KR100973048B1 - 사이토크롬 피450 1에이2 유전자의 일배체형 분석을 위한해플로타입 마커 단일염기변이 및 이의 용도 - Google Patents

사이토크롬 피450 1에이2 유전자의 일배체형 분석을 위한해플로타입 마커 단일염기변이 및 이의 용도 Download PDF

Info

Publication number
KR100973048B1
KR100973048B1 KR1020070059244A KR20070059244A KR100973048B1 KR 100973048 B1 KR100973048 B1 KR 100973048B1 KR 1020070059244 A KR1020070059244 A KR 1020070059244A KR 20070059244 A KR20070059244 A KR 20070059244A KR 100973048 B1 KR100973048 B1 KR 100973048B1
Authority
KR
South Korea
Prior art keywords
cyp1a2
gene
dna
htsnp
artificial sequence
Prior art date
Application number
KR1020070059244A
Other languages
English (en)
Other versions
KR20080111190A (ko
Inventor
신재국
차은영
이상섭
손지홍
차인준
Original Assignee
인제대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020070059244A priority Critical patent/KR100973048B1/ko
Application filed by 인제대학교 산학협력단 filed Critical 인제대학교 산학협력단
Priority to CN201110240425.6A priority patent/CN102304572B/zh
Priority to CN2007800336773A priority patent/CN101522911B/zh
Priority to CN201110239136.4A priority patent/CN102277437B/zh
Priority to JP2009527287A priority patent/JP2010502212A/ja
Priority to US12/440,634 priority patent/US20100159454A1/en
Priority to PCT/KR2007/003102 priority patent/WO2008032921A1/en
Publication of KR20080111190A publication Critical patent/KR20080111190A/ko
Application granted granted Critical
Publication of KR100973048B1 publication Critical patent/KR100973048B1/ko
Priority to US13/549,981 priority patent/US20130095478A1/en
Priority to US13/549,873 priority patent/US20130096010A1/en
Priority to JP2013017994A priority patent/JP5687721B2/ja
Priority to JP2013017993A priority patent/JP5687720B2/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/172Haplotypes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 사이토크롬 P450 1A2 유전자의 일배체형 분석을 위한 일배체형 마커 단일염기 변이 (htSNP) 및 이의 용도에 관한 것으로서, 보다 상세하게는 인간 CYP1A2 유전자의 일배체형 분석을 위한 htSNP의 선별 방법 및 상기 htSNP를 이용하여 CYP1A2 유전자의 유전형을 결정하는 방법에 관한 것이다.
본 발명의 방법을 이용하면 한국인의 CYP1A2 유전자의 단일염기다형성 (single nucleotide polymorphism; SNP)을 근거로 얻어진 htSNP를 이용하여 시간 및 비용 효율적으로 한국인과 유전적 특성이 유사한 일본 또는 중국 등의 아시아인종에서 발견되는 CYP1A2 유전자의 유전형을 용이하게 확인할 수 있다. 또한, 이러한 아시아인의 CYP1A2 효소활성의 개인차나 CYP1A2 결핍에 의해 발생가능한 이상징후를 예측하는데도 유용하게 사용될 수 있다.
CYP1A2, 단일염기다형성, 일배체형, htSNP

Description

사이토크롬 피450 1에이2 유전자의 일배체형 분석을 위한 해플로타입 마커 단일염기변이 및 이의 용도{htSNP FOR DETERMINING A HAPLOTYPE OF CYTOCHROME P450 1A2 GENE AND USE THEREOF}
도 1은 CYP1A2 유전자의 염기서열에 있어서, 본 발명에서 처음으로 규명한 CYP1A2 유전자의 1개의 변이의 위치를 표시한 것이다.
도 2 내지 6은 본 발명에서 선별된 htSNP 조합의 일예이다.
도 7 내지 14는 본 발명의 방법에 따라 선별된 CYP1A2 유전자의 기능적 변이인 CYP1A2 프로모터 유전자의 변이를 검색한 결과로서 (이때, X축은 각 프라이머의 분자량에 따른 이동 정도를, Y축은 각 피크의 높이를 나타냄),
도 7은 CYP1A2 프로모터의 모든 단일염기다형성이 야생형인 경우이고,
도 8은 CYP1A2 프로모터의 -3860G>A (CYP1A2*1C), -2467delT (CYP1A2*1D) 및 -163C>A (CYP1A2*1F)의 변이 위치가 두 가닥의 DNA 중 한 가닥은 변이형, 한 가닥은 야생형을 가지고 있는 이형 접합형 (Hetero) 변이 유전자인 경우이고,
도 9는 CYP1A2 프로모터의 3860G>A (CYP1A2*1C), -2467delT (CYP1A2*1D) 및 -163C>A (CYP1A2*1F)의 위치가 두 가닥의 DNA 모두 변이형 가지고 있는 동형 접합형 (Homo) 변이 유전자인 경우이고,
도 10은 CYP1A2 프로모터의 -163C>A (CYP1A2*1F) 및 -2808A>C의 위치가 이형 접합형 변이 유전자인 경우이고,
도 11은 CYP1A2 프로모터의 -163C>A (CYP1A2*1F)는 동형 접합형 변이, -2467delT (CYP1A2*1D), -739T>G (CYP1A2*1E), -3598G>T, -3113G>A, -2847T>C 및 -1708T>C의 위치는 이형 접합형 변이 유전자인 경우이고,
도 12는 CYP1A2 프로모터의 -163C>A (CYP1A2*1F)는 동형 접합형 변이, -2467delT (CYP1A2*1D), -3598G>T 및 -2847T>C의 위치는 이형 접합형 변이 유전자인 경우이고,
도 13은 CYP1A2 프로모터의 -163C>A (CYP1A2*1F), -2467delT (CYP1A2*1D) 및-3594T>G의 위치는 이형 접합형 변이 유전자인 경우이며,
도 14는 CYP1A2 프로모터의 -163C>A (CYP1A2*1F)는 동형 접합형 변이, -3860G>A (CYP1A2*C), -2467delT (CYP1A2*1D) 및 -2603insA의 위치는 이형 접합형 변이 유전자일 경우이다.
본 발명은 사이토크롬 P450 1A2 유전자의 일배체형 분석을 위한 htSNP 및 이의 용도에 관한 것으로서, 보다 상세하게는 인간 CYP1A2 유전자의 일배체형 분석을 위한 htSNP의 선별 방법 및 상기 htSNP를 이용하여 CYP1A2 유전자의 유전형을 결정 하는 방법에 관한 것이다.
개체간의 유전적 다양성은 약물의 독성 및 효능에 있어서 개체간 차이를 가져온다. 따라서 약물 개발의 초기 단계에서 이와 같은 약제학적으로 중요한 단백질의 유전적 다양성에 대한 효과를 고려하는 것은 약물 개발의 실패에 대한 위험성을 낮출 수 있는 중요한 요소이다. 이러한 개체간 유전적 다양성을 측정하는 하나의 조사 집단이 되는 것이 "일배체형 (haplotype)"이다. 일배체형이란 하나의 조사 집단 내에 존재하는 각 유전자 서열의 다형성의 조합을 의미하며, 이것은 개별적인 다형성보다 유전적 다양성에 관한 보다 정확하고 신뢰할 수 있는 정보를 제공한다.
한편, 인간 사이토크롬 P450은 약물, 발암원 및 독소와 같은 외래 화학물질과 스테로이드, 지방산 및 비타민과 같은 내부 기질의 산화를 촉진하는 헴단백질의 일원이다 (Nelson et al., Pharmacogenetics 6:1-42, 1996). 간을 포함하여 신장, 장관 및 폐와 같은 기관에서 다양한 사이토크롬 P450의 아형이 발견되었다. 이 중에서 인간 사이토크롬 P450 1A2 (Cytochrome P450 1A2, 이하 'CYP1A2'라 함) CYP1A1, CYP1B1와 함께 CYP1족에 속하는 약물대사효소이다. CYP1A2는 간에서 주로 생산되며 총 사이토크롬 P450 효소량의 15%를 차지한다. 이 효소는 카페인 (caffeine), 클로자핀 (clozapine), 이미파라민 (imiparamine), 프로프라놀롤 (propranolol)을 포함하는 의학적으로 중요한 약물의 대사에 관여한다. 이 효소는 또한 17β-에스트라디올 (estradiol), 우로포르피리노겐 (uroporphyrinogen) Ⅲ와 같은 내부 합성 물질과 폴리사이클릭 방향족 탄화수소 에폭시화 (polycyclic aromatic hydrocarbon epoxidation)와 방향족/헤테로사이클릭 아민 N-히드록시화 (aromatic/heterocyclic amine N-hydroxylation)와 같은 발암물질 생활성화 (carcinogen bioactivation) 반응을 촉매한다 (Brosen K., Clinical Pharmacokinetic, 1995, 29(suppl1):20-25; Josephy PD., Environ. Mol. Mutagen, 2001, 38:12-18).
CYP1A2의 유전자는 유전적 다형성을 나타내는 것으로 알려져 있는데, 현재까지 이 유전자의 프로모터, 엑손 및 인트론에서 24 종 이상의 변이가 발견되었다. 또한 이들 변이 유전자의 조합인 일배체형은 2007년 6월 현재 36 종류가 보고되어 있다 (http://www.cypalleles.ki.se/cyp1a2.htm). 여러 보고에서 이들 유전자의 단일 염기 다형성과 일배체형이 효소의 발현 및 활성에 영향을 미친다고 밝혀졌다. 이러한 유전자 변이의 경우 약물이나 생체 분자의 대사에 원치 않은 결과를 초래할 수 있고, 또한 일부 약물에 대해 약물동태의 차이를 보일 수도 있고, 외부 독성 물질에 대해 민감성을 보일 수도 있다. 따라서 CYP1A2의 유전자 변이와 일배체형은 반드시 규명되어야 한다. 그런데, 이러한 유전자 변이와 일배체형은 다양한 종류가 보고되어 있기 때문에 검색 방법의 효율성을 생각해 보지 않을 수 없다. 일배체형은 Arlequin, SNPAlyze 또는 이들과 유사한 소프트웨어를 이용하여 분석이 가능하다. 각 일배체형에 대한 유전자 변이 검색을 모든 단일염기다형성에 대하여 분석한다면 비용 및 시간면으로 효율성을 기대하기 힘들다.
효율성 증대를 위한 방법으로 일배체형 태그 단일염기다형성 (haplotypetagging SNP; htSNP) 선별 기술을 들 수 있다. htSNP 선별 기술은 각각의 일배체형의 정확한 표시를 위해 최소한의 표지 세트의 선택을 돕기 위한 방법으로, 선별된 단일염기다형성 (SNP)만 확인할 경우 모든 일배체형을 예측할 수 있다.
많은 유전자의 경우에 유전적 다형성의 분포는 종족에 따른 차이를 보이는 것이 알려져 있어 CYP1A2 유전자의 경우에도 한국인에 빈번하게 발생되는 고유 유전자 변이 및 일배체형은 없는지, 있다면 빈도는 얼마인지, 각각의 일배체형에 따른 htSNP의 선별은 어떻게 되는지 확인할 필요가 있다. 그러나, 한국인에서 CYP1A2 유전자의 변이, 이에 따른 일배체형 및 이를 분석하기 위한 htSNP에 대한 연구는 매우 미흡한 실정이다.
이에 본 발명자들은 한국인에서 주로 발견되는 CYP1A2 유전자의 변이를 단시간 내에 정확하게 확인할 수 있는 방법을 개발하기 위하여 연구를 수행하여, 한국인에서 주로 발견되는 CYP1A2 유전자의 변이에 대한 htSNP 선별 방법 및 상기 선별된 htSNP의 유용성을 확인함으로써 본 발명을 완성하였다.
따라서, 본 발명의 목적은 한국인에서 발견되는 CYP1A2 유전자의 일배체형을 분석할 수 있는 htSNP를 선별하는 방법을 제공하는 것이다.
또한 본 발명의 다른 목적은 상기 htSNP를 이용하여 인간 CYP1A2 유전자의 일배체형을 결정하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 htSNP를 이용하여 CYP1A2 프로모터 유전자의 변이를 검출하는 방법을 제공하는 것이다.
나아가, 본 발명의 다른 목적은 인간 CYP1A2 유전자의 신규한 일배체형을 제공한다.
상기와 같은 목적을 달성하기 위하여, 본 발명은
(a) 피험자로부터 생물학적 시료를 채취하는 단계;
(b) 상기 (a) 단계의 채취된 시료로부터 핵산을 추출하는 단계;
(c) 상기 (b) 단계의 핵산을 주형으로 하고 인간 CYP1A2 유전자 또는 이의 단편을 증폭할 수 있는 프라이머로 PCR을 수행하는 단계;
(d) 상기 (c) 단계에서 얻은 PCR 산물의 염기서열을 분석하여 변이의 존재 유무를 확인하는 단계; 및
(e) 상기 (d) 단계에서 변이가 존재하는 것으로 확인된 PCR 산물의 염기서열을 SNP태거 (SNPtagger) 소프트웨어를 이용하여 분석하는 단계를 포함하는 인간 CYP1A2 유전자의 htSNP를 선별하는 방법을 제공한다.
본 발명의 다른 목적을 달성하기 위하여, 본 발명은
(a) 피험자로부터 생물학적 시료를 채취하는 단계;
(b) 상기 (a) 단계의 채취된 시료로부터 게놈 DNA를 추출하는 단계;
(c) 상기 (b) 단계의 게놈 DNA의 주형으로 하고 인간 CYP1A2 유전자 또는 이의 단편을 증폭할 수 있는 프라이머를 이용하여 PCR을 수행하는 단계; 및
(d) 상기 (c) 단계에서 얻은 PCR 산물의 염기서열에서 -3860G>A, -3598G>T, -3594T>G, -3113G>A, -2847T>C, -2808A>C, -2603insA, -2467delT, -1708T>C, -739T>G, -163C>A, 1514G>A, 2159G>A, 2321G>C, 3613T>C, 5347C>T 및 5521A>G로 이루어진 군에서 선택되는 적어도 11개의 CYP1A2 유전자의 변이의 존재 유무를 조사하는 단계를 포함하는 인간 CYP1A2 유전자의 유전형을 결정하는 방법을 제공한다.
본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은
(a) 피험자로부터 생물학적 시료를 채취하는 단계;
(b) 상기 (a) 단계의 채취된 시료로부터 게놈 DNA를 추출하는 단계;
(c) 상기 (b) 단계의 게놈 DNA의 주형으로 하고 인간 CYP1A2 유전자의 프로모터 영역을 증폭할 수 있는 프라이머를 이용하여 PCR을 수행하는 단계; 및
(d) 상기 (c) 단계에서 얻은 PCR 산물의 염기서열에서 -3860G>A, -3598G>T, -3594T>G, -3113G>A, -2847T>C, -2808A>C, -2603insA, -2467delT, -1708T>C, -739T>G 및 -163C>A로 이루어진 CYP1A2 유전자의 변이의 존재 유무를 조사하는 단계를 포함하는 CYP1A2 프로모터 유전자의 변이를 검출하는 방법을 제공한다.
본 발명에서 "인간"은 "한국인 또는 이와 유사한 유전적 특성을 가지는 아시아인"을 말하고, "생물학적 시료"는 피험자의 혈액, 피부 세포, 점막 세포 및 모발을 포함하며, 바람직하게는 혈액일 수 있다.
본 발명에서 핵산은 DNA 또는 RNA일 수 있으며, 바람직하게는 DNA, 보다 바 람직하게는 게놈 (genomic) DNA 일 수 있다.
본 발명에서 용어 "aN>M" 또는 "NaM" (이때, a는 정수이고, N 및 M은 각각 독립적으로 A, C, T 또는 G이다.)은 유전자 염기서열에서 a번째 N 염기가 M 염기로 치환된 것을 의미하며, "ainsN" 또는 "adelN" (이때, a는 정수이며, N은 A, C, T 또는 G이다.)은 유전자 염기서열에서 a번째에 N 염기가 하나 더 삽입되거나 결실된 것을 의미한다.
이하, 본 발명을 상세히 설명한다.
본 발명은 한국인 CYP1A2 유전자의 변이 분석을 통해 한국인에서 발견되는 CYP1A2 유전자의 유전형을 규명하였고, 이를 토대로 각각의 일배체형의 최적의 표지 세트인 htSNP를 선별하고, 이의 유용성을 확인하였다는 점에 특징이 있다. 또한 본 발명은 인간 CYP1A2 유전자의 신규한 일배체형을 규명하였다는 점에 특징이 있다.
본 발명에 따른 인간 CYP1A2 유전자의 htSNP를 선별하는 방법은 다음의 단계를 포함한다:
(a) 피험자로부터 생물학적 시료를 채취하는 단계;
(b) 상기 (a) 단계의 채취된 시료로부터 핵산을 추출하는 단계;
(c) 상기 (b) 단계의 핵산을 주형으로 하고 인간 CYP1A2 유전자 또는 이의 단편을 증폭할 수 있는 프라이머로 PCR을 수행하는 단계;
(d) 상기 (c) 단계에서 얻은 PCR 산물의 염기서열을 분석하여 변이의 존재 유무를 확인하는 단계; 및
(e) 상기 (d) 단계에서 변이가 존재하는 것으로 확인된 PCR 산물의 염기서열을 SNP태거 (SNPtagger) 소프트웨어를 이용하여 분석하는 단계.
상기 (a) 단계에서 채취된 시료로부터 핵산을 추출하는 방법은 특별히 한정되지 않으며 당업계에 공지된 기술 또는 시판되고 있는 추출용 키트를 사용할 수 있다. 예를 들면, DNA 또는 RNA 추출용 키트는 Qiagen (미국) 및 Stratagene (미국)에서 구입할 수 있다. 상기에서 RNA를 추출하여 사용하는 경우에는 역전사에 의해 cDNA를 제조하여 사용한다.
상기 (c) 단계에서 상기 인간 CYP1A2 유전자의 단편은 인간 CYP1A2 유전자의 공지된 변이, 예컨대 단일염기다형성 (single nucleotide polymorphism; SNP)을 포함하고 있는 단편을 말한다. 상기 인간 CYP1A2 유전자 또는 이의 단편을 증폭할 수 있는 프라이머는 인간 CYP1A2 유전자 또는 이의 단편의 염기서열을 바탕으로 하여 디자인될 수 있으며, 예를 들어, 서열번호 2 내지 서열번호 31의 프라이머로 이루어진 군에서 선택될 수 있으나, 이에 제한되지는 않는다.
상기 (d) 단계에서 변이는 단일염기다형성, 유전자의 결실 및 유전자의 중복을 포함하지만, 이에 제한되지는 않으며, 예를 들어, 표 5에 나타낸 17개의 변이를 포함할 수 있다.
또한, 염기서열을 분석하는 방법으로는 특별히 한정되지 않으며 당업계에 공지된 방법을 사용할 수 있다. 예를 들면, 그 서열 부분을 직접 결정하는 방법으로 서 자동염기서열분석기를 사용하거나 파이로시퀀싱 (pyrosequencing)을 수행할 수 있다. 상기 파이로시퀀싱은 DNA 시퀀싱에 이용되기도 하는 공지의 SNP 분석방법으로 DNA가 중합되는 동안 방출되는 PPi (inorganic pyrophosphate)의 빛의 발현을 검출하는 방법이다. 상기 염기서열분석은 예를 들어, 서열번호 32 내지 61의 프라이머로 이루어진 군엣 선택된 프라이머를 이용하여 수행될 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 (d) 단계에서 변이의 존재 유무는 야생형 CYP1A2 유전자의 염기서열과 비교하여 확인할 수 있다. 야생형 CYP1A2 유전자의 염기서열, 예를 들면, 서열번호 1 (GenBank accession No.: NT_010194)의 염기서열, 또는 당업계에 공지된 CYP1A2 유전형들의 각 염기서열을 토대로 하여 비교하여 확인할 수 있다 (Drug Metab. Pharmacokinet, 2005, 20(1):24-33).
상기에서 일배체형의 빈도 및 종류를 예측하는 것은 당업계에 공지된 기술 프로그램 또는 시판되는 프로그램을 사용하여 분석할 수 있다. 예를 들면, Haploview 프로그램은 무료로 배포되는 프로그램으로 이용될 수 있고, SNPAlyze와 같은 상용화된 프로그램을 사용할 수도 있다. 상기 Haploview 소프트웨어는 당업계에 공지되어 있으며, 바람직하게는 인터넷 웹사이트인 http://www.broad.mit.edu/mpg/haploview를 이용할 수 있다.
본 발명의 방법은 상기 (a) 내지 (d) 단계를 반복하는 단계를 추가로 포함할 수 있다. 종족이나 환자 등과 같은 어떤 특정 집단에서 CYP1A2 유전자의 변이 양 상 및 이에 대한 일배체형을 분석하고자 하는 경우에는, 각 CYP1A2 유전형의 빈도를 조사하여 상기 집단에서 많이 발견되는 CYP1A2 유전형들을 선정한 후, 이를 대상으로 이후의 (e) 단계를 수행할 수 있다.
상기 (e) 단계에서는 상기 (e) 단계에서 예측된 CYP1A2의 일배체형 자료를 SNP태거 소프트웨어로 분석하여 htSNP를 선별한다. 상기 SNP태거 소프트웨어는 당업계에 공지되어 있으며, 예를 들어 Genehunter, Merlin, Allegro, SNPHAP, htSNP finder (PCA based) 등을 들 수 있고, 바람직하게는 http://www.well.ox.ac.uk/∼xiayi/haplotype 또는 http://slack.ser.man.ac.uk/progs/htsnp.html의 웹사이트를 이용할 수 있다.
이렇게 선별된 htSNP는 다이플로타입 (diplotype) 결정시 정확도를 높이기 위하여 검증될 수 있다. 인체의 유전형은 두 가닥의 염색체에 의해 결정되므로 유전형을 판독하면 두 개의 일배체형 조합으로 판정된다. 그러나 여러 개의 SNP을 동시에 분석한 경우 특정 일배체형의 조합이 다른 일배체형의 조합과 동일한 변이 분석 결과를 나타낼 가능성이 있다. 따라서 본 발명에 의해 개발된 진단법을 이용하여 유전형이 판독된 경우 정확한 유전형을 지목할 수 있는지 검증되어야 한다. 이러한 검증은 Matlab (The Math Works Inc., 미국) 프로그램을 이용하여 유전자 분석 결과로부터 정확한 유전형 판독이 가능한지 분석될 수 있다.
본 발명의 일 실시예에서는 한국인에서 발견되는 CYP1A2 유전형에 대한 htSNP를 선별하기 위하여, 먼저 한국인에서 CYP1A2 유전자의 변이를 조사하였다. 그 결과, 한국인의 CYP1A2 유전자에서 총 17개의 단일염기다형성을 발견하였다 (표 5 참조). 그 중 1개의 단일염기다형성 (-2603insA)은 신규한 것이다.
본 발명에서 처음으로 제공되는 상기 1개의 단일염기다형성은 두 가닥의 DNA 중 한 가닥은 변이형, 한 가닥은 야생형을 가지고 있는 것으로 나타났다 (도 1 참조).
본 발명의 다른 실시예에서는 한국인에서 발견되는 17개의 단일염기다형성에 의한 일배체형을 분석하였다. 그 결과, 본 발명에서는 지금까지 밝혀진 바 없는 CYP1A2 유전자에 대한 한국인의 일배체형 (표 6 참조) 및 이를 근거로 한 유전형을 규명하였다. 예를 들어, 표 6에 기재된 CYP1A2 유전자의 일배체형 2 (CYP1A2*1L)는 CYP1A2 유전자의 염기서열에서 -3860, -2467 및 -163 염기 위치에 단일염기다형성이 있는 유전형을 말하는 것으로, 보다 구체적으로는 -3860G>A, -2467T>delT (-2467delT) 및 163C>A의 단일염기다형성을 가진다는 것을 나타낸다.
본 발명의 다른 실시예에서는 한국인에서 발견된 CYP1A2 유전자의 변이에 의한 17종의 일배체형에 대한 최소 마커인 htSNP를 선별하기 위하여, CYP1A2 유전자의 변이를 가지고 있는 염기서열을 이용해 분석된 일배체형을 근거로 SNP태거 소프트웨어를 이용하여 분석하였다. 본 발명에서 선별된 htSNP 조합의 예를 도 2 내지 도 6에 나타내었다.
상기 방법으로 본 발명에서 선별된 htSNP 조합은 인간 CYP1A2 유전자의 일배체형을 분석하는데 사용될 수 있다. 따라서 본 발명은 인간 CYP1A2 유전자의 일배체형을 결정하는 방법을 제공한다. 상기 방법은 다음의 단계를 포함한다:
(a) 피험자로부터 생물학적 시료를 채취하는 단계;
(b) 상기 (a) 단계의 채취된 시료로부터 핵산을 추출하는 단계;
(c) 상기 (b) 단계의 핵산을 주형으로 하고 인간 CYP1A2 유전자 또는 이의 단편을 증폭할 수 있는 프라이머로 PCR을 수행하는 단계; 및
(d) 상기 (c) 단계에서 얻은 PCR 산물의 염기서열에서 -3860G>A, -3598G>T, -3594T>G, -3113G>A, -2847T>C, -2808A>C, -2603insA, -2467delT, -1708T>C, -739T>G, -163C>A, 1514G>A, 2159G>A, 2321G>C, 3613T>C, 5347C>T 및 5521A>G로 이루어진 군에서 선택되는 CYP1A2 유전자의 변이의 존재 유무를 조사하는 단계.
상기 (b) 단계에서 핵산을 추출하는 방법은 위에서 기재한 바와 같다.
상기 인간 CYP1A2 유전자의 단편은 위에서 기재한 바와 같이 인간 CYP1A2 유전자의 공지된 단일염기다형성을 포함하고 있는 단편을 말한다. 상기 (c) 단계에 사용될 수 있는 프라이머는, 이에 제한되지는 않으나, 서열번호 2 내지 서열번호 31로 이루어진 군에서 선택될 수 있다.
상기 (d) 단계에서 조사되는 단일염기다형성은 도 4 내지 도 6에 나타낸 htSNP 중에서 선택될 수 있으며, 도 4에 나타낸 -3860G>A, -3598G>T, -3113G>A, -2808A>C, -2603insA, -2467delT, -163C>A, 1514G>A, 2159G>A, 5347C>T 및 5521A>G의 단일염기다형성; 도 5에 나타낸 -3860G>A, -3113G>A, -2808A>C, -2603insA, -2467delT, -739T>G, -163C>A, 1514G>A, 2159G>A, 5347C>T 및 5521A>G의 단일염기다형성; 및 도 6에 나타낸 -3860G>A, -3598G>T, -3594T>G, -3113G>A, -2808A>C, -2603insA, -2467delT, -163C>A, 1514G>A, 2159G>A, 5347C>T 및 5521A>G의 단일염 기다형성 또는 -3860G>A, -3598G>T, 2321G>C, -3113G>A, -2808A>C, -2603insA, -2467delT, -163C>A, 1514G>A, 2159G>A, 5347C>T 및 5521A>G의 단일염기다형성의 존재 유무를 조사할 수도 있다.
이와 같이 상기 (d) 단계에서 조사되는 단일염기다형성은 한국인에서 발견되는 CYP1A2 유전자 변이에 대한 것이므로 한국인에서 CYP1A2 유전자의 일배체형과 유전형을 결정하는데 매우 특이적이다.
상기 (d) 단계에서 상기 PCR 산물의 염기서열에 CYP1A2 유전자의 단일염기다형성이 존재하는지 그 여부의 조사는 당업계에 공지된 다형성 분석 방법을 이용하여 수행할 수 있다. 바람직하게는 스냅샷 분석 ([Peter M. Vallone, et al., Int J Legal Med, 2004, 118:147-157] 참조), 전기영동 분석 또는 이들의 조합, 더욱 바람직하게는 스냅샷 분석을 이용하여 수행할 수 있다.
상기 스냅샷 분석은 SNP 위치의 인접부위에 어닐링 (annealing)되는 서열 (상기 SNP 부위는 포함하지 않음)을 갖는 프라이머와 ddNTP를 이용한 PCR 반응을 통하여 유전자형을 분석하는 방법이다. 본 발명에 사용되는 스냅샷 분석은 상기 단계 c)에서 조사되는 CYP1A2 유전자의 SNP를 토대로 하여 공지에 방법에 따라 설계 및 제작한 것을 사용할 수 있으며, SNP 위치의 바로 옆 염기가 3′말단이 되고 상기 SNP 위치의 인접부위에 어닐링되는 서열을 포함하며, 5′말단에는 T 염기가 부가된 것이라면 제한없이 사용될 수 있고, 바람직하게는 서열번호 64 내지 74의 프라이머로 이루어진 군에서 선택되는 프라이머를 사용할 수 있다. 이때, 상기 SNP 위치의 인접부위에 어닐링되는 서열은 약 20 bp의 길이를 갖는 것이 바람직하 며, 한 번에 여러 개의 SNP를 구분하고자 하는 경우 각 SNP에 대한 스냅샷 프라이머들의 5′ 말단 T 염기의 길이를 각각 다르게 설계, 예를 들어 T 염기를 5개씩 5′위치에 더 첨가하여 프라이머 간에 사이즈 차이를 만들어 합성하여 PCR 산물의 길이를 각각 다르게 할 수 있다. 이렇게 만들어진 스냅샷 프라이머에 각 SNP에 상보적인 ddNTP가 결합을 하게 되고 이들 합성물들은 SNP에 따라 길이 차이가 발생함으로 한 번에 여러 개의 SNP 구분이 가능하다.
이후, 스냅샷 분석으로 판정된 유전형 진단결과가 정확한 지 검사하기 위해 유전형을 알 수 있는 다른 유전자 분석법을 통한 결과와의 일치성을 조사할 수 있는데, 여기서 다른 유전자 분석법이란 특별히 한정되지는 않으나 바람직하게는 자동염기서열분석법 또는 파이로시퀀싱법일 수 있다.
본 발명에 따라 한국인에서 발견된 CYP1A2 유전자의 변이 총 17개 중에서 11개의 단일염기다형성은 프로모터 영역에 위치한다. 상기 11개의 단일염기다형성에는 본 발명에서 처음으로 규명한 -2603insA 변이가 포함된다. 따라서, 본 발명에서는 인간 CYP1A2 프로모터 유전자의 변이를 분석하는 방법을 제공한다. 상기 방법은 다음의 단계를 포함한다:
(a) 피험자로부터 생물학적 시료를 채취하는 단계;
(b) 상기 (a) 단계의 채취된 시료로부터 게놈 DNA를 추출하는 단계;
(c) 상기 (b) 단계의 게놈 DNA의 주형으로 하고 인간 CYP1A2 유전자의 프로모터 영역을 증폭할 수 있는 프라이머를 이용하여 PCR을 수행하는 단계; 및
(d) 상기 (c) 단계에서 얻은 PCR 산물의 염기서열에서 -3860G>A, -3598G>T, -3594T>G, -3113G>A, -2847T>C, -2808A>C, -2603insA, -2467delT, -1708T>C, -739T>G 및 -163C>A로 이루어진 CYP1A2 유전자의 변이의 존재 유무를 조사하는 단계.
상기 (b) 단계에서 핵산을 추출하는 방법은 위에서 기재한 바와 같다.
상기 (c) 단계에서 인간 CYP1A2 유전자의 프로모터 영역을 증폭할 수 있는 프라이머는 서열번호 1의 -3860G>A부터 -163C>A 까지의 단일염기다형성을 증폭할 수 있는 프라이머라면 제한없이 사용할 수 있으며, 바람직하게는 서열번호 62 및 서열번호 63의 프라이머를 사용할 수 있다.
상기 (d) 단계에서 상기 PCR 산물의 염기서열에 CYP1A2 유전자의 단일염기다형성이 존재하는지 그 여부의 조사는 당업계에 공지된 다형성 분석 방법을 이용하여 수행할 수 있다. 바람직하게는 스냅샷 분석을 이용하여 수행할 수 있다. 본 발명에 사용되는 스냅샷 분석은 상기 11개의 CYP1A2 유전자의 단일염기다형성을 토대로 하여 디자인된 프라이머를 이용하여 수행할 수 있다. 본 발명에 사용되는 스냅샷 프라이머는 단일염기다형성을 포함하지 않는 인접한 서열의 염기서열이 포함되도록 디자인된 것이라면 제한없이 사용될 수 있다. 바람직하게는 서열번호 64 내지 서열번호 74로 이루어진 군에서 선택되는 염기서열을 갖는 프라이머를 사용할 수 있다.
본 발명의 다른 실시예에서는 CYP1A2 효소 활성에 영향을 주는 프로부터 부분의 11개의 단일염기다형성을 이용하여 CYP1A2 프로모터 유전자의 변이를 SNaPshot 분석으로 검출하였다. 그 결과, 본 발명의 방법이 CYP1A2 프로모터 유전자의 변이를 고속으로 정확하게 검출할 수 있음을 확인하였다 (도 7 내지 도 14 참조).
이하, 본 발명을 실시예에 의해 상세히 설명한다.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
실시예 1 : 한국인에서 CYP1A2 유전자의 유전형 분석
<1-1> CYP1A2 유전자의 증폭
48명의 건강한 피험자로부터 혈액을 분리한 후, Qiagen 사의 게놈 DNA 분리 키트를 사용하여 DNA를 각각 분리하였다. CYP1A2 유전자는 7개의 엑손을 포함하여 총 유전자의 길이가 약 11 kb이다. 따라서 CYP1A2 유전자를 15개의 단편으로 나누어서 PCR을 수행하였다. 각 PCR에 사용한 프라이머는 하기 표 1과 같다. 본 명세서에 기재된 염기서열에서 A, T, G 및 C는 각각 아데닌, 티민, 구아닌 및 사이토신을 의미한다.
CYP1A2 유전자 증폭을 위한 프라이머 및 이의 염기서열
PCR 산물 프라이어명 염기서열 (5' → 3') 서열번호
CYP1A2p7 CYP1A2p7_F gctacacatgatcgagctatac 2
CYP1A2p7_R caggtctcttcactgtaaagtta 3
CYP1A2p6 CYP1A2p6_F caggaaacagctatgaccttgtcatgccccagcttc 4
CYP1A2p6_R tgtaaaacgacggccagtccactattggaatgtgcctga 5
CYP1A2p5 CYP1A2p5_F caggaaacagctatgacctccaaggtcttcccacca 6
CYP1A2p5_R tgtaaaacgacggccagtcccaagcaatccttctgc 7
CYP1A2p4 CYP1A2p4_F caggaaacagctatgaccgcacagtggctcacacct 8
CYP1A2p4_R tgtaaaacgacggccagttcaaaggtttatccttgcttga 9
CYP1A2p3 CYP1A2p3_F caggaaacagctatgacctcctcacgtaagtccatgaatatc 10
CYP1A2p3_R tgtaaaacgacggccagtccccacaacctccttttg 11
CYP1A2p2 CYP1A2p2_F caggaaacagctatgaccccatctcggcctctcaaa 12
CYP1A2p2_R tgtaaaacgacggccagtctaggccaaccaggctca 13
CYP1A2p1e1a CYP1A2p1e1a_F caggaaacagctatgaccggttttgcaggttgttgga 14
CYP1A2p1e1a_R tgtaaaacgacggccagtaggctccccgtctttctg 15
CYP1A2p1e1b CYP1A2p1e1b_F gccaagagttgatccttcca 16
CYP1A2p1e1b_R gctggctctctcctccaca 17
CYP1A2e2a CYP1A2e2a_F caggaaacagctatgaccggagagagccagcgttca 18
CYP1A2e2a_R tgtaaaacgacggccagtccacaccggtccagagtc 19
CYP1A2e2b CYP1A2e2b_F caggaaacagctatgacccagggcgacgatttcaag 20
CYP1A2e2b_R tgtaaaacgacggccagttcctaggccttggcaaca 21
CYP1A2e3 CYP1A2e3_F caggaaacagctatgacctcacgttgcttccctgtg 22
CYP1A2e3_R tgtaaaacgacggccagtgcatagcccaggctcaaa 23
CYP1A2e4 CYP1A2e4_F caggaaacagctatgacctttgagcctgggctatgc 24
CYP1A2e4_R tgtaaaacgacggccagtccctaactgccccatgaa 25
CYP1A2e5 CYP1A2e5_F caggaaacagctatgaccgtgcctgctgtgtgcaag 26
CYP1A2e5_R tgtaaaacgacggccagttggaggccaatagggtca 27
CYP1A2e6 CYP1A2e6_F caggaaacagctatgaccccaggcgcaaagagaagt 28
CYP1A2e6_R tgtaaaacgacggccagtataggcgcaccaccatgt 29
CYP1A2e7 CYP1A2e7_F cttcccacctacccttcatt 30
CYP1A2e7_R tggggtcttgctctgtcact 31
각 프라이머의 위치와 PCR 산물의 크기는 하기 표 2와 같다. 또한, 뉴클레오타이드의 위치는 Cytochrome P450 (CYP) Allele Nomenclature Committee (http://www.cypalleles.ki.se/cyp1a2.htm)의 명명법에 따라 기재하였다.
프라이머의 위치 및 PCR 산물의 크기
PCR 산물 프라이어명 서열번호 위치 PCR 산물의 크기
CYP1A2p7 CYP1A2p7_F 2 -3994~-3972 597
CYP1A2p7_R 3 -3420~-3397
CYP1A2p6 CYP1A2p6_F 4 -3848~-3830 668
CYP1A2p6_R 5 -3237~-3216
CYP1A2p5 CYP1A2p5_F 6 -3297~-3276 671
CYP1A2p5_R 7 -2667~-2659
CYP1A2p4 CYP1A2p4_F 8 -2772~-2704 673
CYP1A2p4_R 9 -2107~-2085
CY1A2p3 CYP1A2p3_F 10 -2298~-2274 631
CYP1A2p3_F 11 -1721~-1702
CYP1A2p2 CYP1A2p2_F 12 -1807~-1788 586
CYP1A2p2_R 13 -1274~-1252
CYP1A2p1e1a CYP1A2p1e1a_F 14 IVS1-434~IVS1-415 611
CYP1A2p1e1a_R 15 IVS1+68~IVS+86
CYP1A2p1e1b CYP1A2p1e1b_F 16 IVS1-119~IVS-99 758
CYP1A2p1e1b_F 17 IVS2-247~IVS2-228
CYP1A2e2a CYP1A2e2a_F 18 IVS2-241~IVS2-223 685
CYP1A2e2a_R 19 Exon2+390~Exon2+48
CYP1A2e2b CYP1A2e2b_F 20 Exon2+309~Exon2+327 674
CYP1A2e2b_R 21 IVS2+90~IVS2+108
CYP1A2e3 CYP1A2e3_F 22 IVS3-277~IVS3-259 592
CYP1A2e3_R 23 IVS3+140~IVS3+158
CYP1A2e4 CYP1A2e4_F 24 IVS4-331~IVS4-313 673
CYP1A2e4_R 25 IVS+214~IVS4+232
CYP1A2e5 CYP1A2e5_F 26 IVS5-189~IVS-171 642
CYP1A2e5_R 27 IVS5+276~IVS5+295
CYP1A2e6 CYP1A2e6_F 28 IVS6-219~IVS6-201 683
CYP1A2e6_R 29 IVS6+324~IVS6+342
CYP1A2e7 CYP1A2e7_F 30 IVS7-132~IVS7-112 689
CYP1A2e7_R 31 Exon7+536~Exon7+556
각 PCR 단편에 대한 반응 조건은 하기 표 3과 같다.
PCR 반응 조건
PCR 산물 반응 조건
CYP1A2p7 94℃ 4분, (94℃ 30초, 55℃ 30초, 72℃ 40초) 35 사이클, 72℃ 5분
CYP1A2p6 94℃ 4분, (94℃ 30초, 60℃ 30초, 72℃ 40초) 35 사이클, 72℃ 5분
CYP1A2p5 94℃ 4분, (94℃ 30초, 60℃ 30초, 72℃ 40초) 35 사이클, 72℃ 5분
CYP1A2p4 94℃ 4분, (94℃ 30초, 60℃ 30초, 72℃ 40초) 35 사이클, 72℃ 5분
CYP1A2p3 94℃ 4분, (94℃ 30초, 60℃ 30초, 72℃ 40초) 35 사이클, 72℃ 5분
CYP1A2p2 94℃ 4분, (94℃ 30초, 68.5℃ 30초, 72℃ 40초) 35 사이클, 72℃ 5분
CYP1A2p1e1a 94℃ 4분, (94℃ 30초, 60℃ 30초, 72℃ 40초) 35 사이클, 72℃ 5분
CYP1A2p1e1b 94℃ 4분, (94℃ 30초, 60℃ 30초, 72℃ 45초) 35 사이클, 72℃ 5분
CYP1A2e2a 94℃ 4분, (94℃ 30초, 60℃ 30초, 72℃ 40초) 35 사이클, 72℃ 5분
CYP1A2e2b 94℃ 4분, (94℃ 30초, 60℃ 30초, 72℃ 40초) 35 사이클, 72℃ 5분
CYP1A2e3 94℃ 4분, (94℃ 30초, 60℃ 30초, 72℃ 40초) 35 사이클, 72℃ 5분
CYP1A2e4 94℃ 4분, (94℃ 30초, 60℃ 30초, 72℃ 40초) 35 사이클, 72℃ 5분
CYP1A2e5 94℃ 4분, (94℃ 30초, 60℃ 30초, 72℃ 40초) 35 사이클, 72℃ 5분
CYP1A2e6 94℃ 4분, (94℃ 30초, 60℃ 30초, 72℃ 40초) 35 사이클, 72℃ 5분
CYP1A2e7 94℃ 4분, (94℃ 30초, 58℃ 30초, 72℃ 40초) 35 사이클, 72℃ 5분
<1-2> PCR 산물의 염기서열 분석
상기 실시예 <1-1>에서 얻은 각 PCR 산물의 염기서열을 자동서열분석기를 이용하여 분석하였다. 이 때 사용한 프라이머는 하기 표 4와 같다.
서열분석에 사용된 프라이머
PCR 산물 프라이어명 염기서열 (5' → 3') 서열번호
CYP1A2p7 CYP1A2p7_F gctacacatgatcgagctatac 32
CYP1A2p7_R caggtctcttcactgtaaagtta 33
CYP1A2p6 CYP1A2p6_F caggaaacagctatga 34
CYP1A2p6_R tgtaaaacgacggccagt 35
CYP1A2p5 CYP1A2p5_F caggaaacagctatga 36
CYP1A2p5_R tgtaaaacgacggccagt 37
CYP1A2p4 CYP1A2p4_F caggaaacagctatga 38
CYP1A2p4_R tgtaaaacgacggccagt 39
CYP1A2p3 CYP1A2p3_F caggaaacagctatga 40
CYP1A2p3_R tgtaaaacgacggccagt 41
CYP1A2p2 CYP1A2p2_F caggaaacagctatga 42
CYP1A2p2_R tgtaaaacgacggccagt 43
CYP1A2p1e1a CYP1A2p1e1a_F caggaaacagctatga 44
CYP1A2p1e1a_R tgtaaaacgacggccagt 45
CYP1A2p1e1b CYP1A2p1e1b_F gccaagagttgatccttcca 46
CYP1A2p1e1b_R gctggctctctcctccaca 47
CYP1A2e2a CYP1A2e2a_F caggaaacagctatga 48
CYP1A2e2a_R tgtaaaacgacggccagt 49
CYP1A2e2b CYP1A2e2b_F caggaaacagctatga 50
CYP1A2e2b_R tgtaaaacgacggccagt 51
CYP1A2e3 CYP1A2e3_F caggaaacagctatga 52
CYP1A2e3_R tgtaaaacgacggccagt 53
CYP1A2e4 CYP1A2e4_F caggaaacagctatga 54
CYP1A2e4_R tgtaaaacgacggccagt 55
CYP1A2e5 CYP1A2e5_F caggaaacagctatga 56
CYP1A2e5_R tgtaaaacgacggccagt 57
CYP1A2e6 CYP1A2e6_F caggaaacagctatga 58
CYP1A2e6_R tgtaaaacgacggccagt 59
CYP1A2e7 CYP1A2e7_F cttcccacctacccttcatt 60
CYP1A2e7_R tggggtcttgctctgtcact 61
상기 실시예 <1-1>에서 증폭된 CYP1A2 유전자의 전체 염기서열을 자동 염기서열 분석기를 이용하여 분석하였다. 이후, 야생형 CYP1A2 유전자의 염기서열 (서열번호 1)과 비교한 결과, 총 17개의 단일염기다형성을 발견하였으며, 그 결과를 하기 표 5에 나타내었다. 그 중에서 단일염기다형성 -2603insA은 신규한 것임을 확인하였다.
한국인에서 발견된 CYP1A2 유전자의 변이
SNP 명명 rs 번호 아미노산 변이 빈도 (%)
-3860G>A *1C     27.08
-3598G>T   2069519   9.38
-3594T>G   2069520   9.38
-3113G>A   2069521   12.50
-2847T>C   2069522   11.46
-2808A>C   12592480   1.04
-2603insA   -   1.04
-2467delT *1D -   43.75
-1708T>C   2069525   6.25
-739T>G *1E     7.29
-163C>A *1F 762551   55.21
1514G>A *13 - G299S 1.04
2159G>A   2472304   14.58
2321G>C   3743484   9.38
3613T>C   4646427   6.25
5347C>T *1B 2470890 N516N 15.63
5521A>G       14.58
이후, 본 발명자들은 상기 신규한 1개의 단일염기다형성이 CYP1A2의 한 가닥에 위치하는지의 여부와 동일한 DNA 가닥에 다른 유전자 변이는 없는지, 염색체의 다른 부분에 위치한 유사 유전자로부터 기인한 것이 아닌지의 여부를 조사하기 위하여 상기 단일염기다형성이 발견된 변이 유전자를 포함하는 피험자의 DNA를 주형으로 하고 상기 서열번호 38 및 39의 프라이머를 사용하여 PCR을 수행하고 증폭된 산물의 서열을 상기와 동일한 방법으로 분석하였다.
그 결과, 상기 1개의 단일염기다형성은 모두 프로모터 부위 -2603insA에 위치하였다. 이 변이형의 단일염기다형성은 두 가닥의 DNA 중 한 가닥은 변이형, 한 가닥은 야생형을 가지고 있는 것으로 나타났다 (도 1).
실시예 2 : CYP1A2 변이형의 일배체형 분석
상기 실시예 1에서 규명된 17개의 CYP1A2 유전자의 변이는 그 조합에 따라 CYP1A2의 효소 활성에 영향을 끼칠 가능성이 있고 몇몇 일배체형에 대한 효소활성 변이는 이미 보고되어 있다. 따라서, 본 발명자들은 실시예 1에서 확인한 변이에 의한 일배체형을 DYNACOM 사의 SNPAlyze 프로그램을 사용하여 분석하였다. 그 결과, 하기 표 6에 나타낸 바와 같이 타 종족에서 발견되지 않는 한국형의 새로운 일배체형이 확인되었다.
Figure 112007043711322-pat00001
실시예 3 : htSNP의 선별 및 검증
CYP1A2 유전자의 단일염기다형성의 조합인 일배체형이 CYP1A2의 효소 활성에 영향을 끼칠 가능성이 여러 일배체형에서 보고된 바 있다. 이러한 만들어진 상세한 일배체형의 정보는 최소 마커로 확인할 수 있다. 이들 최소 마커를 htSNP이라고 하는데, 상기 htSNP는 각각의 일배체형의 정확한 표시를 위해 필요한 마커이며 여러 가지 조합을 구성하게 된다. 이 최적화된 표지 세트인 htSNP 조합을 SNP태거 소프트웨어 (http://www.well.ox.ac.uk/∼xiayi/haplotype)를 이용하여 선별하였다. 선별된 htSNP 조합의 예를 도 2 내지 도 6에 나타내었으며, 각 선별된 htSNP 조합은 최적의 표지 세트중 하나로서, '1'은 야생형을, '2'는 변이형, 그리고 'V' 표시는 선택된 각각의 htSNP를 나타낸다. htSNP의 선별은 도 2 내지 6의 조합외에도 다른 조합이 가능할 수 있다.
이후, 찾아낸 조합 중 다이플로타입을 고려하여 서로 겹치지 않고 다이플로타입 유전형을 결정할 수 있는지를 Matlab 소프트웨어 (version 7.1, The Math Works Inc., 미국)를 사용하여 분석하였으며, 이를 이용하여 체크한 후 조합을 결정하였다.
검증 결과, 서로 겹치지 않고 다이플로타입 유전형을 결정할 수 있음을 확인하였다. 이는 본 발명에서 선택한 htSNP 조합이 서로 동일한 것이 없어 유전형을 결정함에 있어 부정확한 분석이 전혀 없음을 나타내는 것이다.
실시예 4 : 고속의 CYP1A2 프로모터 유전자 변이 검색
상기 실시예 1에서 확인된 한국인에서 발견된 CYP1A2 유전자의 17개의 단일염기다형성 중에서, CYP1A2 효소 활성에 영향을 주는 프로모터 부분의 단일염기다형성 11개를 고속으로 검색하기 위하여 스냅샷 분석을 실시하였다. 피험자의 DNA를 주형으로 하여 PCR을 수행하고 증폭된 산물을 스냅샷 분석하였다. CYP1A2 유전자의 프로모터는 약 4,000 base이며, PCR에 사용한 프라이머는 하기 표 7과 같다.
프라이머명 및 염기서열
PCR 산물 프라이머명 염기서열 (5'→3') 서열번호
CYP1A2_promoter
CYP1A2*1C_F gctacacatgatcgagctatac 62
CYP1A2*1F_R gggttgagatggagacattc 63
PCR 산물에 대한 반응 조건은 하기 표 8과 같다.
PCR 반응 조건
PCR 산물 반응 조건
CYP1A2_promoter 94℃ 1분, (98℃ 10초, 55℃ 30초, 68℃ 4분) 35 사이클, 72℃ 5분
상기와 같이 증폭된 PCR 산물의 반응되지 않은 프라이머와 dNTP 등은 남아 있으면 스냅샷 과정에 영향을 줄 수 있으므로, 이들을 제거하기 위해 혼합된 PCR 산물 5 ㎕당 ExoSAP-IT (USB사) 2 ㎕를 넣고 37℃에서 30분간 반응시킨 다음, 80℃에서 15분간 반응시켜 남아있는 효소를 비활성화시켰다. 효소 처리된 산물은 하기 표 9에 나타낸 프라이머를 이용하여 멀티플렉스 스냅샷 (multiplex SNaPshot) 반응물을 만들어 PCR 반응 하였다. 멀티플렉스 스냅샷 반응물 및 PCR 반응 조건을 각각 표 10 및 표 11에 나타내었다.
프라이머 및 이의 염기서열
프라이어명 염기서열 (5'→3') 서열번호
-163C/A_F(24) TTTTAAAGGGTGAGCTCTGTGGGC 64
-739T/G_F(20) GCCTGGGCTAGGTGTAGGGG 65
-2847T/C_F(32) TTTTTTTTTTTTGCCTTCAAACATGCTCTGTT 66
-2808A/C_R(36) TTTTTTTTTTTTTTTTAAAACTGTGGGATCAACCTG 67
-1708T/C_F(40) TTTTTTTTTTTTTTTTTTTTAACCATTCAAAAGGAGGTTG 68
-3860G/A_R(44) TTTTTTTTTTTTTTTTTTTTTTTTGCATGACAATTGCTTGAATC 69
-3113G/A_F(48) TTTTTTTTTTTTTTTTTTTTTTTTTTTTCAAGAGGAATCCAAAGAGAC 70
-2603A7/A8_R2(52) TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTATTTTTAAACATTTTTTT 71
-3594T/G_R(56) TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTATTTTTAATGTTTTCTT 72
-3598G/T_F(60) TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCTGTAATTTAATTTTTTTAA 73
-2467delT_F(64) TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGAGCCATGATTGTGGCACA 74
멀티플렉스 스냅샷 반응물
조성 부피 (㎕/샘플)
스냅샷 멀티플렉스 레디 리액션 믹스
(SNaPshot Multiplex Ready Reaction Mix, ABI 사)
2
1/2 텀 (term) 완충액 3
효소 처리된 PCR 산물 3
프라이머 프라이머 명 농도
-163C/A_F(24) 7 mM 0.1
-739T/G_F(20) 3 mM 0.1
-2847T/C_F(32) 5 mM 0.1
-2808A/C_R(36) 5 mM 0.1
-1708T/C_F(40) 20 mM 0.1
-3860G/A_R(44) 20 mM 0.1
-3113G/A_F(48) 7 mM 0.1
-2603A7/A8_R2(52) 100 mM 0.1
-3594T/G_R(56) 70 mM 0.1
-3598G/T_F(60) 100 mM 0.1
-2467delT_F(64) 50 mM 0.1
증류수 0.9
합계 10
PCR 산물 반응 조건
스냅샷 산물 (96℃ 10초, 50℃ 5초, 60℃ 30초) 30 사이클
반응이 끝난 후에 [F]ddNTP를 제거하기 위해 SNaPshot 산물 5 ㎕에 SAP (USB 사) 2 ㎕를 넣고 37℃에서 30분, 80℃에서 15분간 반응시켰다. 반응이 모두 끝나면 반응물 0.5 ㎕, Hi-Di 포름아마이드 (ABI 사) 9.25 ㎕ 및 진스캔 (GeneScan)-LIZ 사이즈 표준물질 (ABI 사) 0.25 ㎕를 혼합하여 95℃에서 5분간 변성시켰다. 이후, 3130XL 유전자 분석기 (3130XL Genetic Analyzer, ABI 사)로 분석하였으며, 그 결과를 도 7 내지 도 14에 나타내었다.
그 결과, 도 7 내지 14에 나타난 바와 같이, CYP1A2 유전자의 변이형에 따라 피크 색과 위치가 다르게 표시되어 야생형, 이형의 대립형질을 갖는 변이형 (이형), 동형의 대립형질을 갖는 변이형 (동형)을 용이하게 식별할 수 있음을 확인하였다. 따라서, 본 발명에 따른 분석 방법을 통해 시간 및 비용을 효율적이면서 용이하게 CYP1A2 유전자의 변이형을 분석할 수 있음을 알 수 있다.
상기에서 살펴본 바와 같이, 본 발명에 따른 CYP1A2 유전자의 일배체형 분석을 위한 htSNP 및 이를 이용하여 CYP1A2 유전자의 일배체형을 분석하는 방법은 한국인의 CYP1A2 유전자의 SNP를 근거로 얻어진 htSNP를 이용하여 시간 및 비용 효율적으로 한국인과 유전적 특성이 유사한 아시아인종에서 발견되는 CYP1A2 유전자의 기능적 유전형을 용이하게 확인할 수 있다. 또한, 이러한 아시아인의 CYP1A2 효소활성의 개인차나 CYP1A2 결핍에 의해 발생가능한 이상징후를 예측하는데 유용하게 사용될 수 있다.
<110> INJE UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATION <120> htSNP FOR DETERMINING A HAPLOTYPE OF CYTOCHROME P450 1A2 GENE AND USE THEREOF <130> DPP060143KR <160> 74 <170> KopatentIn 1.71 <210> 1 <211> 11778 <212> DNA <213> Homo sapiens <400> 1 ccttggctcc cctccaaaaa gtgtacatat gacatgatct catttatgta aaatacaaca 60 agcaaaacaa atccatgcaa tagatgttgg ggtcatgggt acccttgaga aaggaacaca 120 acgggacttc ttggatgctt atgatgtctc ttgattagag ctggttatat gtgtgtttgt 180 taagtttgca aaaattcatc aagctacaca tgatcgagct atacatgaca tatgcacttt 240 tccatttatt tatttatttt tgagacagaa tcttgctctg tcacccaggc tggagtgcag 300 tggtgcgatc ttggctcacc gcaacctccg cctctcggat tcaagcaatt gtcatgcccc 360 agcttcccga gtagctggaa ttacaggtgt gcaccatcac gcccagctaa tttttttttg 420 tatttttagt agagatgagg tttcactatg ttggccaggc tggtcttgaa ctcctggcct 480 cactcaagtg atcctcccac ctcggcctcc caaagtgcta gaattacagg tgtgagtcac 540 cggtcccagc tgacatatgc acttttctat attgtatcct gtaatttaat ttttttaagt 600 tttaagaaaa cattaaaaat aaaaagataa atagtctgtc atacaggaga atttcaaata 660 gtttatggag ataatccccc ctcaaggaga aggagcgtaa tcccccactc cttcggtgtg 720 ggctgtgcat agtgacttcc ttccaaaagg tacagtatgg aaaggtggga aaggagtaac 780 tttacagtga agagacctga cacgcactac cttagccagg tgatcaaggt caacatccac 840 atctgtaagt cacattgata ggatgtaacc ctgatatgat gtgacgagaa tggcacctaa 900 cctccaaggt cttcccacca acaaaccata accccaggct taccatgaga agaaaaacat 960 caggcacatt ccaatagtgg gcatcctaca aaatgtccaa ccagtactcc tgaaaattgt 1020 caaggtcatc aaaaacaagg atatcctgag aaactgtcac agccaagagg aatccaaaga 1080 gacgtgatga ctaaatgtca tgtgatatcc aatgggtcct ggaacaggaa aaggacatta 1140 ggtaaaacgc aaggaaatct aagtaaacca tgaactttag ttaattagag agacagacag 1200 acagagagaa agaaagagtc cattttctat aaaaccgagc ctaacctcaa accttgacct 1260 ttttcattga gtcatctgaa cccaatggag atatagacag gaaacaactt tcctcttctc 1320 ccattcatgg ccttcaaaca tgctctgttt ctctattgga ttccccatcc atctgccttg 1380 gcatcttcac aggttgatcc cacagttttc tcattttcag gaataaaagc ccactccagt 1440 ctaaatcaaa acttccctct cacatccatg ccgggcacag tggctcacac ctgtaatccc 1500 agcagtttgg gaggccaagg cagaaggatt gcttgggccc agaagttcaa gaccaacctg 1560 ggcaacatgg caagacctcc tctctacaaa aaaatgttta aaaataaaaa aattagccag 1620 gcatggtgca cacacctgtg attgtggtcc cagctactca ggaggctgag gcaagaggat 1680 tgtttgagct caggaggtcg aggctgcagt gagccatgat tgtggcacat gaaccccaac 1740 ctgggtgaca gagcaagact ctgtatctaa aaaaaaaaaa aaaagatagc aaacttcctt 1800 ttcacatcca atttaaggct tgtcctcctc ctcctcttag atctgactga gatctgggtc 1860 catattaaag actcctttag tacaacaaac accatatatc ctcacgtaag tccatgaata 1920 tctgacattt ctcatatcta ctttctctcg atttattgat agataggtat acattgtttt 1980 aattttatgg gtacatagta ggtgtatata tgtatggggt acatgaaatg ttttgataca 2040 ggcatgcaat atgaaataag cattcatgga gaatggagta tccatcccct caagcaagga 2100 taaacctttg agttacaaac aatccaatta cactctttaa aggtgtacat tttttttttt 2160 tttgagacgg agtctcactc tgtcgcccag gctggagtgg agtggcacga tcttggctca 2220 ctgcagcctc cacctcccaa gttcaagcca ttctcctgcc tcagcctccc gagtagctgg 2280 gatcacaggc acatgccacc atgcctggct aatttttgta tttttagtag agacggagtt 2340 tcaccaggtt ggccaggctg gtcttgaaca cctgatctca ggtgatccgc ccatctcggc 2400 ctctcaaagt gctgggatta caggtgcgag ccatcgcgcc tggcctagag gtgtacattt 2460 tttaacagaa ccattcaaaa ggaggttgtg gggatcatga cacttccatg ctacagcatt 2520 aatctcctaa gaataaggat acactcccac ataccatgac actctgttca cacctaaaaa 2580 aatttacatt tattccagaa tatcatctaa tctccagtcc gtgcttacat gtccccaatt 2640 gtccccaaaa catcttttat agattttttt aaaattttgt ttaaatgcca tatccaatcg 2700 atatggcaat caaatgcaaa tccatattgc atttggttat gtctcttagt ctttttgcat 2760 aaggggggcc tctctttagg atgcaaaatc tttatcatct cttcttttcc acttggggac 2820 ttgggctgaa aatcaggagt ggctggaaca cgcccattta ctgtttggtt ttgcaggttg 2880 ttggagggta ctacagaaga acatccctct ggagaggggc cgtgagcctg gttggcctag 2940 actgagtgcc ctggcagagc tcttcctcat gtgtgcagtg ggaaagaagc ccagatcagt 3000 ccaaaggcct aacccccact cccagaccct accctactct tcagagaaat aggctcccta 3060 ccctgaaccc taaagacagc tgtaccttca tccccaggga cccagcaccc cttctggcct 3120 atccccaaag agtcaccctg ggtcttaggt agtaggtgga gctgagggat aatggcccaa 3180 ggccaagagt tgatccttcc aactttgttc agtgatccag ctttcatatc aggtgatcag 3240 gacaaccagg ccaatctgat agggggcggt gtttataaaa aggccactca cctagagcca 3300 gaagctccac accagccatt acaaccctgc caatctcaag cacctgcctc tacaggtacc 3360 tttcttggga ccaatttaca atctctggga tccccaacta tagaacctgg aagctagtgg 3420 ggacagaaag acggggagcc tgggctaggt gtaggggtcc tgagttccgg gctttgctac 3480 ccagctcttg acttctgttt cccgatttta aatgagcagt ttggactaag ccatttttaa 3540 ggagagcgat ggggagggct tcccccttag cacaagggca gccctggccc tggctgaagc 3600 ccaaccccaa cctccaagac tgtgagagga tggggactca tccctggagg aggtgcccct 3660 cctggtattg ataaagaatg ccctggggag ggggcatcac aggctatttg aaccagccct 3720 gggaccttgg ccacctcagt gtcactgggt agggggaact cctggtccct tgggtatatg 3780 gaaggtatca gcagaaagcc agcactggca gggactcttt ggtacaatac ccagcatgca 3840 tgctgtgcca ggggctgaca agggtgctgt ccttggcttc cccattttgg agtggtcact 3900 tgcctctact ccagccccag aagtggaaac tgagatgatg tgtggaggag agagccagcg 3960 ttcatgttgg gaatcttgag gctcctttcc agctctcaga ttctgtgatg ctcaaagggt 4020 gagctctgtg ggcccaggac gcatggtaga tggagcttag tctttctggt atccagctgg 4080 gagccaagca cagaacacgc atcagtgttt atcaaatgac tgaggaaatg aatgaatgaa 4140 tgtctccatc tcaaccctca gcctggtccc tccttttttc cctgcagttg gtacagatgg 4200 cattgtccca gtctgttccc ttctcggcca cagagcttct cctggcctct gccatcttct 4260 gcctggtatt ctgggtgctc aagggtttga ggcctcgggt ccccaaaggc ctgaaaagtc 4320 caccagagcc atggggctgg cccttgctcg ggcatgtgct gaccctgggg aagaacccgc 4380 acctggcact gtcaaggatg agccagcgct acggggacgt cctgcagatc cgcattggct 4440 ccacgcccgt gctggtgctg agccgcctgg acaccatccg gcaggccctg gtgcggcagg 4500 gcgacgattt caagggccgg cctgacctct acacctccac cctcatcact gatggccaga 4560 gcttgacctt cagcacagac tctggaccgg tgtgggctgc ccgccggcgc ctggcccaga 4620 atgccctcaa caccttctcc atcgcctctg acccagcttc ctcatcctcc tgctacctgg 4680 aggagcatgt gagcaaggag gctaaggccc tgatcagcag gttgcaggag ctgatggcag 4740 ggcctgggca cttcgaccct tacaatcagg tggtggtgtc agtggccaac gtcattggtg 4800 ccatgtgctt cggacagcac ttccctgaga gtagcgatga gatgctcagc ctcgtgaaga 4860 acactcatga gttcgtggag actgcctcct ccgggaaccc cctggacttc ttccccatcc 4920 ttcgctacct gcctaaccct gccctgcaga ggttcaaggc cttcaaccag aggttcctgt 4980 ggttcctgca gaaaacagtc caggagcact atcaggactt tgacaaggtg agcccggggt 5040 gcaggtggca aggggcacct tgcagggcct gggtgcagcc cctccctccc agctccagca 5100 tgcccacaca gctgctgtgt tgccaaggcc taggaaggct ctggacacct cagaccagct 5160 gtgtgacctg gagccgactc ttccccttct ctgggcctca gtttcctcat ccttgaagcc 5220 cccttctcag ggctcctcaa agcccccaag aaaaaagccc tggaaatggg gccctagcag 5280 agtcctgcaa tgtggggggc ctatgagtga gaaagctttc attctgcaga aacctaaacc 5340 ccaacagagg ctaatcccca gctctggtgt cacgttgctt ccctgtgttc acactaacct 5400 tttccttctt tgaaattgga cccctggtgt tattgggagg aagggtcaat ggggcataaa 5460 atgacacttt aagccatacc cagggctgct accagctcct gctgcaagct gcaaccccct 5520 gcctagagac caagttggga ggataggggg gtacccagcc accaggtaca ggccagggga 5580 gtggagcaac gttcagcctt tgaccttgga agtgccagag gtgcccctaa gcttgtgccc 5640 cctcagaaca gtgtccggga catcacgggt gccctgttca agcacagcaa gaaggggcct 5700 agagccagcg gcaacctcat cccacaggag aagattgtca accttgtcaa tgacatcttt 5760 ggagcaggta ggaaccagaa ccttgcccct ccatccaaca atgcctgctg ttcacccaca 5820 gccttgccca gcccctcagt ccatgaaata acccaccaac cctacaccag atggtacaac 5880 atactgagat ctggcttggg atcagggttt gagcctgggc tatgccacca attcccagtg 5940 gagaaacagc aaagtccttc tcctccccta ggcttcagtt tccccatctg aacaataagg 6000 tgttctctgg cctgtaagtc taggccccta taattccagc agctaattct gaaacctgta 6060 tctcaagttt atgttgaaga gacccagcct ctgtcttcag gaaactcaca ggctagggcc 6120 agagaaagct aatgctggat acatacatag cagatacttg ggaaatgatg gtttccttgt 6180 ttctgtcttc cttctttcct caccttacac tacacggttc aggatttgac acagtcacca 6240 cagccatctc ctggagcctc atgtaccttg tgaccaagcc tgagatacag aggaagatcc 6300 agaaggagct gggtacatgg gggcccccaa ccctatagcc aggagaagcc ttgagaccca 6360 ggttgtttgt tcagtctaca aacacctgtt atgtgcctgc tgtgtgcaag ccctgggcac 6420 acagtagtgc ctgcccttgc ctagaagatg tgggaggtta gtggggtcgc agacttgtga 6480 atagacagtc ttacataaga gtgacatggg gtataagagg ggataattca tggggcagtt 6540 agggcagccc ctgagctctg cttgtcctct gtgttctaca gacactgtga ttggcaggga 6600 gcggcggccc cggctctctg acagacccca gctgccctac ttggaggcct tcatcctgga 6660 gaccttccga cactcctcct tcttgccctt caccatcccc cacaggtgag gcctgccggt 6720 tctgccctcc cacctctaaa gtgcttgcca tgttttctct tcctggcttc tcagccctgg 6780 ccctggctca gcatctcctt cccgacctcg ttccccacag atcccggcct cagtctgccc 6840 ccatccagtc caaacataat ctaaccccca gctctcagga gaaagttcca cttgtgatct 6900 cagcgctcat tcccctctgt tcatattccc tccctcccag tgccctctgt gccagtcagg 6960 tcggcctcac cctcacaagc atgaccctat tggcctccaa tcttgctaac gctgaacctt 7020 ctgcctggaa taccttctag cctcttctct gaccaccaga atcctaccct tgctcaaagt 7080 caatgccgac acgagcttcc tctccccaga agccttttga ctcatccagc tggcacagct 7140 tcattcctga tgtcttatag gacttacagc catcagccct tgatcatgcc ctggaatttt 7200 aacaatgtca agagagttag tgagcattta cttctaccca aacgttgttc tagttattcc 7260 tgcagtaaga ggcctgaatc cccagccagg ctagaaattc cccggggctg ccccaggctg 7320 cctgctgctt tttttttttt tttttttttt ttcatagaaa atagaaaaac atttatctga 7380 aattgcctgc ttcttggctc cagagaacag ccaagtgcgc agccaggcgc aaagagaagt 7440 ttagtaaata cttgctgaag ttaaagaaca ggacgcaagg aagagggagg atgtttctac 7500 ctcttccctg ttcctcccct cccctcccag tgtagggatg gagatggcgg tgggcaggct 7560 gtctggatgg ggtggaggta ggagcaacac atgccccagc tttccagccc tgagcctcac 7620 agtgccctct tccctcctca gcacaacaag ggacacaacg ctgaatggct tctacatccc 7680 caagaaatgc tgtgtcttcg taaaccagtg gcaggtcaac catgacccgt gagtacatac 7740 ccctcacgaa aaaatgtgtg caggttcagc agtcaggaag gctgtttgtc cctgctagga 7800 actgtttata taatgaaagg aggggacctc aattgctata gtctgctcta agtgacgata 7860 tttacaaaag tttcacaaac tttagtgcac aggaatcaac taggatggcc aggcgcagtg 7920 gctcaagcct ataatcccag cagtttggga ggccgaggca ggcagatcac ttgaggtcag 7980 gagtttgaga ccagcctggg caacatggtg aaaccctatc tctactaaaa atacaaaaca 8040 aaaattagcc ggacatggtg gtgcgcctat aatcccagct actccagagg ctgaggcagg 8100 agaattgctt gaactctgga ggtagaggct gcagtgagcc gagatcgctc cactgcactc 8160 cagcctgggt gacggagtga gactctgcct caaaaaaaaa aaaaaaaaat caaccaagac 8220 gtttgttaca ggtgatggtt cccccaggat tctactgtgg tatctaaggt ggggtacctc 8280 aggcgattct gatgtgaatg gctcagagac ctctctttgg aaagccccac tttagtgtat 8340 aggtaggggg accatatata taatttacca tccacactgg gacatttgag tgtgaaaatg 8400 ctatcaatgt ttatgctagt catcattact ccaaaacaat aaacataagc caggacatac 8460 tgttgaggcc ccttaggagg catattttga gtaggatgaa gaaacgtatg tctttctttc 8520 ttcctttcac tttaattttt aaatagagac aaggtcttcc tatgtggtcc aggctggttt 8580 tgaactcctg ggttcaaggg atcttcctgc ctcagcctcc caaagtgcta gggttacggg 8640 tgtaagccac caaacccagc ctgtttttct tcttttaatt tcttttagat aaagcattat 8700 ttaaagtaaa ttaatattaa aaggcactat ctttaaggct ggtcatttta gagagagctt 8760 tgtaaaagaa ataagcatca ggccaggtgt ggtgactcat gcctgtaacc ccagcacttt 8820 gggagtccga ggaaggtgga tcgcttgagc tcatgagtct gagaccagtg aaaccccgtc 8880 tctgcaaaaa aaaaaaaaaa aaaaaataca aaaattagcc ggatatggtg cctgtagtcc 8940 cagctacacg ggaggctcag gtgggtggtt ggcttgagct ggggaggcag agagagtgca 9000 gtgagctgag atcgcaccac tgtactccag cctgggtgat aggagccgga gggtgtctca 9060 aaaaaaaaaa aagaaagaaa agaaaaagaa ataagcatca aagttcagtt tggttccttc 9120 ccacctaccc ttcattgctt tcaaagtgcc ctcacacttg tgttctcaac agaagtctcc 9180 ctcccccagg cacctcctcc cagggcctct ccagccctga ggtcccatct cctctgttcc 9240 tcttgcagag agctgtggga ggacccctct gagttccggc ctgagcggtt cctcaccgcc 9300 gatggcactg ccattaacaa gcccttgagt gagaagatga tgctgtttgg catgggcaag 9360 cgccggtgta tcggggaagt cctggccaag tgggagatct tcctcttcct ggccatcctg 9420 ctacagcaac tggagttcag cgtgccgccg ggcgtgaaag tcgacctgac ccccatctac 9480 gggctgacca tgaagcacgc ccgctgtgaa catgtccagg cgcggctgcg cttctccatc 9540 aactgaagaa gacaccacca ttctgaggcc agggagcgag tgggggccag ccacggggac 9600 tcagcccttg tttctcttcc tttctttttt taaaaaatag cagctttagc caagtgcagg 9660 gcctgtaatc ccagcatttt aggaggccaa ggttggagga tcatttgagc ccaggaattg 9720 gaaagcagcc tggccaacat agtgggaccc tgtctctaca aaaaaaaaat ttgccaagag 9780 cctgagtgac agagcaagac cccatctcaa aaaaaaaaac aaacaaacaa aaaaaaaacc 9840 atatatatac atatatatat agcagcttta tggagatata attcttatgc catataattc 9900 accttctttt tttttttttg tctgagacag aatctcagtc tgtcacccag gttggagtgc 9960 agtggcgtga tctcagctca ctgcaacctc cacctcgcag gttcaagcaa tcctcccact 10020 tcagcctccc aagcacctgg gattacaagc atgagtcact acgcctggct gatttttgta 10080 gttttagtgg agatggggtt tcaccatgtt ggccaggctt gtctcgaact cctgacccca 10140 agttatccac ctgccttggc ttcccaaagt cctgggatta caggtgtgag ccaccacatc 10200 cagcctaact tacattctta aagtgtcgaa tgacttctag tgtagaattg tgcaaccatc 10260 accagaatta attttattat tcttattatt tttgagacag agtcttactc tgttgccagg 10320 ctggagtgca gtggcgcgat ctcagctcac tacaacctcc gcctcccatg ttcaagcgat 10380 tctcctgcct cagcctcccg agtagctggg actataggca tgcgccacca tggccagcta 10440 atttttgtat ttttagtaga gacgaggttt cactgtgttg gccaggatgg tctccatctc 10500 ttgacctcgt gatccacccg cctcagcctc ccaaagtgct gggattaaca ggtatgaacc 10560 accgcgccca gcctttttgt tttttttttt tttgagacag agtcttcctc tgtctcctaa 10620 gctggagtgc agtggcatca tctcagctca ctgcaacctc tgcctcccag gttcaagtgc 10680 ttctccagcc tcagcctccc aagtagctga gactacaggc acacaccacc acgcctggct 10740 aatttttgta tttttagtag agacgggttt caccatgttg gctagactag tctcaaactc 10800 ctgacctcaa gtgatctgcc cgcctcgacc tctctcaaag tgctggcatt acaggtgtga 10860 gccacggtgc ccggcccaca attaatttta gaacattttc atcaccccta aaagaaaccc 10920 tgcacccatt agcagtccct ccacatttcc ccctagcctg cctcccctgc ctcaccagcc 10980 ctggcaactg ctaatctact ttctgtgtct atggatttgc cttctctaaa catttcatat 11040 aaatggaatt acacaatgag tggtcttttg tgactggctt ctttcactta gcacaatgtt 11100 ttcaaggctt atgtgtgttg tggtgtgcgt cagtaagctc ttggtgcttg agtcctgaga 11160 ctgggtctag gtctgtgctc tcttaagtcg ttgataggca cctccttcac tcctctcctc 11220 tcctttcatg ttgtttgacc caagtttttt aacaattgaa gggaacaagg agaaagggat 11280 ccagtctcag gggccaaacc cagttgggtg gatggggatc cctcctgtcc cattctcaaa 11340 aggcagaaca cgtgacttct cacaaggcct tgatttcttc attcacagcc cgggagggga 11400 taagcttccc agaagtgctt aggttatttg aaaaaggccc aggtctcatc aaaggacact 11460 atcaagaaat tgaaaggagg ccaagcacag aggctcacgc ctgtaatccc agcactttgg 11520 aacgccaagg caggcggatc acttgaggtc aggagtttga gaccagcctg gacaacatag 11580 tgaaacctca tctctactaa atatacaaaa actagctgaa tgtagtggct agcctcagct 11640 gctcaggaga ctgtaatctc agctgatcag gaggctgtaa tcccagctac tcaggaggct 11700 gaggcatgag aatcacttga actcaggagg caggggttgc agtgagctga gaccctgctg 11760 ttgcactcca gcctgggc 11778 <210> 2 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p7_F <400> 2 gctacacatg atcgagctat ac 22 <210> 3 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p7_R <400> 3 caggtctctt cactgtaaag tta 23 <210> 4 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p6_F <400> 4 caggaaacag ctatgacctt gtcatgcccc agcttc 36 <210> 5 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p6_R <400> 5 tgtaaaacga cggccagtcc actattggaa tgtgcctga 39 <210> 6 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p5_F <400> 6 caggaaacag ctatgacctc caaggtcttc ccacca 36 <210> 7 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p5_R <400> 7 tgtaaaacga cggccagtcc caagcaatcc ttctgc 36 <210> 8 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p4_F <400> 8 caggaaacag ctatgaccgc acagtggctc acacct 36 <210> 9 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p4_R <400> 9 tgtaaaacga cggccagttc aaaggtttat ccttgcttga 40 <210> 10 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p3_F <400> 10 caggaaacag ctatgacctc ctcacgtaag tccatgaata tc 42 <210> 11 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p3_R <400> 11 tgtaaaacga cggccagtcc ccacaacctc cttttg 36 <210> 12 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p2_F <400> 12 caggaaacag ctatgacccc atctcggcct ctcaaa 36 <210> 13 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p2_R <400> 13 tgtaaaacga cggccagtct aggccaacca ggctca 36 <210> 14 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p1e1a_F <400> 14 caggaaacag ctatgaccgg ttttgcaggt tgttgga 37 <210> 15 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p1e1a_R <400> 15 tgtaaaacga cggccagtag gctccccgtc tttctg 36 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p1e1b_F <400> 16 gccaagagtt gatccttcca 20 <210> 17 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p1e1b_R <400> 17 gctggctctc tcctccaca 19 <210> 18 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e2a_F <400> 18 caggaaacag ctatgaccgg agagagccag cgttca 36 <210> 19 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e2a_R <400> 19 tgtaaaacga cggccagtcc acaccggtcc agagtc 36 <210> 20 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e2b_F <400> 20 caggaaacag ctatgaccca gggcgacgat ttcaag 36 <210> 21 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e2b_R <400> 21 tgtaaaacga cggccagttc ctaggccttg gcaaca 36 <210> 22 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e3_F <400> 22 caggaaacag ctatgacctc acgttgcttc cctgtg 36 <210> 23 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e3_R <400> 23 tgtaaaacga cggccagtgc atagcccagg ctcaaa 36 <210> 24 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e4_F <400> 24 caggaaacag ctatgacctt tgagcctggg ctatgc 36 <210> 25 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e4_R <400> 25 tgtaaaacga cggccagtcc ctaactgccc catgaa 36 <210> 26 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e5_F <400> 26 caggaaacag ctatgaccgt gcctgctgtg tgcaag 36 <210> 27 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e5_R <400> 27 tgtaaaacga cggccagttg gaggccaata gggtca 36 <210> 28 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e6_F <400> 28 caggaaacag ctatgacccc aggcgcaaag agaagt 36 <210> 29 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e6_R <400> 29 tgtaaaacga cggccagtat aggcgcacca ccatgt 36 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e7_F <400> 30 cttcccacct acccttcatt 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e7_R <400> 31 tggggtcttg ctctgtcact 20 <210> 32 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p7_F <400> 32 gctacacatg atcgagctat ac 22 <210> 33 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p7_R <400> 33 caggtctctt cactgtaaag tta 23 <210> 34 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p6_F <400> 34 caggaaacag ctatga 16 <210> 35 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p6_R <400> 35 tgtaaaacga cggccagt 18 <210> 36 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p5_F <400> 36 caggaaacag ctatga 16 <210> 37 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p5_R <400> 37 tgtaaaacga cggccagt 18 <210> 38 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p4_F <400> 38 caggaaacag ctatga 16 <210> 39 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p4_R <400> 39 tgtaaaacga cggccagt 18 <210> 40 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p3_F <400> 40 caggaaacag ctatga 16 <210> 41 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p3_R <400> 41 tgtaaaacga cggccagt 18 <210> 42 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p2_F <400> 42 caggaaacag ctatga 16 <210> 43 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p2_R <400> 43 tgtaaaacga cggccagt 18 <210> 44 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p1e1a_F <400> 44 caggaaacag ctatga 16 <210> 45 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p1e1a_R <400> 45 tgtaaaacga cggccagt 18 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p1e1b_F <400> 46 gccaagagtt gatccttcca 20 <210> 47 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2p1e1b_R <400> 47 gctggctctc tcctccaca 19 <210> 48 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e2a_F <400> 48 caggaaacag ctatga 16 <210> 49 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e2a_R <400> 49 tgtaaaacga cggccagt 18 <210> 50 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e2b_F <400> 50 caggaaacag ctatga 16 <210> 51 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e2b_R <400> 51 tgtaaaacga cggccagt 18 <210> 52 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e3_F <400> 52 caggaaacag ctatga 16 <210> 53 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e3_R <400> 53 tgtaaaacga cggccagt 18 <210> 54 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e4_F <400> 54 caggaaacag ctatga 16 <210> 55 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e4_R <400> 55 tgtaaaacga cggccagt 18 <210> 56 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e5_F <400> 56 caggaaacag ctatga 16 <210> 57 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e5_R <400> 57 tgtaaaacga cggccagt 18 <210> 58 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e6_F <400> 58 caggaaacag ctatga 16 <210> 59 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e6_R <400> 59 tgtaaaacga cggccagt 18 <210> 60 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e7_F <400> 60 cttcccacct acccttcatt 20 <210> 61 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2e7_R <400> 61 tggggtcttg ctctgtcact 20 <210> 62 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2*1C_F <400> 62 gctacacatg atcgagctat ac 22 <210> 63 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CYP1A2*1F_R <400> 63 gggttgagat ggagacattc 20 <210> 64 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> -163C/A_F(24) <400> 64 ttttaaaggg tgagctctgt gggc 24 <210> 65 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> -739T/G_F(20) <400> 65 gcctgggcta ggtgtagggg 20 <210> 66 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> -2847T/C_F(32) <400> 66 tttttttttt ttgccttcaa acatgctctg tt 32 <210> 67 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> -2808A/C_R(36) <400> 67 tttttttttt ttttttaaaa ctgtgggatc aacctg 36 <210> 68 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> -1708T/C_F(40) <400> 68 tttttttttt tttttttttt aaccattcaa aaggaggttg 40 <210> 69 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> -3860G/A_R(44) <400> 69 tttttttttt tttttttttt ttttgcatga caattgcttg aatc 44 <210> 70 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> -3113G/A_F(48) <400> 70 tttttttttt tttttttttt ttttttttca agaggaatcc aaagagac 48 <210> 71 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> -2603A7/A8_R2(52) <400> 71 tttttttttt tttttttttt tttttttttt ttttattttt aaacattttt tt 52 <210> 72 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> -3594T/G_R(56) <400> 72 tttttttttt tttttttttt tttttttttt ttttttttta tttttaatgt tttctt 56 <210> 73 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> -3598G/T_F(60) <400> 73 tttttttttt tttttttttt tttttttttt tttttttttt ctgtaattta atttttttaa 60 60 <210> 74 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> -2467delT_F(64) <400> 74 tttttttttt tttttttttt tttttttttt tttttttttt tttttgagcc atgattgtgg 60 caca 64

Claims (20)

  1. (a) 한국인 또는 이와 유사한 유전적 특성을 가지는 아시아인으로부터 채취된 생물학적 시료로부터 게놈 DNA를 추출하는 단계;
    (b) 상기 (a) 단계의 게놈 DNA를 주형으로 하고 한국인 또는 이와 유사한 유전적 특성을 가지는 아시아인 CYP1A2 유전자 또는 이의 단편을 증폭할 수 있는 프라이머를 이용하여 PCR을 수행하는 단계; 및
    (c) 상기 (b) 단계에서 얻은 PCR 산물의 염기서열에서 -3860G>A, -3598G>T, -3594T>G, -3113G>A, -2847T>C, -2808A>C, -2603insA, -2467delT, -1708T>C, -739T>G, -163C>A, 1514G>A, 2159G>A, 2321G>C, 3613T>C, 5347C>T 및 5521A>G로 이루어진 군에서 선택되는 적어도 11개의 CYP1A2 유전자의 변이의 존재 유무를 조사하는 단계를 포함하는 인간 CYP1A2 유전자의 일배체형을 결정하는 방법.
  2. 제 1 항에 있어서,
    상기 (b) 단계의 프라이머가 서열번호 2 내지 서열번호 31, 서열번호 62 및 서열번호 63의 프라이머로 이루어진 군에서 선택되는 것임을 특징으로 하는 방법.
  3. 제 1 항에 있어서,
    상기 (c) 단계에서 -3860G>A, -3598G>T, -3113G>A, -2808A>C, -2603insA, -2467delT, -163C>A, 1514G>A, 2159G>A, 5347C>T 및 5521A>G의 단일염기다형성의 존재 유무를 조사하는 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서,
    상기 (c) 단계에서 -3860G>A, -3113G>A, -2808A>C, -2603insA, -2467delT, -739T>G, -163C>A, 1514G>A, 2159G>A, 5347C>T 및 5521A>G의 단일염기다형성의 존재 유무를 조사하는 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서,
    상기 (c) 단계에서 -3860G>A, -3598G>T, -3594T>G, -3113G>A, -2808A>C, -2603insA, -2467delT, -163C>A, 1514G>A, 2159G>A, 5347C>T 및 5521A>G의 단일염기다형성의 존재 유무를 조사하는 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서,
    상기 (c) 단계에서 -3860G>A, -3598G>T, 2321G>C, -3113G>A, -2808A>C, -2603insA, -2467delT, -163C>A, 1514G>A, 2159G>A, 5347C>T 및 5521A>G의 단일염기다형성의 존재 유무를 조사하는 것을 특징으로 하는 방법.
  7. 제 1 항에 있어서,
    상기 (c) 단계에서 -3860G>A, -3598G>T, -3594T>G, -3113G>A, -2847T>C, -2808A>C, -2603insA, -2467delT, -1708T>C, -739T>G 및 -163C>A의 단일염기다형성의 존재 유무를 조사하는 것을 특징으로 하는 방법.
  8. 제 1 항에 있어서,
    상기 (c) 단계의 변이의 존재 유무의 확인이 스냅샷 분석을 이용하여 수행되는 것을 특징으로 하는 방법.
  9. 제 8 항에 있어서,
    상기 스냅샷 분석법은 서열번호 64 내지 서열번호 74의 프라이머로 이루어진 군에서 선택된 프라이머를 이용하여 수행되는 것을 특징으로 하는 방법.
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
KR1020070059244A 2006-09-11 2007-06-18 사이토크롬 피450 1에이2 유전자의 일배체형 분석을 위한해플로타입 마커 단일염기변이 및 이의 용도 KR100973048B1 (ko)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020070059244A KR100973048B1 (ko) 2007-06-18 2007-06-18 사이토크롬 피450 1에이2 유전자의 일배체형 분석을 위한해플로타입 마커 단일염기변이 및 이의 용도
CN2007800336773A CN101522911B (zh) 2006-09-11 2007-06-26 用于确定细胞色素p450 1a2、2a6和2d6、pxr以及udp-葡萄糖醛酸基转移酶1a基因的基因型的单倍型标签单核苷酸多态性及其用于多重基因分型的方法
CN201110239136.4A CN102277437B (zh) 2006-09-11 2007-06-26 用于确定UGT1A基因的基因型的htSNP及其用于多重基因分型的方法
JP2009527287A JP2010502212A (ja) 2006-09-11 2007-06-26 シトクロムp4501a2、2a6及び2d6、pxr及びudp−グルクロノシルトランスフェラーゼ1a族遺伝子の遺伝型分析のためのhtsnps、及びそれを用いた遺伝子多重分析法
CN201110240425.6A CN102304572B (zh) 2006-09-11 2007-06-26 用于确定CYP2D6基因的基因型的htSNP及其用于多重基因分型的方法
US12/440,634 US20100159454A1 (en) 2006-09-11 2007-06-26 HtSNPs FOR DETERMINING A GENOTYPE OF CYTOCHROME P450 1A2, 2A6 AND 2D6, PXR AND UDP-GLUCURONOSYLTRANSFERASE 1A GENE AND MULTIPLEX GENOTYPING METHODS USING THEREOF
PCT/KR2007/003102 WO2008032921A1 (en) 2006-09-11 2007-06-26 Htsnps for determining a genotype of cytochrome p450 1a2, 2a6 and 2d6, pxr and udp-glucuronosyltransferase 1a gene and multiplex genotyping methods using thereof
US13/549,981 US20130095478A1 (en) 2006-09-11 2012-07-16 HtSNPs FOR DETERMINING A GENOTYPE OF CYTOCHROME P450 1A2, 2A6 AND 2D6, PXR AND UDP-GLUCURONOSYLTRANSFERASE 1A GENE AND MULTIPLEX GENOTYPING METHODS USING THEREOF
US13/549,873 US20130096010A1 (en) 2006-09-11 2012-07-16 HtSNPs FOR DETERMINING A GENOTYPE OF CYTOCHROME P450 1A2, 2A6 AND 2D6, PXR AND UDP-GLUCURONOSYLTRANSFERASE 1A GENE AND MULTIPLEX GENOTYPING METHODS USING THEREOF
JP2013017994A JP5687721B2 (ja) 2006-09-11 2013-02-01 シトクロムP2D6遺伝子の遺伝型分析のためのhtSNPs、及びそれを用いた遺伝子多重分析法
JP2013017993A JP5687720B2 (ja) 2006-09-11 2013-02-01 シトクロムP2A6遺伝子の遺伝型分析のためのhtSNPs、及びそれを用いた遺伝子多重分析法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070059244A KR100973048B1 (ko) 2007-06-18 2007-06-18 사이토크롬 피450 1에이2 유전자의 일배체형 분석을 위한해플로타입 마커 단일염기변이 및 이의 용도

Publications (2)

Publication Number Publication Date
KR20080111190A KR20080111190A (ko) 2008-12-23
KR100973048B1 true KR100973048B1 (ko) 2010-07-29

Family

ID=40369485

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070059244A KR100973048B1 (ko) 2006-09-11 2007-06-18 사이토크롬 피450 1에이2 유전자의 일배체형 분석을 위한해플로타입 마커 단일염기변이 및 이의 용도

Country Status (1)

Country Link
KR (1) KR100973048B1 (ko)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Drug Metab. Pharmacokinet, Vol.20:1, 24-33 (2005)

Also Published As

Publication number Publication date
KR20080111190A (ko) 2008-12-23

Similar Documents

Publication Publication Date Title
US6525185B1 (en) Polymorphisms associated with hypertension
KR20110081807A (ko) 갑상선암의 위험도 평가를 위해 유용한 유전적 변이
KR100894322B1 (ko) 폐암 감수성 진단용 마커 및 이를 이용한 폐암 감수성 예측및 판단방법
JP5687720B2 (ja) シトクロムP2A6遺伝子の遺伝型分析のためのhtSNPs、及びそれを用いた遺伝子多重分析法
US20030099958A1 (en) Diagnosis and treatment of vascular disease
KR101256928B1 (ko) 비만 또는 당뇨에 관련된 단일염기다형성 및 그의 용도
KR102102051B1 (ko) 아토피 피부염 진단을 위한 마커 조성물 및 이를 이용한 아토피 피부염 예측또는 진단 방법
KR100973048B1 (ko) 사이토크롬 피450 1에이2 유전자의 일배체형 분석을 위한해플로타입 마커 단일염기변이 및 이의 용도
KR101141185B1 (ko) 치료의 제안된 효능 검출용 마커
WO2005078127A1 (en) Method for detecting the risk of cancer, coronary heart disease, and stroke by analysing a catalase gene
WO2006022638A1 (en) Methods for identifying risk of type ii diabetes and treatments thereof
KR101090742B1 (ko) Her-2 유전자를 이용한 폐암 감수성 진단용 마커 및 이를 이용한 폐암 감수성 진단 방법
US20040166491A1 (en) Vhl promoter diagnostic polymorphism
CA2400954C (en) Methods and composition for diagnosing and treating pseudoxanthoma elasticum and related conditions
KR101141546B1 (ko) Ankrd15, hpd, psmd9, wdr66, gpc6, pax9, lrrc28, tns4, axl, 및 hnrpul1 유전자로부터 유래된 단일염기다형을 포함하는 폴리뉴클레오티드, 이를 포함하는 마이크로어레이 및 진단키트, 및 이를 이용한 분석방법
KR100809102B1 (ko) 서비빈 유전자를 이용한 폐암 감수성 진단용 마커 및 이를이용한 폐암 감수성 예측 및 판단 방법
JP2004000115A (ja) 糖尿病の発症危険性判定方法
CA2441701C (en) Detection of il4 and il13 polymorphisms in determination of type 1 diabetes susceptibility
KR101072903B1 (ko) 사이토크롬 피450 2에이6 유전자의 유전형 분석을 위한해플로타입 마커 단일염기변이 및 이의 용도
KR101057129B1 (ko) 프레그난 엑스 수용체 유전자의 기능적 변이형 분석을 위한해플로타입 마커 단일염기변이 및 이의 용도
KR100528627B1 (ko) 시토크롬 p450 3a7 단백질의 기능이상과 관련된 표지인자로서의 유전자
JP2000316578A (ja) 糖尿病発症危険因子の検出方法
Sidoti et al. Alu-Mediated Duplication and Deletion of Exon 11 Are a Frequent Mechanism of PALB2 Inactivation Predisposing to Hereditary Breast-Ovarian Cancer Syndrome
US20030077633A1 (en) Haplotype structures of chromosome 21
US20040053232A1 (en) Haplotype structures of chromosome 21

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130625

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140708

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150706

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160719

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee