KR100891319B1 - 촬상장치 및 촬상장치의 제어 방법 - Google Patents

촬상장치 및 촬상장치의 제어 방법 Download PDF

Info

Publication number
KR100891319B1
KR100891319B1 KR1020070089293A KR20070089293A KR100891319B1 KR 100891319 B1 KR100891319 B1 KR 100891319B1 KR 1020070089293 A KR1020070089293 A KR 1020070089293A KR 20070089293 A KR20070089293 A KR 20070089293A KR 100891319 B1 KR100891319 B1 KR 100891319B1
Authority
KR
South Korea
Prior art keywords
partial region
image signal
characteristic
photographing element
charge
Prior art date
Application number
KR1020070089293A
Other languages
English (en)
Other versions
KR20080023136A (ko
Inventor
유키 토토리
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20080023136A publication Critical patent/KR20080023136A/ko
Application granted granted Critical
Publication of KR100891319B1 publication Critical patent/KR100891319B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/531Control of the integration time by controlling rolling shutters in CMOS SSIS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

복수 화소로 이루어진 촬영소자를 갖는 카메라에서의 후방 날개의 주행 특성의 취득방법. 이 방법은, 상기 촬영소자의 미리 설정된 일부영역으로부터 출력된 화상신호에 의거하여 상기 후방 날개의 주행 특성을 취득하고, 상기 취득된 주행 특성을 기억하는 공정(S34, S36)과, 상기 일부영역을 상기 후방 날개의 주행 방향을 따라 다른 위치로 이동하는 공정(S38)과, 상기 다른 위치로 이동된 상기 일부영역으로부터 출력된 화상신호에 의거하여, 기억수단에 기억된 상기 후방 날개의 주행 특성을 갱신하는 공정(S35, S36)을 포함한다.
촬상장치, 차광부재, 주행 특성, 후방 날개.

Description

촬상장치 및 촬상장치의 제어 방법{Image sensing apparatus and control method for the same}
본 발명은, 촬영소자에 있어서의 전하축적 시간을 제어하는 전자셔터 기능과, 차광 날개(shutter blade)로 촬영소자의 수광면을 차광하는 기계적 셔터 기능을 사용한 노광 제어 및 전하축적 제어 기술에 관한 것이다.
촬영소자로서 프로그레시브 스캔 CCD센서(이하, "PS-CCD"라고 한다.)를 구비한 디지탈 카메라 등의 촬상장치가 있다. 촬영소자로서 이 PS-CCD센서를 사용하면, 촬상장치는 전하를 방출하고나서 축적된 전하를 전송할 때까지의 전하의 축적 기간을 제어함으로써 그 촬영소자로부터 얻어지는 화상 데이터의 노출을 제어할 수 있다. 촬영소자로서 PS-CCD센서를 사용했을 경우, 촬상장치는 기계적 셔터가 없더라도 전하의 축적 기간을 조절할 수 있지만, 스미어(smear)의 발생을 억제하기 위해서 기계적 셔터가 구비되어 있는 것이 바람직하다. 그렇지만, PS-CCD센서의 전하의 축적 동작을 종료시키고나서 기계적 셔터에 의해 차광될 때까지의 짧은 기간 동안에도, PS-CCD센서에 도달하는 광속 때문에 완전하게 스미어를 막을 수 없다. 이 스 미어를 억제하기 위해서 여러가지 기술이 제안되어 있다.
이에 대하여, XY어드레스형의 촬영소자인 CMOS이미지센서는, CCD센서와 비교해서 스미어의 발생을 무시할 수 있을 만큼 작다고 하는 장점을 구비하고 있다. CMOS이미지센서는, 확대기술로 진행되고 있기 때문에, 고품질의 화상 데이터를 얻기 쉬운 대형의 촬영소자를 필요로 하는 일안 레플렉스 디지탈 카메라에 사용되는 경우가 많다.
그렇지만, XY어드레스형인 CMOS이미지센서는, 소위 롤링 셔터를 사용하여서, 행마다 다른 타이밍에서 전하의 축적을 행하고 있다. 기존의 롤링 셔터에서는, 모든 화소의 전하를 동시에 리셋트하거나, 축적 동작을 동시에 종료시킬 수(즉, 축적된 전하를 동시에 판독할 수) 없다. 또한 롤링 셔터에서는, 주사 화면의 최초의 행과 최후의 행의 축적 기간이 거의 1프레임의 지연 때문에 움직이는 피사체를 정지 화상으로서 촬상하는데는 적합하지 않는다. 그래서, CMOS이미지센서를 사용한 촬상장치에서는, 노광 기간을 제어하기 위한 기계적 셔터가 많이 이용되고 있다.
CMOS이미지센서의 전하축적 시작을 위한 각 행에 있어서의 전하 리셋트 동작은, 상기 전하축적 기간과 같은 시간 양만큼 판독되는 그 행에 있어서의 축적 전하의 신호레벨에 앞서서 시작된다. 이때, 이 전하 리셋트 동작의 속도는, 축적된 전하의 판독 동작의 주사 속도와 다르게 할 수도 있다.
이것을 이용하는, 일본국 공개특허공보 평11-41523호에는 이하와 같은 구성이 개시되어 있다. 우선, 기계적 셔터의 주행 곡선에 맞춰서 1행씩 CMOS이미지센서의 전하 리셋트 동작을 행해서 전하축적을 시작하고, 소정시간 후에 기계적 셔터로 차광하고, 그 후에 축적 전하의 신호레벨의 판독 동작을 1행씩 행한다. 이때, 기계적 셔터의 주행 곡선은, 기계적 셔터의 주행 특성을 나타내는 곡선이며, 시간에 대한 셔터 날개의 선단위치를 나타내는 것이다. 전하 리셋트 동작으로부터 기계적 셔터의 주행 시작까지의 간격을 조정함으로써 노출 제어를 행할 수 있다.
이와 같이, 전하 리셋트 동작을 기계적 셔터의 주행 곡선에 맞춰서 한번에 1행씩 행하므로, 주사 화면의 최초의 행과 최후의 행간의 축적 기간의 길이의 차이는, 전방 막과 후방 막을 구비한 기계적 셔터를 사용한 경우와 같은 정도로 개선할 수 있다. 이후, 전방 막인 셔터 날개를 "전방 날개", 후방 막인 셔터 날개를 "후방 날개"라고 부른다.
이 구성에 의하면, CMOS이미지센서를 사용하고 있기 때문에 동영상 촬상시의 스미어(smear)를 억제할 수 있음과 아울러, 고속 셔터에 의한 촬영이 가능해져서, CMOS 이미지센서에 의해 움직이는 피사체의 정지 화상 촬영을 행하는 것이 가능해진다.
그렇지만, 기계적 셔터의 전방 날개 및 후방 날개는, 일반적으로 용수철에 의해 구동되어, 시작 위치에서의 유지에는 전자석에 의한 흡착력이 이용되고 있는 것이 많다. 이 때문에, 기계적 셔터의 주행 곡선은 결코 일정하지 않다. 이 주행 곡선은, 촬상장치의 자세, 온도, 습도, 기계적 셔터를 유지하는 전자석의 구동전압, 개개의 기계적 셔터간의 차이, 시간에 따른 저하로 이루어진 복수의 요인에 따라 변화된다.
그 때문에, 전하 리셋트 동작을 기계적 셔터의 주행에 대응한 적정한 타이밍에서 행하기 위해서는, 기계적 셔터의 주행 곡선을 검출하는 검출계와, 그 검출 결 과에 따라 전하 리셋트 동작의 타이밍을 제어하는 피드백계를 설치할 필요가 있다. 거기에서, 일본국 공개특허공보 특개2005-159418호에는 복수의 포토 인터럽터를 전방 날개의 주행 방향으로 배치하고, 전방 날개를 주행시켜서 포토 인터럽터의 출력으로부터 전방 날개의 주행 곡선을 검출하는 구성이 개시되어 있다.
또한, 기계적 셔터의 주행 곡선을 검출하는 별도의 방법으로서, 일본국 공개특허공보 특개2002-064752호에 기재되어 있는 방법이 있다. 이 방법에서는, 우선, 촬영소자의 전하 리셋트 동작을 행하고, 소정시간 경과 후에 전하판독을 행해서 전하신호를 취득한다. 다음에, 다시 촬영소자의 전하 리셋트 동작을 행하고, 같은 소정시간 경과 후에 기계적 셔터를 주행시켜서 차광하고나서, 전하판독을 행한다. 이것들 2회의 전하판독에 의해 얻어진 전하량을 비교하고, 그 결과에 의거하여 주행 곡선을 검출한다.
그렇지만, 일본국 공개특허공보 특개2005-159418호의 구성에서는, 후방 날개의 주행 곡선을 사전에 추정해서 전하 리셋트 동작의 타이밍을 제어 할 수 있지만, 포토 인터럽터를 설치한 만큼 셔터의 구성이 대형화해버린다. 또한, 촬영소자의 근방에 광센서를 배치하면, 광센서에서의 빛이 촬영소자의 수광면에 입사해버리지 않게 하는 구성을 설치할 필요도 있다.
한편, 일본국 공개특허공보 특개2002-064752호의 제어 방법에서는, 촬영소자의 전체 화소의 전하판독에 수백ms정도의 시간을 요하므로, 2회의 전하축적 기간의 사이에 피사체의 상태변화에 의한 휘도변화가 있는 경우에, 그 2개의 전하량의 비교를 정확하게 행할 수 없다. 그러한 경우에는, 기계적 셔터의 정확한 주행 곡선을 검출할 수 없다. 또한, 일반적인 촬영 동작의 직전에 기계적 셔터의 주행 곡선의 검출을 행하려고 하면, 실제의 촬영시에 셔터가 끊어질 때까지의 시간이 걸리고, 릴리즈 시간 래그(lag)가 큰 사용하는데 불편한 촬상장치가 되어버린다.
또한, 기계적 셔터의 주행 곡선을 검출하기 위해서, 주행 곡선을 검출하는데 필요한 시간은, 촬영소자에서 전체 화소라기 보다는 오히려 감소된 수의 화소의 전하를 판독하여서 단축될 수 있다. 그렇지만, 그 경우, 판독하는 전하를 갖는 화소들간의 간격이 넓은 경우에는, 정확한 주행 곡선을 얻을 수 없다.
본 발명은, 상기의 경우를 고려한 것이고, 장치구성을 늘리지 않고, 신속 또한 더 정확하게 기계적 셔터의 주행 특성을 취득할 수 있게 한다.
본 발명은, 입사하는 피사체 광학상을 전기적인 화상신호로 변환해서 출력하는 복수 화소로 이루어진 촬영소자를 갖고, 차광부재가 상기 촬영소자로의 개구를 차폐할 수 있는 촬상장치의 제어 방법으로서, 상기 촬영소자의 제1의 선택된 일부영역으로부터 출력된 화상신호에 의거하여 상기 차광부재의 주행 특성을 취득하고, 기억 수단에 상기 취득된 주행 특성을 기억하는 취득 공정과; 상기 일부영역을 상기 차광부재의 주행 방향을 따라 상기 제1의 선택된 일부영역으로부터 이격된 다른 위치로 이동하는 이동 공정과; 상기 이동된 일부영역의 또 다른 주행 특성을 취득하기 위해 상기 취득 공정을 반복하는 공정과; 상기 기억수단에 기억된 상기 차광부재의 상기 또 다른 주행 특성을 기억하는 공정을 포함한 것을 특징으로 하는 촬상장치의 제어 방법을 제공한다.
또한, 본 발명은, 입사하는 피사체 광학상을 전기적인 화상신호로 변환해서 출력하는 복수 화소로 이루어진 촬영소자와, 상기 촬영소자로의 개구를 차폐할 수 있는 차광부재와, 기억 수단과, 상기 촬영소자의 제1의 미리 설정된 일부영역으로부터 출력된 화상신호에 의거하여 상기 차광부재의 주행 특성을 취득하고, 상기 기억수단에 그 취득된 주행 특성을 기억하고, 상기 일부영역을 상기 차광부재의 주행 방향을 따라 상기 제1의 미리 설정된 일부영역으로부터 이격된 다른 위치로 이동하도록 구성된 제어 수단을 구비하고, 상기 제어 수단이, 상기 다른 위치로 이동된 일부영역으로부터의 화상신호에 의거하여 상기 기억 수단에 기억한 상기 차광부재의 주행 특성을 갱신하는, 촬상장치를 제공한다.
또한, 본 발명은, 복수의 행의 광전 화소로 이루어진 촬영소자를 갖는 카메라의 셔터 날개(들)의 주행 특성을 추정하는 방법으로서, 기간 Tc에 있어서 상기 촬영소자의 제1의 선택된 일부영역에서의 화소들에 축적된 전하를 측정하고, 상기 기간 Tc에 있어서 셔터 날개(들)의 주행 방향으로 상기 제1의 선택된 일부영역으로부터 이격된 상기 촬영소자의 제2의 선택된 일부영역에서의 화소들에 축적된 전하를 측정하고, 전하 축적을 재시작하기 위해 상기 화소들을 리셋트하고, 상기 기간 Tc와 겉보기에는 동일하지만 상기 셔터 날개(들)의 위치/시간 주행 특성 때문에 상이한 양에 의해 Tc와 다른 기간 후에 상기 촬영소자의 상기 제1 및 제2의 선택된 일부영역에 빛이 충돌하는 것을 막기 위해 상기 셔터 날개(들)을 구동하여 주행시키고, 상기 제1의 선택된 일부영역의 화소 리셋트 동작으로 시작하고 상기 셔터 날 개(들)의 가장자리가 상기 제1의 선택된 일부영역을 가로지르고 상기 제1의 선택된 일부영역에 빛이 충돌하는 것을 차단하는 경우 종료하는 기간 Ta에 있어서 상기 촬영소자의 상기 제1의 선택된 일부영역에서의 화소들에 축적된 전하를 측정하고, 상기 제2의 선택된 일부영역의 화소 리셋트 동작으로 시작하고 상기 셔터 날개(들)의 가장자리가 상기 제2의 선택된 일부영역을 가로지르고 상기 제2의 선택된 일부영역에 빛이 충돌하는 것을 차단하는 경우 종료하는 기간 Tb에 있어서 상기 촬영소자의 상기 제2의 선택된 일부영역에서의 화소들에 축적된 전하를 측정하며, 상기 셔터 날개(들)의 가장자리가 상기 제1 및 제2의 선택된 일부영역을 가로지르는 경우 기간 Tc,Ta 및 Tb동안 측정된 축적 전하로부터 계산하여서 상기 주행 특성의 추정값을 제공하는, 주행 특성의 추정방법을 제공한다.
본 발명의 또 다른 특징은, 이하의 예시적 실시예 설명으로부터(첨부된 도면을 참조하여) 명백해질 것이다.
이하, 첨부도면에 따라 본 발명의 바람직한 실시예들을 상세히 설명하겠다.
도1은 본 발명의 제1실시예에 따른 촬영 시스템의 구성을 나타내는 블록도다. 본 실시예에 따른 촬영 시스템은, 촬상장치인 카메라 본체(100)와, 카메라 본체(100)에 장착되는 교환 렌즈 장치(200)를 가지고 있다. 또한, 교환 렌즈 장치(200)를 카메라 본체(100)에 착탈가능한 구성으로 하지 않고, 카메라 본체(100)와 일체로 구성해도 된다.
우선, 교환 렌즈 장치(200)의 내부구성에 관하여 설명한다. 도면부호 201은 촬영 렌즈이며, 광축L 방향으로 이동 가능하게 되어 있다. 또한, 도1에서는 촬영 렌즈(201)로서 도면의 간략화를 위해 1개의 렌즈만을 보이고 있지만, 그 촬영 렌즈(201)는 실제로는 복수의 렌즈로 이루어진 렌즈 군으로 구성되어도 된다.
도면부호 202는 렌즈 CPU, 도면부호 203은 렌즈 구동회로이며, 렌즈CPU(202)는 렌즈 구동회로(203)를 거쳐서 촬영 렌즈(201)의 위치를 제어한다. 또한, 렌즈CPU(202)는 교환 렌즈 장치(200)측의 통신 접점 204 및 카메라 본체(100)측의 통신 접점 113을 거쳐서, 카메라 본체(100)내의 카메라CPU(lOl)와 통신을 행한다.
다음에, 카메라 본체(100)안의 구성에 관하여 설명한다. 도면부호 101은 카메라CPU, 도면부호 102는 미러부재, 도면부호 103은 파인더 광학계다. 도면부호 104는 XY어드레스형의 촬영소자이며, 본 실시예에서는, 일례로서 CMOS이미지센서로 한다. 도면부호 105는 기계적 셔터 장치인 포컬 플레인 셔터다. 미러부재(102)는 촬영 렌즈(201)를 통과한 피사체상인 광속을 반사시켜서 파인더 광학계(103)에 이끌기 위한 것이다. 이 미러부재(102)는, 도1에 나타나 있는 바와 같이, 광로 위에서, 광속을 파인더 광학계(103)에 이끌기 위한 위치와, 광로로부터 대피하고, 광속을 촬영소자(104)에 이끌기 위한 위치로 바뀐다. 유저가 파인더 광학계(103)를 통해 피사체를 모니터하는 경우에는, 미러부재(102)는, 도1에 나타나 있는 바와 같이 광로 위에 위치한다. 한편, 화상을 촬상할 경우, 또는 유저가 (후술하는) 영상표시 회로(110)에 표시된 피사체의 동화상을 관찰 함에 의해 피사체를 모니터하는 경우에, 미러부재(102)는 (도1의 위쪽 방향으로) 광로로부터 대피한다.
촬영소자(104)의 피사체측에는 셔터 장치(105)가 배치되어 있고, 셔터 장치(105)의 셔터 날개를 광로로부터 대피시키므로 광속이 촬영소자(104)에 도달한다. 본 실시예에서는, 후술하는 바와 같이 셔터 장치(105)는 후방 날개만을 가지고, 촬영소자(104)의 전하 리셋트 주사와 후방 날개의 구동을 제어 함에 의해 노광 기간을 제어할 수 있다. 또한, 본 발명은 이것에 한정하는 것이 아니고, 셔터 장치(105)는 전방 날개와 후방 날개를 모두 가져도 물론 개의치 않는다. 전방 날개를 가질 경우, 정지 화상 촬상시는, 우선 전방 날개를 열어서 개구를 완전히 개방해서 촬영소자(104)의 전하 리셋트 동작을 행하고, 소정 노광 기간 경과 후에 후방 날개를 닫아서 개구를 폐쇄함으로써 노광 기간을 제어한다. 또한, 유저가 (후술하는) 영상표시 회로(110)에 표시된 피사체의 동화상을 관찰 함에 의해 피사체를 모니터하는 경우에, 셔터 장치(105)의 셔터 날개는 광로로부터 대피시킨다.
도면부호 106은 셔터 구동회로이며, 셔터 장치(105)의 구동을 제어한다. 도면부호 107은 펄스발생회로, 도면부호 108은 수직구동 변조회로이다. 펄스발생회로(107)는 촬영소자(104)에 주사 클록 신호와 제어 펄스를 공급한다. 또한, 펄스발생회로(107)에서 발생한 주사 클록 신호 중에서, 수평주사용의 클록 신호(HCLK)는 직접 촬영소자(104)에 입력된다. 또한, 수직주사용의 클록 신호(ⅤCLK)는 수직구동 변조회로(108)에 의해 클록 주파수가 소정의 주파수로 변조되고나서 촬영소자(104)에 입력된다. 또한, 펄스발생회로(107)는, 신호 처리 회로(109)에도 클록 신호를 출력한다.
도면부호 109는 신호 처리 회로이며, 촬영소자(104)로부터 판독된 신호에 대 하여 공지의 아날로그 신호 처리 및 디지털 신호 처리를 함으로써 화상 데이터를 생성한다. 도면부호 110은 LCD등의 영상표시 회로이다. 영상표시 회로(110)는, 신호 처리 회로(109)에서 생성된 표시용 화상 데이터를 사용해서 소정 주기로 촬영된 화상을 순차로 표시함으로써, 전자 뷰 파인더(EVF) 기능을 실현한다. 도면부호 111은 화상 기록회로로서, 신호 처리 회로(109)에서 생성된 화상 데이터를 카메라 본체(100)의 내부 메모리, 또는, 카메라 본체(100)로부터 착탈가능한 기록 매체에 기록한다.
도면부호 112는 스위치 유닛으로, 촬영조건을 설정하기 위해서 조작되는 스위치와, 촬영준비 동작 및 촬영동작을 개시시키기 위해서 조작되는 스위치를 포함한다.
다음에 본 실시예에 있어서의 XY어드레스형의 촬영소자(104)의 구성 및 동작에 대해서 설명한다. 우선, 촬영소자(104)의 구성에 대해서 도2를 참조해서 설명한다.
도2에 있어서, 도면부호 1은 광전변환을 행하는 포토다이오드(PD)를 나타낸다. PD(1)는, 광전변환에 의해 입사광을 전하로 변환함으로써 입사광량에 대응한 전하를 축적한다. 도면부호 2는 PD(1)로부터 전하를 전송하는 전송 스위치, 도면부호 3은 PD(1)에서 발생한 전하를 일시적으로 축적하는 플로팅 디퓨전부(FD)이다. 도면부호 4는 FD(3)에 리셋트 전위를 공급하는 리셋트 스위치를 나타내고, PD(l)의 축적 전하와 FD(3)의 전하를 리셋트하기 위해서 사용한다. 도면부호 5는 FD(3)의 전위를 게이트 입력으로 해서 전하량을 전압량으로 변환하는 화소 앰프를 나타내 고, 도면부호 6은 화소 앰프를 선택하는 선택 스위치다.
도면부호 7은 부하 전류원, 도면부호 8은 선택행의 출력을 전송하는 수직 출력선, 도면부호 9a는 선택행의 신호레벨을 전송하기 위한 신호레벨 전송 스위치, 도면부호 9b는 선택행의 리셋트 레벨을 전송하기 위한 리셋트 레벨 전송 스위치다. CTS는 신호레벨을 유지하기 위한 신호레벨 유지용량, CTN은 리셋트 레벨을 유지하기 위한 리셋트 레벨 유지용량이다. 도면부호10a, 10b는 용량 CTS 및 CTN에 각각 유지된 신호레벨과 리셋트 레벨을 각 열마다 순서적으로 공통 출력선(13)에 전송하기 위한 전송 스위치다. 도면부호 11은 전송 스위치(10a, 10b)의 조를 각 열마다 순서적으로 ON으로 하는 수평 시프트 레지스터, 도면부호 12는 행을 선택하는 수직 시프트 레지스터다. 도면부호 14는 공통 출력선(13)에 전송된 신호레벨과 리셋트 레벨의 차분 신호를 증폭해서 출력하는 차동 앰프다.
이때, 도2에서는, 설명을 간단하게 하기 위해서 (4×4화소) 16화소만을 보이고 있지만, 일반적인 고체촬상장치의 대부분은, 수십만으로부터 수백만(예를 들면, 2000행×3000열)의 대단히 많은 화소에 의해 구성되어 있다.
상기 구성을 가지는 촬영소자(104)를, 셔터 장치(105)를 사용하지 않고, 종래의 소위 롤링 셔터 구동했을 경우의 제어에 대해서, 도2 및 도3a, 도3b를 참조하여 설명한다.
우선, 1번째 행에 있는 화소의 전하 축적 및 판독 동작에 관하여 설명한다. 전하축적을 시작하기 전에, 1번째 행의 ΦRESl 및 ΦTXl을 하이(high)로 해서 리셋트 스위치(4) 및 전송 스위치(2)를 ON으로 하고, PD(l) 및 FD(3)의 리셋트 동작을 행한다. 그 후, ΦRESl 및 ΦTXl을 로우(low)로 해서 리셋트 스위치(4) 및 전송 스위치(2)를 OFF로 하면, PD(l)에 있어서 전하축적이 개시된다.
다음에, 전하축적 기간의 종료에 앞서, ΦRESl을 하이로 하고 리셋트 스위치(4)를 ON으로 해서 FD(3)의 리셋트 동작을 행하고, 계속해서 ΦSELl을 하이로 해서 선택 스위치(6)를 ON상태로 함으로써, 이 때의 신호를 수직출력선(8)에 판독한다. 동시에 ΦTN을 하이로 함으로써, 수직출력선(8)에 판독된 신호가 리셋트 노이즈 레벨로서, 리셋트 레벨 전송 스위치(9b)를 거쳐서 용량 CTN에 기억된다.
그리고, 소정의 전하축적 기간이 경과하면, ΦTXl을 하이로 해서 전송 스위치(2)를 ON으로 하고, PD(l)에 축적되어 있는 전하를 FD(3)에 전송한다. 그리고, 축적된 전하를 판독할 때까지의 대기 기간이 경과한 후, ΦSELl을 하이로 해서 선택 스위치(6)을 ON상태로 함으로써 축적 전하에 대응한 출력이 수직출력선(8)에 판독된다. 이 때, 동시에 ΦTS를 하이로 함으로써 수직출력선(8)에 판독된 신호가 신호레벨로서, 신호레벨 전송 스위치(9a)를 거쳐서 용량 CTS에 기억된다.
전술한 동작에 의해, 용량 CTS 및 CTN에는 각각 1번째 행의 신호레벨 및 리셋트 노이즈 레벨이 기억된다. 이 상태에서 전송 스위치(10a, 10b)를 행마다 순서적으로 ON하여, 상기 기억된 신호와 리셋트 노이즈 레벨을 차동 앰프(14)에 전송함으로써 노이즈를 배제한 전하신호를 얻을 수 있다.
전술한 1번째 행의 전하축적 및 판독 동작을 2번째 행 이후에 관해서도 마찬가지로 행하지만, 적어도 용량 CTS 및 CTN에 전송된 1행분의 신호를 판독하는데 충분한 시간을 둔 후, 다음 행의 리셋트 동작을 시작한다.
도3b는, 롤링 셔터 구동에 의한 1화면분의 행의 전하 리셋트 주사 타이밍과 전하 판독 주사 타이밍을 나타내는 개략도이며, Tint는 전하축적 기간을 보이고 있다. 도3b로부터 알 수 있도록, 1번째 행의 전하축적 타이밍과 최하행의 전하축적 타이밍은 동시가 아니고, 크게 어긋나고 있다.
또한, 촬영 렌즈(201)를 거쳐서 촬영소자(104)의 촬영면에서 결상된 피사체상이 상부와 하부가 반전하므로, 상부행을 1번째 행, 하부행을 최하행이 되도록 판독 제어하여도 된다.
다음에 도4를 참조하여, 본 실시예에 따른 셔터 장치(105)의 구성에 관하여 설명한다.
도4에 있어서, 도면부호 50은 셔터 개구를 가지는 셔터 지판, 도면부호 50a는 셔터 개구이다. 도면부호 40은 후방 슬릿형성 날개, 도면부호 40a는 후방 슬릿 형성단, 및 도면부호 41-43은 후방 덮개 날개로, 순서적으로 41은 제1의 후방 날개, 42는 제2의 후방 날개, 43은 제3의 후방 날개라고 부른다. 이때, 본 실시예에 있어서는, 후방 슬릿 형성 날개(40)와 후방 덮개 날개(41-43)를 포괄적으로 후방 날개라고 부른다. 도면부호 44는 후방 날개용의 제1의 암으로, 셔터 지판(50)에 설치된 축(51f)의 주변에 회전가능하게 맞추어지고, 제1의 암(44)의 선단측에 설치한 차광 맞춤못(46a)에서 후방 슬릿 형성 날개(40)를 제1의 암(44)에 대하여 회전가능하게 지지한다. 도면부호 44a는, 후방 날개에 탄성력 등의 구동력을 전달하는 후방 날개 구동부재의 구동 핀을 삽입시키는 구멍이다. 이 구멍(44a)을 거쳐서 축(51f)과 동축에 회전축을 설치한 후방 날개 구동부재로부터 동력을 전해받는다.
도면부호 45는 후방 날개용의 제2의 암이다. 제2의 암(45)은, 셔터 지판(50)에 설치된 축(51g)의 주변에 회전 가능하게 맞추어지고, 제2의 암(45)의 선단측에 설치한 차광 맞춤못(47a)에서 후방 슬릿 형성 날개(40)를 제2의 암(45)에 대하여 회전 가능하게 지지한다. 이와 같이 하여 후방 슬릿 형성 날개(40)와 후방 날개용의 제1의 암(44) 및 제2의 암(45)에 의하여 평행 링크를 형성한다. 마찬가지로, 제1의 후방 날개(41), 제2의 후방 날개(42) 및 제3의 후방 날개(43)는, 제1의 암(44)과 제2의 암(45)의 중간부에 각각의 차광 맞춤못 46b와 47b, 46c와 47c, 46d와 47d에서 회전 가능하게 지지되어, 평행 링크를 형성한다. 이상으로 후방 날개(기능을 나타내는 명칭으로서, "후방 막"이라고도 부른다.)를 구성한다. 이렇게, 본 실시예의 셔터 장치(105)는, 부재 40-47로 구성된 후방 날개만을 가지고 있다.
다음에, 도5 내지 도9를 참조하여, 본 실시예의 특징인 후방 날개의 주행 곡선의 검출 방법에 관하여 설명한다.
도5는, 촬영소자(104) 및 셔터 장치(105)의 후방 날개를 광축방향의 피사체측에서 보았을 경우의 위치 관계를 도시한 개략도다.
화살표(20)는, 리셋트 주사 및 판독 주사의 주사 방향과, 후방 날개의 주행방향을 나타낸다. 도면부호 21은 촬영소자(104)의 촬영면이다. 도면부호 22는 전술한 후방 슬릿 형성 날개(40) 및 후방 덮개 날개(41-43)로 이루어진 후방 날개이며, 도5에서는 촬영면(21)을 차광하기 전의 대기 상태를 보이고 있다. 후방 날개(22)의 선단(24)은, 촬영소자(104)에 배열되어 있는 화소의 각 행과 대략 평행하게 되도록 형성되어 있다. 도면부호 21a, 21b는 촬영면(21)의 각각의 화소 행의 영역을 나타낸다. 이들 화소 행(21a, 21b)은, (후술하는) 후방 날개의 주행 곡선 검지에 사용되고, 주사 검지선이라고 부른다. 이 주사 검지선(21a, 21b)은 후방 날개의 주행 방향으로 서로 떨어진 위치(인접하지 않는 위치)에 설정된다.
도6은, 본 실시예에 따른 촬영 시스템에 있어서, 후방 날개의 주행 곡선을 검지하는 처리를 나타내는 흐름도다. 이때, 이 동작은, 스위치 유닛(112)을 유저가 조작 함에 의해, 후방 날개의 주행 곡선의 검지가 지시되었을 경우 등에 행해진다. 카메라CPU(lOl)가 각 처리에 필요한 구성을 제어 함에 의해 실행된다.
우선, 스텝S21에 있어서, 카메라CPU(lOl)는 미러부재(102)를 움직여서 광로로부터 대피시키고, 후방 날개(22)를 도5에 나타내는 상태로 해서, 촬영소자(104)의 촬영면(21)에 피사체의 광속을 도입한다. 다음에, 스텝S22에서 카메라CPU(lOl)는 촬영면(21)의 주사 검지선(21a, 21b)을 순서적으로 리셋트하고, 소정의 전하축적 기간Tc 경과 후, 스텝S23에서 주사 검지선(21a, 21b)에 축적된 전하를 판독한다. 이 스텝 S22 및 S23의 노광 동작을 "노광 동작1"이라고 한다.
이 노광 동작1에서는 촬영면(21)의 전체 화소의 축적 전하를 판독하지 않기 때문에, 대단히 단시간에 실행하는 것이 가능하다. 예를 들면, 어스펙트비 3:2의 600만 화소의 촬영소자를 가정했을 경우, 화소는 세로방향으로 2000행 나열해 있으므로, 전체 화소의 전하축적 정보를 판독할 경우에 요하는 시간은 100ms-200ms다. 이에 대하여, 본 실시예에 의하면, 2행분의 판독을 행하는 것뿐이므로, 전체 화소를 판독할 경우의 1/1000인, 불과 0.1ms-0.2ms밖에 판독에 시간을 필요로 하지 않는다.
따라서, 전하축적 기간 Tc을 예를 들면 1/1000초(1ms)로 설정한 경우, 노광 동작1에 필요로 하는 시간은 합계 2ms이내라고 하는, 대단히 단시간에 노광 동작1을 완료할 수 있다.
다음에, 노광 동작1의 완료 후, 스텝S24에서, 카메라 CPU(101)는, 카메라 본체(100)의 (도면에 나타내지 않은) 내부 메모리에 기억되어 있는 후방 날개의 주행 곡선에 맞추도록 행들의 리셋트 주사를 행하도록 제어한다. 그리고, 스텝S25에 있어서, 카메라 CPU(101)는, 소정의 노광 기간 Te경과 후, 후방 날개(22)를 구동시켜서 촬영면(21)을 차광한다. 여기에서, 노광 기간 Te는, 노광 동작1에 있어서의 전하축적 기간Tc와 같은 길이로 한다. 후방 날개(22)가 구동되었으면, 스텝S26에 있어서 카메라 CPU(101)는, 주사 검지선(21a, 21b)의 전하를 판독한다. 이 스텝S24-S26의 노광 동작을 "노광 동작2"이라고 한다. 주사 검지선(21a, 21b)의 전하가 판독되었으면, 스텝S27에 있어서, 카메라 CPU(101)는, 보통 촬영동작 또는 다음 후방 날개(22)의 주행 곡선검지 동작에 들어가기 위해서 후방 날개(22)의 챠지를 행하고, 후방 날개(22)를 도5에 나타내는 시작 위치로 되돌아가도록 제어한다.
여기에서, 노광 기간Te가 전하축적 기간Tc와 같은 1/1000초(1ms)로 설정되어 있는 경우, 후방 날개(22)가 주행 시작하고나서 주행 완료할 때까지의 시간은 보통 4ms정도이므로, 노광 동작2은 5ms정도로 완료할 수 있다.
이와 같이, 노광 동작1과 노광 동작2를 연속으로 실시해도 주행 곡선의 검지에 필요로 하는 시간은 얼마 안되기 때문에, 노광 동작1과 노광 동작2의 시간차를 무시할 수 있다. 따라서, 노광 동작1과 노광 동작2 사이의, 주사 검지선(21a, 21b) 에 있어서의 피사체의 상태변화, 즉 휘도변화에 의한 전하축적량의 차이도 무시할 수 있다.
노광 동작1과 노광 동작2의 종료 후, 스텝S28에 있어서, 카메라 CPU(101)는, 전술한 노광 동작1 및 노광 동작2에서 취득한 주사 검지선(21a, 21b)의 전하량에 의거하여 후방 날개(22)의 주행 곡선의 보정처리를 행한다. 이 보정처리에 대해서는, 이하에서 도 8 및 도9를 참조해서 상세하게 후술한다. 주행 곡선의 보정처리가 종료하면, 주행 곡선의 검지 처리를 종료한다.
다음에, 도7-도10을 참조하여, 스텝S28에서 행해진, 본 실시예에 있어서의 후방 날개의 주행 곡선의 보정처리에 관하여 설명한다.
도7은, 주행 곡선의 보정처리를 나타내는 흐름도다. 우선, 스텝S31에 있어서, 카메라 CPU(101)는, 상술한 것처럼, 노광 동작1 및 노광 동작2에서 얻어진 주사 검지선(21a, 21b)의 전하량에 의거하여 주행 곡선의 보정이 필요한 것인가 아닌가를 판단한다. 여기에서, 도8을 참조해서 이 판단 동작에 관하여 설명한다.
도8은, 노광 동작1 및 노광 동작2에 있어서의 전하 리셋트, 전하판독, 후방 날개의 구동을 도시한 개략도다. 도8에 있어서, 세로축 v는 촬영면(21)의 수직방향에 있어서의 위치를 나타내고, 가로축t는 시간을 보이고 있다.
도8에 나타나 있는 바와 같이, 노광 동작1에 있어서의 주사 검지선(21a, 21b)의 전하축적 기간Tc는, 펄스 제어에 의해 마찬가지로 하는 것이 가능하다. 이 노광 동작1에서 얻어진 주사 검지선(21a, 21b)의 전하량의 합계를, 각각 Qa, Qb라고 한다.
도면부호 71은 스텝S24의 노광 동작2에 있어서의 전하 리셋트 주사의 주사 곡선, 도면부호 72는 스텝S25의 후방 날개(22)의 주행 곡선을 나타낸다. 이 노광 동작2에서 얻어진 주사 검지선(21a, 21b)의 전하량을 각각 qa, qb라고 한다.
상기한 바와 같이, 노광 동작1과 노광 동작2에 있어서의 피사체의 상태변화, 즉 휘도변화는 무시할 수 있다. 그 때문에 전하량 Qa와 qa의 비와 전하량Qb와 qb의 비는, 주사 검지선(21a, 21b) 각각에 있어서의 노광 동작1의 전하축적 기간과 노광 동작2의 노광 기간과의 비가 된다. 노광 동작2에 있어서의 주사 검지선(21a)의 실제의 노광 기간을 ta라고 하면, 이 노광 기간은,
ta=Tc*qa/Qa (1)
이라고 나타낼 수 있다.
마찬가지로, 노광 동작2에 있어서의 주사 검지선(21b)의 노광 기간을 tb라고 하면, 이 노광 기간은,
tb=Tc*qb/Qb (2)
이라고 나타낼 수 있다.
이렇게 하여 구한 노광 동작2에 있어서의 노광 기간ta, tb와, 노광 동작1에 있어서의 전하축적 기간Tc의 차이(ta-Tc) 및 (tb-Tc)가, 옳은 후방 날개의 주행 곡선과, 노광 동작2의 리셋트 주사에서 사용한 주행 곡선과의 시간 지연을 나타낸다. 상기 식 (1) 및 (2)에 의거하여, (ta-Tc) 및 (tb-Tc)는 이하의 식(3), (4)에 의해 나타낼 수 있다.
(ta-Tc)=Tc*(qa-Qa)/Qa (3)
(tb-Tc)=Tc*(qb-Qb)/Qb (4)
식(3), (4)로부터 알 수 있듯이, 2개의 노광 동작1, 2에 의한 전하축적량에 차이가 없으면(Qa=qa, Qb=qb), 노광 기간ta, tb는 전하축적 기간Tc과 마찬가지로, 0이 된다. 이 경우, 리셋트 주사에 사용한 주행 곡선이 정확한 것이며, 보정할 필요는 없다.
반대로, 2개의 노광 동작1, 2에 의한 전하축적량에 차이가 생기고 있으면(Qa≠qa, Qb≠qb), 노광 기간 ta, tb는 전하축적 기간Tc와 다르고, 0이 안된다. 따라서, 그 노광 기간 ta, tb에 대해 시간차의 적어도 한쪽이 0이 안될 경우, 전하 리셋트 주사에 사용한 주사 곡선이 실제의 주사 곡선과 일치하고 있지 않아서, 보정할 필요가 있게 된다.
상기 판단에 의해, 주사 곡선의 보정이 필요할 경우(스텝S31에서 YES), 스텝S32로 진행하고, 필요하지 않으면, 스텝S37로 진행한다.
스텝S32에서는, 카메라 CPU(101)는, 노광 동작2에 있어서, 후방 날개(22)의 구동을 시작하고나서 주사 검지선(21a, 21b)을 실제로 후방 날개(22)의 선단(24)이 통과한 시간을 산출한다. 그리고, 산출한 통과 시간 ti와, 주사 검지선(21a, 21b)의 촬영면(21)안의 수직방향에 있어서의 각각의 위치vi를 관련지어서, 카메라 본체(100)의 (도면에 나타내지 않은) 내부 메모리에 기억한다. 여기에서, 통과 시간의 산출 방법에 대해서, 도9를 참조해서 설명한다.
도9에 있어서, 세로축v는 촬영면(21) 상의 수직방향에 있어서의 위치를 나타내고, 가로축t는 시간을 나타낸다. 여기에서, 촬영면의 최하단을 v=0, 최상단을 v=vE, 주사 검지선(21a, 21b)을 각각 v=vl, v=v2라고 한다. 또한, 노광 동작2에 있어서의 전하 리셋트 주사의 개시시각을 t=0이라고 한다. 도면부호 310은 카메라 본체(100)안에 미리 설정되어 있는 후방 날개의 주행 곡선, 다시 말해, 현재의 노광 동작2에 있어서의 전하 리셋트의 주사에 사용된 곡선을 보이고 있다.
우선, 카메라 CPU(101)는, 카메라 본체(100)안에 유지되어 있는 주행 곡선(310)에 의거하여 후방 날개(22)의 주사 검지선(21a, 21b)의 통과 시간 Tl, T2을 계산한다.
다음에, 카메라 CPU(101)는, 노광 동작2에 있어서, 후방 날개(22)가 실제로 주사 검지선(21a, 21b)을 통과하는 통과 시간tl, t2을 구한다. 여기에서, tl, t2와 Tl, T2와의 차이는, 전술한 노광 기간ta, tb과 전하축적 기간Tc와의 차이와 같기 때문에, 식(3), (4)을 사용해서 구할 수 있다. 즉,
tl-Tl=ta-Tc=Tc*(qa-Qa)/Qa
따라서,
tl=Tl+Tc*(qa-Qa)/Qa (5)이 된다.
마찬가지로, t2=T2+Tc*(qb-Qb)/Qb (6)이 된다.
이렇게 하여 구한 tl 및 t2을, vl 및 v2에 관련지어서(ti, vi)= (tl, vl) 및 (t2, v2)로서 카메라 본체(100)의 (도면에 나타내지 않은) 내부 메모리에 기억한다(스텝S32).
다음에, 스텝S33에 있어서, 카메라 CPU(101)는, 스텝S32에서 기억한 (ti, vi) 이외에, 기억되어 있는 (ti, vi)값이 있는 것인가 아닌가를 판단한다. 다른 (ti, vi)값이 기억되어 있지 않으면, 도 7의 스텝S34로 진행하고, 다른 (ti, vi)값이 기억되어 있으면, 스텝S35로 진행한다.
스텝S34에서는, 스텝S32에서 구한 (tl, vl) 및 (t2, v2)에 의거하여 도9에 나타내는 주행 곡선(300)을 근사에 의해 구한다. 이 주행 곡선(300)은, 예를 들면 아래와 같이 해서 구할 수 있다. 우선, 미리 실시한 후방 날개(22)의 주행 시험 측정에 의해 얻어진 후방 날개(22)의 주행 곡선 데이터를 촬상장치 본체의 내부 메모리(도면에 나타내지 않음)에 기억해 둔다. 그 주행 곡선(300)은, 상술한 것처럼 얻어진 (tl, vl) 및 (t2, v2)에 대응시킴으로써 근사시킨다. 또한, 후방 날개(22)의 주행 시뮬레이션에 의해 산출된 주행 곡선을 미리 기억해 두고, (tl, v1) 및 (t2, v2)에 의해 주행 곡선을 근사해서 구해도 되고, 후방 날개(22)의 주행 곡선(300)의 취득 방법은 특히 한정되는 것이 아니다.
이때, 스텝S34에서 얻어진 주행 곡선(300)은 후방 날개(22)의 2개의 주사 검지선(21a, 21b)만 있으므로, 실제의 주행 곡선과 다른 경우가 있다. 이것은, 미리 카메라 본체(100)의 내부 메모리에 기억된 주행 곡선 데이터나, 주사 시뮬레이션으로부터 얻어진 주행 곡선과, 실제의 주행 곡선의 형상에 변화가 생겨버린 경우에 생긴다. 도9의 곡선(301)은 후방 날개(22)의 실제의 주행 곡선의 일례를 보이고 있다.
스텝S34에서 주행 곡선(300)을 취득하면, 카메라 CPU(101)는, 이 주행 곡선(300)을 카메라 본체(100)의 내부 메모리에 기억하고나서(스텝S36), 스텝S37로 진행한다. 스텝S37에서는, 카메라 CPU(101)는, 주행 곡선의 검지 처리를 계속할 것 인가 아닌가를 판단한다. 본 실시예에서는, 주행 곡선의 검지 처리를 계속 함에 의해, 근사에 의해 구한 주행 곡선(300)을 실제의 주행 곡선(301)에 가까이 할 수 있다.
주행 곡선검지 처리를 계속할 경우(스텝S37에서 YES), 카메라 CPU(101)는, 주사 검지선의 촬영면(21)에 있어서의 수직방향의 위치를 쉬프트시킨다(스텝S38). 도10은, 주사 검지선(21a, 21b)과, 쉬프트된 주사 검지선(21c, 21d)를 나타내는 개략도다. 이때, 도10에 있어서, 도5와 같은 구성에는 같은 참조번호를 부착하고, 그 설명을 생략한다. 이렇게, 주사 검지선의 수직방향의 위치를 쉬프트시킨 후, 도6의 스텝S22로 되돌아간다.
주사 검지선의 쉬프트 후, 도6의 스텝S22로 되돌아가고, 전술한 도7의 스텝S32까지의 처리를 반복한다. 그 결과, 보정이 필요한 경우에는, 스텝S33의 판단에 있어서 YES가 되므로, 스텝S35로 진행한다. 이때, 2회째 이후의 처리에서는, 이전의 루틴에서 구하고, 카메라 본체(100)의 내부 메모리에 기억한 주행 곡선을 사용하여, 스텝S24의 리셋트 주사를 행한다.
스텝S35에서는, 카메라 CPU(101)는, 새롭게 구한 (ti, vi)와, 카메라 본체(100)의 내부 메모리에 기억된 (ti, vi)에 의거하여, 주행 곡선을 보정한다. 여기에서, 새롭게 구한 (ti, vi)이 도10에 나타내는 주사 검지선(21c, 21d)의 값이고, 그 구한 주행 곡선을 도11에 나타낸다. 여기에서는, 주사 검지선 21c의 통과 시간 및 위치를 (t3, v3)로 하고, 주사 검지선21d의 통과 시간 및 위치를 (t4, v4)로 한다. 또한 통과 시간 t3 및 t4을 구하기 위해서, 보정전의 주행 곡선(300)으로 부터 계산된 주사 검지선(21c, 21d)의 통과 시간은 각각 T3, T4라고 한다. T3 및 T4는, 주행 곡선(300)과 주사 검지선(21c, 21d)의 위치로부터 구할 수 있다.
여기에서는, 도11에 나타나 있는 바와 같이, 카메라 CPU(101)는, (tl, v1), (t2, v2), (t3, v3), (t4, v4)을 플롯하고, 이것들의 점을 통과하도록 주행 곡선을 근사한다. 이에 따라 (tl, v1), (t2, v2)에만 근거해서 구한 주행 곡선(300)과 비교하여, 실제의 주행 곡선(301)에 의해 가까운 주행 곡선(302)을 얻을 수 있다.
스텝S35에서 주행 곡선(302)을 취득하면, 카메라 CPU(101)는, 이 주행 곡선(302)을 카메라 본체(100)의 내부 메모리에 기억하고나서(스텝S36), 스텝S37로 진행한다. 더욱 주행 곡선 검지 처리를 계속할 경우, 더욱 주사 검지선의 위치를 쉬프트하고, 전술한 처리를 반복한다. 한편, 주행 곡선 검지 처리를 종료하는 경우에는, 도6으로 되돌아가고, 일련의 처리를 종료한다. 주행 곡선 검지 처리는, 예를 들면 일 행에서 여러번 계속해서 스텝S31에 있어서의 주행 곡선의 보정이 필요하지 않다고 판단된 경우나, 스위치 유닛(112)을 유저가 조작 함에 의해 종료가 지시된 경우에, 종료한다. 또한, 주행 곡선 검지 중에, 스위치 유닛(112)을 유저가 조작함에 의해 촬영 동작을 시작하기 위한 지시가 되었을 경우에 종료한다.
이와 같이, 후방 날개(22)의 주행 곡선의 검지 동작을 반복할 때마다 촬영소자(104)의 주사 검지선의 촬영면(21)상의 위치를 쉬프트함으로써, 주사 검지선의 장소를 늘리는 것과 동등한 효과를 얻을 수 있어, 보다 실제의 주행 곡선에 가까운 곡선을 얻을 수 있다. 이에 따라 셔터 장치(105)를 사용해서 정지 화상의 촬영을 행할 경우에, 화면의 상하의 노광 시간의 타이밍 차이를 절감함과 동시에, 노출 얼 룩을 저감시킨 화상을 사용자에게 제공 할 수 있다.
또한 후방 날개의 주행 곡선을 촬영소자의 출력을 사용해서 검출하므로, 다른 위치 검출 센서 등의 검출수단을 설치할 필요가 없고, 촬영 시스템의 대형화, 또는, 비용 상승을 피한다.
이때, 상기 실시예에서는, 주사 검지선은 각각 촬영소자의 1행분의 화소로서 각각 설명했지만, 주사 검지선은 이것에 한정되는 것은 아니다. 예를 들면 촬영소자의 동일 행은 아닌 하나 이상의 화소를 사용함으로써, 주행 곡선 검지에 요하는 시간을 더 단축하는 것도 가능하다.
상기 실시예에서는, 후방 날개의 주행 곡선 검지처리가 수행될 때마다 2개의 주사 검지선을 설정한다. 대안으로서, 3개 이상의 주사 검지선을 설정해도 좋다. 주사 검지선의 수를 늘려 감으로써 얻는 주행 곡선을 보다 실제의 주행 곡선에 가까이 할 수 있지만, 그 경우, 주사 검지선에서의 전하판독에 걸리는 시간이 그다지 길어지지 않도록 설정하는 것이 바람직하다.
반대로, 후방 날개의 주행 곡선의 검지 처리를 수행할 때마다 하나의 주사 검지선을 설정하고, 후방 날개를 보유하고 있는 위치 및 전자석의 보유력 해제의 신호를 통과 시간으로서 사용하여도 된다.
또한, 상기의 실시예에서는, 촬영소자(104)를 CMOS이미지센서로서 설명을 행했지만, 촬영소자는 XY어드레스형 촬영소자라면 CMOS이미지센서에 한정되는 것은 아니다.
(변형 예)
상기 실시예에 의하면, 노광 동작1에 있어서의 주사 검지선(21a 및 21b)의 축적 전하의 판독 동작에 필요로 하는 시간이 2ms이내이어서, 릴리즈 시간 지연에 영향을 끼치지 않는 시간의 단기간에 상기 동작을 완료할 수 있다. 그 때문에, 또한, 노광 동작2을 후방 날개의 주행 곡선을 검지할 뿐이 동작으로서가 아니고, 일반적인 촬영으로서 행하는 것도 가능하다. 이 경우에, 다음과 같은 순서로 촬영소자(104) 및 셔터 장치(105)를 구동한다.
우선, 유저에 의해 스위치 유닛(112)에 포함되는 릴리즈 스위치 SW가 조작되면, 도6의 처리 흐름이 스타트하고, 스텝S22 및 S23에서는 전술한 노광 동작1을 행한다.
다음에, 스텝S24에 있어서, 카메라 CPU(101)는, 카메라 본체(100)의 (미도시된) 내부 메모리에 기억되어 있는 후방 날개(22)의 주행 곡선에 맞추도록 전하 리셋트를 전체 화소에 대하여 순서적으로 행한다. 노광 기간Te(=전하 축적 기간Tc)경과 후, 스텝S25에 있어서 카메라 CPU(101)는, 후방 날개(22)를 구동해서 촬영면(21)을 차광한다. 후방 날개(22)가 구동되었으면, 스텝S26에 있어서 카메라 CPU(101)는, 전체 화소의 전하의 판독을 행하고, 그 축적된 전하를 판독한다. 그 전하가 판독되었으면, 스텝S27에 있어서 카메라 CPU(101)는, 보통 촬영동작 또는 다음 주행 곡선 검지 동작에 들어가기 위해서 후방 날개(22)의 챠지를 행하고, 후방 날개(22)를 도5에 나타내는 시작 위치로 되돌아간다. 스텝S28로 진행하고, 카메라 CPU(101)는,판독한 모든 전하로부터 주사 검지선의 전하를 추출하고, 도7에 나타내는 주행 곡선의 보정처리를 행한다.
이와 같이 제어함으로써 일반적인 촬영을 행할 때마다, 주행 곡선을 보정하는 것이 가능하게 된다.
본 발명을 예시적 실시예들을 참조하여 설명하였지만, 본 발명은 상기 개시된 예시적 실시예들에 한정되지 않는다는 것을 알 것이다. 이하의 청구범위는, 상기 변형 예와 동등한 구조 및 기능을 모두 포함하도록 아주 넓게 해석해야 한다.
도1은 본 발명의 실시예에 따른 촬영 시스템의 구성을 나타내는 블록도,
도2는 본 발명의 실시예에 따른 촬영소자의 구성을 나타내는 회로도,
도3a 및 도3b는 본 발명의 실시예에 따른 촬영소자의 전하축적 및 판독을 설명하기 위한 타이밍 차트,
도4는 본 발명의 실시예에 따른 셔터 장치의 구성도,
도5는 본 발명의 실시예에 따른 촬영소자 및 후방 날개를 피사체측에서 보았을 경우의 개략도,
도6은 본 발명의 실시예에 따른 후방 날개의 주행 곡선의 검지 처리의 전체동작을 나타내는 흐름도,
도7은 본 발명의 실시예에 따른 후방 날개의 주행 곡선의 보정처리를 나타내는 흐름도,
도8은 본 발명의 실시예에 따른 후방 날개의 주행 곡선의 검지 처리에 있어서의 전하 리셋트, 전하판독, 후방 날개 구동의 동작, 및 축적된 전하를 도시한 개략도,
도9는 본 발명의 실시예에 따른 후방 날개의 주행 곡선의 검지 처리에 있어서의 주행 곡선의 보정방법을 설명하는 도면,
도10은 본 발명의 실시예에 따른 주사 검지 라인의 위치 쉬프트에 관하여 설명하는 도면,
도11은 본 발명의 실시예에 따른 후방 날개의 주행 곡선의 검지 처리에 있어 서의 주행 곡선의 보정방법을 설명하는 도면이다.

Claims (13)

  1. 입사하는 피사체 광학상을 전기적인 화상신호로 변환해서 출력하는 복수 화소로 이루어진 촬영소자를 갖고, 차광부재가 상기 촬영소자로의 개구를 차폐할 수 있는 촬상장치의 제어 방법으로서,
    상기 촬영소자의 제1의 선택된 일부영역으로부터 출력된 화상신호에 의거하여 상기 차광부재의 주행 특성을 취득하고,
    기억 수단에 상기 취득된 주행 특성을 기억하는 취득 공정과;
    상기 일부영역을 상기 차광부재의 주행 방향을 따라 상기 제1의 선택된 일부영역으로부터 이격된 다른 위치로 이동하는 이동 공정과;
    상기 이동된 일부영역의 또 다른 주행 특성을 취득하기 위해 상기 취득 공정을 반복하는 공정과;
    상기 기억수단에 기억된 상기 차광부재의 상기 또 다른 주행 특성을 기억하는 공정을 포함한 것을 특징으로 하는 촬상장치의 제어 방법.
  2. 제 1 항에 있어서,
    상기 취득 공정은,
    상기 기억 수단에 기억된 주행 특성에 의거하여 상기 촬영소자를 리셋트 주사하고, 미리 설정된 노광 기간 후에 상기 차광부재를 구동시켜서 상기 촬영소자를 차광하고, 상기 일부영역으로부터 화상신호를 출력하는 제1의 판독 공정과;
    상기 제1의 판독 공정에 앞서, 상기 노광 기간과 같은 시간의 길이 동안 전하를 축적하여, 상기 일부영역으로부터 화상신호를 출력하는 제2의 판독 공정과;
    상기 제1 및 제2의 판독 공정에서 출력된 상기 화상신호에 의거하여 상기 주행 특성을 나타내는 특성 데이터를 취득해서 상기 기억수단에 기억하는 공정과;
    상기 기억 수단에 기억되어 있는 특성 데이터를 사용해서 상기 주행 특성을 취득하는 공정을 포함한 것을 특징으로 하는 촬상장치의 제어 방법.
  3. 제 2 항에 있어서,
    상기 제1의 판독공정에서는, 상기 촬영소자의 전체 영역으로부터 화상신호를 출력하고, 그 출력된 전체 영역의 화상신호로부터, 상기 일부영역의 화상신호를 취득하는 것을 특징으로 하는 촬상장치의 제어 방법.
  4. 제 1 항에 있어서,
    상기 이동 공정, 취득 공정 및 기억 공정을 반복적으로 실행하는 것을 특징으로 하는 촬상장치의 제어 방법.
  5. 제 1 항에 있어서,
    상기 일부영역은, 상기 차광부재의 상기 주행 방향으로 서로 이격된 복수의 영역을 포함한 것을 특징으로 하는 촬상장치의 제어 방법.
  6. 제 1 항에 있어서,
    상기 취득공정은,
    기간 Tc에 있어서 상기 촬영소자의 제1의 선택된 일부영역에서의 화소들에 축적된 전하를 측정하고,
    상기 기간 Tc에 있어서 상기 차광부재의 주행 방향으로 상기 제1의 선택된 일부영역으로부터 이격된 상기 촬영소자의 제2의 선택된 일부영역에서의 화소들에 축적된 전하를 측정하고,
    전하 축적을 재시작하기 위해 상기 화소들을 리셋트하고,
    상기 기간 Tc와 겉보기에는 동일하지만 상기 차광부재의 위치/시간 주행 특성 때문에 상이한 양에 의해 Tc와 다른 기간 후에 상기 촬영소자의 상기 제1 및 제2의 선택된 일부영역에 빛이 충돌하는 것을 막기 위해 상기 차광부재를 구동하여 주행시키고,
    상기 제1의 선택된 일부영역의 화소 리셋트 동작으로 시작하고 상기 차광부재의 가장자리가 상기 제1의 선택된 일부영역을 가로지르고 상기 제1의 선택된 일부영역에 빛이 충돌하는 것을 차단하는 경우 종료하는 기간 Ta에 있어서 상기 촬영소자의 상기 제1의 선택된 일부영역에서의 화소들에 축적된 전하를 측정하고,
    상기 제2의 선택된 일부영역의 화소 리셋트 동작으로 시작하고 상기 차광부재의 가장자리가 상기 제2의 선택된 일부영역을 가로지르고 상기 제2의 선택된 일부영역에 빛이 충돌하는 것을 차단하는 경우 종료하는 기간 Tb에 있어서 상기 촬영소자의 상기 제2의 선택된 일부영역에서의 화소들에 축적된 전하를 측정하며,
    상기 차광부재의 가장자리가 상기 제1 및 제2의 선택된 일부영역을 가로지르는 경우 기간 Tc,Ta 및 Tb동안 측정된 축적 전하로부터 계산하여서 상기 주행 특성을 제공하는 것을 특징으로 하는 촬상장치의 제어 방법.
  7. 입사하는 피사체 광학상을 전기적인 화상신호로 변환해서 출력하는 복수 화소로 이루어진 촬영소자와;
    상기 촬영소자로의 개구를 차폐할 수 있는 차광부재와;
    기억 수단과;
    상기 촬영소자의 제1의 미리 설정된 일부영역으로부터 출력된 화상신호에 의거하여 상기 차광부재의 주행 특성을 취득하고, 상기 기억수단에 그 취득된 주행 특성을 기억하고, 상기 일부영역을 상기 차광부재의 주행 방향을 따라 상기 제1의 미리 설정된 일부영역으로부터 이격된 다른 위치로 이동하도록 구성된 제어 수단을 구비하고,
    상기 제어 수단은, 상기 다른 위치로 이동된 일부영역으로부터의 화상신호에 의거하여 상기 기억 수단에 기억한 상기 차광부재의 주행 특성을 갱신하는 것을 특징으로 하는 촬상장치.
  8. 제 7 항에 있어서,
    상기 제어 수단은, 상기 주행 특성의 취득 및 갱신시에,
    상기 기억 수단에 기억된 주행 특성에 의거하여 상기 촬영소자를 리셋트 주사시키고, 미리 설정된 노광 기간 후에 상기 차광부재를 주사시켜서 상기 촬영소자를 차광하고, 상기 일부영역으로부터 화상신호를 출력하는 제1의 판독 제어와,
    상기 제1의 판독 제어에 앞서, 상기 노광 기간과 같은 시간의 길이 동안 전하를 축적하여, 상기 일부영역으로부터 화상신호를 제공하는 제2의 판독 제어와,
    상기 제1 및 제2의 판독 제어에 의해 출력된 상기 화상신호에 의거하여 상기 주행 특성을 나타내는 특성 데이터를 취득해서 상기 기억수단에 기억하는 제어와,
    상기 기억 수단에 기억되어 있는 특성 데이터를 사용하여 상기 주행 특성을 취득하는 제어를 행하는 것을 특징으로 하는 촬상장치.
  9. 제 8 항에 있어서,
    상기 제1의 판독 제어에서는, 상기 촬영소자의 전체 영역으로부터 화상신호를 출력하고, 그 출력된 전체 영역의 화상신호로부터, 상기 일부영역의 화상신호를 취득하는 것을 특징으로 하는 촬상장치.
  10. 제 7 항에 있어서,
    상기 제어 수단은, 상기 일부영역의 이동과 상기 주행 특성의 갱신을 반복적으로 실행하는 것을 특징으로 하는 촬상장치.
  11. 제 7 항에 있어서,
    상기 일부영역은, 상기 차광부재의 주행 방향으로 서로 이격된 복수의 영역을 포함한 것을 특징으로 하는 촬상장치.
  12. 제 7 항에 있어서,
    상기 차광부재는, 셔터의 후방 날개인 것을 특징으로 하는 촬상장치.
  13. 삭제
KR1020070089293A 2006-09-08 2007-09-04 촬상장치 및 촬상장치의 제어 방법 KR100891319B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006244830A JP4235660B2 (ja) 2006-09-08 2006-09-08 画像処理装置及びその制御方法
JPJP-P-2006-00244830 2006-09-08

Publications (2)

Publication Number Publication Date
KR20080023136A KR20080023136A (ko) 2008-03-12
KR100891319B1 true KR100891319B1 (ko) 2009-04-01

Family

ID=38904804

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070089293A KR100891319B1 (ko) 2006-09-08 2007-09-04 촬상장치 및 촬상장치의 제어 방법

Country Status (5)

Country Link
US (1) US7733399B2 (ko)
EP (1) EP1898635A3 (ko)
JP (1) JP4235660B2 (ko)
KR (1) KR100891319B1 (ko)
CN (1) CN100559845C (ko)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7724301B2 (en) * 2006-11-27 2010-05-25 Nokia Corporation Determination of mechanical shutter exposure time
KR101080426B1 (ko) * 2009-07-24 2011-11-04 삼성전자주식회사 셔터의 주행 특성 검출 방법 및 그 장치
KR101080427B1 (ko) * 2009-08-31 2011-11-04 삼성전자주식회사 전자셔터를 이용하여 영상의 동적 범위를 향상시키는 방법 및 그 장치
KR101170459B1 (ko) * 2009-11-03 2012-08-07 삼성전자주식회사 촬영 장치 제어 방법 및 이를 이용한 촬영 장치
JP5682196B2 (ja) * 2010-09-22 2015-03-11 セイコーエプソン株式会社 画像補正回路、撮影装置および画像補正プログラム
JP5644400B2 (ja) 2010-11-15 2014-12-24 セイコーエプソン株式会社 撮影装置、撮影方法および撮影プログラム
JP5621569B2 (ja) * 2010-12-13 2014-11-12 ソニー株式会社 撮像装置及びシャッタ動作補正方法
KR20120095649A (ko) * 2011-02-21 2012-08-29 삼성전자주식회사 촬영 장치 및 그 촬영 방법
JP2012182657A (ja) * 2011-03-01 2012-09-20 Sony Corp 撮像装置、および撮像装置制御方法、並びにプログラム
JP5708047B2 (ja) * 2011-03-07 2015-04-30 セイコーエプソン株式会社 デジタルカメラおよびその露光制御方法
CN102685393B (zh) * 2011-03-07 2016-11-23 精工爱普生株式会社 数码相机及其曝光控制方法
JP5927957B2 (ja) * 2012-02-07 2016-06-01 セイコーエプソン株式会社 画像生成装置および露光開始タイミングの調整方法
JP5927958B2 (ja) * 2012-02-07 2016-06-01 セイコーエプソン株式会社 画像生成装置および露光開始タイミングの調整方法
KR20130094121A (ko) * 2012-02-15 2013-08-23 삼성전자주식회사 하이브리드 포컬 플레인 셔터 조립체를 구비한 촬상장치 및 촬상방법
TWI623232B (zh) * 2013-07-05 2018-05-01 Sony Corp 固體攝像裝置及其驅動方法以及包含固體攝像裝置之電子機器
JP6336286B2 (ja) * 2014-01-31 2018-06-06 キヤノン株式会社 撮像装置、撮像システム、撮像装置の制御方法および撮像装置を有する撮影装置
JP6338385B2 (ja) 2014-01-31 2018-06-06 キヤノン株式会社 撮像装置、撮像システム、撮像装置の制御方法および撮像装置を有する撮影装置
WO2023197333A1 (zh) * 2022-04-15 2023-10-19 北京小米移动软件有限公司 固体拍摄装置以及摄像头设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050047157A (ko) * 2003-11-17 2005-05-20 삼성전자주식회사 조리개를 이용한 메카 셔터 기능을 갖는 촬상 장치 및 그촬상 장치에서의 노광량 보정 방법
JP2006109196A (ja) 2004-10-07 2006-04-20 Konica Minolta Photo Imaging Inc 撮像装置及び携帯通信機器
JP2006166417A (ja) 2004-11-11 2006-06-22 Canon Inc 撮像装置及びその制御方法
KR20060080127A (ko) * 2005-01-04 2006-07-07 소니 가부시끼 가이샤 촬상 장치 및 촬상 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6256066B1 (en) * 1996-06-28 2001-07-03 Matsushita Electric Industrial Co., Ltd. High-resolution image pickup method and apparatus therefor
JP3988215B2 (ja) 1997-07-17 2007-10-10 株式会社ニコン 撮像装置
JP2002064752A (ja) 2000-06-23 2002-02-28 Hewlett Packard Co <Hp> シャッタの較正方法
CN1169352C (zh) * 2001-12-28 2004-09-29 富士胶片株式会社 固体电子图像感应装置及其控制方法
US20040218087A1 (en) * 2003-04-29 2004-11-04 Thomas Jazbutis Shutter delay calibration method and apparatus
JP3997195B2 (ja) 2003-11-20 2007-10-24 キヤノン株式会社 画像入力装置及びその制御方法
JP4217702B2 (ja) * 2004-09-02 2009-02-04 キヤノン株式会社 撮像装置、および、撮像装置の制御方法
CN100407774C (zh) * 2004-09-02 2008-07-30 佳能株式会社 摄像装置以及摄像装置的控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050047157A (ko) * 2003-11-17 2005-05-20 삼성전자주식회사 조리개를 이용한 메카 셔터 기능을 갖는 촬상 장치 및 그촬상 장치에서의 노광량 보정 방법
JP2006109196A (ja) 2004-10-07 2006-04-20 Konica Minolta Photo Imaging Inc 撮像装置及び携帯通信機器
JP2006166417A (ja) 2004-11-11 2006-06-22 Canon Inc 撮像装置及びその制御方法
KR20060080127A (ko) * 2005-01-04 2006-07-07 소니 가부시끼 가이샤 촬상 장치 및 촬상 방법

Also Published As

Publication number Publication date
CN100559845C (zh) 2009-11-11
EP1898635A2 (en) 2008-03-12
JP2008067234A (ja) 2008-03-21
CN101141570A (zh) 2008-03-12
US20080291306A1 (en) 2008-11-27
KR20080023136A (ko) 2008-03-12
EP1898635A3 (en) 2009-10-07
JP4235660B2 (ja) 2009-03-11
US7733399B2 (en) 2010-06-08

Similar Documents

Publication Publication Date Title
KR100891319B1 (ko) 촬상장치 및 촬상장치의 제어 방법
JP4217702B2 (ja) 撮像装置、および、撮像装置の制御方法
JP4867552B2 (ja) 撮像装置
US8553139B2 (en) Image pickup apparatus
JP5022758B2 (ja) 撮像装置、撮像システム及び撮像装置の駆動方法
US9008497B2 (en) Image pickup apparatus and control method therefor
JP5699480B2 (ja) 焦点検出装置およびカメラ
JP2018031877A (ja) 撮像装置および焦点調節方法
US8305472B2 (en) Image capturing system
JP4398562B2 (ja) 3次元画像検出装置の焦点調節機構
JP3709724B2 (ja) デジタルカメラ
JP2008111995A (ja) オートフォーカス制御方法及び装置
JP2012237769A (ja) 撮像装置
JP5354879B2 (ja) カメラ
US7598994B2 (en) Image pickup apparatus and image pickup method
JP5961058B2 (ja) 撮像装置及びその制御方法、画像処理装置及びその制御方法
JP4337888B2 (ja) 撮像装置
JP5127510B2 (ja) 撮像装置、及び撮像装置の制御方法
JPH10197783A (ja) 焦点検出装置
JPH11258489A (ja) 焦点検出装置、方法及びコンピュータ読み取り可能な記憶媒体
JP2010210810A (ja) 焦点検出装置
JPH11258490A (ja) 焦点検出装置、方法及びコンピュータ読み取り可能な記憶媒体
JP2010130211A (ja) 撮像装置、撮像装置のシャッタ特性校正方法
JPH10177134A (ja) 焦点検出装置
JPH10177135A (ja) 焦点検出装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130221

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140226

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150226

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee