KR101256928B1 - 비만 또는 당뇨에 관련된 단일염기다형성 및 그의 용도 - Google Patents

비만 또는 당뇨에 관련된 단일염기다형성 및 그의 용도 Download PDF

Info

Publication number
KR101256928B1
KR101256928B1 KR1020100005221A KR20100005221A KR101256928B1 KR 101256928 B1 KR101256928 B1 KR 101256928B1 KR 1020100005221 A KR1020100005221 A KR 1020100005221A KR 20100005221 A KR20100005221 A KR 20100005221A KR 101256928 B1 KR101256928 B1 KR 101256928B1
Authority
KR
South Korea
Prior art keywords
adiponectin
snp
diabetes
obesity
sequence
Prior art date
Application number
KR1020100005221A
Other languages
English (en)
Other versions
KR20110085436A (ko
Inventor
지선하
설재웅
이종은
조은영
장양수
Original Assignee
주식회사디엔에이링크
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사디엔에이링크, 연세대학교 산학협력단 filed Critical 주식회사디엔에이링크
Priority to KR1020100005221A priority Critical patent/KR101256928B1/ko
Publication of KR20110085436A publication Critical patent/KR20110085436A/ko
Application granted granted Critical
Publication of KR101256928B1 publication Critical patent/KR101256928B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 비만, 당뇨 또는 심혈관 질환 합병증 진단용 키트 및 비만, 당뇨 또는 심혈관 질환 합병증의 네거티브 마커를 검출하는 방법에 관한 것이다. 본 발명은 log10(총 아디포넥틴) 값에 몇몇 SNP들이 연관되어있다는 강력한 증거를 발견하고 이들 중요 SNP들의 존재여부에 대한 분석을 통해 혈액 내 아디포넥틴의 농도를 예측할 수 있어 환자의 콜레스테롤 및 혈당의 조절상황을 예상하여 궁극적으로 비만, 당뇨 또는 혈관관련 질환의 간단한 유전학적 체외진단에 유용하게 이용될 수 있다.

Description

비만 또는 당뇨에 관련된 단일염기다형성 및 그의 용도{Single Nucleotide Polymorphisms Implicated in Obesity or Diabetes and Use Thereof}
본 발명은 비만 또는 당뇨에 관련된 단일염기다형성(SNP) 및 그의 용도에 관한 것이다.
아디포넥틴은 체질량지수(body mass index)와 밀접하게 연관되어 있는 것으로 알려져 있다. 혈청 내의 아디포넥틴은 근육 및 췌장, 간 등의 다른 기관에서의 지방 산화를 증가시킴으로서 인슐린 저항성 및 체중을 감소시킨다. Hotta et al.(2000)2은 비만, 당뇨 또는 관상동맥질환 환자들은 혈청 내 아디포넥틴 농도가 감소함을 밝혔다2 ,3. 저아디포넥틴혈증(Hypo아디포넥틴emia)은 당뇨의 새로운 위험요인으로 보고되고 있다.
아디포넥틴에 영향을 미치는 유전자의 동정은 체질량지수 및 비만의 후유증에 영향을 미치는 유전자를 이해하는 데에 도움이 될 수 있다.4,5 아디포넥틴은 몇가지 형태로 순환하며, 윈칙적으로 저분자량의 헥사머(~180 kDa) 및 고분자량의 멀티머(~360 kDa)의 형태이다.6 최근 몇몇 연구는 흡연자들에서 저아디포넥틴혈증이 발견됨을 보고하였다.8-10
최근에, 전장 유전체 연구(genome-wide association study)에서 Ling 등(200917)은 CDH13 내의 어떤 SNP가 아디포넥틴의 발현량과 4번째로 강력한 연관(p < 2 x 10-5)을 가진다고 보고하였다. 최근의 다른 두 유전자범위 연관 연구를 통해 CDH 13 내의 SNP들이 이완기 혈압(p < 5.55 x 10-5) 및 전립선 암(p < 5 x 10-5)과 연관되어 있음이 보고되었다.18,19 Hug 등(200415)은 육량체(hexameric) 아디포넥틴 및 고분자량 아디포넥틴의 수용체로서 T-카드헤린을 동정하였으나, 삼량체(trimeric) 또는 구형의 아디포넥틴의 수용체는 밝혀내지 못했다. 진핵생물에서 발현되는 아디포넥틴만이 T-카드헤린과 결합하며, 이는 아디포넥틴의 번역후 변형(post-translational modification)이 결합에 중요한 영향을 미침을 시사한다. T-카드헤린은 내피세포 및 평활근 세포(smooth muscle cell)에서 발현되어 아디포넥틴과 상호작용을 한다. T-카드헤린은 glycosyl phosphatidyl inositol-고정 세포외 단백질이기 때문에, 아디포넥틴이 대사신호를 전송하는데 있어 co-receptor로 작용할 수도 있다.
Kremmidiotis 등(199820)은 체세포 하이브리드 패널을 이용하여 인간 CDH13 유전자의 16q24.2 - q24.3 지도를 그렸다.
Tsuda 및 Hirohashi(1995)에 의해 유방암에 있어서 염색체 16q24 부위의 이형접합성의 소실(Loss of heterozygosity ;LOH)이 보고되었다.21 또한, 이 부위의 LOH는 전립선암 및 간세포암에서도 보고되었다.22,23
최근에, Herbbard 등(2008)은 T-카드헤린의 종양 혈관신생 촉진에 대해 역할을 제시함으로서 혈관-T-카드헤린-아디포넥틴 결합이 유방암에서의 종양세포와 stromal compartment 간의 분자 교차교감에 기여할 것이라는 가능성을 높였다.
CDH13 유전자를 통한 대부분의 암 연구가 CDH13 내의 개개의 SNP가 아닌 메틸레이션을 통한 유전자 발현 자체의 억제에 초점이 맞추어져 있다.24,25
최근의 연구를 통해, James 등(2006)은 CDH13 내에서의 allele-특이적 메틸레이션 패턴을 발견하였다.26
몇몇 다른 연구들은 혈청 아디포넥틴 발현량이 특정형태의 암과 관련되어 있다고 보고하였다.27,28 그러나, 혈청 아디포넥틴 발현량과 CDH13 유전자 내의 마커와의 연관에 대한 연구는 많지 않았다. 후술하는 바와 같이, 본 발명에 의해 CDH13 유전자 내의 다중 마커와 아디포넥틴간의 강력한 연관성이 밝혀지게 되었다.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본 발명자들은 현대인의 대표적인 성인병인 비만 및 당뇨 등에 관한 간편하고 신롸성 높은 체외진단 시스템을 개발하기 위하여 예의 연구 노력하였다. 그 결과 체질량지수(body mass index)를 결정하는 혈청 아디포넥틴 발현량과 밀접하게 연관된 일련의 SNP들을 동정함으로써, 본 발명을 완성하게 되었다.
따라서 본 발명의 목적은비만, 당뇨 또는 심혈관 질환 합병증 진단용 키트를 제공하는 데 있다.
본 발명의 다른 목적은 비만, 당뇨 또는 심혈관 질환 합병증의 네거티브 마커를 검출하는 방법을 제공하는 데 있다.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
본 발명의 일 양태에 따르면, 본 발명은 CDH13(Cadherin 13) 유전자의 단일염기다형성(SNP) 부위로서 서열목록 제1서열의 319번째 위치(GenBank SNP 데이터베이스 rs3865188), 서열목록 제2서열의 433번째 위치(GenBank SNP 데이터베이스 rs12596316), 서열목록 제3서열의 271번째 위치(GenBank SNP 데이터베이스, rs7193788), 서열목록 제4서열의 497번째 위치(GenBank SNP 데이터베이스, rs3865185), 서열목록 제5서열의 501번째 위치(GenBank SNP 데이터베이스, rs3852724), 서열목록 제6서열의 58번째 위치(GenBank SNP 데이터베이스, rs3865186), 서열목록 제7서열의 476번째 위치(GenBank SNP 데이터베이스, rs12599599), 서열목록 제8서열의 501번째 위치(GenBank SNP 데이터베이스, rs12597537), 서열목록 제9서열의 251번째 위치(GenBank SNP 데이터베이스, rs16957913), 서열목록 제10서열의 301번째 위치(GenBank SNP 데이터베이스, rs6565051), 서열목록 제11서열의 237번째 위치(GenBank SNP 데이터베이스, rs7204454), 서열목록 제12서열의 251번째 위치(GenBank SNP 데이터베이스, rs17244777), 서열목록 제13서열의 306번째 위치(GenBank SNP 데이터베이스, rs7200895), 서열목록 제14서열의 301번째 위치(GenBank SNP 데이터베이스, rs4783244), 서열목록 제15서열의 301번째 위치(GenBank SNP 데이터베이스, rs8047711), 서열목록 제16서열의 301번째 위치(GenBank SNP 데이터베이스, rs12922394), ADIPOQ(adiponectin, C1Q and collagen domain containing) 유전자의 단일염기다형성(SNP) 부위로서 서열목록 제17서열의 301번째 위치(GenBank SNP 데이터베이스, rs2241767), 서열목록 제18서열의 2610번째 위치(GenBank SNP 데이터베이스, rs864265), 서열목록 제19서열의 112번째 위치(GenBank SNP 데이터베이스, rs1656930), ST6GAL1(ST6 beta - galactosamide alpha -2,6- sialyltranferase 1) 유전자의 단일염기다형성(SNP) 부위로서 서열목록 제20서열의 101번째 위치(GenBank SNP 데이터베이스, rs16861384), EIF4A2(eukaryotic translation initiation factor 4A, isoform 2) 유전자의 단일염기다형성(SNP) 부위로서 서열목록 제21서열의 2045번째 위치(GenBank SNP 데이터베이스, rs266733), OCA2(oculocutaneous albinism Ⅱ) 유전자의 단일염기다형성(SNP) 부위로서 서열목록 제22서열의 251번째 위치(GenBank SNP 데이터베이스, rs7182551), CAV1 (Caveolin 1)유전자의 단일염기다형성(SNP) 부위로서 서열목록 제23서열의 301번째 위치(GenBank SNP 데이터베이스, rs7795356), 서열목록 제24서열의 301번째 위치(GenBank SNP 데이터베이스, rs7800573) 및 DOCK4(Dedicator of cytokinesis 4) 유전자의 단일염기다형성(SNP) 부위로서 서열목록 제25서열의 401번째 위치(GenBank SNP 데이터베이스, rs2301678)로 구성된 군으로부터 선택되는 하나 이상의 단일염기다형성(SNP) 부위를 포함하는 10-100개의 연속 뉴클레오타이드 서열에 특이적으로 결합하는 프라이머 또는 프로브를 포함하는 비만, 당뇨 또는 심혈관 질환 합병증 진단용 키트를 제공한다.
본 발명자들은 비만 및 당뇨 등에 관한 간편하고 신뢰성 높은 체외진단 시스템을 개발하기 위하여 예의 연구 노력하였다. 그 결과 체질량지수(body mass index)를 결정하는 혈청 아디포넥틴(adiponectin) 발현량과 밀접하게 연관된 일련의 SNP들을 발견하였다.
아디포넥틴은 혈액을 순환하는 단백질로서 포도당과 지질 대사를 향상시킴으로써 인슐린에 대한 반응성을 높여주며, 근육, 췌장 및 간 등의 다양한 기관에서의 지방 산화를 증가시킴으로서 인슐린 저항성 및 체중을 감소시킨다. 또한 비만, 당뇨 또는 관상동맥질환 환자들은 혈청 내 아디포넥틴 농도가 감소함이 밝혀짐으로서2 ,3 저아디포넥틴혈증(Hypoadiponectinemia)은 당뇨의 새로운 위험요인으로 보고되고 있다.
본 발명자들은 총 4001명의 대상자 집단에 대한 log10(총 아디포넥틴) 값의 분석 결과 Affymetrix Genome-Wide Human SNP array 5.0 상의 몇몇 SNP들이 연관되어있다는 강력한 증거를 발견하였다. 본 발명에 따르면, 14개의 액손을 가지면서 1.2 Mb에 걸쳐있는 방대한 Cadherin 13 preprotein(CDH13) 유전자에 위치하는 16개의 SNP(rs3865188, rs12596316, rs7193788, rs3865185, rs3852724, rs3865186, rs12599599, rs12597537, rs16957913, rs6565051, rs7204454, rs17244657, rs7200895, rs4783244, rs8047711111rs12922394)가 아디포넥틴의 발현량과 강하게 연관되어 있다. 나아가 본 발명자들은 ADIPOQ(rs2241767, rs864265, rs1656930, rST6GAL1(rs16861384), EIF4A2(rs266733), OCA2(rs7182551), CAV1(rs7795356 및 rs7800573) 및 DOCK4(rs2301678) 유전자 상에 존재하는 9개의 SNP 또한 아디포넥틴 발현량에 연관 되어있다는 사실을 발견하였다. 본 발명의 키트는 상기의 SNP들을 포함하는 각 유전자 서열의 10-100개의 연속 뉴클레오타이드 서열에 특이적으로 결합하는 프라이머 또는 프로브를 이용하여 인간의 비만, 당뇨 또는 심혈관 질환 합병증의 위험도를 예측할 수 있다.
본 명세서에서, 용어“연관(association)”은 특정한 유전자의 다형성과 당해 유전자를 가진 개체의 표현형 간의 관계가 통계학적으로 유의한 경우를 의미하며, 보다 구체적으로는 특정 SNP의 존재와 혈청 아디포넥틴 농도 간의 관계를 나타내는 통계학적 결과의 P 값(P-value)의 크기가 0.05 이하인 경우를 말한다. 상기에서 나열한 총 25개의 SNP들은 총 아디포넥틴 양(μg/ml), log(총 아디포넥틴 양) 또는 고분자량 아디포넥틴 양의 평균값과의 관계에서 최대 7.0 x 10-4 이하의 매우 작은 p 값을 보임으로서 강하게 연관되어 있음을 보여주었고(표 2 내지 9), 특히 가장 연관도가 강한 rs3865188은 초기 시료에서 p = 1.69 x 10-15, 두 번째 전장 유전체 시료에서 p = 6.58 x 10-39, 세 번째 복제 시료에서 p = 2.12 x 10-32, 전체 6,305명의 개인들에 대한 p 값의 메타-분석값은 불과 2.82 x 10-83을 나타냈다.
본 명세서에서, 용어“뉴클레오타이드”는 단일가닥 또는 이중가닥 형태로 존재하는 디옥시리보뉴클레오타이드 또는 리보뉴클레오타이드이며, 다르게 특별하게 언급되어 있지 않은 한 자연의 뉴클레오타이드의 유사체를 포함한다(Scheit, Nucleotide Analogs, John Wiley, New York(1980); Uhlman 및 Peyman, Chemical Reviews, 90:543-584(1990)).
본 명세서에서 용어“단일염기다형성(single nucleotide polymorphism, SNP)”은 게놈에서 단일염기(A, T, C 또는 G)가 종의 멤버들 간 또는 한 개체(individual)의 쌍 염색체 간에 다른 경우에 발생하는 DNA 서열의 다양성을 의미한다. 예를 들어, 서로 다른 개체의 세 개의 DNA 단편들(예: AAGT[A/A]AG, AAGT[A/G]AG, AAGT[G/G]AG)처럼 단일염기에서 차이를 포함하는 경우, 두 개의 대립 유전자(C 또는 T)라고 부르며, 일반적으로 거의 모든 SNPs는 두 개의 대립 유전자를 가진다. 한 집단(population)내에서, SNP는 소수 대립인자 빈도(minor allele frequency, MAF; 특정 집단에서 발견되는 유전자위치(locus)에서 가장 낮은 대립인자 빈도)로 할당될 수 있다. 인간 집단 내에서 변이성(variations)이 존재하며, 지질학적 또는 민족적 군에서 공통적인 하나의 SNP 대립 유전자는 매우 희귀하다. 단일염기는 폴리뉴클레오타이드 서열에 변화(대체), 제거(결실) 또는 첨가(삽입)될 수 있다. SNP는 번역 프레임의 변화를 유발할 수 있다.
단일염기다형성은 유전자의 코딩 서열, 유전자의 비-코딩 부위 또는 유전자 사이의 내부 지역(intergenic regions)에 포함될 수 있다. 유전자의 코딩 서열 내의 SNP는 유전암호의 중복성(degeneracy)으로 인해 반드시 타겟 단백질의 아미노산 서열 상에 변화를 일으키지는 않는다. 동일한 폴리펩타이드 서열을 형성하는 SNP는 동의적(synonymous)이라 하고(침묵 돌연변이라고도 불리움), 다른 폴리펩타이드 서열을 형성하는 SNP의 경우 비-동의적(non-synonymous)이라고 한다. 비-동의적 SNP는 미스센스 또는 넌센스일 수 있으며, 미스센스 변화는 다른 아미노산을 발생시키는 반면에 넌센스 변화는 비성숙 종결코돈을 형성한다. 단백질-코딩 부위가 아닌 곳에 존재하는 SNP는 유전자 사일런싱, 전사인자 결합 또는 비-코딩 RNA 서열을 유발시킬 수 있다.
인간의 DNA 서열 상의 변이성은 병의 발병 및 인간이 어떻게 병원체, 화학물질, 약물, 백신 및 다른 시약에 반응하는 가에 영향을 미칠 수 있다. 또한, SNP는 맞춤형 의약의 개념을 실현하기 위한 중요한 도구(key enabler)로 생각된다. 무엇보다도, 최근에 마커로서 활발하게 개발되고 있는 SNP는 질병을 가지거나 또는 가지지 않는 군들 간에 게놈 부위를 비교함으로써 질병을 진단하는 생의학적 연구에서 가장 중요하다. SNP는 인간 게놈의 가장 많은 변이이며, 1.9 kb 당 하나의 SNP 비율로 존재하는 것으로 추측되고 있다(Sachidanandam et al., 2001). SNP는 매우 안정된 유전적 마커이고, 때때로 표현형에 직접적인 영향을 미치며, 자동화된 유전자형규명 시스템에 매우 적합하다(Landegren et al., 1998; Isaksson et al., 2000). 또한, SNP 연구는 곡식 및 가축 육성 프로그램에서도 중요하다.
본 명세서에서 사용되는 용어 “프라이머”는 올리고뉴클레오타이드를 의미하는 것으로, 핵산쇄(주형)에 상보적인 프라이머 연장 산물의 합성이 유도되는 조건, 즉, 뉴클레오타이드와 DNA 중합효소와 같은 중합제의 존재, 그리고 적합한 온도와 pH의 조건에서 합성의 개시점으로 작용할 수 있다. 바람직하게는, 프라이머는 디옥시리보뉴클레오타이드이며 단일쇄이다. 본 발명에서 이용되는 프라이머는 자연(naturally occurring) dNMP(즉, dAMP, dGMP, dCMP 및 dTMP), 변형 뉴클레오타이드 또는 비-자연 뉴클레오타이드를 포함할 수 있다. 또한, 프라이머는 리보뉴클레오타이드도 포함할 수 있다.
본 발명의 프라이머는 타겟 핵산에 어닐링 되어 주형-의존성 핵산 중합효소에 의해 타겟 핵산에 상보적인 서열을 형성하는 연장 프라이머(extension primer)일 수 있으며, 이는 고정화 프로브가 어닐링 되어 있는 위치까지 연장되어 프로브가 어닐링 되어 있는 부위를 차지한다.
본 발명에서 이용되는 연장 프라이머는 타겟 핵산의 제1위치에 상보적인 혼성화 뉴클레오타이드 서열을 포함한다. 용어 “상보적”은 소정의 어닐링 또는 혼성화 조건하에서 프라이머 또는 프로브가 타겟 핵산 서열에 선택적으로 혼성화할 정도로 충분히 상보적인 것을 의미하며, 실질적으로 상보적(substantially complementary) 및 완전히 상보적(perfectly complementary)인 것을 모두 포괄하는 의미를 가지며, 바람직하게는 완전히 상보적인 것을 의미한다. 본 명세서에서, 프라이머 서열과 관련하여 사용되는 용어, “실질적으로 상보적인 서열”은 완전히 일치되는 서열뿐만 아니라, 특정 서열에 어닐링하여 프라이머 역할을 할 수 있는 범위 내에서, 비교 대상의 서열과 부분적으로 불일치되는 서열도 포함되는 의미이다.
프라이머는, 중합제의 존재 하에서 연장 산물의 합성을 프라이밍시킬 수 있을 정도로 충분히 길어야 한다. 프라이머의 적합한 길이는 다수의 요소, 예컨대, 온도, 응용분야 및 프라이머의 소스(source)에 따라 결정되지만 전형적으로 15-30 뉴클레오타이드이다. 짧은 프라이머 분자는 주형과 충분히 안정된 혼성 복합체를 형성하기 위하여 일반적으로 보다 낮은 온도를 요구한다. 용어 “어닐링” 또는 “프라이밍”은 주형 핵산에 올리고디옥시뉴클레오타이드 또는 핵산이 병치(apposition)되는 것을 의미하며, 상기 병치는 중합효소가 뉴클레오타이드를 중합시켜 주형 핵산 또는 그의 일부분에 상보적인 핵산 분자를 형성하게 한다.
프라이머의 서열은 주형의 일부 서열과 완전하게 상보적인 서열을 가질 필요는 없으며, 주형과 혼성화 되어 프라이머 고유의 작용을 할 수 있는 범위 내에서의 충분한 상보성을 가지면 충분하다. 따라서 본 발명에서의 프라이머는 주형인 상술한 뉴클레오티드 서열에 완벽하게 상보적인 서열을 가질 필요는 없으며, 이 유전자 서열에 혼성화되어 프라이머 작용을 할 수 있는 범위 내에서 충분한 상보성을 가지면 충분하다. 이러한 프라이머의 디자인은 상술한 뉴클레오티드 서열을 참조하여 당업자에 의해 용이하게 실시할 수 있으며, 예컨대, 프라이머 디자인용 프로그램(예: PRIMER 3 프로그램)을 이용하여 할 수 있다.
본 명세서에서, 용어 “핵산 분자”는 DNA(gDNA 및 cDNA) 그리고 RNA 분자를 포괄적으로 포함하는 의미를 갖으며, 핵산 분자에서 기본 구성 단위인 뉴클레오타이드는 자연의 뉴클레오타이드뿐만 아니라, 당 또는 염기 부위가 변형된 유사체 (analogue)도 포함한다(Scheit, Nucleotide Analogs, John Wiley, New York(1980); Uhlman 및 Peyman, Chemical Reviews, 90:543-584(1990)).
본 발명의 키트에서 출발물질이 gDNA인 경우, gDNA의 분리는 당업계에 공지된 통상의 방법에 따라 실시될 수 있다(참조: Rogers & Bendich (1994)).
출발물질이 mRNA인 경우에는, 당업계에 공지된 통상의 방법에 총 RNA를 분리하여 실시된다(참조: Sambrook, J. et al., Molecular Cloning . A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001); Tesniere, C. et al., Plant Mol . Biol . Rep ., 9:242(1991); Ausubel, F.M. et al., Current Protocols in Molecular Biology, John Willey & Sons(1987); 및 Chomczynski, P. et al., Anal. Biochem . 162:156(1987)). 분리된 총 RNA는 역전사효소를 이용하여 cDNA로 합성된다. 상기 총 RNA는 인간(예컨대, 비만 또는 당뇨 환자)으로부터 분리된 것이기 때문에, mRNA의 말단에는 폴리-A 테일을 갖고 있으며, 이러한 서열 특성을 이용한 올리고 dT 프라이머 및 역전사 효소를 이용하여 cDNA을 용이하게 합성할 수 있다(참조: PNAS USA, 85:8998(1988); Libert F, et al., Science, 244:569(1989); 및 Sambrook, J. et al., Molecular Cloning . A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001)).
본 발명의 키트에 있어서, 상기 특정 서열을 규명하는 것은 당업계에 공지된 다양한 방법을 응용하여 실시될 수 있다. 예를 들어, 본 발명에 응용될 수 있는 기술은, 형광 시투 혼성화 (FISH), 직접적 DNA 서열결정, PFGE 분석, 서던 블롯 분석, 단일-가닥 컨퍼메이션 분석(SSCA, Orita et al., PNAS , USA 86:2776(1989)), RNase 보호 분석(Finkelstein et al., Genomics, 7:167(1990)), 닷트 블롯 분석, 변성 구배 젤 전기영동(DGGE, Wartell et al., Nucl . Acids Res ., 18:2699(1990)), 뉴클레오타이드 미스매치를 인식하는 단백질WartE . coli의 mutS 단백질ucl.Ac는 방법(Modrich, Ann. Rev . Genet ., 25:229-253(1991)), 및 대립형-특이 PCR을 포함하나, 이에 한정되는 것은 아니다.
서열변화가 단일-가닥 분자내 염기 결합의 차이를 초래하여, 이동성이 다른 밴드를 출현하게 하는 데, SSCA는 이 밴드를 검출한다. DGGE 분석은 변성 구배 젤을 이용하여, 야생형 서열과 다른 이동성을 나타내는 서열을 검출한다.
다른 기술들은 일반적으로 본 발명의 SNP들을 포함하는 서열에 상보적인 프로브 또는 프라이머를 이용한다.
예를 들어, RNase 보호 분석에서, 본 발명의 SNP들을 포함하는 서열에 상보적인 리보프로브가 이용된다. 상기 리보프로브와 인간으로부터 분리한 DNA 또는 mRNA를 혼성화시키고, 이어 미스매치를 검출할 수 있는 RNase A 효소로 절단한다. 만일, 미스매치가 있어 RNase A가 인식을 한 경우에는, 보다 작은 밴드가 관찰된다.
혼성화 시그널을 이용하는 분석에서, 본 발명의 SNP를 포함하는 서열에 상보적인 프로브가 이용된다. 이러한 기술에서, 프로브와 타깃 서열의 혼성화 시그널을 검출하여 직접적으로 DM 또는 MS 여부를 결정한다.
본 명세서에서, 용어 “프로브”는 특정 뉴클레오타이드 서열에 혼성화될 수 있는 디옥시리보뉴클레오타이드 및 리보뉴클레오타이드를 포함하는 자연 또는 변형되는 모노머 또는 결합을 갖는 선형의 올리고머를 의미한다. 바람직하게는, 프로브는 혼성화에서의 최대 효율을 위하여 단일가닥이다. 프로브는 바람직하게는 디옥시리보뉴클레오타이드이다.
본 발명에 이용되는 프로브로서, 상기 SNP를 포함하는 서열에 완전하게(perfectly) 상보적인 서열이 이용될 수 있으나, 특이적 혼성화를 방해하지 않는 범위 내에서 실질적으로(substantially) 상보적인 서열이 이용될 수도 있다. 바람직하게는, 본 발명에 이용되는 프로브는 본 발명의 SNP를 포함하는 10-30개의 연속 뉴클레오타이드 잔기를 포함하는 서열에 혼성화될 수 있는 서열을 포함한다. 보다 바람직하게는, 상기 프로브의 3’-말단 또는 5’-말단은 상기 SNP 염기에 상보적인 염기를 갖는다. 일반적으로, 혼성화에 의해 형성되는 듀플렉스(duplex)의 안정성은 말단의 서열의 일치에 의해 결정되는 경향이 있기 때문에, 3’-말단 또는 5’-말단에 SNP 염기에 상보적인 염기를 갖는 프로브에서 말단 부분이 혼성화되지 않으면, 이러한 듀플렉스는 엄격한 조건에서 해체될 수 있다.
혼성화에 적합한 조건은 Joseph Sambrook, et al., Molecular Cloning , A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.(2001) 및 Haymes, B. D., et al., Nucleic Acid Hybridization , A Practical Approach, IRL Press, Washington, D.C. (1985)에 개시된 사항을 참조하여 결정할 수 있다. 혼성화에 이용되는 엄격한 조건(stringent condition)은 온도, 이온세기(완충액 농도) 및 유기 용매와 같은 화합물의 존재 등을 조절하여 결정될 수 있다. 이러한 엄격한 조건은 혼성화되는 서열에 의존하여 다르게 결정될 수 있다.
본 명세서에서 용어 “진단”은 특정 질병 또는 질환에 대한 한 객체의 감수성(susceptibility)을 판정하는 것, 한 객체가 특정 질병 또는 질환을 현재 가지고 있는 지 여부를 판정하는 것(예컨대, 대사 이상 또는 당뇨병의 동정), 특정 질병 또는 질환에 걸린 한 객체의 예후(prognosis)를 판정하는 것, 또는 테라메트릭스(therametrics)(예컨대, 치료 효능에 대한 정보를 제공하기 위하여 객체의 상태를 모니터링 하는 것)을 포함한다. 본 발명에 따르면, 본 발명의 SNP들을 다중 마커로 하여 이들의 존재가 상술한 방법을 통해 확인되면 혈청 아디포넥틴의 수준이 높아 포도당 및 지질대사가 원활하여 비만, 당뇨 또는 심혈관 질환 합병증의 위험도가 낮은 것으로 판단된다.
본 발명의 바림직한 구현예에 따르면, 본 발명의 키트는 CDH13(Cadherin 13) 유전자의 단일염기다형성(SNP) 부위로서 서열목록 제1서열의 319번째 위치(GenBank SNP 데이터베이스 rs3865188) 또는 서열목록 제2서열의 433번째 위치(GenBank SNP 데이터베이스 rs12596316)을 포함하는 10-100개의 연속 뉴클레오타이드에 특이적으로 결합하는 프라이머 또는 프로브를 포함한다.
본 발명에 따르면, 발견단계에서 평균 log-아디포넥틴 값과 가장 강력하게 연관된 SNP는 16번 염색체 상의 CDH13 유전자의 rs3865188이며(초기 샘플에서 p = 1.69 x 10-15, 두 번째 샘플에서 p = 6.58 x 10-39, 세 번째 복제 샘플에서 p = 2.12 x 10-32, 전체 6,305명의 개인들에 대한 p 값의 메타-분석값은 2.82 x 10-83), 동일한 유전자 상의 SNP인 rs12596316가 여러 분석 집단에서 rs3865188에 이어 매우 낮은 P 값을 보임으로써(복제 세트 2에서 8.30 x 10-55) 유의성 높은 연관도를 가지는 것으로 나타났다.
본 발명의 바림직한 구현예에 따르면, 본 발명의 단일염기 다형성 부위를 가진 인간은 증가된 혈청 아디포넥틴 농도를 가진다.
본 발명의 보다 바람직한 구현예에 따르면. 본 발명의 아디포넥틴은 고분자량 아디포넥틴이다.
아디포넥틴은 저분자량의 헥사머(~180 kDa) 또는 고분자량의 멀티머(~360 kDa)의 형태로 혈액 내를 순환한다.6 최근의 증거들은 고분자량의 아디포넥틴 복합체가 생물학적 활성 형태임을 시사하며, 나아가 고분자량의 아디포넥틴은 전체 아디포넥틴에 비하여 더 강하게 대사 증후군의 몇몇 특징과 연관되어 있음이 밝혀졌다.7 본 발명에 따르면, CDH13 내의 SNP들의 연관성은 총 아디포넥틴의 경우보다 고분자량의 아디포넥틴이 사용되었을 때 더 강력하다(표 4). 예를 들어, 세 번째 시료에서 rs3865188은 총 아디포넥틴 보다(p = 2.12 x 10-32) 고분자량을 가지는 아디포넥틴과 훨씬 더 강하게 연관(p = 7.36 x 10-58)되어 있음을 확인함으로서 본 발명의 키트는 대상 질환의 진단에 있어서 보다 신뢰성있는 결과를 얻을 수 있음을 알 수 있다.
본 발명의 보다 바람직한 구현예에 따르면, 본 발명의 아디포넥틴 농도는 연령, 성별, 흡연여부 및 체질량지수(body mass index, BMI)로 구성된 군으로부터 선택된 하나 이상의 변수를 보정하여 계산된 것이다. 본 발명자들은 통계 결과에 신뢰성을 높이기 위하여 잠재적 혼동요소인 연령, 성별, 흡연여부 및 체질량지수를 공변인(covariate)으로서 포함시켜 이를 보정(adjust)하였다.
본 발명의 바람직한 구현예에 따르면. 본 발명의 단일염기 다형성 부위를 가진 인간은 감소된 비만, 당뇨 또는 심혈관 질환 합병증 위험도를 나타낸다. 보다 바람직하게는, 본 발명의 진단 대상인 심혈관 질환 합병증은 고트리글리세라이드 혈증, 울혈성 심부전, 심비대증, 부정맥, 관상동맥질환(coronary artery disease, CAD) 또는 심혈관질환(cardiovascular disease, CVD)이다. 보다 더 바람직하게는, 본 발명의 진단 대상인 관상동맥질환은 심근경색, 협심증, 아테롬성동맥경화증, 급성 관상동맥 증후군(예컨대, 불안정협심증, NSTEMI(non-ST-elevation myocardial infarction) 또는 STEMI(ST-elevation myocardial infarction)) 또는 PAOD(peripheral arterial occlusive disease)이다.
본 발명의 바람직한 구현예에 따르면 본 발명의 키트는 아시아인에게 적용된다.
본 발명에서 용어“아시아”는 한국, 중국 및 일본 등을 비롯한 몽골계 인종이 거주하는 극동 지역을 의미한다. “아시아인”이란 조상이 아시아인인 개체군을 의미하며, 바람직하게는 적어도 10대 이상의 조상이 아시아인인 개체군을 의미한다. 본 발명의 바림직한 구현예에 의하면, 본 발명의 아시아인은 한국인이다.
본 발명의 다른 양태에 따르면, 본 발명은 비만, 당뇨 또는 심혈관 질환 합병증의 진단 또는 예후에 필요한 정보를 제공하기 위하여 인간의 생물학적 시료에 있는 CDH13(Cadherin 13) 유전자의 단일염기다형성(SNP) 부위로서 서열목록 제1서열의 319번째 위치(GenBank SNP 데이터베이스 rs3865188), 서열목록 제2서열의 433번째 위치(GenBank SNP 데이터베이스 rs12596316), 서열목록 제3서열의 271번째 위치(GenBank SNP 데이터베이스, rs7193788), 서열목록 제4서열의 497번째 위치(GenBank SNP 데이터베이스, rs3865185), 서열목록 제5서열의 501번째 위치(GenBank SNP 데이터베이스, rs3852724), 서열목록 제6서열의 58번째 위치(GenBank SNP 데이터베이스, rs3865186), 서열목록 제7서열의 476번째 위치(GenBank SNP 데이터베이스, rs12599599), 서열목록 제8서열의 501번째 위치(GenBank SNP 데이터베이스, rs12597537), 서열목록 제9서열의 251번째 위치(GenBank SNP 데이터베이스, rs16957913), 서열목록 제10서열의 301번째 위치(GenBank SNP 데이터베이스, rs6565051), 서열목록 제11서열의 237번째 위치(GenBank SNP 데이터베이스, rs7204454), 서열목록 제12서열의 251번째 위치(GenBank SNP 데이터베이스, rs17244777), 서열목록 제13서열의 306번째 위치(GenBank SNP 데이터베이스, rs7200895), 서열목록 제14서열의 301번째 위치(GenBank SNP 데이터베이스, rs4783244), 서열목록 제15서열의 301번째 위치(GenBank SNP 데이터베이스, rs8047711), 서열목록 제16서열의 301번째 위치(GenBank SNP 데이터베이스, rs12922394), ADIPOQ(adiponectin, C1Q and collagen domain containing) 유전자의 단일염기다형성(SNP) 부위로서 서열목록 제17서열의 301번째 위치(GenBank SNP 데이터베이스, rs2241767), 서열목록 제18서열의 2610번째 위치(GenBank SNP 데이터베이스, rs864265), 서열목록 제19서열의 112번째 위치(GenBank SNP 데이터베이스, rs1656930), ST6GAL1 유전자의 단일염기다형성(SNP) 부위로서 서열목록 제20서열의 101번째 위치(GenBank SNP 데이터베이스, rs16861384), EIF4A2 유전자의 단일염기다형성(SNP) 부위로서 서열목록 제21서열의 2045번째 위치(GenBank SNP 데이터베이스, rs266733), OCA2 유전자의 단일염기다형성(SNP) 부위로서 서열목록 제22서열의 251번째 위치(GenBank SNP 데이터베이스, rs7182551), CAV1 유전자의 단일염기다형성(SNP) 부위로서 서열목록 제23서열의 301번째 위치(GenBank SNP 데이터베이스, rs7795356), 서열목록 제24서열의 301번째 위치(GenBank SNP 데이터베이스, rs7800573) 및 DOCK4 유전자의 단일염기다형성(SNP) 부위로서 서열목록 제25서열의 401번째 위치(GenBank SNP 데이터베이스, rs2301678)로 구성된 군으로부터 선택되는 하나 이상의 단일염기다형성(SNP) 부위를 검출하는 방법을 포함하는 비만, 당뇨 또는 심혈관 질환 합병증의 네거티브 마커를 검출하는 방법을 제공한다.
본 발명의 방법은 상술한 프라이머를 필수 구성요소로 하는 바, 프라이머에 대한 상세한 설명은 본 발명의 방법에 이용되는 프라이머에도 적용된다. 따라서, 반복적인 기재에 따른 본 명세서의 과도한 복잡성을 피하기 위하여 그 기재를 생략한다.
본 명세서에서 용어 “네거티브 마커(negative marker)”는 특정 마커의 존재의 검출을 통해서 대상 질환의 부재 또는 낮은 발병가능성을 확인할 수 있은 마커를 말한다.
본 발명의 방법이 PCR 증폭 과정에 적용되는 경우, 본 발명의 방법은 선택적으로, PCR 증폭에 필요한 시약, 예컨대, 완충액, DNA 중합효소(예컨대, Thermus aquaticus (Taq), Thermus thermophilus (Tth), Thermus filiformis, Thermis flavus, Thermococcus literalis 또는 Pyrococcus furiosus (Pfu)로부터 수득한 열 안정성 DNA 중합효소), DNA 중합 효소 조인자 및 dNTPs를 포함할 수 있다. 본 발명의 방법은 상기한 시약 성분을 포함하는 다수의 별도 패키징 또는 컴파트먼트로 제작될 수 있다.
본 발명의 바람직한 구현예에 따르면 본 발명의 방법은 마이크로어레이 방식 또는 유전자 증폭 방식으로 실시된다. 보다 바람직하게는, 본 발명의 증폭은 PCR(polymerase chain reaction)에 따라 실시된다. 본 발명의 바람직한 구현예에 따르면, 본 발명의 프라이머는 유전자 증폭 반응(amplification reactions)에 이용된다.
본 명세서에 기재된 용어“증폭 반응”은 핵산 분자를 증폭하는 반응을 의미한다. 다양한 증폭 반응들이 당업계에 보고 되어 있으며, 이는 중합효소 연쇄반응(PCR)(미국 특허 제4,683,195, 4,683,202, 및 4,800,159호), 역전사-중합효소 연쇄반응(RT-PCR)(Sambrook 등, Molecular Cloning . A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001)), Miller, H. I.(WO 89/06700) 및 Davey, C. 등(EP 329,822)의 방법, 리가아제 연쇄 반응(ligase chain reaction; LCR)(17, 18), Gap-LCR(WO 90/01069), 복구 연쇄 반응(repair chain reaction; EP 439,182), 전사-중재 증폭(transcription-mediated amplification; TMA)(19) (WO 88/10315), 자가 유지 염기서열 복제(self sustained sequence replication)(20)(WO 90/06995), 타깃 폴리뉴클레오티드 염기서열의 선택적 증폭(selective amplification of target polynucleotide sequences)(미국 특허 제6,410,276호), 컨센서스 서열 프라이밍 중합효소 연쇄 반응(consensus sequence primed polymerase chain reaction; CP-PCR)(미국 특허 제4,437,975호), 임의적 프라이밍 중합효소 연쇄 반응(arbitrarily primed polymerase chain reaction; AP-PCR)(미국 특허 제5,413,909호 및 제5,861,245호), 핵산 염기서열 기반 증폭(nucleic acid sequence based amplification; NASBA)(미국 특허 제5,130,238호, 제5,409,818호, 제5,554,517호, 및 제6,063,603호), 가닥 치환 증폭(strand displacement amplification)(21, 22) 및 고리-중재 항온성 증폭(loop-mediated isothermal amplification; LAMP)(23)를 포함하나, 이에 한정되지는 않는다. 사용 가능한 다른 증폭 방법들은 미국특허 제5,242,794, 5,494,810, 4,988,617호 및 미국 특허 제09/854,317호에 기술되어 있다.
PCR은 가장 잘 알려진 핵산 증폭 방법으로, 그의 많은 변형과 응용들이 개발되어 있다. 예를 들어, PCR의 특이성 또는 민감성을 증진시키기 위해 전통적인 PCR 절차를 변형시켜 터치다운(touchdown) PCR, 핫 스타트(hot start) PCR, 네스티드(nested) PCR 및 부스터(booster) PCR이 개발되었다. 또한, 실시간(real-time) PCR, 분별 디스플레이 PCR(differential display PCR: DD-PCR), cDNA 말단의 신속 증폭(rapid amplification of cDNA ends: RACE), 멀티플렉스 PCR, 인버스 중합효소 연쇄반응(inverse polymerase chain reaction: IPCR), 벡토레트(vectorette) PCR 및 TAIL-PCR(thermal asymmetric interlaced PCR)이 특정한 응용을 위해 개발되었다. PCR에 대한 자세한 내용은 McPherson, M.J., 및 Moller, S.G. PCR. BIOS Scientific Publishers, Springer-Verlag New York Berlin Heidelberg, N.Y. (2000)에 기재되어 있으며, 그의 교시사항은 본 명세서에 참조로 삽입된다.
본 발명의 방법을 프라이머를 이용하여 실시하는 경우에는, 유전자 증폭 반응을 실시하여 본 발명의 마커의 뉴클레오티드 서열을 분석하여 진단한다. 본 발명은 본 발명의 마커의 뉴클레오티드 서열을 검출하는 것이기 때문에, 분석 대상의 시료(예컨대, 게놈 DNA)에서 본 발명의 마커의 뉴클레오티드 서열을 결정함으로써 조사하여 MS 또는 DM을 결정할 수 있다.
본 발명의 가장 바람직한 구현예에서, 증폭 과정은 미국특허 제4,683,195호, 제4,683,202호 및 제4,800,159호에 개시된 PCR(polymerase chain reaction)에 따라 실시된다.
본 발명의 방법은 마이크로어레이 방식으로 실시될 수도 있다. 본 발명의 방법이 마이크로어레이 방식에 의하는 경우에는, 마이크로어레이의 고상표면에 프로브가 고정화 되어 있다.
본 발명의 방법에서 이용되는 프로브는 상기 나열한 본 발명의 SNP들을 포함하는 각 유전자상의 10-100개의 연속 뉴클레오타이드 서열에 상보적인 서열을 갖는다.
프로브 제작 시 참조하여야 하는 본 발명 마커의 뉴클레오타이드 서열은 GenBank에서 확인할 수 있다. 예컨대, 본 발명의 마커 중 하나인 서열목록 제1서열의 뉴클레오타이드는 GenBank SNP 데이터베이스 rs3865188, 서열목록 제2서열의 뉴클레오타이드는 GenBank SNP 데이터베이스 rs12596316에 뉴클레오타이드 서열이 개시되어 있으며, 이 서열을 참조하여 프로브를 디자인할 수 있다.
본 발명의 마이크로어레이에 있어서, 상기한 프로브는 혼성화 어레이 요소(hybridizable array element)로서 이용되며, 기체(substrate) 상에 고정화된다. 바람직한 기체는 적합한 견고성 또는 반-견고성 지지체로서, 예컨대, 막, 필터, 칩, 슬라이드, 웨이퍼, 파이버, 자기성 비드 또는 비자기성 비드, 겔, 튜빙, 플레이트, 고분자, 미소입자 및 모세관을 포함한다. 상기한 혼성화 어레이 요소는 상기의 기체 상에 배열되고 고정화 된다. 이와 같은 고정화는 화학적 결합 방법 또는 UV와 같은 공유 결합적 방법에 의해 실시된다. 예를 들어, 상기 혼성화 어레이 요소는 에폭시 화합물 또는 알데히드기를 포함하도록 변형된 글래스 표면에 결합될 수 있고, 또한 폴리라이신 코팅 표면에서 UV에 의해 결합될 수 있다. 또한, 상기 혼성화 어레이 요소는 링커(예: 에틸렌 글리콜 올리고머 및 디아민)를 통해 기체에 결합될 수 있다.
한편, 본 발명의 마이크로어레이에 적용되는 시료 DNA는 표지(labeling)될 수 있고, 마이크로어레이상의 어레이 요소와 혼성화된다. 혼성화 조건은 다양하게 할 수 있다. 혼성화 정도의 검출 및 분석은 표지 물질에 따라 다양하게 실시될 수 있다.
프로브의 표지는 혼성화 여부를 검출케 하는 시그널을 제공할 수 있으며, 이는 올리고뉴클레오타이드에 연결될 수 있다. 적합한 표지는 형광단(예컨대, 플루오리신 (fluorescein), 피코에리트린 (phycoerythrin), 로다민, 리사민 (lissamine), 그리고 Cy3와 Cy5 (Pharmacia)), 발색단, 화학발광단, 자기입자, 방사능동위원소(P32 및 S35), 매스 표지, 전자밀집입자, 효소(알칼린 포스파타아제 또는 호스래디쉬 퍼옥시다아제), 조인자, 효소에 대한 기질, 중금속(예컨대, 금) 그리고 항체, 스트렙타비딘, 바이오틴, 디곡시게닌과 킬레이팅기와 같은 특정 결합 파트너를 갖는 햅텐을 포함하나, 이에 한정되는 것은 아니다. 표지는 당업계에서 통상적으로 실시되는 다양한 방법, 예컨대, 닉 트랜스레이션 (nick translation) 방법, 무작위 프라이밍 방법(Multiprime DNA labelling systems booklet, "Amersham"(1989)) 및 카이네이션 방법 (Maxam & Gilbert, Methods in Enzymology, 65:499(1986))을 통해 실시될 수 있다. 표지는 형광, 방사능, 발색 측정, 중량 측정, X-선 회절 또는 흡수, 자기, 효소적 활성, 매스 분석, 결합 친화도, 혼성화 고주파, 나노크리스탈에 의하여 검출할 수 있는 시그널을 제공한다.
분석 대상이 되는 핵산 시료는 다양한 생시료(biosamples)에서 얻은 mRNA를 이용하여 제조할 수 있다. 프로브 대신에 분석 대상이 되는 cDNA를 표지하여 혼성화 반응-기초 분석을 실시할 수도 있다.
프로브를 이용하는 경우, 프로브를 cDNA 분자와 혼성화시킨다. 본 발명에서, 적합한 혼성화 조건은 최적화 절차에 의하여 일련의 과정으로 결정될 수 있다. 이런 절차는 연구실에서 사용을 위한 프로토콜을 수립하기 위하여 당업자에 의하여 일련의 과정으로 실시된다. 예를 들어, 온도, 성분의 농도, 혼성화 및 세척 시간, 완충액 성분 및 이들의 pH 및 이온세기 등의 조건은 프로브의 길이 및 GC 양 및 타깃 뉴클레오타이드 서열 등의 다양한 인자에 의존한다. 혼성화를 위한 상세한 조건은 Joseph Sambrook, et al., Molecular Cloning , A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.(2001); 및 M.L.M. Anderson, Nucleic Acid Hybridization, Springer-Verlag New York Inc. N.Y.(1999)에서 확인할 수 있다. 예를 들어, 상기 엄격조건 중에서 고 엄격조건은 0.5 M NaHPO4, 7% SDS(sodium dodecyl sulfate), 1 mM EDTA에서 65℃ 조건으로 혼성화하고, 0.1 x SSC(standard saline citrate)/0.1% SDS에서 68℃ 조건으로 세척하는 것을 의미한다. 또는, 고 엄격조건은 6 x SSC/0.05% 소듐 파이로포스페이트에서 48℃ 조건으로 세척하는 것을 의미한다. 저 엄격조건은 예를 들어, 0.2 x SSC/0.1% SDS에서 42℃ 조건으로 세척하는 것을 의미한다.
혼성화 반응 이후에, 혼성화 반응을 통하여 나오는 혼성화 시그널을 검출한다. 혼성화 시그널은 예컨대, 프로브에 결합된 표지의 종류에 따라 다양한 방법으로 실시할 수 있다. 예를 들어, 프로브가 효소에 의해 표지된 경우, 이 효소의 기질을 혼성화 반응 결과물과 반응시켜 혼성화 여부를 확인할 수 있다. 이용될 수 있는 효소/기질의 조합은, 퍼옥시다아제(예컨대, 호스래디쉬 퍼옥시다아제)와 클로로나프톨, 아미노에틸카바졸, 디아미노벤지딘, D-루시페린, 루시게닌(비스-N-메틸아크리디늄 니트레이트), 레소루핀 벤질 에테르, 루미놀, 암플렉스 레드 시약(10-아세틸-3,7-디하이드록시페녹사진), HYR(p-phenylenediamine-HCl and pyrocatechol), TMB(tetramethylbenzidine), ABTS(2,2‘-Azine-di[3-ethylbenzthiazoline sulfonate]), o-페닐렌디아민(OPD) 및 나프톨/파이로닌; 알칼린 포스파타아제와 브로모클로로인돌일 포스페이트(BCIP), 니트로 블루 테트라졸리움(NBT), 나프톨-AS-B1-포스페이트(naphthol-AS-B1-phosphate) 및 ECF 기질; 글루코스 옥시다아제와 t-NBT(nitroblue tetrazolium) 및 m-PMS(phenzaine methosulfate) 등이다. 프로브가 금 입자로 표지된 경우에는 실버 나이트레이트를 이용하여 실버 염색 방법으로 검출할 수 있다. 따라서 본 발명의 네거티브 마커를 검출하는 방법을 혼성화에 기초하여 실시하는 경우에는, 구체적으로 (i) 본 발명의 마커의 뉴클레오티드 서열에 대하여 상보적인 서열을 가지는 프로브를 핵산 시료에 혼성화시키는 단계; (ii) 상기 혼성화 반응 발생 여부를 검출하는 단계를 포함한다. 혼성화 과정에 의한 혼성화 시그널의 세기를 분석함으로써, 비만, 당뇨 또는 심혈관 질환 합병증의 위험도를 판단할 수 있다. 즉, 시료에서 본 발명의 마커의 뉴클레오티드 서열에 대한 혼성화 시그널이 정상 시료보다 강하게 나오는 경우에는 비만, 당뇨 또는 심혈관 질환 합병증의 위험도가 낮은 것으로 진단된다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 단일염기다형성 부위가 검출된 경우 진단 대상인 인간은 증가된 혈청 아디포넥틴 농도를 가진다.
본 발명의 보다 바람직한 구현예에 따르면 본 발명의 아디포넥틴은 고분자량 아디포넥틴이다.
본 발명의 보다 바람직한 구현예에 따르면 본 발명의 혈청 아디포넥틴 농도는 연령, 성별, 흡연여부 및 체질량지수(body mass index, BMI)로 구성된 군으로부터 선택된 하나 이상의 변수를 보정하여 계산된다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 방법은 아시아인에게 적용된다.
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(a) 본 발명은 비만, 당뇨 또는 심혈관 질환 합병증 진단용 키트 및 비만, 당뇨 또는 심혈관 질환 합병증의 네거티브 마커를 검출하는 방법을 제공한다.
(b) 본 발명은 비만, 당뇨 또는 혈관관련 질환의 간단한 유전학적 체외진단에 유용하게 이용될 수 있다.
도 1은 디스커버리 세트 내의 log(총 아디포넥틴) 값의 전장 유전체(genome wide) 분석에서의 중요도 요약을 나타낸 그림이다. 연령, 성별, 흡연여부 및 체질량지수를 공변인으로 포함하는 선형 회귀모형으로부터 통계학적 중요도[-log10(p-값)]를 나타내었다.
도 2의 위쪽 패널은 모든 세 개의 코호트에 대한 CDH13 내의 SNP의 중요도를 나타낸 그림이다(디스커버리 세트, n = 979, 복제세트 1, n = 3,022 및 복제세트 2, n = 2,034). 연령, 성별, 흡연여부 및 체질량지수를 포함하는 선형 회귀모형을 각각의 SNP에 대하여 사용하였다. 도 2의 아래쪽 패널은 -log10 P 값을 보여주는 그림이다. 검은색, 붉은색 및 흰색 점들은 각각 디스커버리 study, 첫 번째 복제 및 두 번째 복제를 나타낸다. 플롯의 하부는 푸른색 부위를 사이에 둔 재조합률 및 rs3865188의 가장 연관된 SNP에 대한 누적 교차율을 나타낸다(노란색). 중요도가 높은 SNP는 CDH13의 업스트림에 위치한다.
도 3은 전체적인 실험설계를 나타낸 그림이다.
도 4는 디스커버리 세트 및 복제 세트의 변위치(Quantile)-변위치 플롯을 나타낸 그림이다. 관찰된 P값(Y축)을 영 분포(null distribution)(X축) 하에서 예상 P값과 비교하였다.
도 5는 2개의 SNP에 대한 클러스터 플롯을 나타낸 그림으로, 이들과 총 아디포넥틴 수준과의 연관성에 대한 강력한 증거가 된다.
도 6은 979명의 서울시 샘플에 있어서 총 아디포넥틴의 분포 및 총 아디포넥틴의 log값을 나타낸 그림이다.
도 7은 2,304명의 한국 성인들에 있어서 CDH13 모델의 r2으로 측정한 연관 불균형을 나타낸 그림이다(흰색:r2=0. 회색 그늘:0<r2<1. 검은색:r2=1).
도 8은 3,022명의 안산시 샘플에서 log(총 아디포넥틴) 값의 전장 유전체(genome wide) 분석의 중요도를 요약한 그림으로, 공변인으로 연령, 성, 흡연여부 및 체질량지수 포함하는 선형 회귀로부터 통계적 중요도[-log10(p-value)]를 나타낸다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
실험방법
연구대상 집단
GWAS의 대상자들은 서울시의 한국 대사증후군 연구회에서 2005년 11월부터 모집되었다. 총 9128명과 17569명이 각각 2006년과 2007년에 모집되었다.10,11 따라서, 전체 서울시 지원자는 26697 지원자를 포함하게 되었다.
첫 번째 그룹의 지원자들은 2006년 1월과 2007년 11월 사이에 대학병원의 건강증진센터에서 정기 건강검진을 받았다. 이 그룹 중에서, 6563명을 아디포넥틴 발현량 측정을 위해 무작위로 선발하였다. 이중에서 다시 1004명을 GWAS를 위해 선발하였다. 매우 낮거나(33rd percentile) 매우 높은(66th percentile) 아디포넥틴 발현량 및 허리둘레를 가지는 305명을 선별하였고, 나머지 699명은 전장 유전체 지노타이핑을 하기 위해 무작위로 선발하였다. 총 1004명이 서울시 디스커버리 세트를 위해 선발되었다.
복제 세트 1(RS1)의 대상자는 안산시 지원자 집단에서 선발되었다. Korean Genome Epidemiology Study (KoGES)의 일환으로서 2001년에 시작한 초기 안산시 샘플은 40세에서 69세까지의 5020명의 참가자를 포함하였다.12
5,020명의 샘플 중에서, 3022명의 대상자들은 2007년에 아디포넥틴 측정을 실시하였다. 이들 집단은 서울 서쪽 30 km 떨어진 경기지역에서 견본 추출된 것이다. 이 집단에 속하는 대상자들은 기준선 방문 이후부터 2년마다 2008년 말 완료가 계획된 3차 연구(가족들을 대상으로 포함하는)의 검진을 받았다. 안산시 집단에 대한 역학조사, 물리실험 및 연구실 시험을 통해 260가지 이상의 표현형 특색을 조사하였다. 총 3022명에 대해 지노타이핑 하고 아디포넥틴을 측정하였다.
2차 복제세트(RS 2)의 대상자들도 분당구 지역에서의 한국 대사증후군 연구로부터 선별하였다. 분당구 역시 서울 남쪽 30km의 경기지역이다. 분당구에서 총 2304명이 선발되었고, 전체 아디포넥틴 및 고분자량 아디포넥틴 발현량이 모두 높았다.
디스커버리 세트에 대한 지노타이핑 및 정도관리
서울시 샘플은 DNALink에서 Affymetrix Genome-Wide Human SNP array 5.0을 이용하여 지노타이핑하였다. 상기 칩으로부터 얻은 데이터에 대하여, 내부 정도 관리(internal quality control : QC) 측정을 하였다 : QC call rate(Dynamic Model 알고리즘)은 언제나 86%를 넘어섰으며, X 크로모좀 상의 마커의 이형접합성을 통하여 각 개체의 성별이 식별된다.
유전형 calling을 birdseed(v2) 알고리즘을 이용하여 수행하였다. 전장 유전체 디스커버리 단계(genome-wide discovery phase)에서 총 1,004 개체를 이들 플랫폼을 이용하여 지노타이핑 하였다. 그러나, 1,004명 중 10명은 낮은 지노타이핑 call rate(<95%) 때문에 제거하였다. PLINK(version 1.06)를 이용하여 모든 SNP에 대한 IBS(identity-by-state)를 측정하였으며, 4 명이 생물학적인 연관성이 있음이 밝혀져 각 쌍의 한 명씩이 제외되었다. 11명이 성 불합치(gender mismatches) 때문에 제외되었다. 따라서, 최종 979명을 대상으로 이번 전장 유전체 분석을 수행하였다. 유전자형을 DNALink에서 Affymetrix Genome-Wide Human SNP array 5.0을 이용하여 도출하였다. 400,794 SNP들의 디폴트 셋을 Affymetrix 권장사항에 따라 추가적으로 분석하였다. QA(quality assuranck에서스크리닝의 일환으로, 본 발명자들은 유전자형를 genotype call rates < 95%, MAF(minor allele frequency) < 0.01의 SNP 및 0.0001 미만의 p 값에서 Hardy-Weinberg 평형(HWE)에서의 편차를 보이는 SNP를 플래깅하였고, 가능한 마커들의 최종 세트에는 317,859개의 상염색체 SNP가 포함되었다.
분위수대 분위수 플롯(Quantile-quantile plots)
주어진 SNP들에 대해 예상되는 P값의 이론적 분포에 대한 관찰된 P 값의 분포로 곡선을 그림으로서 log(총 아디포넥틴)에 대한 분위수대 분위수 플롯(Q-Q plots)을 구성하였다13. 농도 밴드(Concentration bands)(모든 Q-Q 플롯의 어두운 부위)는 95% 신뢰구간을 나타내며, 귀무가설(null hypothesis) 하에서 무작위 샘플링을 가정하여 p-값의 2.5 및 97.5 백분위수를 계산하여 그렸다(도 4).
지노타이핑 클러스터 플롯
Affymetrix Genome-Wide Human SNP array 5.0을 이용한 지노타이핑은 대략 200-300 샘플의 집단 내에서 BRLMM 알고리즘 하에서 결정하였다. SNP의 클러스터 플롯을 만드는데 있어서, 전체 신호 정보를 처리함으로서 통합된 요약 파일을 생성하였다. 이후 SST1.0(SNP signal tool, Affymetrix)와 유사한 알고리즘을 이용하여 요약 파일을 클러스터 플롯 포맷으로 변역하였다(도 5).
연관 분석
아디포넥틴을 제외한 모든 생체마커는 평범하게 분포함을 발견하였다. 따라서, 아디포넥틴 수준만을 지수변환(log10) 하였다(도 6). 각각의 SNP에 대해 PLINK(http://pngu.mgh.harvard.edu/purcell/plink/)의 가법 모형(additive model) 하에서 log(총 아디포넥틴) 값에 대해 미칠 수 있는 영향을 시험하였다.
연령, 성별, 흡연여부 및 체질량지수가 통합된 다변수 선형 회귀 모형을 이용하였다. 서울 디스커버리 데이터 세트 및 두 개의 다른 복제 세트를 연구간 이종성(between-study heterogeneity)을 평가하는 Cochran’s Q test로 고정된 효과를 나타내는 역편차(inverse-variance) 메타-분석방법을 이용하여 통합하였다14. 모든 메타-분석 계산은 R프로그램을 이용하여 수행하였다(version 2.7.1).
실험결과
본 대상자들의 대부분은 중년이다(표 1). 지원자 중 이들 한국인 대상자들은 평균적으로 낮은 체질량지수를 가지고, 단지 24.1% 및 0.8% 의 남자와 26.9% 및 2.5% 의 여자만이 25 kg/m2 이상 및 30 kg/m2 이상의 체질량지수를 가졌다.
조사대상 표본의 일반적 특성

Discovery 세트1
(복제 세트 1)
복제 세트 1
(Discovery 세트2)
복제 세트 2
대상 서울시 안산시 분당구
숫자 979 3,022 2,304
남성 비율 (%) 56.5 52.4 55.1
Mean±SD Mean±SD Mean±SD
연령(년) 41.5±8.5 54.6±7.4 42.9±7.8
허리둘레 (cm) 81.1±9.7 80.1±8.6 80.1±9.5
신장 (cm) 166.0±8.5 161.8±8.2 166.0±8.3
체중 (kg) 65.6±12.1 64.6±10.0 64.8±11.7
체질량지수 (kg/m2) 23.7±3.1 24.6±2.9 23.4±3.0
총 아디포넥틴* (μg/ml) 6.7±6.4 5.4±5.0 4.4±3.3
Log(총 아디포넥틴) (μg/ml) 0.82±0.29 0.71±0.31 0.64±0.24
고분자량 아디포넥틴 (μg/ml) - - 2.7±2.0
Log(고분자량 아디포넥틴)(μg/ml) - - 0.32±0.31
금식시 혈당 (mg/dL) 93.8±16.4 99.7±31.1 93.7±16.7
수축혈압 (mmHg) 120.8±13.9 111.7±14.1 117.8±14.1
확장 혈압(mmHg) 73.8±10.4 74.9±9.8 76.7±11.8
HDL 콜레스테롤 (mg/dL) 54.1±12.8 44.9 ±10.7 52.2±12.7
LDL 콜레스테롤 (mg/dL) 108.7±29.2 127.7±31.6 117.9±30.7
중성지방 (mg/dL) 118.0±93.6 141.3±89.7 124.9±81.9
% % %
흡연여부 이전 16.8 24.1 21.9
현재 28.1 16.6 23.2
SD: 표준 편차
* Median±IQR
표 2는 979개의 디스커버리 세트 샘플들의 선형 회귀모델로부터 상위 10개의 log10(p 값)의 SNP를 나열한 것이며, 선형 회귀모델들은 연령, 성, 흡연여부 및 체질량지수를 공변인으로서 포함한다(도 1).
Figure 112010003876032-pat00001
16번 염색체(서울시 샘플의 p = 1.69x 10-15 , 안산시 샘플의 p = 6.58 x 10-39, 분당구 샘플의 p = 2.12 x 10-32) 상의 CDH13 유전자에서 log(총 아디포넥틴)과 연관된 것으로 밝혀진 SNP는 rs3865188이다. CDH13 상의 다른 다섯 개의 SNP는 평균 log(총 아디포넥틴)값과 관련된 상위 10개의 SNP 들에 속해있다. CDH13 상의 이들 상위 6개의 SNP를 original 디스커버리 샘플 및 안산시 집단에서 복제하였으며, 매우 유사한 회귀 계수를 보였다. 모든 3개의 데이터 집단을 종합한 rs3865188의 p 값은 2.82 x 10-83 이다(도 2 및 표 3).
이들 상위 10개 중 8개의 SNP는 상위 SNP와 완전히 연관불균형(LD:linkage disequilibrium) 관계이거나 복제세트 1에서 복제되지 않았으므로 복제 세트 2에서 지노타이핑되지 않았다(표 2).
979명의 한국 성인들에서 체질량지수를 보정한 후 선형회귀모델을 이용하여 도출한 log(총 아디포넥틴) 값과 연관이 강한 상위 10개 SNP(통합 세트)
통합세트 1 (N=4,001)
크로모좀 SNP 위치 인접
유전자
통합세트의
효과크기(μg/dl)
P-값* Meta-분석
이종성Q (P)
16 rs3865188a 81208218 CDH13 -0.09 2.82x10-83 3.58 (0.167)
16 rs12596316a 81203653 CDH13 -0.09 3.09x10-77 4.13 (0.1268)
16 rs7193788 81213661 CDH13 -0.07 5.07x10-30 1.14 (0.2861)
16 rs3865186 81204473 CDH13 0.06 1.94x10-24 0.23 (0.6317)
16 rs3852724 81203595 CDH13 0.06 1.34x10-24 0.27 (0.6037)
16 rs3865185 81203963 CDH13 0.06 9.10x10-25 0.29 (0.5907)
1 rs12072620 188794697 FAM5C -0.02 0.029 17.78 (2.48x10-5)
1 rs1501501 188795068 FAM5C -0.02 0.032 17.43 (2.98x10-5)
13 rs4943398 36083064 C13orf36 -0.03 2.36x10-5 7.59 (0.0059)
12 rs17251474 91089449 BTG1 -0.01 0.208 17.8 (2.45 x 10-5)
a이들 두 SNP들은 6,305명의 표본에서 분석하였다.
Figure 112010003876032-pat00002
표 4에서, 회귀 모델의 공변인에서 체질량지수는 제외되었다. CDH13 유전자 내의 SNP인 rs3865188는 비록 그 연관성이 조금 약해졌지만(p = 2.3 x 10-12), 여전히 상위 SNP에 속해있다. CDH13 내의 나머지 5개의 SNP들은 log(총 아디포넥틴)와 연관된 상위 10개의 SNP에 속해있다. 체질량지수가 공변인으로서 생략되었을 때, 모든 3개의 데이터 세트를 종합한 rs3865188의 p 값은 3.33 x 10-76 이다(표 7).
본 발명자들은 2,304개의 복제세트 2 샘플을 사용하여 분리된 표현형으로서 고분자량 아디포넥틴과 모든 SNP들 간의 연관을 조사하였다(표 4). 이러한 복제 분석을 위하여, 본 발명자들은 rs3865188 및 rs12596316과 연결된 6개의 추가적인 SNP를 선별하였다(도 7).
고분자량의 아디포넥틴과 rs3865188간의 연관(p = 7.36 x 10-58)은 총 아디포넥틴과의 연관(p = 2.12 x 10-32)보다 더욱 강해졌다. 또 다른 SNP인 rs4783244 역시 고분자량의 아디포넥틴(p = 5.72 x 10-61)과 크게 연관되어 있다(표 5).
2,304명의 한국 성인들에서 선형회귀모델에 기초한 CDH13 유전자 내의 SNP와 log(총 아디포넥틴) 및 log(고분자 아디포넥틴)과의 연관 정도
총 아디포넥틴 고분자 아디포넥틴
SNP 위치 MAF 효과 P-값* 효과 P-값*
rs17244777 81159584 0.232 -0.025 0.00069 -0.05 8.17x10-8
rs7200895 81202107 0.459 0.035 2.05x10-8 0.069 5.31x10-18
rs12596316 81203653 0.305 -0.076 1.08x10-30 -0.13 8.30x10-55
rs3865188 81208218 0.298 -0.079 2.12x10-32 -0.315 7.36x10-58
rs7204454 81216695 0.352 -0.053 1.78x10-16 -0.084 5.05x10-25
rs4783244 81219769 0.299 -0.079 2.74x10-33 -0.138 5.72x10-61
rs8047711 81225172 0.194 -0.067 3.15x10-17 -0.112 3.47x10-29
rs12922394 81229828 0.212 -0.043 1.19x10-8 -0.073 2.66x10-14
표 5는 이들 상위 2개의 SNP의 총 아디포넥틴 발현량의 유전형적 평균값을 보여준다. SNP rs3865188에 있어서, 유전형 A/A는 유전형 T/T 또는 T/A보다 총 아디포넥틴 발현에 있어서 더 높은 예측 평균값을 보인다. CDH13 유전자 내의 SNP rs12596316에 있어서, 유전형 A/A는 유전형 G/G 또는 G/A보다 총 아디포넥틴 발현에 있어서 더 높은 예측 평균값을 보인다. 복제 세트 2에 있어서도, 본 발명자들은 고분자량의 아디포넥틴 발현량의 유전형적 평균값을 도출하였다.
CDH13 유전자 내의 2개의 상위 SNP에 있어서 총 아디포넥틴 발현량의 유전형적 평균값
SNP 대상 총 아디포넥틴 평균 발현량(SD)
(사람 수)
P-값
rs3865188






T/T T/A A/A
Discovery 세트 1
(n=979)
6.5 (5.5)
(n=102)
7.6 (5.7)
(n=403)
9.4 (6.0)
(n=483)
1.69x10-15
복제 세트 1
(n=3,022)
5.1 (4.9)
(n=329)
6.0 (4.4)
(n=1234)
7.3 (4.7)
(n=1459)
6.58x10-39
복제 세트 2
(n=2,304)
3.9 (1.9)
(n=215)
4.6 (2.5)
(n=920)
5.7 (3.1)
(n=1130)
2.12x10-32
복제 세트 2a
(n=2,304)
1.7 (1.3)
(n=215)
2.3 (3.2)
(n=920)
3.2 (2.3)
(n=1130)
7.36x10-58
rs12596316







G/G G/A A/A
Discovery 세트 1
(n=979)
7.0 (6.2)
(n=98)
7.6 (5.7)
(n=415)
9.3 (5.9)
(n=476)
4.76x10-13
복제 세트 1
(n=3,022)
5.0 (4.9)
(n=307)
6.0 (4.4)
(n=1283)
7.3 (4.7)
(n=1431)
1.73x10-37
복제 세트 2
(n=2,304)
3.9 (2.0)
(n=224)
4.7 (2.6)
(n=944)
5.6 (3.0)
(n=1112)
1.08x10-30
복제 세트 2a
(n=2,304)
1.7 (1.3)
(n=224)
2.4 (1.8)
(n=944)
3.2 (2.2)
(n=1112)
8.30x10-55
SD: 표준 편차
a이들 결과는 고분자량 아디포넥틴 수준에 관한 결과이다.
979명의 한국 성인들에서 체질량지수를 보정한 후 선형회귀모델을 이용하여 도출한 log(총 아디포넥틴) 값과 연관이 강한 상위 10개 SNP(통합 세트)
통합 세트 1 (N=4,001)
크로모좀 SNP 위치 근접
유전자
통합세트의
효과 크기
(μg/dl)
P-값* Meta-분석
이종성Q (P)
16 rs3865188a 81208218 CDH13 -0.09 3.33x10-76 4.10 (0.1288)
16 rs12596316a 81203653 CDH13 -0.09 2.03x10-72 5.16 (0.0759)
16 rs7193788 81213661 CDH13 -0.07 2.84x10-29 1.08 (0.2995)
16 rs3865186 81204473 CDH13 0.06 3.62x10-21 0.67 (0.4131)
16 rs3852724 81203595 CDH13 0.06 1.18x10-21 0.81 (0.367)
16 rs3865185 81203963 CDH13 0.06 1.11x10-21 0.81 (0.3669)
1 rs12072620 188794697 FAM5C -0.02 7.11x10-2 17.49 (2.89x10-5)
1 rs1501501 188795068 FAM5C -0.02 7.11x10-2 17.49 (2.89x10-5)
13 rs4943398 36083064 C13orf36 -0.03 6.89x10-5 5.89 (0.0153)
12 rs17251474 91089449 BTG1 -0.01 2.29x10-1 14.03 (0.00018)
a이들 두 SNP들은 6,305명의 표본에서 분석하였다.
표 8 및 9에서는 3,022명의 안산시 대상자들의 log10(총 아디포넥틴)에 대한 선형 회귀 모델로부터 상위 20위의 log10(p-값)을 가지는 SNP들을 나열하였으며, 회귀 모델은 연령, 성별, 흡연여부 및 체질량지수를 공변인으로서 포함한다(도 8).
3,022명의 한국 성인들에서의 선형회귀모델에 기초한 평균 log(총 아디포넥틴) 값과 연관된 상위 20개 SNP

Discovery 세트 2
(N=3,022)
복제 세트 1 (N=979)
좌위 SNP 위치 근접
유전자
MAF Effect
(mg/dl)
P-값* MAF Effect
(mg/dl)
P-값*
16 rs3865188 81208218 CDH13 0.296 -0.096 6.58x10-39 0.309 -0.093 7.02x10-15
16 rs12596316 81203653 CDH13 0.298 -0.096 1.73x10-37 0.311 -0.085 2.78x10-12
16 rs7193788 81213661 CDH13 0.449 -0.071 6.30x10-24 0.469 -0.057 4.50x10-7
16 rs3865185 81203963 CDH13 0.458 0.064 4.62x10-19 0.448 0.054 1.52x10-6
16 rs3852724 81203595 CDH13 0.458 0.063 6.73x10-19 0.448 0.054 1.52x10-6
16 rs3865186 81204473 CDH13 0.458 0.063 9.98x10-19 0.448 0.055 1.43x10-6
16 rs12599599 81228040 CDH13 0.207 -0.059 3.83x10-12 0.217 -0.054 9.65x10-5
16 rs12597537 81228137 CDH13 0.209 -0.059 6.70x10-12 0.219 -0.052 1.76x10-4
16 rs16957913 81227750 CDH13 0.213 -0.057 1.38x10-11 0.224 -0.051 1.75x10-4
16 rs6565051 81216229 CDH13 0.375 0.045 1.14x10-9 0.369 0.036 0.0017
16 rs7204454 81216695 CDH13 0.351 -0.043 5.15x10-9 0.362 - -
3 rs2241767 188053890 ADIPOQ 0.292 0.043 3.29x10-8 0.291 0.040 0.0012
3 rs864265 188036986 ADIPOQ 0.088 -0.070 5.58x10-8 0.092 -0.023 0.252
3 rs1656930 188035551 ADIPOQ 0.089 -0.068 1.31x10-7 0.092 -0.020 0.304
3 rs16861384 188167205 ST6GAL1 0.078 -0.069 2.10x10-7 0.065 0.031 0.186
3 rs266733 187976007 EIF4A2 0.448 -0.034 2.08x10-6 0.456 -0.026 0.023
15 rs7182551 25621872 OCA2 0.244 0.039 2.62x10-6 0.257 -0.006 0.662
7 rs7795356 116004265 CAV1 0.043 -0.079 3.68x10-6 0.053 0.046 0.073
7 rs7800573 116011874 CAV1 0.043 -0.079 3.86x10-6 0.053 0.046 0.073
7 rs2301678 111164076 DOCK4 0.029 -0.104 4.33x10-6 0.026 -0.042 0.241
3,022명의 한국 성인들에서의 선형회귀모델에 기초한 평균 log(총 아디포넥틴) 값과 연관된 상위 20개 SNP
통합 세트 1 (N= 4,001)
좌위 SNP 위치 근접
유전자
통합 세트의
효과 크기(mg/dl)
P-값* Meta-분석
이종성Q (P)
16 rs3865188 81208218 CDH13 -0.10 4.84x10-54 0.01 (0.934)
16 rs12596316 81203653 CDH13 -0.09 3.86x10-50 0.35 (0.5541)
16 rs7193788 81213661 CDH13 -0.07 5.07x10-30 1.14 (0.2861)
16 rs3865185 81203963 CDH13 0.06 9.10x10-25 0.29 (0.5907)
16 rs3852724 81203595 CDH13 0.06 1.34x10-24 0.27 (0.6037)
16 rs3865186 81204473 CDH13 0.06 1.94x10-24 0.23 (0.6317)
16 rs12599599 81228040 CDH13 -0.06 7.77x10-16 0.04 (0.8352)
16 rs12597537 81228137 CDH13 -0.06 2.44x10-15 0.10 (0.7514)
16 rs16957913 81227750 CDH13 -0.06 5.22x10-15 0.06 (0.7989)
16 rs6565051 81216229 CDH13 0.04 6.45x10-12 0.40 (0.528)
16 rs7204454 81216695 CDH13 - - -
3 rs2241767 188053890 ADIPOQ 0.04 1.13x10-10 0.01 (0.9141)
3 rs864265 188036986 ADIPOQ -0.06 5.44x10-8 3.75 (0.0529)
3 rs1656930 188035551 ADIPOQ -0.06 2.04x10-7 4.10 (0.0428)
3 rs16861384 188167205 ST6GAL1 -0.04 0.00019 14.04 (0.00018)
3 rs266733 187976007 EIF4A2 -0.03 1.51x10-7 0.40 (0.5289)
15 rs7182551 25621872 OCA2 0.03 3.99x10-5 8.30 (0.004)
7 rs7795356 116004265 CAV1 -0.05 6.70x10-4 16.02 (6.27x10-5)
7 rs7800573 116011874 CAV1 -0.05 6.98x10-4 15.97 (6.44x10-5)
7 rs2301678 111164076 DOCK4 -0.09 3.52x10-6 2.14 (0.1433)
ADIPOQ(C1Q 및 콜라겐 도메인을 포함하는 아디포넥틴)내의 다섯 개의 SNP는 평균 log10(총 아디포넥틴)과 연관된 상위 20개의 SNP에 속해있다. 이들 다섯 개의 SNP 중에서, 2개의 SNP(rs2241767 및 rs266733)는 979명의 서울시 데이터로부터 복제되었으나, 나머지 3개의 SNP는 눈에 띄는 효과를 보이진 않았다. ADIPOQ 에서 평균 log(총 아디포넥틴)값과 관련하여 가장 중요한 SNP는 rs2241767 (3022명의 안산시 대상자들에서 p = 3.29 x 10-8, 979명의 서울시 대상자들에서 p = 0.0012)이다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
참고문헌
1. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. NatMed. 7(8):941-946(2001).
2. Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 20(6):1595-1599(2000).
3. Diez JJ, Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol. 148(3):293-300(2000).
4. World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. WHO Technical Report Series no. 894. Geneva, World Health Organization, 2000.
5. Klein S, Burke LE, Bray GA, et al. American Heart Association Council on Nutrition, Physical Activity, and Metabolism. Clinical implications of obesity with specific focus on cardiovascular disease: a statement for professionals from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism: endorsed by the American College of Cardiology Foundation. Circulation. 110(18):2952-2967(2004).
6. Oh DK, Ciaraldi T, Henry RR. Adiponectin in health and disease. Diabetes Obes Metab. 9(3):282-289(2007).
7. Lara-Castro C, Luo N, Wallace P, Klein RL, Garvey WT. Adiponectin multimeric complexes and the metabolic syndrome trait cluster. Diabetes. 55(1):249-259(2006).
8. Takefuji S, Yatsuya H, Tamakoshi K, et al. Smoking status and adiponectin in healthy Japanese men and women. Prev Med. 45(6):471-475(2007).
9. Thamer C, Stefan N, Stumvoll M, HH, Fritsche A. Reduced adiponectin serum levels in smokers. Atherosclerosis. 179(2):421-422(2005).
10. Sull JW, Kim HJ, Yun JE, et al. Serum adiponectin is associated with family history of diabetes independently of obesity and insulin resistance in healthy Korean men and women. Eur J Endocrinol. 160(1):39-43(2009).
11. Yoon SJ, Lee HS, Lee SW, et al. The association between adiponectin and diabetes in the Korean population. Metabolism. 57(6):853-857(2008).
12. Cho YS, Go MJ, Kim YJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 41(5):527-534(2009).
13. Hyndman RJ, Fan Y. Sample quantiles in statistical packages. Am Stat . 50:361365(1996).
14. Ioannidis JP, Patsopoulos NA, Evangelou E. Heterogeneity in meta-analyses of genome-wide association investigations. PLoS One. 2(9):e841(2007).
15. Hug C, Wang J, Ahmad NS, Bogan JS, Tsao TS, Lodish HF. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci USA . 101(28):10308-10313(2004).
16. Hebbard LW, Garlatti M, Young LJ, Cardiff RD, Oshima RG, Ranscht B. T-cadherin supports angiogenesis and adiponectin association with the vasculature in a mouse mammary tumor model. Cancer Res. 68(5):1407-1416(2008).
17. Ling H, Waterworth DM, Stirnadel HA, et al. Genome-wide linkage and association analyses to identify genes influencing adiponectin levels: the GEMS Study. Obesity ( SilverSpring ). 17(4):737-744(2009).
18. Org E, Eyheramendy S, Juhanson P, et al. Genome-wide scan identifies CDH13 as a novel susceptibility locus contributing to blood pressure determination in two European populations. Hum Mol Genet. 18(12):2288-2296(2009).
19. Thomas G, Jacobs KB, Yeager M, et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet. 40(3):310-315(2008).
20. Kremmidiotis G, Baker E, Crawford J, Eyre HJ, Nahmias J, Callen DF. Localization of human cadherin genes to chromosome regions exhibiting cancer-related loss of heterozygosity. Genomics. 49(3):467-471(1998).
21. Tsuda H, Hirohashi S. Identification of multiple breast cancers of multicentric origin by histological observations and distribution of allele loss on chromosome 16q. Cancer Res. 55(15):3395-3398(1995).
22. Carter BS, Ewing CM, Ward WS, et al. Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc Natl Acad Sci USA. 87(22):8751-8755(1990).
23. Tsuda H, Oda T, Sakamoto M, Hirohashi S. Different pattern of chromosomal allele loss in multiple hepatocellular carcinomas as evidence of their multifocal origin. Cancer Res. 52(6):1504-1509(1992).
24. Fiegl H, Millinger S, Goebel G, et al. Breast cancer DNA methylation profiles in cancer cells and tumor stroma: association with HER-2/neu status in primary breast cancer. Cancer Res. 66(1):29-33(2006).
25. Lewis CM, Cler LR, Bu DW, et al. Promoter hypermethylation in benign breast epithelium in relation to predicted breast cancer risk. Clin Cancer Res. 11(1):166-172(2005).
26. Flanagan JM, Popendikyte V, Pozdniakovaite N, et al. Intra- and interindividual epigenetic variation in human germ cells. Am J Hum Genet. 79(1):67-84(2006).
27. Kaklamani VG, Wisinski KB, Sadim M, et al. Variants of the adiponectin (ADIPOQ) and adiponectin receptor 1 (ADIPOR1) genes and colorectal cancer risk. JAMA. 300(13):1523-1531(2008).
28. Wei EK, Giovannucci E, Fuchs CS, Willett WC, Mantzoros CS. Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study. J Natl Cancer Inst. 97(22):1688-1694(2005).
29. Waki H, Yamauchi T, Kamon J, et al. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Bio lChem. 278(41):40352-40363(2003).
30. Kobayashi H, Ouchi N, Kihara S, et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res. 94(4):e27-31(2004).
31. Takahashi M, Arita Y, Yamagata K, et al. Genomic structure and mutations in adipose-specific gene, adiponectin. Int J Obes Relat Metab Disord. 24(7):861-868(2000).
32. Hara K, Boutin P, Mori Y, et al. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes. 51:536-540(2002).
33. Vasseur F, Helbecque N, Dina C, et al. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Hum Mol Genet . 2002;11(21):2607-2614.
34. Deurenberg P, Yap M, van Staveren WA. Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes Relat Metab Disord. 22(12):1164-1171(1998).
<110> Industry-Academic cooperation Foundation Yonsei University <120> Single Nucleotide Polymorphisms Implicated in Obesity or Diabetes and Use Thereof <160> 25 <170> KopatentIn 1.71 <210> 1 <211> 819 <212> DNA <213> Homo sapiens <400> 1 aactgtctct ctcttaacaa agaaagtaga ctatgacaac accttcttca ttcattcatt 60 cattcagcag ttgtttttat aaaaagcaag atatagtaaa acaaaaaaaa aaaaggaaaa 120 agaaaagaag tacatttctg gaatcaaact aaataattgg tttgtaggtt gccagtctcc 180 ccaaactcct cagtcttatt tccacattgt tgccagggca atttttaatt caaccaataa 240 atatcaaatg tctactatga tccatgcata attttactca gcagttaata acagcaagtt 300 tgtccctggt ctttgtggwa tctatgtaca accttcagta gcctctcatt gcccttaggt 360 taaagtccaa atccctaact tggcattcga tgccatgcat aaagatccta tatagctgtt 420 tttctatgtt aatctcccac aacaaaggtc aagtaccaac cacagagaac attctcccat 480 tcatcccacc tcaggtgagg ctacttcatt ttcctcagga cctttgcacc tgctgcttcc 540 ttggaattat ctgtatcacc tttctcctct gcaggcctag gtccacacag tggaccatag 600 ctcatccagg aagtgccacc tcctccagga atttgcccct gatctaccca gcctgggtta 660 aatgcactta caacatgtta ttgttcattt actggagtcc ttcactgcac catgagctgc 720 ctgaggtgaa gaaacaagtc tgattcttat ctatgtcctc aataagccca gtggcaagca 780 cgcacagcac ttcaaaatag cacctatgca ttaataaat 819 <210> 2 <211> 933 <212> DNA <213> Homo sapiens <400> 2 tacctagggg gataccagcc atgcggcagg ttctcaacta atacatgtgt tccttctcct 60 tgcttactca tcatacaaac agaaacacca gtatctatta tcattattga gtagctatga 120 tcatgtatat gccagctgtg ggatcgtgtg ctgttcaagc actgtctcat tggattctgg 180 caacaatcaa gtgagagagc tactatatcc ctctctaatt tactgatgat gaaactgggg 240 cttaggatgg taaaagagta gtccagggac acaaagcttc taaacagcag aaccaggatg 300 taatcctggg gccgggcgcc tccagcgttc aagctgccag ttctcagtac ttttccttgt 360 actcagaaag cagaaatccc attgtgtggc atgtggaaca gttgcagtgt tgaatctacc 420 ctctgttcaa gtrtaattgg gcctgcaacc acttattgac taatatttgt tgagtattta 480 caccattgca ggctctcttc tggacactgg gaatgcactg atgagcaggg aaagtctctt 540 catggaattc caatcccagt taggacacag acaataaaca aacagacaca agcaagaccg 600 agcatcatat tgcaatacgt gatataaaga gaatgatatg gaggaatgag agatgtgact 660 gttggttagg gagtcagaaa gggatatttt gaagaaggat gttcccggaa catttctctg 720 aggaggtggc ccgtgagcca agtcctaaag caaacatggg gagatgcaga cggagggctg 780 atggcaacaa gaacaagcca ggagtgatat gggctcagcg aagaggccgg tgtgaagcag 840 agtgtgcaag gcagagaggt aggagatgag gtcagaccac agcaaggagg tagagattta 900 ttccttggtg atggggagat acacagcgcc aac 933 <210> 3 <211> 747 <212> DNA <213> Homo sapiens <400> 3 ctgcctacat cgaggaaatt cagaaggata tcacaccctg tgtgtcctcc acaaaagatc 60 ttcagacacc cacaggctca cacatgttct tcactgtgtc tagtcctggt ctggactatt 120 gtgagaagac cttgcatcgt agggagctac atgtgatggg cctctcagca tcacacattt 180 ttcaacacaa aagccaatta attcacccgc tcaaaccaag tcttctaagc acctgccgtg 240 ctccagaccc tgttctgagc acgcagcagt raaaatacag aaatgagctt acattccaga 300 ggaagagaca gacaacaagc caacagatgt aatcactcat taattattgc tacaaaacaa 360 attacctcaa aatataaagc aattgtttat tttcaggtca catacctgct gatcagctga 420 gctgggcaaa tttggctggg caagcatctg tgggcccatg aggggctcat atttcctcct 480 aggaccggcg ggatagccca caaatgctct tttcaaggca tcagtaggag cttttgcgag 540 agtaagctaa aacacagagg gtctcttggg acctgagctt ataactggta ccccatccct 600 tctgcttcat ttcatttgtc acagaagttg catggctaaa cccaaggcca aggggcaaag 660 ggcacagatg caggttggag tgaaggattg agatgacaac gcaagcaaca atgcgtagca 720 gaaggtcaag taacataggg ggccagg 747 <210> 4 <211> 993 <212> DNA <213> Homo sapiens <400> 4 atcatttgga aaggcacctg ttcaagctgg gaccattccc tggggaagga agagtgtgcc 60 ctcaggagaa gcagcagaaa tgaggaggcg gtgggagagg agattgtgcg gctaatccct 120 cacaccgtga cttcaccagc ttctaatcgc ctaataacag ggcacataat tggcagaaaa 180 gattgccctg cccttttcac atgtgtctgc aattactttt caaactgggg cgataagtgg 240 catgattggt ttcctcatgc aggcttcagc gccttggaga caggagggct ttcttctgaa 300 gctgtggttg gcgctgtgta tctccccatc accaaggaat aaatctctac ctccttgctg 360 tggtctgacc tcatctccta cctctctgcc ttgcacactc tgcttcacac cggcctcttc 420 gctgagccca tatcactcct ggcttgttct tgttgccatc agccctccgt ctgcatctcc 480 ccatgtttgc tttaggwctt ggctcacggg ccacctcctc agagaaatgt tccgggaaca 540 tccttcttca aaatatccct ttctgactcc ctaaccaaca gtcacatctc tcattcctcc 600 atatcattct ctttatatca cgtattgcaa tatgatgctc ggtcttgctt gtgtctgttt 660 gtttattgtc tgtgtcctaa ctgggattgg aattccatga agagactttc cctgctcatc 720 agtgcattcc cagtgtccag aagagagcct gcaatggtgt aaatactcaa caaatattag 780 tcaataagtg gttgcaggcc caattatact tgaacagagg gtagattcaa cactgcaact 840 gttccacatg ccacacaatg ggatttctgc tttctgagta caaggaaaag tactgagaac 900 tggcagcttg aacgctggag gcgcccggcc ccaggattac atcctggttc tgctgtttag 960 aagctttgtg tccctggact actcttttac cat 993 <210> 5 <211> 1001 <212> DNA <213> Homo sapiens <400> 5 ctgacctcat ctcctacctc tctgccttgc acactctgct tcacaccggc ctcttcgctg 60 agcccatatc actcctggct tgttcttgtt gccatcagcc ctccgtctgc atctccccat 120 gtttgcttta ggacttggct cacgggccac ctcctcagag aaatgttccg ggaacatcct 180 tcttcaaaat atccctttct gactccctaa ccaacagtca catctctcat tcctccatat 240 cattctcttt atatcacgta ttgcaatatg atgctcggtc ttgcttgtgt ctgtttgttt 300 attgtctgtg tcctaactgg gattggaatt ccatgaagag actttccctg ctcatcagtg 360 cattcccagt gtccagaaga gagcctgcaa tggtgtaaat actcaacaaa tattagtcaa 420 taagtggttg caggcccaat tatacttgaa cagagggtag attcaacact gcaactgttc 480 cacatgccac acaatgggat ktctgctttc tgagtacaag gaaaagtact gagaactggc 540 agcttgaacg ctggaggcgc ccggccccag gattacatcc tggttctgct gtttagaagc 600 tttgtgtccc tggactactc ttttaccatc ctaagcccca gtttcatcat cagtaaatta 660 gagagggata tagtagctct ctcacttgat tgttgccaga atccaatgag acagtgcttg 720 aacagcacac gatcccacag ctggcatata catgatcata gctactcaat aatgataata 780 gatactggtg tttctgtttg tatgatgagt aagcaaggag aaggaacaca tgtattagtt 840 gagaacctgc cgcatggctg gtatccccct aggtattctt cctcacaaca atatttaaat 900 aattttttta attgtacatc ttcaagttac ataacttgat gatttgatgt atgtattcat 960 tgtgaaataa tcaccatgat tacaacaatt aacataccca t 1001 <210> 6 <211> 867 <212> DNA <213> Homo sapiens <400> 6 ctgcgttttt taagggtctc ttgccggtct catttttctt ttacaaacaa ggacaagytg 60 ctttagagga catcatttgg aaaggcacct gttcaagctg ggaccattcc ctggggaagg 120 aagagtgtgc cctcaggaga agcagcagaa atgaggaggc ggtgggagag gagattgtgc 180 ggctaatccc tcacaccgtg acttcaccag cttctaatcg cctaataaca gggcacataa 240 ttggcagaaa agattgccct gcccttttca catgtgtctg caattacttt tcaaactggg 300 gcgataagtg gcatgattgg tttcctcatg caggcttcag cgccttggag acaggagggc 360 tttcttctga agctgtggtt ggcgctgtgt atctccccat caccaaggaa taaatctcta 420 cctccttgct gtggtctgac ctcatctcct acctctctgc cttgcacact ctgcttcaca 480 ccggcctctt cgctgagccc atatcactcc tggcttgttc ttgttgccat cagccctccg 540 tctgcatctc cccatgtttg ctttaggtct tggctcacgg gccacctcct cagagaaatg 600 ttccaggaac atccttcttc aaaatatccc tttctgactc cctaccaaca gtcacatctc 660 tcattcctcc atatcattct ctttatatca cgtatcgcaa tatgatgctc ggcttgcttg 720 ggtctgtgtt tattggctgt ggcctactgg gattggaatt catgaaggac tttcctgctc 780 atcatgcatt tccagtgtcc agaagagagc cctgcatgtg taatactcac aaaaatagtc 840 attagggttt gcaggcccat atacttg 867 <210> 7 <211> 746 <212> DNA <213> Homo sapiens <400> 7 tctctgagac ttttcatgca caagatattt gagagaaaca ttgccaagcc ctttaatcgt 60 ttcttgaaca ttcaatcagc agcactggaa atatgtctta catgaagcaa ataatgatct 120 tctaccctca gcaatcgctt tgccaatgct aacaagcctc tgcttcagca tgttgggtgt 180 agccttggtg acttctgttt gtggtgtagt aggagaatat tcaactgggt gccaggcagt 240 ggtatattgg taaatgttta acaactgggc cactctaaag aaacacccaa accagaaagc 300 aaaacccaaa ccaagacaca accaagtaat ttgtagctct tgccaatttc tgtgatgtaa 360 atactcccgt catgggcaat ttgaatctgc caacctgaga gtttcctaaa aacttaacaa 420 ggggctcttg ctacctgata ctaactggct ccagcacacc atggacctgg atcctrtttc 480 tagctcaccc cctcactcgt ggtatgacct tcagcaagca gcttgaatgt tttcatctgt 540 aaaatggacc aggttacttg gaggttcaag tgagtaaaaa gatgttagaa tgcagggaag 600 tccaatttgc tgcaaagatg catgcagatt atctaaatca ttatcactta caaggaaaca 660 ggacctttgg ccaggatcct acagctgtct aattgggccc tgtaaaaata ctttgattca 720 gccactgaat gaagtttgat gtgtga 746 <210> 8 <211> 701 <212> DNA <213> Homo sapiens <400> 8 caatcagcag cactggaaat atgtcttaca tgaagcaaat aatgatcttc taccctcagc 60 aatcgctttg ccaatgctaa caagcctctg cttcagcatg ttgggtgtag ccttggtgac 120 ttctgtttgt ggtgtagtag gagaatattc aactgggtgc caggcagtgg tatattggta 180 aatgtttaac aactgggcca ctctaaagaa acacccaaac cagaaagcaa aacccaaacc 240 aagacacaac caagtaattt gtagctcttg ccaatttctg tgatgtaaat actcccgtca 300 tgggcaattt gaatctgcca acctgagagt ttcctaaaaa cttaacaagg ggctcttgct 360 acctgatact aactggctcc agcacaccat ggacctggat cctgtttcta gctcaccccc 420 tcactcgtgg tatgaccttc agcaagcagc ttgaatgttt tcatctgtaa aatggaccag 480 gttacttgga ggttcaagtg rgtaaaaaga tgttagaatg cagggaagtc caatttgctg 540 caaagatgca tgcagattat ctaaatcatt atcacttaca aggaaacagg acctttggcc 600 aggatcctac agctgtctaa ttgggccctg taaaaatact ttgattcagc cactgaatga 660 agtttgatgt gtgagaaaca gagggtgtac ctctgcttcc t 701 <210> 9 <211> 501 <212> DNA <213> Homo sapiens <400> 9 caccgtgggg gcctggaaat gcccttgaat aaagtgaccg acgtgcagcc tgtacaatta 60 accaatctct gagacttttc atgcacaaga tatttgagag aaacattgcc aagcccttta 120 atcgtttctt gaacattcaa tcagcagcac tggaaatatg tcttacatga agcaaataat 180 gatcttctac cctcagcaat cgctttgcca atgctaacaa gcctctgctt cagcatgttg 240 ggtgtagcct yggtgacttc tgtttgtggt gtagtaggag aatattcaac tgggtgccag 300 gcagtggtat attggtaaat gtttaacaac tgggccactc taaagaaaca cccaaaccag 360 aaagcaaaac ccaaaccaag acacaaccaa gtaatttgta gctcttgcca atttctgtga 420 tgtaaatact cccgtcatgg gcaatttgaa tctgccaacc tgagagtttc ctaaaaactt 480 aacaaggggc tcttgctacc t 501 <210> 10 <211> 601 <212> DNA <213> Homo sapiens <400> 10 catcagcact aaggacaagg gaatggggag accacagaag gccagcagaa ctgtaaaact 60 gacagcaccg aactgtcctt agaacacagc cttgaaaact ccctcttctg agggactgct 120 tcccttaact gagctgctgc agatggaaac ctagctagat cctcatcttc tgcagtctag 180 tccctcactg tggtttatca cctcccaagc tgtcctctgc tctctttccc tatctttgtg 240 ttgctaagcc atggactcag tttagctggc cctgaattac aagatggcac cttccctgga 300 rtggagaaaa gtccggatat ttcaggatgc cttgatttga agcctgtttg actccaaagt 360 tctctggttt actcccacct gtgggaaacg tgaggctaga tctccacaca catggattcc 420 aaagtgtcat gatctgtgac gtcatctgtc ggaccgtatt gatcagaggc tcagggacag 480 atgaccctat ttaggcaagg aaatgagtgg gtgaagcagc aagattcacc tttcccagtt 540 tcatctgggg gttgttttgc caacattgcc atctgttggg ccagtgctgg ctacagcagc 600 c 601 <210> 11 <211> 645 <212> DNA <213> Homo sapiens <400> 11 tttcccagtt tcatctgggg gttgttttgc caacattgcc atctgttggg ccagtgctgg 60 ctacagcagc caagcttcag acatcactgc atctttatca atgaccttgg gaccacagga 120 ggtgaccttc tgaccaaaca gcagccaatg aaggaatctt aaaaggcaca tcactttata 180 tttattcagt ggttatgtca tcacttaatc ctcaccacaa ccttgtgagt tcagtasaat 240 ttgtgttttc attttatctg tgaacaaatg gaggcagaga gtttgagtaa tttacaagta 300 agtggcagat ccgggggctg tgcctagaca atgtggctcc agactccttg cccctccctg 360 ccttctgctg catcttgatt gagtctagcc atctatttct ttaacacaca ctaattgctg 420 tctccatgtt ccaggccctg tgccagatgc tagaaataca tccccatcca ctggatcttg 480 gcatggtcca ttgctcagtg tcctgctatg ttacgtgtta cataatgcat ttattccggt 540 atttagccca tggaaaataa tgctgaaaga cattgtatgc atgtttctac aacaaaacta 600 tgtaacttat gtttctttta ttgctttggc tatcaggaag ctctt 645 <210> 12 <211> 501 <212> DNA <213> Homo sapiens <400> 12 ccaaagaact aggtcacata aagggagaag gggaatgagc attaccctcc aagaagctat 60 gtatatagga agacaaaaat tagttctatc tattagagca gattatttgg tttagaatta 120 agtgagagaa aaattatata caagtgacac cataagagta tcctggagcc tgtatggcta 180 gaggggagta gtttgctgag aaaatagtta ttcatcatca ccgggtcatg gctgtgtgcc 240 attatctttc mttgccctgg agattcactc tgctcccttc ttgctgctca gtgccttgga 300 ggctacagac tgcctcaccg gggctcctgg gccccctgct tctagttagg tggctaatgg 360 agaacgctag acggagcaaa gagggtgagg gtaccttggg ctgactgtgt cctttgactt 420 aatgtcacat gtccggtcgg gagcaacttt tctctatgat gctgtcttgc tggaccatga 480 gttttttgaa tgaagctaga c 501 <210> 13 <211> 806 <212> DNA <213> Homo sapiens <400> 13 tggcagggcc ttctcctctg ggttggaagg gtcattatta gatgggaggt tcatgtacta 60 ggcagacact ccaaaatgtc tactacaaac ctccacactg gtggggagca ctggccagct 120 tataaccaca cacacttcgg tgggctataa gaaatccaaa gctttaaggt tgtctgattt 180 agcaaaaaag aaagttatta taagtattta atagttgtga catatttaat accaggaaat 240 tgtttgttgt ttatctgaaa ttcaaattca actgcacatc ctttattgta tctggcaact 300 tgaccyaagg gtgagggtta tccttcttcg ttggagctgt catggaaaaa gaactgggaa 360 aattttaact ctgagtctca aactaagttt ttcatgccca agggctgctt gtattcatgt 420 cctgtttgtt ttctgtgatc tgttttcatt ttcaagagaa gcaacctggt ttgatgagaa 480 aacagagacc ccgacactga ggtctgaatc tgccacttgt ggactgcatg atgctgagca 540 agccagtgag gtacctctgt cttctcatct ggaaaccagg catcgccatg cctatttcag 600 aagggtcctg tgagctccat ccctgttgtt ccaaatggta acacttcctt tgttcttcag 660 gctgaatagt attccatccc atatatatat atatatatac acacacacac acacacacac 720 acatacatat atatacacac atatacatat atacacatat gcatatatac atatacacac 780 ttatgcatac atacatacat actcta 806 <210> 14 <211> 601 <212> DNA <213> Homo sapiens <400> 14 agtttgcggg tgaaaggcag gggaagggag ttgggttccc aggtagggac tgtctgggat 60 ggggagactg gtgcagactt ctaagggaga ccactgttag agcaatgttg ggtttagact 120 ttggaaatgg gctaacatct cagaaatgca gtgatgggtg atagtaccag gggagattca 180 agtgcccggc tgctgagccc gctcccaagc tcctgacttc tttcttggat atacagtccc 240 gattaaggac tgcccagtta tagctccttt tctaccaggc ttttctggtt gattatcttg 300 kggtccctac agccttgagt cttgccatgg atcccaagcc tggctgtgaa ccagttttcc 360 agatgtcctg taccctagag accccaaggc tgtatgtgtg tacatatacc ccaatttagc 420 aaggcggttt ggagcatgcc tcagacagaa aggattcaga cagatccttc ctgccatctg 480 ctagtggtac caacccgggc aagttgttta acctctttga gcttccaagt tctccattgt 540 aaaataatct gctgccttcc taggactgct gagtggatag gattgcattc aacaggatgt 600 c 601 <210> 15 <211> 601 <212> DNA <213> Homo sapiens <400> 15 ccacggccgt tctacataca gtgttaatgc tacaattaat gctctctggc tctgtaaata 60 ctagactaat ctgtctgcct catcccatac cagcaggtga gcctcagatg attcttgttt 120 tccatagcta cagaccccaa agatcagagt aaatataact ccatatacac atatgaaaaa 180 aagtgattgt ttttcctctg ccagttgcca acagaagtca aattctagaa aactaacatt 240 aacaacaggc acgttttgac ttgtcatgtc tcatttcaaa gacaccaatg agcatcaccc 300 ratctgctgc agaggcacaa agaccctgtg tctcctagct gaacgcagcc cgggctgggg 360 cggagggcag cagctgctca gccatcaaca gccctgccac atgcctgggc agggcccgga 420 aatgagctca gcctctggag gagcctgggg aatggaagga aggaatgtgg cagcttccat 480 ccttgcctta cggggccttc aggccaatgt ctctttccct caaggtgtca gggaaccgct 540 ttcttgtgtt gtgtgctgca ggaagaaggt ggtggctgca gacacctgaa gcttgagctt 600 c 601 <210> 16 <211> 601 <212> DNA <213> Homo sapiens <400> 16 aacaactgaa aaggaatatc tatgcttgcc ctgcaggatt tttgtgagaa ttaaataagt 60 gtatgttaat gatgtcatcc tatgcttaag aaatgttggt tgtattactt ttcaccctat 120 gctccaagga attttatggt ctgaaggtgt catggggtct tggctttcag gatgtgactc 180 acttaagggg ggaaatgact gtgcatgtca taatgcgtgg acattaaaaa aaataaagtt 240 tgctccccag ggaggatttg ccaattccca tattagtagg tcccccaaga ttgttcccct 300 ygggattcat gcctcataaa atcatttgat ctggtgggat ctcatcttct taatgtgtct 360 gcccatcatc tgttcctggg aggctttatt agggcagtgt gtgcgtgtgt gcgtttgtgt 420 gcatgcacgc accagtgcca tgagtacttg tttaaagtac ctccatgtaa ccacaattca 480 ctgtagttgc tatgcactag ttacccatgt tatctggaat ccttcctgca acccttagag 540 gcgactctta ttcccaattt tatatacgat gagaagaagt tttgagtggt ggagtcattt 600 g 601 <210> 17 <211> 601 <212> DNA <213> Homo sapiens <400> 17 gaccaggaaa ccacgactca agggcccgga gtcctgcttc ccctgcccaa gggggcctgc 60 acaggttgga tggcgggcat cccagggcat ccgggccata atggggcccc aggccgtgat 120 ggcagagatg gcacccctgg tgagaagggt gagaaaggag atccaggtaa gaatgtttct 180 ggcctctttc atcacagacc tcctacactg atataaacta tatgaaggca ttcattatta 240 actaaggcct agacacaggg agaaagcaaa gcttttttat gttaaccata agcaacctga 300 rgtgatttgg ggttggtctt ccaaggatga gtgtagatgg tgcctctata accaagactt 360 tggctttgct gcatctgcag ctccttttcc atcccctttc ccatcttcac cctcatccct 420 attcccagta cattcatatt ctgattcctc tttctgtctg cttaacttcc atttcaccca 480 gtggcattca accacattta ctgcacaccc cctgaaaggc tcagtcctgc ctttggggaa 540 ctcttgatct aggtaagatg tctaatgtgc aaggctctgt tggtggttac tacaagaaag 600 t 601 <210> 18 <211> 4721 <212> DNA <213> Homo sapiens <400> 18 tacccgattg gaactagaat atgtcaccct gaaagaacac tcaccaaaga ttggcttaag 60 tcttcctcct tttagtctgt aaaacttact cttctaggct ggcgcagtgg ctcacgccta 120 taatcccagc actttgggaa gctaaggcgg gtggatcacc tgaggtcagg agttcgagac 180 cagcctggca aacatggtaa aaccccgtct ttactaaaaa tacaaaaatt agctgggaat 240 agtggcaggt gcctgtagtc ccagctgctc aggaggctga ggcaggagaa tcgcttcaac 300 ctgggaagcg gagcttgcag tgagctgaga tcgtgctact gcactccagc ctgggcaaga 360 gtgagactcc atctcaaaac aaacaaacaa acaataagac aaaaaaactt actctccttt 420 caaacccctt ccaacctcta ctataatgaa aatgatggca gctgactccc ttataacagt 480 aagttttgaa taaacagcct ttgattaatt ctattttgtt tgccaaagaa aataattaaa 540 gtttggtaaa ataaaataat taaaagaaaa agaaatcatg gacactctag aagaaaacat 600 ttatttgagc tttactgctg aaaaagaaaa catattttaa aaagtaacct tgactgcaca 660 gcaaaagaaa ctatcaacaa agtaagcaga caacctacag aatggaagaa aatatgcaca 720 aactatgtat ctgacaaagg tctaatattc agaatctata aggaacttaa atcaacaagc 780 aaaaaacaaa taaccccatt tatggccttt gcttactttt tgggcagtcc tcaaaagaag 840 acatccaagt ggcaaacaat catatgaaaa aatgcttatc atcactaatc atcagagaaa 900 agcaagtcaa aaccacagtg aagtatcatc acacaccagt caaaatggct attattaaaa 960 ataacagatg ttggcagtgc tgcagagaaa agggattgct tatgcactgt tggtgagaat 1020 gtaaattcat ttagctactg tggaaagcag gagatttctc aaagaactaa aaatatatat 1080 atcattcaaa ccaacaattc cattactaga tatatatcca aaggaaaata aattgttcta 1140 tcaaaaagac acatgcacct gtatgttcat cgcagtatta ttcgcaatag caaatacatg 1200 gaatcaacca aggtgttaat caacagagga gtggataaag aaaatgtggt acatatacac 1260 catggaatac tatacagtca gaagaaagaa tgaaatcatg gcctttgcag caacatggat 1320 gcagctaggg accattatcc taagtaaact aatgcagaaa cagaaaagca aatgccacat 1380 gttctcactt ataagtggga gccaagtgag tacacatgga catgaaatgg aaacaataga 1440 cactggagac tacaagagaa gggaggggga cagggattga aaaactacct attgggtact 1500 atgctcagta cttgagtgat gggttcaatc gtatgcaaat ttcagcatca tgcaatatac 1560 ccttgtaaca aacctgcaca tgtaccaccc ctgaatctaa aataaaagtt gaaaaaaaca 1620 aaaacaaaaa aaccccttgg aatgggagga gtcttttcag accaaacatg agacccagaa 1680 gacaaaaagt aaactgttaa taagttaggc tgcatagcaa gccaaaattt ttatatgaaa 1740 cattttttaa agtgaaaaga tagataaatt ttcaaaacat ataacaaaga attaatttct 1800 ttggtataca atgagctttt aaaaattaat aagaataatt caatgagagg ttgaaatggg 1860 tacaaatata gagttaggta gaagcataag acctaagtgt ttgatagatc agtagggtga 1920 ctatagttca agataatcta ttgtacctgt caaaatagct agaagagaac aattcaaatg 1980 ttcctagcat taaaaaagat aaatattgcc ggtgatgaat accctaatta cttttttttt 2040 ttccagacag agtctcgttc tgtcacccag gctgaagtgc aatggcgcaa tcttggctca 2100 ctgcaacctc cgcctcctgg gttccagtga ttctcctgtc tcagcctccc aagtagctgg 2160 gattacaggg gcccacagcc atgcctggct aatttttgta tttttagcag agatggggtt 2220 tcaccatgtt ggtcagactg gtcttgaact cctgatctca ggtgatacac ccacctcggc 2280 ctcccaaagt gctgggatga caagcgttag tcactgtacc cgacctcctt agatctttac 2340 acattatatg aatgtgtcaa attattacat gtatcccaaa aatatgtaca ttatgtgtta 2400 ataaaaagat tttcaaaatt aataagaata attcaataag gaaaatggac aagggaagaa 2460 acacacaatt ccaggaaaaa atacaaataa tcaataaata tatgatgcat ttaatcacat 2520 ataatagaag aaatacaaat aaaaataagg cacttttaac acaatctatt agaataccag 2580 atatttaaat ttgacagaat tgagtattgk tgaggatata gagaaatggg cactctcatc 2640 ctacattggg agaaatataa atcaatactg gattcttgag attcagttta caataagtac 2700 aatttaagat gtgcatatct ctttaccctg caattccact tctagaaatt tatcctaaat 2760 atttacttac aaatgagcaa agacatatat gtacagggat gttcagattt ttatgtcggg 2820 tttttgtacg gacatagttt tttttttttt tttttttttt ttgagatgga gtttcactct 2880 gtcgcccagg ctggagtgca gtggcgtgat ctcggctcac tgcaacctcc gcctcccagg 2940 ttcaagcaat tctcctgcct cagcctccca agtagctggg attacaggca tgcaccacca 3000 cacctgggta gtttttctat ttttagtaga gacagagttt caccatgttg gccaggctgg 3060 tctcgaactc ccggcctcag gtgatttgcc cgccatggcc tcccaaagtg atgggattac 3120 aggcatgtgc caccgagcct ggctatatgg acatagtttt tagttctttg ggataaatgc 3180 ccagaagtgt tactgctatt taatctttaa agaaactgcc aaactacttt tcagagtggc 3240 tgcattattt tccattccca ccagcaaagt atgagtaatc tatttttacg cattctttcc 3300 caaatttagt attttcactt tttttttttt ttttttttga ggcagggtct tgctcagttg 3360 cctaggctgg agtgtagtgg cactatctcg gctcactgca acccctgcct cccaggctta 3420 agcgatcctc acatctcagc aacctgagta gctggggcta caggtgagtg ctaccactca 3480 tgggtaattt tttttgtatt cttagtagag gtggagttcc gccatgttgc ccaggctggt 3540 ctcaaactcc tgacctcaag cgatccacct gcctctgcct cccaaagtgc tggggttaca 3600 ggcgtgcacc actgtgcctg gccattctca ctatttttaa ttcaaaatag tttgtgttct 3660 ctattctcca catctttttg ttctttttaa tcatctaaag tccatagttt gtattaggat 3720 taacttactg ttgtacattc tctctctctc tctctttttt ttttaatgag atggagtttc 3780 tctctttttt gcccaggcca agcgcaatgg cacaatctcg gctcactaca acctttgcct 3840 cctgggttca agtgattctc ctgcctcagc ctcccaagta gctgggatta caagtgcgtg 3900 ccaccacacc tggccaattt tgtattttta gtagagatgg ggtttcacca tgttggccgg 3960 gctggtctcc aactcctgac ctcagctgat ctgcctgcct cagcctccca aagtgctgta 4020 attataggca taagccactg tgcctggcct agtgttgtac attctgtggg ttttgacaat 4080 tgtatgcatc tacatgtatg taccattata gtattcctgt ttttaatttt agccattcta 4140 gtaggcatgt agtgatatct catggtgatt ttaatttgcg tttccgtaat ggttaataat 4200 gctgaacatc tttgcatgtg cttgtttgtc atttgtgttt cctacttggt gaaataattg 4260 ttcatgtcct ttgtccattt tctaattgaa ttttttttta ccatttagtt ttgagatttc 4320 tttatacaat ccagatccaa atctcttgtc tcaaatatgg tttgcaaata cattcctcta 4380 attcatatat tgccttttcc tcctcttaac aggatgtttc acagagcaaa agttttagtt 4440 ttgttgaaat ctcacttttc atttttttct ttagtggatt gtgcttttgt tgtcatatgt 4500 aagaactctt cactggccct agatccttgt attggtttcc taagattgcc atagcaaatc 4560 accatgaact tagtgacaaa aagacagaaa tttattttca cttcctactg tgggcagact 4620 agacgttaat tattttcatg tatgctcatt cctatgacat ctttctgata taataattat 4680 agttattctt aagcttcacc cttttttcta ttagctttgt t 4721 <210> 19 <211> 1786 <212> DNA <213> Homo sapiens <400> 19 cactcaccaa agattggctt aagtcttcct ccttttagtc tgtaaaactt actcttctag 60 gctggcgcag tggctcacgc ctataatccc agcactttgg gaagctaagg cgggtggatc 120 acctgaggtc aggagttcga gaccagcctg gcaaacatgg taaaaccccg tctttactaa 180 aaatacaaaa attagctggg agtagtggca ggtgcctgta gtcccagctg ctcaggaggc 240 tgaggcagga gaatcgcttc aacctgggaa gcggagcttg cagtgagctg agatcgtgct 300 actgcactcc agcctgggca agagtgagac tccatctcaa aacaaacaaa caaacaataa 360 gacaaaaaaa cttactctcc tttcaaaccc cttccaacct ctactataat gaaaatgatg 420 gcagctgact cccttataac agtaagtttt gaataaacag cctttgatta attctatttt 480 gtttgccaaa gaaaataatt aaagtttggt aaaataaaat aattaaaaga aaaagaaatc 540 atggacactc tagaagaaaa catttatttg agctttactg ctgaaaaaga aaacatattt 600 taaaaagtaa ccttgactgc acagcaaaag aaactatcaa caaagtaagc agacaaccta 660 cagaatggaa gaaaatatgc acaaactatg tatctgacaa aggtctaata ttcagaatct 720 ataaggaact taaatcaaca agcaaaaaac aaataacccc atttatggcc tttgcttact 780 ttttgggcag tcctcaaaag aagacatcca agtggcaaac aatcatatga aaaaatgctt 840 atcatcacta atcatcagag aaaagcaagt caaaaccaca gtgaagtatc atcacacacc 900 agtcaaaatg gctattatta aaaataacag atgttggcag tgctgcagag aaaagggatt 960 gcttatgcac tgttggtgag aatgtaaatt catttagcta ctgtggaaag caggagattt 1020 ctcaaagaac taaaaatata tatatcattc aaaccaacaa ttccattact agatatatat 1080 ccaaaggaaa ataaattgtt ctatcaaaaa gacacatgca cctgtatgtt catcgcarta 1140 ttattcgcaa tagcaaatac atggaatcaa ccaaggtgtt aatcaacaga ggagtggata 1200 aagaaaatgt ggtacatata caccatggaa tactatacag tcagaagaaa gaatgaaatc 1260 atggcctttg cagcaacatg gatgcagcta gggaccatta tcctaagtaa actaatgcag 1320 aaacagaaaa gcaaatgcca catgttctca tttataagtg ggagccaagt gagtacacat 1380 ggacatgaaa tggaaacaat agacactgga gactacaaga gaagggaggg ggacagggat 1440 tgaaaaacta cctattgggt actatgctca gtacttgagt gatgggttca atcgtatgca 1500 aatttcagca tcatgcaata tacccttgta acaaacctgc acatgtacca cccctgaatc 1560 taaaataaaa gttgaaaaaa acaaaaacaa aaaaacccct tggaatggga ggagtctttt 1620 cagaccaaac atgagaccca gaagacaaaa agtaaactgt taataagtta ggctgcatag 1680 caagccaaaa tttttatatg aaacattttt taaagtgaaa agatagataa attttcaaaa 1740 catataacaa agaattaatt tctttggtat acaatgagct tttaaa 1786 <210> 20 <211> 201 <212> DNA <213> Homo sapiens <400> 20 gcaaaatgct acactgttcc tttcaaaccc caaggtctct tccttgtagt gtaagatagc 60 accagagctg ggagcattta tagagtgcta tagtgtagtc ytctcattca gctgatgccc 120 caggaggtga ggcccagtgg tgctgggccc ccagatctcc ccgccagtta gaagcaacag 180 gcgtgtcagt ccctggactc t 201 <210> 21 <211> 4425 <212> DNA <213> Homo sapiens <400> 21 tcagatagct tcaatttcgt cctgccccca cacacacacc atgggtgtgg gttccccccg 60 agtgtcccag cccaaggcca atataatcta cttgccattg ggagaaggag aaggaaaagg 120 acaagatgga gaaggaggag gaaggaagaa gagagcaacg ggttttaagg ataagtccaa 180 tttatcaatt tttccttttt attttttcat ttgtctcaag catgctcata attggtcacc 240 aaagcatttt cgtcatggct gctttacaac cttgaccagt ataataattc caacattcct 300 atcatctcag agttggcatc cattgtcttt ttcattcagt ttgagatctt catgattttt 360 tttttttttt tttgagacgg agtctccctt tgtcacccag gctggagtgc aatggcacaa 420 tctctgctca ctggaacctc cacctcccgt gttcaagcga ttctcccacc tcagcctccc 480 gagtagctgg gattacaggc acctgccatc atgcccggct aatttttttg ctatttttgt 540 ggagatgggg tttcaccatg ttggctaggc tggtcttgaa ctcctgacct caggtgatcc 600 tcccactttg gtttcccaaa gggctgggat tacaggtgtg agccaccgcg cccggtcacg 660 atttttggct taagtgattt tttttttttt tttttttgag acggagtctc gccctgtccc 720 tcaggctgga gtgcagtggc gcaatccggg ctcactgcaa gctccgcctc ccaggctcac 780 gtcattctcc tgcctcagcc tccccagcag ctgggactac aggtgcccgc cgccatgcac 840 tggctaattt tttgtatttt tagtagagac ggggtttcac cgtgttagcc aggatggtct 900 cgatctcctg accttgtgat ccgcccgcct cggcctccca aagtgctggg attacaggcg 960 tgagccaccg cgcctggccg gcttaagtga ttttctattg aaatctggaa acttctgtat 1020 tgttatgtga ctcaagatct ttttttcctc tctgtatttt tctttctttc tttctttctt 1080 ttttttgttt ttttttgaga cggagtctcg ctctgttgcc tagtctggag tgcaatggcg 1140 cgacctcaac tcactgcaac ctccgcctcc tgggttcaag tgattctcct gcctcagcct 1200 cctgagtagc tgggattata ggcgcgtgac accacacccg gataattttt gtatttttag 1260 tggagatggg gtttcaccat gttggccagg ctggtctcaa gctcctgacc tcaagtgatc 1320 cacccgcctc ggcctcccaa agtgttggga ttacaggcat gagccaccgt atctggcctg 1380 ttttttaaat cagtagacta acaactacaa ttaggtggga aaacaaaaca ttctaatgga 1440 ttaacttcat tctaactaga ttatctggct aggaatatat ttttattttg gtaaaatagg 1500 aataacataa aaagtaccat tttaaccatt tttaagcgta tacttcagta gcattgtgca 1560 tattcatgat gtgatacaac catgacggct attcatctgc aaaccttttt ccccaaattg 1620 gaactctgtt cacattaaac agtaactcct cattctcccc tcccccctcc cctgataacc 1680 ctcctacttt ctgtttctat gctcatataa gtggactcat atactacgtg tccttctgtg 1740 tctggtttat ttcacttagc ataatgtctt caaaggtgca ttcgtactgt agcatggatc 1800 ggaatttcat tcctttttaa ggctgaataa tattccattg atgtataaag cacaatttga 1860 ttttttgtgt tgtttgtttt ttggagacag ggtcttgttc tgttgccccc gggctggagt 1920 gcagtggcgt gatcatggct tactgctgcc ttcatctccc aggctcaagc aagcctcctg 1980 cctcagcctt ccccgagtag ctgggaccac aagcacatgc caccacacct ggctaattac 2040 ttgakttttt tgtagagatg gggtctccct atattgccca ggctggtctc aaacttctga 2100 actcaactga tcttcatgtc tcagcctccc agagtgctgg aattacaggc gtgaaccacc 2160 acgcccagcc acacttgttt tatctactga tccgtcaatg gatgcttggg ttgctgtcac 2220 cttttggcta ttgtgaataa tgctgctatg aacactggtg tacaaataat ctgtttgcat 2280 ccctgctatc aattatttta ggtatatact cagaagtgga attggtggat catatgataa 2340 ttctttaatt tttggagtaa ctgccatact gttcacagtg gctacaccat tttacatttc 2400 tactagcaat gtacaaggat tttggttttc cacatccaca ccaacaattg ttattttcta 2460 tttttttaaa aaattaatag tcattttggt cagccgtgct ggctcacacc tgtaatccca 2520 gcactttggg aggcggaggc aggaggattg cttaagccta ggagttcacg accagcctaa 2580 gcaacaattg agactcgcct cccaagcctt cccaccccgt tctctattta aaataataat 2640 agtcatctta atgggtgtga agtggtatct cactgcggtt ttgatttgca ttcctctagt 2700 gattagggat gctgagcatt tttcacatgc tcattagatc ttacttcaat ctctggctct 2760 ggctggcttt ctctgatgcc gctctggccg gggaaggaca gcacagcctt cctactgcca 2820 gcaggaggta gaagtccaga tttctcacac acaccagagg ggatgatcct tgttactgct 2880 gggtgggggc tggagttcct catgtggtct ccaccgacac tacaatgagg tggcctcatg 2940 acgactgtgc gatcaagtcc tgatttccca gcgggccttg tataacacca ccttagtggg 3000 atctgaagga tcacctttct tcctgcccag tgggcctgga agttgaagct gctccgtggt 3060 ctcctctgac aatgtggtgg tggtagtggc gggggtctgg gggtggaggt tgtcagagaa 3120 cctcattaca gcctcccaag ggtagaatcg tgggctcccc agttggcttt tgctggcatg 3180 ggtgtgggta ggaccacagc tgcttctgtg gtatttggct gaaataatgg aattactgtc 3240 tacaactttt ctatcttcct agaatgcctc tgtcctgggt agagaaagca gccttttgct 3300 ggagcttttc tagtctatgc cggttggctt ttctgggttg ctagcttctt cagttttgtt 3360 ttgttttgtt tttttttttt tttttttttg aggtggagtc tcgctctgtc gcccaggctg 3420 gagtgcagtg gcacgatctc agctcactgc aagctccgcc tccagggttc acgccattct 3480 cctgcctcag actcccaagt aactgggact acaggtgccc gccaccacgc ccggctaatt 3540 ttttgtattt ttagtagaga caggggtttc accatgttag ccaggatggg cttgatctcc 3600 tgacctcgtg atccgcccgc ctcggcctcc cgaagtgctg ggattacagg cgtgagccac 3660 cgcgtccggc cgcttcttca gtttcaactc aggatgtgtg aaggaggaag aaaacccagg 3720 gaattcacta tcatgtgtat cttgaggttc ctacctgtct gccttctttt ccccacctcc 3780 cagagtcttc ttgtgtttgc tttatatata atgtccaggg ttttcagttg cacttagtag 3840 gaggaacagg aaaaattttg cctactccat ctctccagaa gtagaagtag acctcactgt 3900 ttgtaatgac taatacacac ggcatacaat ttactaacca atcttctttt gacagccatt 3960 gaagtcgttt atagttttat tattttaata gttttttttc ctattaaaat aatgaagggc 4020 cgggtgcggt ggctcagcct gtaatcccgg cactttgcgg agccgagacg ggtggatcac 4080 ctgaagtcag gaattcaaga ccggcctggc caacatggca aaaccctgtc tcttctaaaa 4140 tacaaaaatt agctgggtgt ggtggcatgc acctgtaatc ccagctactc aggagactga 4200 aacaggagaa ccacttgaat ctggaaggtg gaggttgcag tgagccaaat cgcaccattt 4260 gcactccacc ctgggcaaca gagagagatt ctgtctcaaa aaacaaaaac aaacaaacaa 4320 aaaaagaaaa aaaaaaagaa aaaatagagg aaaaaatttt tacctaaagt atgatttcca 4380 ttatgtttaa aaacaaacag acattcttgg ggttggtgat tgttt 4425 <210> 22 <211> 501 <212> DNA <213> Homo sapiens <400> 22 tcccaacaac agatcatatc ataatttttt atcatctctt ccaatttcat aaaatgttaa 60 aaaggcatct cagagtagct ctatgatgtg cacagggcag atactgttat tttcaaaatg 120 aagaataaaa caaaaagccc ccagaggttg agtgacttaa tttggtgaat gttacgctgc 180 tctagagctg aaacccacca aaccttgttc catccactgt gccttgagcc tcggacaatc 240 ccaagttgac rtcctcccat ttggattttg gcccttttaa cattgatgag tcacccaagg 300 cttcccctaa ctctaaaggg caatcgtctc atcttcttta ttctttttct cctcttccac 360 tgcttccctg gccccagctc tcctcccatc atgttccccc tcccttagat cattgccaca 420 catttcagtt gggagaaaga agaatgaagc tgacattcat taagtgttta gtgggtacca 480 ggcactgtgc cctgcagata a 501 <210> 23 <211> 601 <212> DNA <213> Homo sapiens <400> 23 atggaaaaag caagaccaga aagtaatttg gagagcatcc aagattgata agacaccaaa 60 gtagggggac tccacagcac taggagcctg tgctctgatc ccttccagcg ccctaagatg 120 tgatgggatc tcagcaagaa acagccacct agtgttccta aagaggctgg aacatgagca 180 ctgggctcct agacttggca ataaccctag tgccccacaa tggcagcacc agcagagcct 240 ccatccttaa agaatagtac agctttgaac actgagcatg tcagctatga tctttgggga 300 ycaaataaca gggcattcac atggcaccaa gaggagaacc atccagacaa agcttgacct 360 tcgcaccagt gaggccgatt ggaggcttgg agcatattaa atttatttag agaaaggaaa 420 gaaatgtaat attactcaca tcctgtgttt gaaagaaaaa tcatcctgcc cacttaataa 480 ctgtgcaggg ctgccttcca tgccacattt tttacacaga ccatagggag gtctgtgtga 540 ctttgtgact caccctttat cacagccccc acccccatag aactgcgagg gctgagtagg 600 a 601 <210> 24 <211> 601 <212> DNA <213> Homo sapiens <400> 24 cccagggctt caccctgtcc tatgaccaga gccacctcca cccccatccc agcaagctgt 60 ctcaaaaaac ttctcctggc ccaaaaagac caagaaagaa aaaaattaat ctatccctgt 120 atttctatca gtaccacagg attatcaaaa caaactctaa ctttttagga aacaaagtga 180 ctggaaatct gaaattgatt gcattttcaa acttctttta agtttgaccc caaaagaaga 240 atgaagtttc ttgaaactcc tgcatccact gacaggaatt ggattcttac tcaatgtatc 300 kgaaattaga cctttgtaac acctggtttt cttgattata gataggccat gttccaggac 360 tactatacaa tatttggttt gtaggaagta ctcaaaccca gggttgtgag aagagtctgt 420 ggcactaggg gcctggtagt ttccattatt ttgcctaaaa atcaatgtta atgtcaatgt 480 ctcaaaaatc aatgtcaatg ttgagttaac catccaaagt gtggatgttt ctactttctt 540 agtaccttgg agaggttctc tggataaata acaaaaggaa ttagctactt aagaatggta 600 c 601 <210> 25 <211> 801 <212> DNA <213> Homo sapiens <400> 25 tactgctgtc catgtgtttg gttctcattt tgtgtgacct tgaggcaggg cacactccat 60 tatgcactgg attgcaattc ttaaatggta tttaattgta caagagccgt atctgagtca 120 caacaaacaa cacatgagtt ggctgaatga gctttgtaag ggagacgaag gatgggacca 180 ccgaatcgat ccgggtgaag ctattttcat tgtgctgaac aaggagccta attggcaact 240 ttgcttcagg aagaggaggc attgcctggg tgactcactg gatgataaca aaaagccatt 300 aaacataggc gttcctatct tgctcagatt ctgctgttaa aatcttatag gaaaacagct 360 tttgaagaat gatcatgaat aactgtcttt cattaatccc ytaaagagca tactagtcct 420 gatcattaaa gagctagagc actgctttcc acacagacac acagaagact ggagaacatg 480 aggataaaac aagcccttac acattccagg actgaccatg gggctggcct tacctttttc 540 aggtgcagag agatttgggt cactgcgtgg caaggccccg tctccaatat gattaaacag 600 catcctctgc aaagttacaa gggttgattt ttatgatgtg atatacgggc atgtgaaacc 660 tttcagaaaa tgagacgatt atctcctcag taaaactttt tgttcaaaat aatttttgtg 720 tgatatgatg agcctaggaa caaataattt aattatattt aagtaaaagg gggtgggaag 780 agccttaggt tttgagaaag a 801

Claims (15)

  1. CDH13(Cadherin 13) 유전자의 단일염기다형성(SNP) 부위로서 서열목록 제1서열의 319번째 위치(GenBank SNP 데이터베이스 rs3865188)의 단일염기다형성(SNP) 부위를 포함하는 10-100개의 연속 뉴클레오타이드 서열에 특이적으로 결합하는 프라이머 또는 프로브를 포함하는 비만, 당뇨 또는 심혈관 질환 합병증 진단용 키트.
  2. 삭제
  3. 제 1 항에 있어서, 상기 단일염기 다형성 부위를 가진 인간은 증가된 혈청 아디포넥틴 농도를 가지는 것을 특징으로 하는 진단용 키트.
  4. 제 3 항에 있어서, 상기 아디포넥틴은 고분자량 아디포넥틴인 것을 특징으로 하는 진단용 키트.
  5. 제 3 항에 있어서, 상기 혈청 아디포넥틴 농도는 연령, 성별, 흡연여부 및 체질량지수(body mass index, BMI)로 구성된 군으로부터 선택된 하나 이상의 변수를 보정하여 계산된 것을 특징으로 하는 진단용 키트.
  6. 제 1 항에 있어서, 상기 단일염기 다형성 부위를 가진 인간은 감소된 비만, 당뇨 또는 심혈관 질환 합병증 위험도를 나타내는 것을 특징으로 하는 진단용 키트.
  7. 제 6 항에 있어서, 상기 심혈관 질환 합병증은 고트리글리세라이드 혈증, 울혈성 심부전, 심비대증, 부정맥, 관상동맥질환(coronary artery disease, CAD) 또는 심혈관질환(cardiovascular disease, CVD)인 것을 특징으로 하는 키트.
  8. 제 7 항에 있어서, 상기 관상동맥질환은 심근경색, 협심증, 아테롬성동맥경화증, 급성 관상동맥 증후군 또는 PAOD(peripheral arterial occlusive disease) 인 것을 특징으로 하는 키트.
  9. 제 1 항에 있어서, 상기 키트는 아시아인에게 적용되는 것을 특징으로 하는 인간 비만, 당뇨 또는 심혈관 질환 합병증 진단용 키트.
  10. 비만, 당뇨 또는 심혈관 질환 합병증의 진단 또는 예후에 필요한 정보를 제공하기 위하여 인간의 생물학적 시료에 있는 CDH13(Cadherin 13) 유전자의 단일염기다형성(SNP) 부위로서 서열목록 제1서열의 319번째 위치(GenBank SNP 데이터베이스 rs3865188)의 단일염기다형성(SNP) 부위를 검출하는 단계를 포함하는 비만, 당뇨 또는 심혈관 질환 합병증의 네거티브 마커를 검출하는 방법.
  11. 제 10 항에 있어서, 상기 방법은 마이크로어레이 방식 또는 유전자 증폭 방식으로 실시되는 것을 특징으로 하는 방법.
  12. 제 10 항에 있어서, 상기 단일염기다형성 부위가 검출된 경우 상기 인간은 증가된 혈청 아디포넥틴 농도를 가지는 것을 특징으로 하는 방법.
  13. 제 12 항에 있어서, 상기 아디포넥틴은 고분자량 아디포넥틴인 것을 특징으로 하는 방법.
  14. 제 12 항에 있어서, 상기 혈청 아디포넥틴 농도는 연령, 성별, 흡연여부 및 체질량지수(body mass index, BMI)로 구성된 군으로부터 선택된 하나 이상의 변수를 보정하여 계산된 것을 특징으로 하는 방법.
  15. 제 10 항에 있어서, 상기 방법은 아시아인에게 적용되는 것을 특징으로 하는 방법.
KR1020100005221A 2010-01-20 2010-01-20 비만 또는 당뇨에 관련된 단일염기다형성 및 그의 용도 KR101256928B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100005221A KR101256928B1 (ko) 2010-01-20 2010-01-20 비만 또는 당뇨에 관련된 단일염기다형성 및 그의 용도

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100005221A KR101256928B1 (ko) 2010-01-20 2010-01-20 비만 또는 당뇨에 관련된 단일염기다형성 및 그의 용도

Publications (2)

Publication Number Publication Date
KR20110085436A KR20110085436A (ko) 2011-07-27
KR101256928B1 true KR101256928B1 (ko) 2013-04-19

Family

ID=44922231

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100005221A KR101256928B1 (ko) 2010-01-20 2010-01-20 비만 또는 당뇨에 관련된 단일염기다형성 및 그의 용도

Country Status (1)

Country Link
KR (1) KR101256928B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101486877B1 (ko) * 2014-06-25 2015-02-05 대한민국 공복 혈청 혈당과 연관된 단일염기다형성 정보를 제공하는 방법
JP7134870B2 (ja) * 2016-02-01 2022-09-12 プレベンシオ, インコーポレイテッド 心臓血管疾患及び事象のための診断及び予後方法
KR101972355B1 (ko) 2018-01-03 2019-04-25 주식회사 에스엔피 제네틱스 한국인의 비만 또는 비만 관련 질환의 위험 예측용 다형성 마커, 이를 이용한 한국인의 비만 또는 비만 관련 질환의 위험 예측 방법
CN113223714B (zh) * 2021-05-11 2022-07-05 吉林大学 一种用于预测子痫前期风险的基因组合、子痫前期风险预测模型及其构建方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Endocr J, Vol. 53, No. 5, pp671-677(2006.08.23.) *

Also Published As

Publication number Publication date
KR20110085436A (ko) 2011-07-27

Similar Documents

Publication Publication Date Title
EP1907569B1 (en) Genetic variants in the tcf7l2 gene as diagnostic markers for risk of type 2 diabetes mellitus
DK2414543T3 (en) Genetic markers for risk management of atrial fibrillation and stroke
KR101107911B1 (ko) Ugt1a1 유전자 증폭용 프라이머 셋트, 그것을 포함하는ugt1a1 유전자 증폭용 시약 및 그 용도
KR20110081807A (ko) 갑상선암의 위험도 평가를 위해 유용한 유전적 변이
CA2651376A1 (en) Method for diagnosis and treatment of a mental disease
Aulchenko et al. LPIN2 is associated with type 2 diabetes, glucose metabolism, and body composition
KR100992972B1 (ko) 심근경색의 리스크 진단 방법
KR101256928B1 (ko) 비만 또는 당뇨에 관련된 단일염기다형성 및 그의 용도
US20030099958A1 (en) Diagnosis and treatment of vascular disease
EP1731608A1 (en) Marker gene for arthrorheumatism test
KR102102051B1 (ko) 아토피 피부염 진단을 위한 마커 조성물 및 이를 이용한 아토피 피부염 예측또는 진단 방법
US20030032099A1 (en) Methods for predicting susceptibility to obesity and obesity-associated health problems
JP2004000115A (ja) 糖尿病の発症危険性判定方法
CA2400954C (en) Methods and composition for diagnosing and treating pseudoxanthoma elasticum and related conditions
US20040166491A1 (en) Vhl promoter diagnostic polymorphism
KR102464776B1 (ko) 여성형 탈모증 관련 유전자 다형성 마커 및 이의 용도
JP2002238577A (ja) 脳動脈瘤感受性遺伝子
US6528268B1 (en) Reagents and methods for detection of heart failure
KR101090742B1 (ko) Her-2 유전자를 이용한 폐암 감수성 진단용 마커 및 이를 이용한 폐암 감수성 진단 방법
US20030170679A1 (en) Single nucleotide polymorphisms in GH-1
CN107190054B (zh) 一种判定个体维生素d(vd)补充效能的方法
CN116356007A (zh) 先天性心脏病相关taf6基因新发变异位点及其应用
JP2004512842A (ja) インスリン遺伝子の5’隣接領域におけるアリル変異および体脂肪に基づく、インスリン非依存型糖尿病のリスク評価方法
US20060183991A1 (en) Polymorphisms in the th clcn7 gene as genetic markers for bone mass
KR20220034956A (ko) 유전자 다형성 마커 기반 여성형 탈모증 위험도 예측 모델

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160408

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180410

Year of fee payment: 6