두께
λ: 입사광의 파장
n: 물질(폴리머)의 굴절율
좀 더 구체적으로, 입사광 파장 500~800nm에 대하여 PVA의 굴절율 (~1.5) 넣어주면, 약 80~130nm 정도의 PVA 막이 얻어진다.
수학식(1)은 TARC(Top Antireflection Coating)라는 용어로 많이 알려져 있으며 반도체 공정에서 많이 이용되고 있다.
이하, 본 발명을 실시예에 의거하여 더욱 상세하게 설명하겠는바, 본 발명이 하기의 실시예에 의해 한정되는 것은 아니다.
실시예1
유리기판은 일반 자동차 창 유리를 적용하였고, 이 유리기판 온도는 500℃로 하였으며, 이 유리기판상에 SiO2 베리어막을 20 nm로 코팅하였다.
이어서, FTO용 프리커서 용액 즉, SnCl4ㆍ5H20를 에탄올 용매에 녹여 0.68M이 되게 하고, F 도핑제로서 NH4F를 3차 증류수에 녹여 2.3M로 한 후, 이 두 용액을 혼합 교반시킨 다음, 필터링하여 제조시킨 프리커서 용액을 SiO2 배리어 막이 코팅된 유리 기판에 500℃에 스프레이 코팅법으로 코팅하였다.
그 결과로서, 첨부한 도 2는 상기한 프리커서 조성액과 스프레이 코팅법을 이용하여 제조한 FTO 막을 나타내며, 이때 FTO 막 두께가 약 400 nm이면서 거친 표면을 가지며, 면 저항은 5Ω으로 측정되었다.
또한, XPS분석 결과 O/Sn의 비는 1.9 (몰 비) 정도이며, EDS 분석결과 F/Sn 비는 0.59 (몰 비) 였다.
그러나, 금속원소와는 달리 경량원소 F, O의 정량은 FTO막에서 상당히 어렵다고 알려져 있어서 분석기법에 따라 차이가 있지만, 최고 3배 정도는 차이가 날 수 있다.
이어서, 상기 FTO 막 위에 폴리머 용액을 떨어뜨린 후, 스핀 코팅하였으며 이때 사용된 폴리머는 PVA(Poly vinyl alcohol)이었다.
실험예1
실시예에 따라 제조된 FTO 막을 일단 시각적으로 관찰하였는 바, 그 결과로서 첨부한 도 3은 FTO막 위에 투과율이 좋은 폴리머 즉, PVA(Poly vinyl alcohol) 를 스핀 코팅하기전과 스핀 코팅 한 후의 사진을 보여주고 있다.
도 3의 사진에서 보는 바와 같이, 비교예로서 폴리머 코팅전 FTO막과 비교했을 때, 폴리머를 스핀 코팅 처리한 FTO막은 색깔이 많이 엷어지면서 더 투명해 보임을 알 수 있었다.
한편, 사용된 폴리머는 PVA(Poly vinyl alcohol)이지만, PVB(Poly vinyl butyral)를 사용하여도 좋은 결과를 나타내었고, 원리적으로 보면 후처리 공정을 통한 착색을 억제하여 투명성을 높여주기 위해서는 폴리머 종류는 크게 영향을 받지 않으며, 따라서 위의 두 가지 폴리머 이외에도 투과율이 우수한 PMMA(Poly methyl methacrylate) 등도 적용시킬 수 있다.
실험예2
후처리 공정에서 폴리머 코팅 효과는 UV-Vis 스펙트럼을 측정하였는 바, 그 결과는 첨부한 도 4에 도시된 그래프와 같다.
즉, 비교예로서 폴리머 코팅전의 단순 FTO 막을 보면, 가시광 영역에서 많은 오실레이션을 볼 수 있고, 이는 다양한 가시광 파장의 산란, 간섭, 회절을 의미하며, 다시말해서 FTO막이 무지개처럼 보인다.
그러나, 도 4의 그래프에서 보듯이, 폴리머를 FTO막 위에 스핀 코팅하면 위와 같은 오실레이션들은 매우 약해지면서 투과율 상승을 가져옴을 알 수 있었고, 이는 거의 무색에 가까우면서도 투명해진다는 의미이다.
실시예2
초음파 분무법을 이용하여 1 μm 정도의 FTO 막을 유리기판위에 형성시켰다.
500℃로 가열된 유리기판을 사용하였고, 면저항은 5Ω 정도이며, FTO는 첨부한 5의 (a)에서 보듯 무지개 같은 색깔을 보이며 매우 흐릿하였다.
SEM 관찰결과, 첨부한 도 1의 (c)의 모델처럼 막의 두께가 불균일하고 막의 표면이 결정립들에 의하여 매우 거칠었다. 좀 더 자세히 살펴보면 그림 6의 UV-Vis 스펙트럼에서 보는 것처럼 투과율이 60% 대로 떨어지면서 가시광 영역에서 상당한 오실레이션(다양한 색)이 관찰되었다.
이에, 상기 FTO가 코팅된 유리판과 일반 빈유리판 사이에 폴리머 판를 넣고 열압착을 실시하였다.
보다 상세하게는, 폴리머 판으로서 1 mm PVB 판을 FTO 코팅된 유리판과 빈 유리판 사이에 넣은 후 90℃에서 단순 열압착을 시켰으며, 그 모식도는 첨부한 도 5의 (c)에 도시된 바와 같다.
실험예3
실시예2에 따라 제조된 FTO 막을 시각적으로 관찰한 결과, 도 5의 (b)에서 보는 것처럼 색깔이 없어졌으며 육안으로 보기에도 매우 투명함을 알 수 있었다.
또한, UV-Vis 스팩트럼으로 조사해 본 결과, 첨부한 도 6의 그래프에서 보는 바와 같이 또 한 장의 유리와 PVB판이 들어갔음에도 불구하고 투과율이 78%로서, PVB 열 접합전 67%에 비하여 11% 증가함을 알 수 있었다(550 nm 기준).
다른 파장에서도 전체적으로 투과율이 매우 상승하였으며 가시광 영역에서 기존의 폴리머가 없는 FTO 기판에 나타나는 무지개색(도 5의 (a) 참조)에 의한 오실레이션 현상도 없어짐을 알 수 있었다.
이와 같이, 면저항 5Ω, 투과율 67%대의 저품질 FTO 제품을 PVB 필름을 간단히 열접합 하는 후처리 공정을 통하여, 면저항 5Ω, 투과율 78%의 세계적인 수준을 갖는 고품질 FTO 제품으로 탈바꿈할 수 있음을 알 수 있었다.
실시예3
10% 정도의 휜 곡면을 가진 FTO 기판에 대해서 폴리머 접합을 하였다.
즉, 폴리머 시트로서 PVB 쉬트를 FTO 막위에 놓고, 같은 형상의 일반 유리 기판를 덮은 후, 폴리머 백 속에 넣어 100℃에서 약 30분간 일차 진공 열처리 한 후, 2차적으로 기상 가압분위기(10기압)에서 100℃로 1시간 처리를 하여 폴리머 접합 유리를 완성하였다.
그 실험 결과로서, 실시예2와 같이 FTO 막의 착색과 헤이즈를 상당량 줄일 수 있었다.
한편, 폴리머의 스핀 코팅/딥코팅 대신 UV-경화법을 이용하여 폴리머 막을 형성하는 경우도 비슷한 결과를 얻을 수 있다.
도 1은 FTO 투명 전도막에서 광학적 착색과 헤이즈(haze) 모델들을 설명하는 개략도,
도 2는 스프레이 코팅법으로 제조된 450 nm 막 두께를 갖는 FTO 투명 전도막 SEM 사진,
도 3은 본 발명의 실시예1로서, 도 2의 FTO 투명전도막 위에 PVA를 스핀코팅시키기 전 및 코팅시킨 후의 사진,
도 4는 도 3의 시편들에 대한 UV-Visible (UV-Vis) 광학 스펙트럼 실험 결과를 나타내는 그래프,
도 5는 본 발명의 실시예2에 따라 제조된 FTO 막으로서, 1 μm 정도의 막두께를 갖는 FTO 투명 전도막의 스캔 이미지와, 그 FTO 막 위에 1 mm PVA 판(sheet)를 90℃에서 30초간 열 압착 후의 이미지.
도 6은 도 5의 시편들에 대한 UV-Vis 광학 스펙트럼 실험 결과를 나타내는 그래프.

Claims (6)

  1. 유리기판을 400~600℃로 가열한 후, SiO2 베리어 막을 형성하는 단계와;
    스프레이/초음파 분무법을 이용하여 상기 베리어 막 위에 FTO 막을 형성하는 단계와;
    상기 FTO 막에 폴리머를 미리 설정된 두께 범위로 코팅 또는 접합시키는 후처리 공정을 실시하는 단계;
    를 포함하여 이루어지되, 상기 후처리 공정은 입사광의 파장 범위(λ12)에 대하여 폴리머 막의 두께가 다음 수식을 기초로 한 범위(D1~D2) 내에서 결정되도록 하는 것을 특징으로 하는 폴리머 후처리 공정을 이용한 무색 투명 FTO 전도막 제조 방법.
    D1 = (λ1/4)*(1/n)
    D2 = (λ2/4)*(1/n)
    여기서, n은 폴리머의 굴절율
  2. 청구항 1에 있어서, 상기 폴리머를 코팅하는 후처리 공정은 상기 FTO막 위에 폴리머 용액을 떨어뜨린 후, 스핀 코팅하거나 딥 코팅하는 공정인 것을 특징으로 하는 폴리머 후처리 공정을 이용한 무색 투명 FTO 전도막 제조 방법.
  3. 청구항 1에 있어서, 상기 폴리머 접합공정은 단순 열압착 공정 및 진공 가압 공정중 하나의 공정으로 진행되는 것을 특징으로 하는 폴리머 후처리 공정을 이용한 무색 투명 FTO 전도막 제조 방법.
  4. 청구항 3에 있어서, 상기 단순 열압착 공정은 크기가 작은 FTO 기판에 대하여 실시되는 공정으로서, FTO 막이 코팅된 작은 크기의 유리기판과, 그리고 같은 크기의 일반 유리기판 사이에 폴리머 시트(sheet)를 끼운 후, 80~110℃에서 열 압착을 시키는 공정인 것을 특징으로 하는 폴리머 후처리 공정을 이용한 무색 투명 FTO 전도막 제조 방법.
  5. 청구항 3에 있어서, 상기 진공 가압 공정에서는 큰 기판 또는 곡면 기판에 대하여 실시되는 공정으로서, 상기 FTO 막과 일반 유리기판 사이에 폴리머 시트를 끼운 다음, 유동성이 있는 폴리머 케이스 속에 넣어 80~110℃에서 10~40분간 일차적으로 진공 열처리 한 후, 2차적으로 2~20기압의 가스 가압 분위기에서 80~110℃로 한 시간 정도 열처리를 하는 공정인 것을 특징으로 하는 폴리머 후처리 공정을 이용한 무색 투명 FTO 전도막 제조 방법.
  6. 청구항 1 내지 5중 어느 하나의 항에 있어서, 상기 폴리머는 PVA(Poly vinyl alcohol), PVB(Poly vinyl butyral), PMMA(Poly methyl methacrylate)중 선택된 어느 하나인 것을 특징으로 하는 폴리머 후처리 공정을 이용한 무색 투명 FTO 전도막 제조 방법.
KR1020070098568A 2007-10-01 2007-10-01 폴리머 후처리 공정을 이용한 무색 투명 fto 전도막제조 방법 KR101028017B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020070098568A KR101028017B1 (ko) 2007-10-01 2007-10-01 폴리머 후처리 공정을 이용한 무색 투명 fto 전도막제조 방법
JP2007308592A JP2009087912A (ja) 2007-10-01 2007-11-29 ポリマー後処理工程を利用した無色透明fto伝導膜の製造方法
US12/006,208 US20090084488A1 (en) 2007-10-01 2007-12-31 Method of preparing colorless and transparent f-doped tin oxide conductive film using polymer post-treatment process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070098568A KR101028017B1 (ko) 2007-10-01 2007-10-01 폴리머 후처리 공정을 이용한 무색 투명 fto 전도막제조 방법

Publications (2)

Publication Number Publication Date
KR20090033526A KR20090033526A (ko) 2009-04-06
KR101028017B1 true KR101028017B1 (ko) 2011-04-13

Family

ID=40506846

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070098568A KR101028017B1 (ko) 2007-10-01 2007-10-01 폴리머 후처리 공정을 이용한 무색 투명 fto 전도막제조 방법

Country Status (3)

Country Link
US (1) US20090084488A1 (ko)
JP (1) JP2009087912A (ko)
KR (1) KR101028017B1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10412788B2 (en) * 2008-06-13 2019-09-10 Lg Chem, Ltd. Heating element and manufacturing method thereof
JP2011094218A (ja) * 2009-11-02 2011-05-12 Asahi Glass Co Ltd 酸化錫膜付き基体の製造方法
WO2011087235A2 (ko) * 2010-01-12 2011-07-21 주식회사 엘지화학 발열유리 및 이의 제조방법
TWI392590B (zh) * 2010-01-26 2013-04-11 Nanmat Technology Co Ltd 具有防霧功能之複合半導體薄膜及其製備方法
US20130280487A1 (en) * 2012-04-23 2013-10-24 Dichrolam, Llc Method for preparing textured decorative glass
CN103803808A (zh) * 2014-02-22 2014-05-21 蚌埠玻璃工业设计研究院 一种大面积制备透明导电膜玻璃的方法
CN104451610B (zh) * 2014-11-24 2016-09-07 辽宁大学 氟掺杂二氧化锡透明导电薄膜的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187713A (ja) * 1988-01-20 1989-07-27 Nippon Sheet Glass Co Ltd 透明導電膜の製造方法
JPH0261915A (ja) * 1988-08-29 1990-03-01 Matsushita Electric Ind Co Ltd 透明導電膜付き基板の形成方法
KR20040041657A (ko) * 2001-10-05 2004-05-17 가부시키가이샤 브리지스톤 투명 전도성 필름 및 그 제조 방법, 그리고 터치패널

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826052A (ja) * 1981-08-06 1983-02-16 Asahi Glass Co Ltd アルカリ拡散防止酸化ケイ素膜付ガラス体
JPS61227946A (ja) * 1985-03-30 1986-10-11 Asahi Glass Co Ltd 電導性ガラス
FR2634753B1 (fr) * 1988-07-27 1992-08-21 Saint Gobain Vitrage Vitrage a couche electro-conductrice obtenue par pyrolyse de composes en poudre, utilisable en tant que pare-brise pour automobile
US5631065A (en) * 1991-04-08 1997-05-20 Gordon; Roy G. Window coating with low haze
JPH05274917A (ja) * 1992-03-25 1993-10-22 Taiyo Yuden Co Ltd 酸化錫透明導電膜
US5900275A (en) * 1992-07-15 1999-05-04 Donnelly Corporation Method for reducing haze in tin oxide transparent conductive coatings
FR2762541B1 (fr) * 1997-04-24 1999-07-02 Saint Gobain Vitrage Procede de fabrication d'un vitrage feuillete
US5935716A (en) * 1997-07-07 1999-08-10 Libbey-Owens-Ford Co. Anti-reflective films
JP2001206743A (ja) * 2000-01-21 2001-07-31 Sekisui Chem Co Ltd 合わせガラス用中間膜及び合わせガラス
JP2001320070A (ja) * 2000-05-08 2001-11-16 Matsushita Battery Industrial Co Ltd 透明導電膜の形成方法および太陽電池
JP2002116303A (ja) * 2000-07-27 2002-04-19 Asahi Glass Co Ltd 反射防止膜付き基体とその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187713A (ja) * 1988-01-20 1989-07-27 Nippon Sheet Glass Co Ltd 透明導電膜の製造方法
JPH0261915A (ja) * 1988-08-29 1990-03-01 Matsushita Electric Ind Co Ltd 透明導電膜付き基板の形成方法
KR20040041657A (ko) * 2001-10-05 2004-05-17 가부시키가이샤 브리지스톤 투명 전도성 필름 및 그 제조 방법, 그리고 터치패널

Also Published As

Publication number Publication date
KR20090033526A (ko) 2009-04-06
JP2009087912A (ja) 2009-04-23
US20090084488A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
KR101028017B1 (ko) 폴리머 후처리 공정을 이용한 무색 투명 fto 전도막제조 방법
EP1734016B1 (en) Silica and silica-like films and method of production
EP1689824B1 (en) Silica films and method of production thereof
Chen Anti-reflection (AR) coatings made by sol–gel processes: a review
CN102317228B (zh) 具有自清洁减反射涂层的基材及其制备方法
JP6371282B2 (ja) 好ましくは透明な少なくとも1つのパターンを含む半透明グレージング材
KR101657731B1 (ko) 슬롯 다이 코팅 방법
AU737747B2 (en) An inorganic polymer material based on tantalum oxide, notably with a high refractive index, mechanically resistant to abrasion, its method of manufacture, and optical material including this material
CN101631745B (zh) 二氧化硅多孔质体、光学用途层积体和组合物、以及二氧化硅多孔质体的制造方法
KR20080095251A (ko) 유리판의 코팅 방법
DE112015001752T5 (de) Optisches Element
CN109415588A (zh) 自固化混合金属氧化物
CN107140840A (zh) 一种采用溶液化学法制备防眩光镀膜玻璃的方法
KR102237333B1 (ko) 저굴절률막 형성용 액 조성물
JPH08508582A (ja) 光学特性および耐摩耗性を有する薄層被覆層の形成方法
JP2019184709A (ja) 物品
JP6606451B2 (ja) 高反射防止強化ガラスの製造方法
JP2011207751A (ja) シリカ系多孔質膜の製造方法
WO2020213726A1 (ja) 光吸収性組成物及び光学フィルタ
JPH0797237A (ja) 屈折率低減透明被膜の形成方法
AU2004291564B2 (en) Silica films and method of production thereof
WO2022132080A1 (en) Anti-reflective silica based temperable coating solution
CN116840947A (zh) 一种宽入射角的磁控溅射红外增透膜及其制备方法
AU2006202314B2 (en) Silica and silica-like films and method of production
KR20130134584A (ko) 폴리이미드 기재의 가시광선 투과율 향상 방법, 폴리이미드­세라믹 기재, 폴리이미드­세라믹­fto 투명전도막 및 그 제조방법

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
FPAY Annual fee payment
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180329

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190327

Year of fee payment: 9