WO2023197333A1 - 固体拍摄装置以及摄像头设备 - Google Patents

固体拍摄装置以及摄像头设备 Download PDF

Info

Publication number
WO2023197333A1
WO2023197333A1 PCT/CN2022/087233 CN2022087233W WO2023197333A1 WO 2023197333 A1 WO2023197333 A1 WO 2023197333A1 CN 2022087233 W CN2022087233 W CN 2022087233W WO 2023197333 A1 WO2023197333 A1 WO 2023197333A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
pixel
conversion elements
pixels
signal
Prior art date
Application number
PCT/CN2022/087233
Other languages
English (en)
French (fr)
Inventor
山下雄一郎
小林篤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280000991.6A priority Critical patent/CN117256159A/zh
Priority to JP2022525510A priority patent/JP2024516752A/ja
Priority to PCT/CN2022/087233 priority patent/WO2023197333A1/zh
Publication of WO2023197333A1 publication Critical patent/WO2023197333A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present invention relates to a solid-state imaging device and a camera device including the solid-state imaging device.
  • High Dynamic Range Imaging is known as a technology for achieving an input dynamic range in which the cumulative capacity that can be maintained exceeds the allowable range in the photodiodes (photoelectric conversion elements) provided in the pixels.
  • Dynamic Range Imaging, HDR imaging Dynamic Range Imaging, HDR imaging
  • Patent Document 1 discloses an "overflow charge accumulation capacitance type" HDR imaging technology that accumulates charges overflowing from a photodiode into an additional holding capacity provided within the pixel, thereby maintaining much more than the amount within the pixel. The photodiode can hold an upper limit of charge on its accumulated capacitance.
  • the dual-pixel method Comparing the two shooting surface phase difference autofocus methods, in the dual-pixel method, all pixels can contribute to the creation of phase difference information and the output of image signals, while in the occlusion method, all pixels can contribute to the creation of phase difference information and the output of image signals. Only occluded pixels are created, and only unoccluded pixels contribute to the output of the image signal. Therefore, typically, compared to the occlusion method, the dual-pixel method has higher autofocus accuracy, especially when shooting low-brightness subjects, and has a better SN ratio than the captured image.
  • the dual-pixel method when photographing a high-brightness subject, one of the two photodiodes arranged in one pixel exceeds the upper limit of the capacitance that can be held, and charges are generated and overflow from the photodiode. The charge sometimes flows into another photodiode. In pixels that produce this overflow, the two photodiodes no longer provide correct phase difference information and can be the main cause of reduced autofocus accuracy.
  • Patent Document 2 discloses an overflow holding device that is provided jointly in two photodiodes (photoelectric conversion portions) and can hold charges overflowing from the two photodiodes. capacitor pixels.
  • the potential barrier between the two photodiodes is set relatively large so that charges designed to overflow from one photodiode preferentially flow into the overflow holding capacitor rather than the other photodiode.
  • the charge that flows into the overflow holding capacitor and is held in this way is added to the one of the two photodiodes that holds the larger charge when a phase difference signal is generated.
  • Patent Document 1 U.S. Patent Application Publication No. 2017/0099423
  • Patent document 2 Japanese Patent Application Publication No. 2020-57894.
  • the problem to be solved by the present invention is to provide a solid-state imaging device that achieves a high dynamic range and provides highly accurate phase difference information for subjects with higher brightness, and a camera head equipped with the solid-state imaging device. device.
  • Each of the plurality of first pixels and the plurality of second pixels includes:
  • One or more photoelectric conversion elements which constitute the light-receiving surface of the pixel and generate charges by photoelectrically converting the received light
  • a floating diffusion region which is connected to the above-mentioned one or more photoelectric conversion elements and converts the above-mentioned charge into a voltage corresponding to the amount of the charge;
  • a holding capacitor connected to the above-mentioned floating diffusion region and capable of accumulating the above-mentioned charge overflowing from the above-mentioned one or more photoelectric conversion elements
  • Each of the plurality of first pixels is configured to include two or more photoelectric conversion elements, and the two or more photoelectric conversion elements are connected to the floating diffusion region. The charges are compared respectively to generate a phase difference data signal.
  • the second pixel group is configured to generate a phase difference data signal by comparing the charges accumulated in each of the second pixels constituting the second pixel group.
  • an independent on-chip lens is provided for each of the plurality of first pixels
  • An independent on-chip lens is provided in each of the second pixel groups, and the two or more pixels constituting the second pixel group share the one on-chip lens (OCL).
  • the potential barrier between the two or more photoelectric conversion elements is lower than the potential barrier between the photoelectric conversion elements and the holding capacitor.
  • a phase difference data signal is generated based on the total number of charges accumulated in the one or more photoelectric conversion elements
  • a phase difference is generated based on the total number of charges accumulated in the one or more photoelectric conversion elements and the total number of charges accumulated in the holding capacitor. data signal.
  • the potential barrier between the two or more photoelectric conversion elements may be higher than the potential barrier between the photoelectric conversion elements and the storage capacitor.
  • a phase difference data signal is generated based on the total number of charges accumulated in the one or more photoelectric conversion elements
  • the output is based on When at least one of the phase difference data signals generated by the charges generated in the two or more photoelectric conversion elements reaches the threshold value, the output is based on the phase difference data signal generated in the second pixel group determined by the solid-state imaging device. A charge-generated phase difference data signal is also possible.
  • the camera device of the present invention is a camera device of the present invention.
  • the invention includes the above-mentioned solid-state imaging device and a control device configured to control the above-mentioned solid-state imaging device.
  • the camera device is configured to determine, for example, based on a signal from the control device, whether the solid-state imaging device outputs a phase difference data signal for each pixel based on the charges generated in the two or more photoelectric conversion elements included in the first pixel. , and/or whether to output a phase difference data signal for each pixel based on the above-mentioned charges generated in the above-mentioned two or more second pixel groups.
  • the above-mentioned camera device may be a mobile terminal, for example.
  • FIG. 1 is a diagram showing the structure of a solid-state imaging device according to the first embodiment.
  • FIG. 2 is a diagram showing an arrangement example of pixels arranged in the pixel array section, and a plurality of specific examples of second pixels are shown in this single diagram.
  • FIG. 3 is a cross-sectional view showing the structure of the first pixel.
  • FIG. 4 is a cross-sectional view showing the structure of the second pixel.
  • FIG. 5 is an equivalent circuit diagram of pixels included in the solid-state imaging device.
  • FIG. 6 is a diagram showing potential barriers of the photoelectric conversion element and the storage capacitor in each pixel in the first embodiment.
  • FIG. 7 is a timing diagram of the above-mentioned pixels.
  • FIG. 8 is a flowchart showing a first output example of the phase difference data signal.
  • FIG. 9 is a flowchart showing a second output example of the phase difference data signal.
  • FIG. 10 is a flowchart showing a third output example of the phase difference data signal.
  • FIG. 11 is a flowchart showing details of step 1002 of the third output example in the first embodiment.
  • FIG. 12 is a diagram showing potential barriers of photoelectric conversion elements and storage capacitors in each pixel according to the second embodiment.
  • FIG. 13 is a flowchart showing details of step 1002 of the third output example in the second embodiment.
  • FIG. 14 is a diagram showing the structure of a solid-state imaging device according to another embodiment.
  • FIG. 15 is a cross-sectional view showing the structure of a solid-state imaging device according to another embodiment.
  • the solid-state imaging device of the present invention includes:
  • Each of the plurality of first pixels and the plurality of second pixels includes:
  • One or more photoelectric conversion elements which constitute the light-receiving surface of the pixel and generate charges by photoelectrically converting the received light
  • a floating diffusion region which is connected to the above-mentioned one or more photoelectric conversion elements and converts the above-mentioned charge into a voltage corresponding to the amount of the charge;
  • an overflow holding capacitor connected to the above-mentioned floating diffusion region and capable of accumulating the above-mentioned charge overflowing from the above-mentioned one or more photoelectric conversion elements
  • Each of the plurality of first pixels is configured to include two or more photoelectric conversion elements, and the two or more photoelectric conversion elements are connected to the floating diffusion region. By converting the charges accumulated in the two or more photoelectric conversion elements, Compare respectively to generate phase difference data signals,
  • the second pixel group is configured to generate a phase difference data signal by comparing the charges accumulated in each of the second pixels constituting the second pixel group.
  • both the method based on the charges generated in the plurality of photoelectric conversion elements of the first pixels included in the solid-state imaging device and the method based on the charges generated in the second pixel group included in the solid-state imaging device are appropriately used.
  • This method can generate high-precision phase difference signals regardless of high-brightness subjects or low-brightness subjects.
  • the image is generated based on the charges generated in the multiple photoelectric conversion elements as in the dual pixel method.
  • an accurate phase difference data signal may not be generated.
  • the manner of comparing the charges generated in the plurality of pixel groups of the second pixel group if the charges generated in each of the plurality of pixels are capable of being accumulated by the photoelectric conversion element and the additional holding capacitance is less than the total number of quantities, then by comparing the charges held in each pixel of the plurality of pixel groups, an accurate phase difference data signal can be provided.
  • phase difference signal and a higher-precision phase difference signal based on a dual (or three, four, etc.) pixel method.
  • an independent on-chip lens is provided for each of the plurality of first pixels
  • An independent on-chip lens is provided in each of the second pixel groups, and the two or more pixels constituting the second pixel group share the one on-chip lens (OCL).
  • the potential barrier between the two or more photoelectric conversion elements is lower than the potential barrier between the photoelectric conversion elements and the holding capacitor.
  • the charge overflowing from the photoelectric conversion element will not Flows into the additional holding capacitor, but preferentially flows into other photoelectric conversion elements included in the pixel.
  • the noise of the charge held by the photoelectric conversion element tends to be smaller than the noise of the charge held by the additional holding capacitor, the SN ratio of the obtained photographic image can be made high.
  • a phase difference data signal is generated based on the total number of charges accumulated in the one or more photoelectric conversion elements
  • a phase difference is generated based on the total number of charges accumulated in the one or more photoelectric conversion elements and the total number of charges accumulated in the holding capacitor. data signal.
  • the phase difference data signal is generated without considering additional holding capacitance, it is possible to generate a phase difference data signal with higher accuracy without being affected by noise caused by the holding capacitance.
  • the potential barrier between the two or more photoelectric conversion elements may be higher than the potential barrier between the photoelectric conversion elements and the storage capacitor.
  • the charges overflowing from the photoelectric conversion element preferentially flow into the additional photoelectric conversion element.
  • Holding capacitor Even if charge overflow occurs in the photoelectric conversion element of the pixel, as long as there is one overflowing photoelectric conversion element, the charge held by the additional holding capacitor can be regarded as the overflowing charge generated by the photoelectric conversion element. . Therefore, even for a relatively high-brightness subject, a highly reliable phase difference data signal can be generated by the first pixel.
  • a phase difference data signal is generated based on the total number of charges accumulated in the one or more photoelectric conversion elements
  • the phase difference data signal is generated without considering additional holding capacitance. Therefore, it is possible to generate a phase difference data signal with higher accuracy without being affected by noise caused by the holding capacitance.
  • the solid-state imaging device may be configured such that for each of the plurality of first pixels,
  • the output is based on When at least one of the phase difference data signals generated by the charges generated in the two or more photoelectric conversion elements reaches the threshold value, the output is based on the phase difference data signal generated in the second pixel group determined by the solid-state imaging device. The phase difference data signal generated by the charge.
  • the solid-state imaging device can determine whether the phase difference information is held without being destroyed (for example, whether the charge generated in a certain photoelectric conversion element overflows and does not flow into other photoelectric conversion elements).
  • Each pixel appropriately determines which of the above two phase difference data signal generation methods is used, so that a more accurate phase difference data signal can be output.
  • the solid-state image device selects the charge information of a nearby second pixel from the charge information of a plurality of pixels currently read into the line memory, and treats the phase difference data signal generated based on the charge information of the nearby second pixel as is the phase difference data signal generated by the first pixel.
  • the camera device of the present invention is a camera device of the present invention.
  • the invention includes the above-mentioned solid-state imaging device and a control device configured to control the above-mentioned solid-state imaging device.
  • the camera device appropriately uses charges generated in two or more photoelectric conversion elements included in the first pixel included in the solid-state imaging device and compares charges generated in the second pixel group included in the solid-state imaging device.
  • the camera device is configured to determine, for example, based on a signal from the control device, whether the solid-state imaging device outputs a phase difference data signal for each pixel based on the charges generated in the two or more photoelectric conversion elements included in the first pixel. , and/or whether to output a phase difference data signal for each pixel based on the above-mentioned charges generated in the above-mentioned two or more second pixel groups.
  • the above-mentioned camera device may be a mobile terminal such as a smartphone, a mobile phone, a tablet computer, a mobile information terminal (PDA), or the like.
  • a mobile terminal such as a smartphone, a mobile phone, a tablet computer, a mobile information terminal (PDA), or the like.
  • the solid-state imaging device of this embodiment is embedded in a camera device such as a smartphone or a digital camera, and includes a CMOS image sensor.
  • this solid-state imaging device 1 includes a pixel array unit 2 , a vertical driving unit 3 , a plurality of column signal processing units 4 , a horizontal driving unit 5 , a control unit 6 , and a signal processing unit 7 .
  • the solid-state imaging device 1 is provided with a memory 8 capable of storing signals and the like processed by the signal processing unit 7 .
  • at least the pixel array unit 2 , the vertical drive unit 3 , the plurality of column signal processing units 4 , the horizontal drive unit 5 and the control unit 6 constitute a CMOS image sensor.
  • the pixel array section 2, the vertical driving section 3, the column signal processing section 4, the horizontal driving section 5, the control section 6 and the signal processing section 7 are arranged on the same semiconductor substrate or on a plurality of electrically connected semiconductor substrates.
  • the signal processing unit 7 and the memory 8 may be arranged on the semiconductor substrate on which the pixel array unit 2, the vertical driving unit 3, the column signal processing unit 4, the horizontal driving unit 5 and the control unit 6 are arranged, or they may be arranged on Different substrates etc. That is, the arrangement positions of the signal processing unit 7 and the memory 8 are not limited.
  • the pixel array unit 2 has a plurality of pixels 10 arranged two-dimensionally in a matrix. Each of these plurality of pixels 10 constitutes the light-receiving surface of the pixel 10 and has two photoelectric conversion elements 11R and 11L.
  • the photoelectric conversion elements 11R and 11L can photoelectrically convert the input light (incident light) and accumulate and internally An amount of signal charge (charge) corresponding to the amount of light is input, and the accumulated signal charge is output.
  • the plurality of pixels 10 are composed of a plurality of first pixels 10A whose light-receiving surface is not blocked by the opaque film, and a plurality of second pixels 10B whose light-receiving surface is partially blocked by the opaque film.
  • the first and second pixels are not shown in FIG. 1
  • the arrangement state of the pixels 10A and 10B and the light-shielding state of the light-receiving surface are not shown in FIG. 1
  • the arrangement state of the pixels 10A and 10B and the light-shielding state of the light-receiving surface Details of the specific configuration of each pixel 10 including their arrangement state or light-shielding state of the light-receiving surface will be described later.
  • the pixel array section 2 may include dummy unit pixels without a photoelectric conversion element structure or pixels that block light input from the outside by shielding the light-receiving surface.
  • the pixel array unit 2 has a plurality of row signal lines 21 arranged in each row and extending in the row direction, and a plurality of column signal lines arranged in each column and extending in the column direction with respect to the matrix-like pixel arrangement. twenty two.
  • Each of the plurality of row signal lines 21 is connected to the vertical driving section 3
  • each of the plurality of column signal lines 22 is connected to the corresponding column signal processing section 4 .
  • the vertical driving unit 3 is composed of, for example, a shift register, selects a predetermined row signal line 21, supplies a pulse (signal) for driving the pixel 10 to the selected row signal line 21, and drives the pixel 10 in row units.
  • the vertical driving section 3 sequentially selects and scans each pixel 10 of the pixel array section 2 in the vertical direction in row units, and transmits signal charges based on the photoelectric conversion element 11 of each pixel 10 generated in accordance with the input light amount through the column signal line 22
  • the pixel signals are supplied to the column signal processing section 4 .
  • Each of the plurality of column signal processing units 4 is disposed in each column of the pixels 10 and performs signal processing such as noise reduction on a pixel signal output from one row of pixels 10 for each pixel column.
  • Each column signal processing unit 4 of this embodiment performs signal processing such as correlated double sampling (CDS) and A/D (Analog/Digital) conversion to remove fixed pattern noise inherent to pixels.
  • CDS correlated double sampling
  • A/D Analog/Digital
  • the horizontal drive unit 5 is composed of, for example, a shift register. By sequentially outputting horizontal scanning pulses, each of the plurality of column signal processing units 4 is sequentially selected, and the pixel signals processed by each column signal processing unit 4 are sequentially output to Signal processing section 7.
  • the control unit 6 controls the operations of each unit of the solid-state imaging device 1 . Specifically, the control unit 6 receives an input clock signal and data for instructing an operation mode and the like, and outputs data such as internal information of the solid-state imaging device 1 . In detail, the control unit 6 generates a clock signal or a control signal that is a reference for the operations of the vertical drive unit 3, the column signal processing unit 4, the horizontal drive unit 5, etc. based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock signal, and generates The generated clock signal or control signal is output to the vertical driving section 3, the column signal processing section 4, the horizontal driving section 5, and the like.
  • the signal processing unit 7 performs various signal processing such as arithmetic processing on the pixel signals output from each column signal processing unit 4 .
  • the signal processing unit 7 of this embodiment is a DSP (Digital Signal Processor; digital signal processor).
  • the specific arrangement position of the signal processing unit 7 is not limited.
  • the signal processing unit 7 is arranged at a different position from the CMOS image sensor.
  • the entire structure of the signal processing unit 7 may be arranged (mounted) on the CMOS image sensor, or the signal processing unit 7 may be arranged (mounted) on the CMOS image sensor. Part of the configuration is configured in the CMOS image sensor.
  • the memory 8 is a line memory, a frame memory, a FIFO, etc., and can store the pixel signal output from the signal processing section 4 of each column. The specific structure of this memory 8 will be described later.
  • a plurality of pixels 10 are two-dimensionally arranged in a matrix in the pixel array unit 2 .
  • 4 rows ⁇ 9 columns of pixels 10 are arranged.
  • two photoelectric conversion elements 11R and 11L are provided in each pixel 10 .
  • the plurality of pixels 10 includes a plurality of first pixels 10A whose light-receiving surfaces are not blocked by the opaque film 60 , and second pixels 10B whose light-receiving surfaces are partially blocked by the opaque film 60 .
  • the pixel in the m-th row and n-th column is represented as a pixel of (m, n)
  • it is arranged at (1, 1), (1, 5), (1, 9)
  • the pixels of (3,1), (3,5), (3,9), (5,5) and (5,9) are the second pixels 10B whose light-receiving surfaces are partially shielded by the opaque film 60, and the remaining
  • the pixel is the first pixel 10A.
  • the first pixel 10A generates a photographing data signal based on the signal charges accumulated in the pixel, and when the signal charges generated in the two photoelectric conversion elements 11R and 11L included in the pixel do not overflow, the first pixel 10A generates a photographing data signal by comparing the two photoelectric conversion elements 11R and 11L.
  • the amount of signal charges generated in the elements 11R and 11L can generate a phase difference data signal that receives light.
  • the second pixel 10B is configured to configure each other through comparison.
  • the above-mentioned charges accumulated in each of the corresponding second pixels 10B in the group of two or more second pixels 10B can generate a phase difference data signal that receives light.
  • the two or more corresponding pixels constituting the second pixel 10B group mean that the light of a phase that is blocked and cannot be accepted in one second pixel 10B is in another second pixel 10B.
  • Two or more pixels that are not blocked and whose phases of light are in a complementary relationship are acceptable.
  • the upper half and the lower half of the pixel are blocked (1, 1) and (3, 1) respectively.
  • FIG. 2 for the sake of convenience, combinations of pixels in which the upper and lower halves of the pixels, the right and left halves, the upper right half and the lower left half of the pixels are respectively occluded are shown, but this figure A plurality of specific examples are shown together in one figure, and all combinations of these second pixels 10B are not necessarily arranged in the pixel array unit 2 .
  • the second pixel 10B arranged in the pixel array unit 2 may be a pixel whose right half or left half is blocked.
  • two or more corresponding pixels constituting the second pixel group 10B are arranged in rows that are close to each other to some extent. And on the column. It is not limited to the following, but for example, these pixels may be designed so that in the two-dimensional arrangement of the pixel array unit 2, neither the rows nor the columns are spaced apart from each other by more than 20 pixels.
  • the second pixel 10B unlike the first pixel 10A, generally does not contribute to the generation of a photographic data signal, so the photographic data signal at the location where the second pixel 10B is configured may need to be supplemented by a photographic data signal from the nearby first pixel 10A. .
  • the second pixels 10B are arranged too close to each other, supplementation of the imaging data signal may be hindered. Therefore, it is not limited to the following, but two or more corresponding pixels constituting the second pixel group 10B may be designed such that, in the two-dimensional arrangement of the pixel array unit 2 , the rows and columns are spaced apart from each other by 1 pixel or more.
  • the ratio of the number of first pixels to the number of second pixels constituting the pixels 10 arranged in the pixel array unit 2 is not particularly limited, but in order to obtain a good imaging data signal based on the signal charges accumulated in the first pixels 10A, Moreover, in a high brightness state in which signal charges overflow from at least one of the two photoelectric conversion elements 11R and 11L included in the first pixel 10A, a sufficiently accurate phase difference data signal can be obtained through the second pixel, and the ratio is, for example,
  • the number of first pixels: the number of second pixels the range of 4:1 to 64:1, preferably the range of 6:1 to 32:1, more preferably the range of 8:1 to 24:1, for example, it can It is 12:1.
  • the first pixel 10A includes: a semiconductor region 20 that constitutes a light-receiving surface and includes two photoelectric conversion elements 11R and 11L that generate signal charges by photoelectrically converting received light; and an independent on-chip lens. 30, which is provided on the semiconductor region 20 to cover the two photoelectric conversion elements 11R and 11L.
  • the light incident on the first pixel 10A (for example, L1 and L2 shown in FIG. 3 ) is refracted by the on-chip lens 30 and incident on one of the two photoelectric conversion elements 11R and 11L through different optical paths. accepted. That is, since which of the two photoelectric conversion elements 11R and 11L receives the light is determined based on the phase of the light incident on the first pixel 10A, a phase difference occurs in the light received by the two photoelectric conversion elements 11R and 11L. Therefore, for the first pixel 10A, a phase difference data signal can be generated by comparing the amount of light received by the two photoelectric conversion elements 11R and 11L, that is, by comparing the amount of signal charges generated by photoelectric conversion of the light.
  • the first pixel 10A further includes a color filter 40 and a transparent film 50 between the semiconductor region 20 and the on-chip lens 30 .
  • the color filter 40 selects, for example, R (red), G (green), or B (blue) for each pixel so that each pixel is in a desired arrangement in the planar arrangement of the pixel array section 2 shown in FIG. 2 . (e.g. Bayer arrangement).
  • these color filters 40 and transparent film 50 are not essential components and may not be required.
  • the second pixel 10B includes the semiconductor region 20 including the two photoelectric conversion elements 11R and 11L, the on-chip lens 30 , the color filter 40 and the transparent film 50 .
  • the second pixel 10B is different from the first pixel 10A in that the light-receiving surface is partially shielded (shielded) by the opaque film 60 .
  • the second pixel 10B cannot receive light of a phase blocked by the opaque film 60 and can only receive light of a specified phase that is not blocked. Therefore, in the second pixel 10B, like the first pixel 10A, each pixel cannot independently generate a phase difference data signal, but the phase of the received light is complementary to that of the second pixel 10B in the nearby row and column.
  • the phase difference data signal can be generated by comparing the amount of light received by each second pixel 10B, that is, by comparing the amount of signal charges generated by photoelectric conversion of the light.
  • the left side of the light receiving surface (the photoelectric conversion element 11L in the above example) is shielded from light by the opaque film 60 on the left side of FIG. 3
  • the right side of the second pixel 10B_R in FIG. 4 shows the second pixel 10B_L in which the right side of the light-receiving surface (the photoelectric conversion element 11R in the above example) is shielded from light by the opaque film 60 .
  • the second pixel 10B_R does not receive the light of the blocked left phase and only receives the light of the right phase.
  • the second pixel 10B_L does not receive the light of the blocked right phase and only receives the light of the left phase. of light.
  • the second pixel 10B_R that receives only the light of the right phase and the second pixel 10B_L that receives only the light of the left phase are in a complementary relationship with each other. By comparing the amounts of light received by them, a phase difference data signal can be generated.
  • one of the photoelectric conversion elements 11R and 11L of the second pixels 10B_R and 10B_L shown in FIG. 4 is completely shielded by the opaque film 60.
  • the second pixel 10B may also be like some second pixels 10B shown in FIG. 2.
  • the photoelectric conversion elements 11R and 11L are partially shielded.
  • a combination of the second pixels 10B in a complementary relationship may constitute a light-receiving surface.
  • the photoelectric conversion elements 11R and 11L are composed of pixels whose upper half is shielded and pixels whose lower half is shielded.
  • the second pixel 10B is equipped with two photoelectric conversion elements like the first pixel 10A.
  • the second pixel 10B may be equipped with one photoelectric conversion element.
  • the pixel 10 is provided with: two photoelectric conversion elements 11R and 11L, which generate signal charges through photoelectric conversion according to input light; and a floating diffusion region 12 which is generated by the photoelectric conversion elements 11R and 11L.
  • the signal charge is converted into a voltage signal (voltage) corresponding to the amount of the signal charge; and a holding capacitor (overflow holding capacitor) 13 is connected to the floating diffusion region 12 and can accumulate the signal charge overflowing from the photoelectric conversion elements 11R, 11L.
  • the photoelectric conversion elements 11R and 11L of this embodiment are, for example, photodiodes.
  • the pixel 10 is provided with: transfer transistors (first switching transistors) 14R and 14L, which are respectively connected to the photoelectric conversion elements 11R and 11L and the floating diffusion region 12; and a holding switching transistor (second switching transistor) 15, which is connected to the floating diffusion region 12. and the holding capacitor 13; the reset transistor (third switching transistor) 16, which connects the holding capacitor 13 and the reset power supply (reset potential) VDD1; the amplifying transistor 17, which amplifies the voltage signal of the floating diffusion region 12; and the selection transistor 18, It connects the amplification transistor 17 and the column signal line 22 .
  • a plurality of row signal lines 21 are wired for each pixel row. Furthermore, various drive signals ⁇ TX_L, ⁇ TX_R, ⁇ S, ⁇ RES, and ⁇ SEL are supplied from the vertical driving unit 3 to each pixel 10 via the row signal line 21 .
  • the above-mentioned drive signals ⁇ TX_L, ⁇ TX_R, ⁇ S, ⁇ RES, and ⁇ SEL are the above-mentioned pulses.
  • the floating diffusion region 12 performs charge-voltage conversion of signal charges generated by the photoelectric conversion elements 11R and 11L into voltage signals and outputs the signals.
  • the floating diffusion area 12 of this embodiment is also connected to the reset power supply VDD1 via the holding switching transistor 15 and the reset transistor 16 in sequence.
  • the holding capacitor 13 is a capacitor, and is connected to the floating diffusion region 12 via the holding switching transistor 15 as described above, and is also connected to the reset power supply VDD1 via the reset transistor 16 .
  • the drive signal ⁇ TX_L is applied to the gate electrode of the transfer transistor 14L.
  • This drive signal ⁇ TX_L is output from the vertical drive unit 3 based on a signal (command) from the control unit 6 .
  • the drive signal ⁇ TX_L becomes Hi (that is, when the transfer transistor 14L is turned on)
  • the transfer gate of the transfer transistor 14L becomes on
  • the signal charge accumulated in the photoelectric conversion element 11 is transferred to the floating state via the transfer transistor 14 Diffusion area 12.
  • the drive signal ⁇ TX_L becomes Low, the transfer transistor 14L is turned off.
  • the drive signal ⁇ TX_R is applied to the gate electrode of the transfer transistor 14R.
  • This drive signal ⁇ TX_R is output from the vertical drive unit 3 based on a signal (command) from the control unit 6 .
  • the drive signal ⁇ TX_R becomes Hi (that is, when the transfer transistor 14R is turned on)
  • the transfer gate of the transfer transistor 14R becomes on
  • the signal charge accumulated in the photoelectric conversion element 11R is transferred to the floating state via the transfer transistor 14R. Diffusion area 12.
  • the drive signal ⁇ TX_R becomes Low, the transfer transistor 14R is turned off.
  • the drive signal ⁇ S is applied to the gate electrode of the holding switching transistor 15 .
  • This drive signal ⁇ S is output from the vertical drive unit 3 based on the signal from the control unit 6 .
  • the driving signal ⁇ S becomes Hi (that is, the holding switching transistor 15 is turned on)
  • the holding gate of the holding switching transistor 15 becomes turned on, and signal charges can move from the floating diffusion region 12 to the holding capacitor 13 .
  • the drive signal ⁇ S becomes Low, the switching transistor 15 is kept turned off.
  • the drive signal ⁇ RES is applied to the gate electrode of the reset transistor 16 .
  • This drive signal ⁇ RES is output from the vertical drive unit 3 based on the signal from the control unit 6 .
  • the drive signal ⁇ RES becomes Hi (that is, the reset transistor 16 is turned on)
  • the reset gate of the reset transistor 16 becomes on
  • the floating diffusion region is formed according to the drive signal ⁇ S applied to the gate electrode of the holding switching transistor 15 12 and the potential of the holding capacitor 13 or the potential of the holding capacitor 13 is reset to the level (reset level) of the reset power supply (reset potential) VDD1.
  • the drive signal ⁇ RES becomes Low, the reset transistor 16 is turned off.
  • the gate electrode is connected to the floating diffusion region 12, and the drain electrode is connected to the power supply VDD2.
  • This amplification transistor 17 is an input portion of a readout circuit (so-called source follower circuit SF) that reads out the voltage of the floating diffusion region 12 as a pixel signal. That is, the amplification transistor 17 connects its source electrode to the column signal line 22 via the selection transistor 18 , thereby constituting a constant current source and a source follower circuit SF connected to one end of the column signal line 22 .
  • the selection transistor 18 is connected to the source electrode of the amplification transistor 17 and the column signal line 22 .
  • the drive signal ⁇ SEL is applied to the gate electrode of the selection transistor 18 .
  • This drive signal ⁇ SEL is output from the vertical drive unit 3 based on the signal from the control unit 6 .
  • the drive signal ⁇ SEL becomes Hi (that is, the selection transistor 18 is turned on)
  • the selection gate of the selection transistor 18 becomes a conductive state
  • the pixel 10 becomes a selected state.
  • the pixel signal output from the amplification transistor 17 is output to the column signal line 22 via the selection transistor 18 .
  • the drive signal ⁇ SEL becomes Low, the selection transistor 18 is turned off.
  • the potential barrier between the two photoelectric conversion elements 11R and 11L is lower than the relationship between the two photoelectric conversion elements 11R and 11L and the storage capacitor 13 .
  • the potential barrier between the two photoelectric conversion elements 11R and 11L is set by adjusting the holding gates of the transfer transistors 14R and 14L.
  • the two photoelectric conversion elements 11R and 11L and the holding capacitor 13 The potential barrier between them is set by adjusting the holding gate of the holding switching transistor 15 .
  • the transfer transistors 14R and 14L and the holding switching transistor 15 are turned off, more than the amount of energy that can be generated occurs in one of the photoelectric conversion elements 11R and 11L (for example, the photoelectric conversion element 11L).
  • the signal charge overflowing from the one photoelectric conversion element 11R, 11L first exceeds the potential barrier between the lower photoelectric conversion element 11R, 11L (the holding gate of the transfer transistor 14R, 14L). pole), preferentially flows into the other photoelectric conversion element 11R, 11L (for example, the photoelectric conversion element 11R) and is accumulated.
  • the noise of the charges held in the photoelectric conversion elements 11R and 11L tends to be lower than the noise of the signal charges held in the holding capacitor 13 . Therefore, as in the present embodiment, with the pixel 10 configured to accumulate signal charges generated in the photoelectric conversion elements 11R and 11L as much as possible in the photoelectric conversion elements 11R and 11L instead of the storage capacitor 13, it is possible to realize output imaging. The effect is that the SN ratio of the data signal is relatively high.
  • the first pixel 10A when the signal charge overflowing from one of the photoelectric conversion elements 11R, 11L flows into the other photoelectric conversion element 11R, 11L, the phase received in each of the photoelectric conversion elements 11R, 11L The light information overflows or mixes, so the signal charges held in the photoelectric conversion elements 11R and 11L do not contribute to generating a correct phase difference data signal. Therefore, in this embodiment, when signal charge overflow occurs in a certain first pixel 10A, although the first pixel 10A can output a reliable imaging data signal through the driving method described below, it cannot output a reliable phase. Poor data signal. In such a case, the signal generated by the second pixel 10B can be utilized as a reliable phase difference data signal.
  • FIG. 7 shows the driving signal (pulse of the control signal) of the pixel 10 and the corresponding output voltage (pixel signal) appearing on the column signal line 22, and Vout represents the output voltage.
  • the transfer transistor 14 is turned off in a state where the floating diffusion region 12 is connected to the reset power supply VDD1, so that the photoelectric conversion elements 11R and 11L become floating states, and the input of light starts to accumulate in the photoelectric conversion elements 11R and 11L respectively.
  • the holding switching transistor 15 and the reset transistor 16 are turned off respectively.
  • the floating diffusion region 12 and the holding capacitor 13 are also brought into a floating state.
  • the holding capacitor 13 that has become a floating state and the photoelectric conversion elements 11R and 11L that have not overflowed can be maintained. (Accumulate) the overflowing signal charge.
  • the signal charge overflowing from one of the photoelectric conversion elements 11R, 11L is first held (accumulated) in the other photoelectric conversion element 11R, 11L. After that, after the signal charge held in any one of the photoelectric conversion elements 11R and 11L reaches the limit of the accumulated capacitance that can be held, the overflowed signal charge flows into the holding capacitor 13 and is held.
  • the reading of the pixel 10 is started from time t02 after the predetermined accumulation period ⁇ T has elapsed after the transfer transistors 14R and 14L are turned off. pixel signal.
  • the control unit 6 (specifically, the vertical drive unit 3 receiving instructions from the control unit 6) causes the drive signal to When ⁇ SEL becomes Hi and the selection transistor 18 is turned on, the pixel 10 is connected to the column signal line 22 .
  • the potential of the floating diffusion region 12 (floating diffusion region reference potential) is read out from the source follower circuit SF, and is stored in the memory 8 as a first signal (pixel signal) after A/D conversion.
  • the column signal processing unit 4 stores the first signal in the memory 8 in a state after A/D conversion (that is, a state converted into a digital signal).
  • A/D conversion that is, a state converted into a digital signal.
  • Each subsequent process may be performed while the pixel signal (voltage of the floating diffusion region 12 ) read out from the source follower circuit SF is maintained as an analog signal.
  • the pixel signals (second to fifth signals) read out from the source follower circuit SF at subsequent time points are also the same.
  • the control unit 6 changes the drive signal ⁇ TX_R to Hi, turns on the transfer transistor 14R, and transfers the signal charges accumulated by the photoelectric conversion element 11R during the accumulation period ⁇ T to the floating diffusion region 12.
  • ⁇ TX_R becomes Low, turning off the transfer transistor 14.
  • This signal is read out from the source follower circuit SF at time t05 and is stored in the memory 8 as a second signal (pixel signal) after A/D conversion.
  • the control unit 6 changes both the drive signals ⁇ TX_R and ⁇ TX_L to Hi and turns on the transfer transistors 14R and 14L, and the signal charges accumulated by the photoelectric conversion elements 11R and 11L during the accumulation period ⁇ T are transferred to After floating the diffusion region 12, the driving signals ⁇ TX_R and ⁇ TX_L are changed to Low, and the transfer transistor 14 is turned off.
  • This signal is read out from the source follower circuit SF at time t07, and is stored in the memory 8 as a third signal (pixel signal) after A/D conversion.
  • the control unit 6 changes the drive signal ⁇ S to Hi and turns on the holding switching transistor 15, thereby turning on the floating diffusion region 12 and the holding capacitor 13, the control unit 6 changes the driving signals ⁇ TX_R and ⁇ TX_L to Hi again. Hi and Low, and turns the transfer transistor 14 on and off.
  • the voltage of the floating diffusion area 12 at this time is read out from the source follower circuit SF at t09, and is stored in the memory 8 as a fourth signal (pixel signal) after A/D conversion.
  • the control unit 6 changes the drive signal ⁇ RES to Hi and turns on the reset transistor 16, thereby connecting the floating diffusion area 12 and the holding capacitor 13 to the reset power supply (reset potential) VDD1, causing the floating diffusion area 12 to and the signal charge of the holding capacitor 13 are all initialized (reset).
  • the initialized voltage (reset level) of the floating diffusion area 12 and the holding capacitor 13 is read out from the source follower circuit SF at t11, and is stored in the memory 8 as the fifth signal (pixel signal) after A/D conversion.
  • a signal based on the signal charges held in the photoelectric conversion elements 11R and 11L and the holding capacitor 13 can be recovered. Specifically, the first signal is subtracted from the second signal, thereby recovering the signal (signal R) of the charge held in the photoelectric conversion element 11R that has been corrected based on the reset noise and the deviation of the DC level. Similarly, by subtracting the first signal from the third signal, a signal (signal R+L) of the total number of charges held in the photoelectric conversion elements 11R and 11L corrected based on the reset noise and DC level deviation is restored.
  • a signal (signal L) of the total number of charges held in the photoelectric conversion element 11L corrected based on the reset noise and the DC level deviation is restored.
  • a signal (signal R+L+C) based on the photoelectric conversion elements 11R and 11L whose DC level deviation has been corrected and the signal charge held in the holding capacitor 13 is restored.
  • the signal charges generated by the light incident on the photoelectric conversion elements 11R and 11L respectively during the accumulation period ⁇ T do not exceed the capacitance that the photoelectric conversion elements 11R and 11L can hold.
  • the signal R+L recovered through the above-mentioned processing can be used as a correct imaging data signal.
  • the information output from the photoelectric conversion elements 11R, 11L holds information on the phases of the light respectively incident thereon, and therefore, the signal R and the signal L recovered by the above-described processing can be used as By comparing them, a reliable phase signal can be generated that is a correct phase difference data signal.
  • the signal charges generated by the light incident on the photoelectric conversion elements 11R and 11L respectively during the accumulation period ⁇ T exceed the capacitance that one of the photoelectric conversion elements 11R and 11L can hold, and the signal charges are transferred from the photoelectric conversion elements 11R and 11L.
  • the signal R+L restored through the above-mentioned processing can be used as a correct shooting data signal.
  • the signal R and the signal L do not have significance as phase signals. Therefore, the signal R and the signal L cannot be used to generate reliable phase difference data signals.
  • the signal charges generated by the light incident on the photoelectric conversion elements 11R and 11L respectively during the accumulation period ⁇ T exceed the capacitance that one of the photoelectric conversion elements 11R and 11L can hold, and the signal charges are transferred from the photoelectric conversion elements 11R and 11L.
  • the signal R+L recovered through the above-mentioned processing is different from the above two cases in that it exceeds the signal amount processed by the photoelectric conversion elements 11R and 11L. Therefore, it has no function as Capturing the meaning of data signals. In this case, if the signal from the holding capacitor 13 is used, the above-mentioned signal R+L+C can be used as a correct photographing data signal.
  • the signal R and the signal L also have no significance as phase signals, and therefore cannot be used to generate a reliable phase difference data signal.
  • the second pixel 10B usually does not produce a useful photographing data signal.
  • the signal R+L of each second pixel 10B recovered through the above process does not overflow from the photoelectric conversion elements 11R and 11L to the holding capacitor 13.
  • the signal R+L+C when overflow occurs from the photoelectric conversion elements 11R, 11L to the holding capacitor 13 ) can be used as a phase signal for generating a reliable phase difference data signal in the second pixel 10B group.
  • the solid-state imaging device 1 of this embodiment is provided with two means of generating a phase difference data signal from the first pixel 10A and a means of generating a phase difference data signal from the second pixel 10B.
  • These units can be appropriately selected according to the brightness or exposure time of the shooting scene using the solid-state imaging device 1 . For example, when the shooting scene has a low brightness or a short exposure time (accumulation period ⁇ T), overflow is less likely to occur in the photoelectric conversion elements 11R and 11L, so it is considered that they can be effectively used in the first pixel 10A that generates shooting data.
  • the generated phase difference data signal is provided with two means of generating a phase difference data signal from the first pixel 10A and a means of generating a phase difference data signal from the second pixel 10B.
  • phase difference data signal is output from the pixel array unit 2 of the solid-state imaging device 1 of this embodiment.
  • FIG. 8 is a flowchart showing a first output example of a phase difference data signal from the solid-state imaging device. As shown in FIG. 8 , the first output example includes the following steps 801 to 803.
  • a plurality of pixels 10 (that is, the first pixel 10A and the second pixel) included in a fixed range of the pixel array unit 2 are accumulated on the memory 8 by the method shown in the above-described driving example of the pixel 10.
  • the memory 8 is, for example, a line memory that accumulates signal data of the pixels 10 arranged in one or more rows to be read out of the plurality of pixels 10 two-dimensionally arranged in a matrix in the pixel array unit 2 . .
  • step 802 in the pixel 10 related to the signal data accumulated on the memory 8 (that is, referable on the memory 8), the following processing is performed on the signal data about the first pixel 10A, so as to obtain the signal data from the first pixel 10A.
  • a phase difference data signal is output from each of the pixels 10A.
  • each of the first pixels 10A that can be referenced on the memory 8 outputs a phase difference data signal (hereinafter, also referred to as two signals: a first phase difference data signal) and a phase difference data signal (hereinafter, also referred to as a second phase difference data signal) generated based on signal charges accumulated in the second pixel 10B group that can be referenced on the memory 8 .
  • a phase difference data signal hereinafter, also referred to as two signals: a first phase difference data signal
  • a phase difference data signal hereinafter, also referred to as a second phase difference data signal
  • the second pixel 10B group referenced in order to generate the second phase difference data signal outputted from the phase difference information of the first pixel 10A as the object is preferably the second pixel 10B group located in the vicinity of the first pixel 10A as the object, as the object
  • the average distance between the first pixel 10A and each of the second pixels 10B constituting the second pixel 10B group is more preferably the shortest group among all the second pixels 10B groups that can be referenced on the memory 8 .
  • step 803 if there are still pixels 10 in the pixel array unit 2 that have not been read in the memory 8, the signal data accumulated in the memory 8 is updated, and the above steps 801 to 802 are repeated until the pixel array unit 2 until all pixels contained in 10 are read.
  • the first phase difference data signal and the second phase difference data signal output from the first pixel 10A of the pixel array unit 2 can be passed through the control device of the camera device or the like that receives the output signals. To determine which phase difference signal to use flexibly. Alternatively, two phase difference data signals can be used flexibly according to the output destination.
  • FIG. 9 is a flowchart showing a second output example of the phase difference data signal from the solid-state imaging device. As shown in FIG. 9 , the second output example includes the following steps 901 to 903.
  • step 901 signal data generated in a plurality of pixels 10 included in a fixed range of the pixel array unit 2 is accumulated in the memory 8 , similarly to the first output example.
  • each of the first pixels 10A that can be referenced on the memory 8 selects whether to output the first phase difference data signal or the second phase difference data signal based on an instruction from the outside of the solid-state imaging device 1 .
  • the above-mentioned instructions from the outside are executed by, for example, a control device or the like provided in a camera device equipped with the solid-state imaging device 1 .
  • the control device of the camera device may instruct the first pixel 10A to output the first phase difference data signal. phase difference information.
  • the control device of the camera device may instruct the first pixel 10A to output the second phase difference data signal. phase difference information.
  • the setting based on the control device of the camera device adopts the same mode in most cases. However, it is not always necessary that all pixels 10 in the pixel array unit 2 adopt the same mode.
  • An instruction to use the holding capacitor 13 may be sent to the first pixels 10A arranged in a part of the pixel array unit 2, and an instruction not to use the holding capacitor 13 may be sent to the remaining parts. Hold the instruction of capacitor 13.
  • the storage capacitor 13 may not be used for the pixels 10 near the center that easily receive light, and the storage capacitor 13 may be used for the pixels 10 near the periphery that are difficult to receive light.
  • the configuration location gives different instructions.
  • step 903 if there are still pixels 10 in the pixel array unit 2 that have not been read in the memory 8, the signal data accumulated in the memory 8 is updated, and the above steps 901 to 902 are repeated until the pixel array unit 2 until all pixels contained in 10 are read.
  • the amount of the output signal can be reduced compared with the first output example, and therefore the signal processing load on the control device of the camera device and the like that receives the output signal can be reduced.
  • FIG. 10 is a flowchart showing a second output example of the phase difference data signal from the solid-state imaging device. As shown in FIG. 10 , the second output example includes the following steps 1001 to 1003.
  • step 1001 signal data generated in a plurality of pixels 10 included in a fixed range of the pixel array unit 2 is accumulated in the memory 8 , similarly to the first output example.
  • each of the first pixels 10A that can be referenced on the memory 8 selects whether to output the first phase difference data signal or the second phase difference data signal based on the judgment of the solid-state imaging device 1 itself.
  • the above selection is performed, for example, by the signal processing section 7 based on various signals of the first pixel 10A as the target.
  • step 1101 for the target first pixel 10A, the signal processing section 7 determines whether each of the signals R and L based on the signal charges accumulated in the photoelectric conversion elements 11R, 11L reaches the level indicated by the photoelectric conversion elements 11R, 11L.
  • the threshold for overflow.
  • the first phase difference data signal is output as the phase difference information of the first pixel 10A.
  • step 1103 output The second phase difference data signal is the phase difference information of the first pixel 10A targeted.
  • steps 1101 to 1103 are repeated until all first pixels 10A that can be referenced on the memory 8 output phase difference data signals.
  • the phase difference data signal generated by comparing the signal R and the signal L in the first pixel 10A is output.
  • the second phase difference data signal is used as the phase difference information of the first pixel 10A, it is determined whether overflow from the photoelectric conversion elements 11R and 11L to the storage capacitor 13 occurs in each pixel constituting the second pixel group 10B. , preferably, when the above-mentioned overflow does not occur, the signal R+L of the second pixel 10B is used as the phase signal for generating the phase difference data signal in the group, and when the above-mentioned overflow occurs, the second pixel 10B is used as the phase signal.
  • the signal R+L+C of the pixel 10B serves as this phase signal.
  • whether overflow from the photoelectric conversion elements 11R and 11L to the holding capacitor 13 occurs can be determined by determining whether or not a threshold indicating that overflow occurs in both the photoelectric conversion elements 11R and 11L is reached.
  • the signal charge held in the storage capacitor 13 is theoretically zero. Therefore, even in this case, it is considered that the second pixel 10A generates the signal R+L+C instead of the signal R+L as the phase signal.
  • the signal R+L+C contains signal noise caused by the holding capacitor 13 . Therefore, in order to improve the SN ratio of the phase signal without causing overflow to the holding capacitor 13, as described above, it is preferable to use the signal R+L instead of the signal R+L+C.
  • the device for example, a camera device
  • the process is equivalent to the phase difference data signal generated based on the signal charges accumulated in the photoelectric conversion elements 11R and 11L of the other first pixel 10A.
  • step 1003 if there are still pixels 10 in the pixel array unit 2 that have not been read in the memory 8, the signal data accumulated in the memory 8 is updated, and the above steps 1001 to 1002 are repeated until the pixel array unit 2 until all pixels contained in 10 are read.
  • the phase difference data output by the judgment of the solid-state imaging device 1 itself is selected based on whether overflow occurs in the photoelectric conversion elements 11R and 11L of the first pixel 10A. signal, therefore, a more reliable phase difference signal can be output from the solid-state imaging device 1 .
  • phase difference data signal output from each pixel 10 as described above can be used, for example, to perform autofocus in a camera device equipped with the solid-state imaging device 1 or the like.
  • the phase difference data signal can be used for various purposes such as depth estimation (depth mapping) in addition to autofocus.
  • the solid-state imaging device 1 except for the potential barrier between the two photoelectric conversion elements 11R and 11L in the pixel 10 and the potential barrier between the two photoelectric conversion elements 11R and 11L and the holding capacitor 13 It is the same as the first embodiment except that the relationship is different. In the following, in this embodiment, the components of the solid-state imaging device will be described using the same reference numerals as those in the first embodiment.
  • FIG. 12 shows the potential barrier between the two photoelectric conversion elements 11R and 11L in the pixel 10 of the solid-state imaging device 1 according to the second embodiment and the potential between the two photoelectric conversion elements 11R and 11L and the holding capacitor 13 . barrier relationship.
  • the potential barrier between the two photoelectric conversion elements 11R and 11L is higher than the potential barrier between the two photoelectric conversion elements 11R and 11L and the storage capacitor 13 . Therefore, in the pixel 10 of the present embodiment, when the transfer transistors 14R and 14L and the holding switching transistor 15 are turned off, more than the amount of light generated in one of the photoelectric conversion elements 11R and 11L (for example, the photoelectric conversion element 11L) is generated.
  • the signal charge overflowing from one of the photoelectric conversion elements 11R and 11L first exceeds the potential barrier between the lower photoelectric conversion element 11R, 11L and the holding capacitor 13, and preferentially flows into the holding capacitor. 13 hits and accumulated.
  • the generation source of the signal charges accumulated in the holding capacitor 13 is one of the above-mentioned photoelectric conversion elements 11R and 11L (for example, the photoelectric conversion element 11L). That is, the signal charges accumulated in the holding capacitor 13 have phase information.
  • the signal charges accumulated in one of the photoelectric conversion elements 11R and 11L are compared with the total number of signal charges accumulated in the holding capacitor 13, and overflow does not occur,
  • the signal charge accumulated in the other photoelectric conversion element 11R, 11L can generate a reliable phase difference data signal. Therefore, according to this embodiment, it is possible to generate phase difference data with higher reliability than in the first embodiment in a shooting scene with high brightness or a long exposure time in which signal charges generated in the photoelectric conversion elements 11R and 11L overflow. signal effect.
  • the driving time point of the pixel 10 in this embodiment may be the same as that in the first embodiment.
  • the signal R, the signal R+L, the signal L, and the signal R+L+C can be restored.
  • the signal R+C can be restored by subtracting the signal R from the signal R+L+C
  • the signal L+C can be restored by subtracting the signal R from the signal R+L+C.
  • the signal R+L can be used as correct imaging data like the first embodiment.
  • the signals, signal R and signal L, can be used as reliable phase signals by comparing them so that a correct phase difference data signal can be generated.
  • the signal R+L exceeds the photoelectric conversion element 11R. , the amount of signal that 11L can handle, therefore, it has no significance as a shooting data signal. In this case, the signal R+L+C can be used as the correct shooting data signal.
  • the signal R and the signal L have no significance as phase signals, they cannot be used to generate a reliable phase difference data signal.
  • the signal obtained by adding the signal C to the signal corresponding to the photoelectric conversion element 11R and 11L in which the overflow occurs is compared with the signal R and L, and no overflow occurs.
  • a correct phase difference data signal can be generated. For example, when the signal charge generated in the photoelectric conversion element 11L overflows but does not overflow in the photoelectric conversion element 11R, a correct phase difference data signal can be generated by comparing the signal R and the signal L+C.
  • the signal R+L can be used to generate a reliable image in the second pixel 10B group.
  • the phase signal of the phase difference data signal in the event of overflow, the signal R+L+C can be used as a phase signal for generating a reliable phase difference data signal in the second pixel 10B group.
  • phase difference data signal can be output from the pixel array unit 2 of the solid-state imaging device 1 of the second embodiment in the same manner as the first embodiment.
  • the processing for each first pixel 10A in step 1002 in the above-described second embodiment is shown in detail in FIG. 13 .
  • step 1301 with respect to the target first pixel 10A, the signal processing section 7 determines whether each of the signals R and L based on the signal charges accumulated in the photoelectric conversion elements 11R, 11L reaches the level indicated in the photoelectric conversion elements 11R, 11L.
  • the threshold for overflow is the threshold for overflow.
  • step 1302 the first phase difference data signal generated by comparing the signal R and the signal L in the first pixel 10A is output.
  • the signal in the first pixel 10A is output by comparing Among R and L, the signal obtained by adding the signal C to the signal corresponding to the photoelectric conversion element 11R and 11L that causes overflow, and the phase difference data signal generated by adding the signal corresponding to the photoelectric conversion element 11R and 11L that does not cause overflow (also It is called the first phase difference signal with added overflow capacitance).
  • step 1304 the second phase difference data signal is output as the phase difference information of the first pixel 10A.
  • the above-mentioned step 1304 can be performed in the same manner as step 1103 in the first embodiment.
  • step 1305 steps 1301 to 1304 are repeated until all relevant first pixels 10A that can be referenced on the memory 8 output phase difference data signals.
  • the solid-state imaging device of the present invention is not limited to the above-described embodiment, and it goes without saying that various changes can be made without departing from the gist of the present invention.
  • the configuration of a certain embodiment may be added to the configuration of another embodiment, or part of the configuration of a certain embodiment may be replaced with the configuration of another embodiment.
  • part of the configuration of a certain embodiment may be deleted.
  • the second pixel 10B that constitutes a combination of two or more second pixels 10B configured to generate a phase difference data signal that receives light
  • a pixel group is used in which the light-receiving surface of the pixel is partially shielded from light by the opaque film 60, but the second pixel in the present invention is not limited to this method.
  • a combination of two or more second pixels 10B' sharing one on-chip lens 30' may be used as the second pixel group.
  • two second pixels 10B' are adjacent to form a group, and one on-chip lens 30' is independently provided in each second pixel 10B' group.
  • the signal charge generated by the second pixel 10B′ can be processed in the same manner as in the first and second embodiments described above, and a phase difference data signal can be output.
  • the pixel 10 includes the two photoelectric conversion elements 11R and 11L.
  • the number of photoelectric conversion elements included in the pixel 10 is not limited to two, and may be three or more.
  • the pixels that need to include two or more photoelectric conversion elements 11R and 11L are only the first pixel 10A, and the second pixel 10B may only include one photoelectric conversion element.
  • 1...solid-state imaging device 2...pixel array section, 21...row signal lines, 22...column signal lines, 3...vertical drive section, 4...column signal processing section, 5...horizontal drive section, 6...control section, 7... Signal processing section, 8... memory (storage section), 10A, 10B... pixels, 11R, 11L... photoelectric conversion element, 12... floating diffusion area, 13... holding capacitor, 14R, 14L...
  • first switching transistor 15...hold switching transistor, first hold switching transistor (second switching transistor), 16...reset transistor (third switching transistor), 17...amplification transistor, 18...selection transistor, 20...semiconductor region, 30...on-chip lens, 40 ...color filter, 50...transparent film, 60...opaque film, SF...source follower circuit, VDD1...reset power supply (reset potential), VDD2...power supply, ⁇ RES, ⁇ S, ⁇ S1, ⁇ SEL, ⁇ TX_R, ⁇ TX_L... drive signal

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本申请提供一种固体拍摄装置,其具备多个第一像素、以及与上述多个第一像素不同的多个第二像素,上述多个第一像素以及上述多个第二像素的每一个具备:一个以上的光电转换元件,其构成该像素的受光面,并通过对接受的光进行光电转换而产生电荷;浮动扩散区,其连接到上述一个以上的光电转换元件,将上述电荷转换为与该电荷的量相应的电压;以及保持电容,其连接到上述浮动扩散区,并且能够积累从上述一个以上的光电转换元件溢出的上述电荷,上述多个第一像素的每一个构成为具备两个以上上述光电转换元件,上述两个以上的光电转换元件均连接上述浮动扩散区,通过将上述两个以上的光电转换元件中积累的上述电荷分别进行比较,能够生成相位差数据信号,上述多个第二像素之中的两个以上第二像素一起构成第二像素组,上述第二像素组构成为通过将构成该第二像素组的第二像素的每一个中积累的上述电荷分别进行比较,能够生成相位差数据信号。

Description

固体拍摄装置以及摄像头设备 技术领域
本发明涉及固体拍摄装置,以及具备该固体拍摄装置的摄像头设备。
背景技术
近年来,在数码摄像头等摄像头设备中,作为在设置于像素的光电二极管(光电转换元件)实现可保持的累积容量超过可容许范围的输入动态范围的技术,已知有高动态范围成像(High Dynamic Range Imaging、HDR成像)技术。例如,在专利文献1中公开了一种“溢出电荷累积电容型”HDR成像技术,其通过将从光电二极管溢出的电荷积累到设置在像素内的附加保持容量中,从而可以保持远超过像素内光电二极管可以保持的累积电容的上限的电荷。
另外,在近年来的摄像头设备中,高速且高精度的自动对焦的需求增加。作为这样的自动对焦用的技术,特别是在无反摄像头或智能手机等相对小型的摄像头设备中,大多采用拍摄面相位差自动对焦技术。在该拍摄像面相位差自动对焦中,将一个微透镜下的像素的受光面分割为两个部分,分别读出通过不同光路的来自被摄体的信号,通过处理该被摄体像的空间相位差,来计算散焦量。这样,在拍摄面相位差自动对焦中,由于可通过一次相位运算计算散焦量,所以与以往采用的对比度检测式自动对焦相比,具有能够进行高速自动对焦的优点。
比较这两种拍摄面相位差自动对焦方式,在双像素方式中,所有像素都能够有助于对相位差信息的创建以及图像信号的输出,而在遮挡方式中,有助于相位差信息的创建的只有被遮挡的像素,有助于图像信号的输出的仅是未被遮挡的像素。因此,典型地,与遮挡方式相比,双像素方式尤其在拍摄低亮度被摄体时,自动对焦的精度高,并且比摄影图像的SN比优异。
另一方面,在双像素方式中,在拍摄高亮度被摄体时,在配置于一个像素的两个光电二极管中的一个上,超过可保持的电容的上限而产生电荷,从该光电二极管溢出的电荷有时会流入另一个光电二极管。在产生这种溢出的像素中,两个光电二极管不再提供正确的相位差信息,并且可能成为降低自动对焦精度的主要原因。
还尝试将这种双像素方式的拍摄面相位差自动对焦技术应用于采用了如专利文献1的溢出电荷累积电容型HDR成像技术的像素。
作为这样的尝试的例子,首先考虑在一个像素中配置了两个光电二极管的双像素方式中,分别配置对应于各光电二极管的附加保持容量的方式。但是,如果这样在像素内配置多个附加的保持电容,则像素的尺寸变大,在上述的无反摄像头、智能手机等相对小型的摄像头设备中难以采用,因此不现实。
作为在抑制像素的大型化的同时组合这些技术的方式,专利文献2公开了在两个光电二极管(光电转换部)中共同设置的、具有能够保持从这两个光电二极管溢出的电荷的溢出保持电容的像素。在该像素中,两个光电二极管之间的势垒被设置得相对大,从而,设计为从一个光电二极管溢出的电荷优先流入溢出保持电容而不是另一个光电二极管。这样流入溢出保持电容而被保持的电荷在产生相位差信号时被加到两个光电二极管中保持较大电荷的一方。由此,在专利文献2的像素中,即使在超过像素内的两个光电二极管中的一个可保持的电容的上限而产生电荷的情况下,也能够提供正确的相位差信息。因此,根据专利文献2的像素,能够实现高动态范围,并且对于一定程度的高亮度被摄体也能够以足够高的精度进行自动对焦。
然而,在专利文献2的像素中,虽然可以应对两个光电二极管中的仅一个溢出的情况,但是当拍摄两个光电二极管都溢出的高亮度对象时,电荷会从两个光电二极管流入一个溢出保持电容。因此,存在溢出保持电容中保持的电荷的相位信息丢失,结果无法提供正确的相位差信息的问题。
现有技术文献
专利文献
专利文献1:美国专利申请公开第2017/0099423号公报
专利文献2:特开第2020-57894号公报。
发明内容
发明要解决的问题
因此,本发明解决的问题为,能够提供一种在实现高动态范围的同时,对更高亮度的被摄体也提供高精度的相位差信息的固体摄像装置、以及具备该固体摄像装置的摄像头装置。
用于解决问题的方案
在本发明的固体拍摄装置中,
具备多个第一像素、以及与上述多个第一像素不同的多个第二像素,
上述多个第一像素以及上述多个第二像素的每一个具备:
一个以上的光电转换元件,其构成该像素的受光面,并通过对接受的光进行光电转换而产生电荷;
浮动扩散区,其连接到上述一个以上的光电转换元件,将上述电荷转换为与该电荷的量相应的电压;以及
保持电容,其连接到上述浮动扩散区,并且能够积累从上述一个以上的光电转换元件溢出的上述电荷,
上述多个第一像素的每一个构成为具备两个以上上述光电转换元件,上述两个以上的光电转换元件均连接于上述浮动扩散区,通过将上述两个以上的光电转换元件中积累的上述电荷分别进行比较,能够生成相位差数据信号,
上述多个第二像素之中的两个以上的第二像素一起构成第二像素组,
上述第二像素组构成为通过将构成该第二像素组的第二像素的每一个中积累的上述电荷分别进行比较,能够生成相位差数据信号。
在上述固体拍摄装置中,例如,在构成上述第二像素组的上述两个以上的像素中的每一个像素中,该像素的上述受光面的一部分被遮挡,以妨碍在该受光面的一部分处接受光。
或者,在上述固体拍摄装置中,在上述多个第一像素的每一个中设置有独立的一个片上透镜(OCL),
在上述第二像素组的每一个中设置有独立的一个片上透镜(OCL),构成上述第二像素组的上述两个以上的像素共用上述一个片上透镜(OCL)。
在上述固体拍摄装置中,在上述多个第一像素的每一个中,
上述两个以上的光电转换元件之间的势垒低于上述光电转换元件与上述保持电容之间的势垒。
在这种情况下,优选地,在多个上述第二像素的每一个中,
在上述一个以上的光电转换元件中积累的电荷的总数为既定的饱和电荷量以下的情况下,基于上述一个以上的光电转换元件中积累的电荷的总数,生成相位差数据信号,
在上述一个以上的光电转换元件中积累的电荷的总数大于既定的饱和电荷量的情况下,基于上述一个以上的光电转换元件中积累的电荷与上述保持电容中积累的电荷的总数,生成相位差数据信号。
或者,在上述固体拍摄装置中,在多个上述第一像素的每一个中,
上述两个以上的光电转换元件之间的势垒也可以高于上述光电转换元件与上述保持电容之间的势垒。
在这种情况下,优选地,在上述多个第二像素的每一个中,
在上述一个以上的光电转换元件中积累的电荷均为既定的饱和电荷量以下的情况下,基于上述一个以上的光电转换元件中积累的电荷的总数,生成相位差数据信号,
在上述一个以上的光电转换元件中的任意一个中积累的电荷大于既定的饱和电荷量的情况下,基于上述一个以上的光电转换元件中积累的电荷与上述保持电容中积累的电荷的总数,生成相位差数据信号。
另外,上述固体拍摄装置,针对上述多个第一像素中的每一个,
判断上述两个以上的光电转换元件中的每一个保持的电荷是否均达到表示在该光电转换元件中产生溢出的阈值,在均未达到该阈值的情况下,在该第一像素中,输出基于在上述两个以上的光电转换元件中产生的上述电荷生成的相位差数据信号,在至少一个达到该阈值的情况下,输出基于在由上述固体拍摄装置确定的上述第二像素组中产生的上述电荷生成的相位差数据信号也可以。
本发明的摄像头设备,
包含上述固体拍摄装置、以及构成为控制上述固体拍摄装置的控制装置。
上述摄像头设备构成为例如基于来自上述控制装置的信号,确定上述固体拍摄装置是否基于上述第一像素所具备的上述两个以上的光电转换元件中产生的上述电荷针对每个像素输出相位差数据信号、和/或是否基于上述两个以上的第二像素组中产生的上述电荷针对每个像素输出相位差数据信号。
上述摄像头设备例如可以是移动终端。
附图说明
图1是示出第一实施方式的固体拍摄装置的构成的图。
图2是示出配置于像素阵列部的像素的排列例的图,将第二像素的多个具体例在该一张图中示出。
图3是示出第一像素的结构的截面图。
图4是示出第二像素的结构的截面图。
图5是上述固体拍摄装置所具备的像素的等效电路图。
图6是示出第一实施方式的各像素中的、光电转换元件和保持电容的势垒的图。
图7是上述像素的时序图。
图8是示出相位差数据信号的第一输出例的流程图。
图9是示出相位差数据信号的第二输出例的流程图。
图10是示出相位差数据信号的第三输出例的流程图。
图11是详细示出第一实施方式中的第三输出例的步骤1002的流程图。
图12是示出第二实施方式的各像素中的、光电转换元件和保持电容的势垒的图。
图13是详细示出第二实施方式中的第三输出例的步骤1002的流程图。
图14是示出另一实施方式的固体拍摄装置的构成的图。
图15是示出另一实施方式的固体拍摄装置的结构的截面图。
具体实施方式
本发明的固体拍摄装置具备:
多个第一像素、以及与上述多个第一像素不同的多个第二像素,
上述多个第一像素以及上述多个第二像素的每一个具备:
一个以上的光电转换元件,其构成该像素的受光面,并通过对接受的光进行光电转换而产生电荷;
浮动扩散区,其连接到上述一个以上的光电转换元件,将上述电荷转换为与该电荷的量相应的电压;
溢出保持电容,其连接到上述浮动扩散区,并且能够积累从上述一个以上的光电转换元件溢出的上述电荷,
上述多个第一像素的每一个构成为具备两个以上上述光电转换元件,上述两个以上的光电转换元件均连接上述浮动扩散区,通过将上述两个以上的光电转换元件中积累的上述电荷分别进行比较,能够生成相位差数据信号,
上述多个第二像素的之中的两个以上的第二像素一起构成第二像素组,
上述第二像素组构成为通过将构成该第二像素组的第二像素的每一个中积累的上述电荷分别进行比较,能够生成相位差数据信号。
根据该构成,通过适当使用基于固体拍摄装置所具备的第一像素的多个光电转换元件中产生的电荷的方式、以及基于固体拍摄装置所具备的第二像素组中产生的电荷的方式这两种方式,无论针对高亮度被摄体还是低亮度被摄体,都能够生成高精度的相位差数据信号。
例如,在被摄体为高亮度,超过产生像素中包含的光电转换元件可以保持的蓄电电容的电荷的情况下,如上述双像素方式那样,在基于多个光电转换元件中产生的电荷的方式中,由于电荷从该光电转换元件溢出,因此,可能无法产生准确的相位差数据信号。另一方面,在将第二像素组的多个像素组中产生的电荷进行比较的方式中,如果在该多个像素中的每一个中产生的电荷为通过光电转换元件和附加保持电容能够积累的量的总数以下,则通过比较该多个像素组的各像素中保持的电荷,能够提供准确的相位差数据信号。
另外,由于从光电转换元件溢出的电荷保持在附加保持电容内,因此,通过读出这些电荷,能够生成高动态范围的摄影图像。
或者,如果被摄体为低亮度,像素中包含的光电转换元件中生成的电荷未超过可以保持的蓄电电容,不产生电荷溢出,则能够提供基于第一像素中的所有光电转换元件中生成的相位差数据信号,且基于双(或者,三、四等)像素方式的更高精度的相位差数据信号。
在上述固体拍摄装置中,例如,在构成上述第二像素组的上述两个以上的像素中的每一个像素中,该像素的上述受光面的一部分被遮挡,以妨碍在该受光面的一部分处接受光。
或者,在上述固体拍摄装置中,在上述多个第一像素的每一个中设置有独立的一个片上透镜(OCL),
在上述第二像素组的每一个中设置有独立的一个片上透镜(OCL),构成上述第二像素组的上述两个以上的像素共用上述一个片上透镜(OCL)。
在上述固体拍摄装置中,在上述多个第一像素的每一个中,
上述两个以上的光电转换元件之间的势垒低于上述光电转换元件与上述保持电容之间的势垒。
根据该构成,当在第一像素中包含的两个以上的光电转换元件中的一个光电转换元件中生成超过可以保持的蓄电电容的电荷的情况下,从该光电转换元件溢出的电荷不会流入附加保持电容中,而会优先流入该像素中包含的其他光电转换元件。典型地,由于由光电转换元件保持的电荷的噪声往往小于由附加保持电容保持的电荷的噪声,因此,可以使获得的摄影图像的SN比变高。
在这种情况下,优选地,在上述多个第二像素的每一个中,
在上述一个以上的光电转换元件中积累的电荷的总数为既定的饱和电荷量以下的情况下,基于上述一个以上的光电转换元件中积累的电荷的总数,生成相位差数据信号,
在上述一个以上的光电转换元件中积累的电荷的总数大于既定的饱和电荷量的情况下,基于上述一个以上的光电转换元件中积累的电荷与上述保持电容中积累的电荷的总数,生成相位差数据信号。
根据该构成,在第二像素的光电转换元件中积累的电荷的总数为既定的饱和电荷量以下的情况下(例如,在假定从光电转换元件溢出的电荷未流入附加保持电容的情况下),由于在不考虑附加保持电容的情况下生成相位差数据信号,因此,能够不受该保持电容引起的噪声的影响,生成精度更高的相位差数据信号。
或者,在上述固体拍摄装置中,在上述多个第一像素的每一个中,
上述两个以上的光电转换元件之间的势垒也可以高于上述光电转换元件与上述保持电容之间的势垒。
根据该构成,在第一像素中包含的两个以上的光电转换元件中的一个光电转换元件中生成超过可以保持的蓄电电容的电荷的情况下,从该光电转换元件溢出的电荷优先流入附加保持电容。在这种情况下,即使在该像素的光电转换元件中产生电荷溢出,只要有一个溢出的光电转换元件,就能够将由该附加保持电容保持的电荷视为该溢出的由光电转换元件生成的电荷。因此,即使针对相对高亮度的被摄体,也能够通过上述第一像素生成可靠性高的相位差数据信号。
在这种情况下,优选地,在上述多个第二像素的每一个中,
在上述一个以上的光电转换元件中积累的电荷均为既定的饱和电荷量以下的情况下,基于上述一个以上的光电转换元件中积累的电荷的总数,生成相位差数据信号,
在上述一个以上的光电转换元件中的任意一个中积累的电荷大于既定的饱和电荷量的情况下,基于上述一个以上的光电转换元件中积累的电荷与上述保持电容中积累的电荷的总数,生成相位差数据信号。
根据该构成,在第二像素的光电转换元件中积累的电荷均为既定的饱和电荷量以下的情况下(例如,在假定从光电转换元件溢出的电荷未流入附加保持电容的情况下),由于在不考虑附加保持电容的情况下生成相位差数据信号,因此,能够不受该保持电容引起的噪声的影响,生成精度更高的相位差数据信号。
另外,上述固体拍摄装置也可以是,针对上述多个第一像素中的每一个,
判断上述两个以上的光电转换元件中的每一个保持的电荷是否均达到表示在该光电转换元件中产生溢出的阈值,在均未达到该阈值的情况下,在该第一像素中,输出基于在上述两个以上的光电转换元件中产生的上述电荷生成的相位差数据信号,在至少一个达到该阈值的情况下,输出基于在由上述固体拍摄装置确定的上述第二像素组中产生的上述电荷生成的相位差数据信号。
根据该构成,针对各个第一像素,通过判断相位差信息是否被保持而不被破坏(例如,某光电转换元件中产生的电荷是否溢出且未流入其他光电转换元件),固体拍摄装置能够按每个像素适当确定采用上述两个相位差数据信号生成方式中的哪一个,能够输出更准确的相位差数据信号。
此外,在这种情况下,在判定为某第一像素中相位差信息被破坏,且通过比较该第一像素的多个光电转换元件中产生的电荷的方式无法生成准确的相位差数据信号的情况下,固体图像装置例如从当前读入行存储器中的多个像素的电荷信息中选择附近的第二像素的电荷信息,将基于该附近的第二像素的电荷信息生成的相位差数据信号视为由该第一像素生成的相位差数据信号。
本发明的摄像头设备,
包含上述固体拍摄装置、以及构成为控制上述固体拍摄装置的控制装置。
根据该构成,上述摄像头设备通过适当使用比较固体拍摄装置所具备的第一像素所具备的两个以上的光电转换元件中产生的电荷的方式、以及比较固体拍摄装置所具备的第二像素组中产生的电荷的方式这两种方式,从而无论针对高亮度被摄体还是低亮度被摄体都能够生成高精度的相位差数据信号。
上述摄像头设备构成为例如基于来自上述控制装置的信号,确定上述固体拍摄装置是否基于上述第一像素所具备的上述两个以上的光电转换元件中产生的上述电荷针对每个像素输出相位差数据信号、和/或是否基于上述两个以上的第二像素组中产生的上述电荷针对每个像素输出相位差数据信号。
根据该构成,在上述固体拍摄装置中,能够通过上述摄像头设备的控制装置,从上述固体拍摄装置的外部控制:使用比较第一像素的两个以上的光电转换元件中产生的电荷的方式还是使用比较第二像素组中产生的电荷的方式(或者,同时使用这两个方式)来输出相位差数据信号。
上述摄像头设备可以是例如智能手机、移动电话、平板电脑、移动信息终端(PDA)等的移动终端。
<第一实施方式>
以下,参照附图说明本发明的第一实施方式。
[固体拍摄装置的构成例]
本实施方式的固体拍摄装置例如被嵌入智能手机或数码摄像头等摄像头设备中,包含CMOS图像传感器。
具体地说,如图1所示,该固体拍摄装置1具备像素阵列部2、垂直驱动部3、多个列信号处理部4、水平驱动部5、控制部6以及信号处理部7。另外,固体拍摄装置1具备可以存储由信号处理部7处理的信号等的存储器8。在本实施方式的固体拍摄装置1中,至少由像素阵列部2、垂直驱动部3、多个列信号处理部4、水平驱动部5以及控制部6构成CMOS图像传感器。
至少,像素阵列部2、垂直驱动部3、列信号处理部4、水平驱动部5、控制部6以及信号处理部7配置在同一半导体基板上或电连接的多个半导体基板上。此外,信号处理部7以及存储器8可以配置于半导体基板,所述半导体基板配置有像素阵列部2、垂直驱动部3、列信号处理部4、水平驱动部5以及控制部6,也可以配置在不同的基板上等。即,信号处理部7以及存储器8的配置位置不受限制。
像素阵列部2具有二维配置成矩阵状的多个像素10。这些多个像素10中的每一个构成该像素10的受光面,并具有两个光电转换元件11R、11L,光电转换元件11R、11L可以对输入光(入射光)进行光电转换,在内部积累与输入光量相应的量的信号电荷(电荷),并输出该积累的信号电荷。
此外,多个像素10由受光面未被不透明膜遮光的多个第一像素10A、以及受光面由不透明膜部分遮光的第二像素10B构成,但在图1中未示出第一以及第二像素10A、10B的配置状态和受光面的遮光状态。后面将描述包含他们的配置状态或受光面的遮光状态的各像素10的具体构成的详细内容。
除了上述第一像素10A以及第二像素10B外,像素阵列部2也可以包括不具有光电转换元件结构的伪单位像素、或者通过对受光面进行遮光从而阻断从外部输入的光的像素。
另外,像素阵列部2相对于矩阵状的像素排列,具有配置于各行且分别在行方向上延伸的多个行信号线21、以及配置于各列且分别在列方向上延伸的多个列信号线22。上述多个行信号线21中的每一个连接到垂直驱动部3,多个列信号线22中的每一个连接到对应的列信号处理部4。
垂直驱动部3例如由移位寄存器构成,选择规定的行信号线21,从而将用于驱动像素10的脉冲(信号)供应到所选择的行信号线21,以行为单位驱动像素10。详细地,垂直驱动部3以行为单位依次在垂直方向上选择扫描像素阵列部2的各像素10,通过列信号线22将基于在各像素10的光电转换元件11中根据输入光量生成的信号电荷的像素信号供应到列信号处理部4。
多个列信号处理部4中的每一个配置于像素10的每一列,对从一行的像素10输出的像素信号按每个像素列进行降噪等信号处理。本实施方式的各列信号处理部4进行用于除去像素固有的固定模式噪音的相关双采样(Correlated Double Sampling:CDS)以及A/D(Analog/Digital)转换等信号处理。
水平驱动部5例如由移位寄存器构成,通过依次输出水平扫描脉冲,从而依次选择多个列信号处理部4中的每一个,依次将由各列信号处理部4进行信号处理后的像素信号输出到信号处理部7。
控制部6控制固体拍摄装置1的各部的动作。具体地说,控制部6接收输入时钟信号和用于指示动作模式等的数据,并且输出固体拍摄装置1的内部信息等数据。详细地,控制部6基于垂直同步信号、水平同步信号以及主时钟信号,生成作为垂直驱动部3、列信号处理部4以及水平驱动部5等的动作的基准的时钟信号或控制信号,并将所生成的时钟信号或控制信号输出到垂直驱动部3、列信号处理部4以及水平驱动部5等。
信号处理部7进行针对从各列信号处理部4输出的像素信号的运算处理等各种信号处理。本实施方式的信号处理部7是DSP(Digital Signal Processor;数字信号处理器)。
此外,信号处理部7的具体的配置位置不受限制。虽然在本实施方式的固体拍摄装置1中信号处理部7配置在与CMOS图像传感器不同的位置,但也可以是信号处理部7的整个构成配置(搭载)于CMOS图像传感器,或者信号处理部7的一部分构成配置于CMOS图像传感器。
存储器8是行存储器、帧存储器、FIFO等,能够存储从各列信号处理部4输出的像素信号等。后面叙述该存储器8的具体构成。
[像素阵列部中的像素的配置例]
接下来,参照图2来说明以矩阵状配置于像素阵列部2的像素的具体配置例。
如图2所示,在像素阵列部2以矩阵状二维配置有多个像素10。在图2所示的例子中,配置有4行×9列的像素10。另外,在各像素10分别设置有两个光电转换元件11R、11L。
如图2所示,多个像素10构成为具有该像素的受光面未由不透明膜60遮光的多个第一像素10A、以及该像素的受光面由不透明膜60部分遮光的第二像素10B。在图2所示的例子中,将第m行第n列的像素表示为(m,n)的像素的情况下,配置于(1,1)、(1,5)、(1,9)、(3,1)、(3,5)、(3,9)、(5,5)以及(5,9)的像素是其受光面由不透明膜60部分遮光的第二像素10B,剩余的像素为第一像素10A。
第一像素10A基于该像素中积累的信号电荷生成拍摄数据信号,并且,在该像素中包含的两个光电转换元件11R、11L中产生的信号电荷未溢出的情况下,通过比较两个光电转换元件11R、11L中产生的信号电荷的量,能够生成接受光的相位差数据信号。
另一方面,第二像素10B构成为在第一像素10A的光电转换元件11R、11L中产生的信号电荷溢出,由此无法从第一像素10A生成相位差数据信号的情况下,通过比较构成彼此对应的两个以上的第二像素10B组的该第二像素10B中的每一个中积累的上述电荷,能够生成接受光的相位差数据信号。
在本实施方式中,构成该第二像素10B组的彼此对应的两个以上的像素是指,在一个第二像素10B中被遮蔽而不能被接受的相位的光在另外的第二像素10B中没有被遮蔽可以被接受的、能够被接受的光的相位处于互补关系的两个以上的像素。在图2所示的例子中,在图2的行方向为左右,列方向为上下的情况下,像素的上半部分以及下半部分分别被遮蔽的(1,1)与(3,1)的像素的组合、像素的右半部分以及左半部分分别被遮蔽的(1,5)与(1,9)的像素的组合、相同像素的右半部分以及左半部分分别被遮蔽的(3,9)与(5,9)的像素的组合、以及像素的右上半部以及左下半部分别被遮蔽的(3,5)与(5,5)的像素的组合分别属于彼此对应的两个像素。
此外,在图2中,为了方便起见,分别示出像素的上半部分以及下半部分、右半部分以及左半部分、右上半部以及左下半部分别被遮蔽的像素的组合,但该图是将多个具体例汇总在一个图中示出,这些第二像素10B的组合不必全部配置于像素阵列部2。例如,配置于像素阵列部2的第二像素10B可以是右半部分或左半部分被遮蔽的像素。
在此,为了使由第二像素10B组生成的相位差数据信号的精度足够准确,构成该第二像素10B组的彼此对应的两个以上的像素优选配置于在某种程度上彼此接近的行以及列上。不限于以下,但例如,这些像素可以设计成:在像素阵列部2的二维排列中,行以及列都没有相互间隔20像素以上。
第二像素10B与第一像素10A不同,通常无助于拍摄数据信号的生成,因此,配置有第二像素10B的位置的拍摄数据信号可能需要由来自附近的第一像素10A的拍摄数据信号补充。此时,如果第二像素10B配置在太接近彼此的位置,则可能会妨碍拍摄数据信号的补充。所以,不限于以下,但构成该第二像素10B组的彼此对应的两个以上的像素例如可以设计成:在像素阵列部2的二维排列中,行以及列均相互间隔1像素以上。
构成配置于像素阵列部2的像素10的、第一像素的数与第二像素的数量之比没有特别限定,但为了在基于第一像素10A中积累的信号电荷可以获得良好的拍摄数据信号,且在从第一像素10A中包含的两个光电转换元件11R、11L中的至少一个溢出信号电荷的高亮度状态下,也可以通过第二像素得到足够准确的相位差数据信号,该比率例如是第一像素的数量:第二像素的数量=4:1~64:1的范围,优选是6:1~32:1的范围,更优选是8:1~24:1的范围,例如,可以是12:1。
[像素的构成]
接下来,参照图3~图5来说明以矩阵状配置于像素阵列部2的像素10的具体结构。
首先,参照图3来说明受光面未由不透明膜遮光的第一像素10A的概略结构。
如图3所示,第一像素10A具备:半导体区域20,其构成受光面,包含通过对接受的光进行光电转换从而产生信号电荷的两个光电转换元件11R、11L;以及独立的一个片上透镜30,其以覆盖两个光电转换元件11R、11L的方式设置在半导体区域20上。
通过这种构成,入射到第一像素10A的光(例如,图3所示的L1、L2)在片上透镜30折射,同时分别通过不同的光路入射到两个光电转换元件11R、11L中的一个上被接受。即,由于根据入射到第一像素10A的光的相位来确定两个光电转换元件11R、11L中的哪一个接受光,因此,在两个光电转换元件11R、11L接受的光中产生相位差。所以,对于第一像素10A,通过比较两个光电转换元件11R、11L接受的光的光量,即,通过比较该光通过光电转换而产生的信号电荷的量,能够生成相位差数据信号。
另外,在本实施方式中,第一像素10A在半导体区域20与片上透镜30之间,还具备彩色滤光片40和透明膜50。彩色滤光片40为各像素选择例如R(红色)、G(绿色)或B(蓝色),以使各像素在上述图2所示的像素阵列部2的平面排列中是所希望的排列(例如,拜耳排列)。此外,这些的彩色滤光片40以及透明膜50不是必要构成要件,也可以没有。
接着,参照图4来说明受光面由不透明膜部分遮光的第二像素10B的概略结构。
第二像素10B与第一像素A同样地,具备包含两个光电转换元件11R、11L的半导体区域20、片上透镜30、彩色滤光片40以及透明膜50。另一方面,第二像素10B与第一像素10A不同,受光面由不透明膜60部分遮蔽(遮挡)。
由于这种构成,在第二像素10B中,无法接受被不透明膜60遮蔽的相位的光,仅能接受未被遮蔽的指定相位的光。因此,在第二像素10B中,如第一像素10A那样,各像素无法独立生成相位差数据信号,但被接受的光的相位为互补关系的、附近的行以及列中的第二像素10B的组合中,通过比较各第二像素10B接受的光的光量,即,通过比较该光通过光电转换从而产生的信号电荷的量,能够生成相位差数据信号。
基于图4所示的例子进行具体地说明,作为第二像素10B的例子,在图3的左侧示出受光面的左侧(在上述例子中为光电转换元件11L)由不透明膜60遮光的第二像素10B_R,在图4的右侧示出受光面的右侧(在上述例子中为光电转换元件11R)由不透明膜60遮光的第二像素10B_L。第二像素10B_R不接受被遮蔽的左侧的相位的光,仅接受右侧的相位的光,在第二像素10B_L中,不接受被遮蔽的右侧的相位的光,仅接受左侧的相位的光。因此,仅接受右侧的相位的光的的第二像素10B_R与仅接受左侧的相位的光的10B_L彼此为互补关系,通过比较它们接受的光的光量,能够生成相位差数据信号。
此外,图4所示的第二像素10B_R、10B_L的光电转换元件11R、11L中的一个由不透明膜60完全遮蔽,但第二像素10B也可以如图2所示的一些第二像素10B那样,光电转换元件11R、11L被部分遮蔽。例如,也可以如配置于图2所示的像素阵列部2的(1,1)和(3,1)的第二像素10B那样,第二像素10B的彼此为互补关系的组合由构成受光面的光电转换元件11R、11L的各自的上半部分被遮蔽的像素、以及各自的下半部分被遮蔽的像素构成。
另外,在本实施方式中,第二像素10B与第一像素10A同样地具备两个光电转换元件,但第二像素10B所具备的光电转换元件可以是一个。
接着,参照图5来说明构成像素10的第一像素10A以及第二像素10B共有的、半导体区域20中包含的电路构成。
在图5所示的电路构成中,像素10具备:两个光电转换元件11R、11L,其根据输入光,通过光电转换产生信号电荷;浮动扩散区12,其将由光电转换元件11R、11L产生的信号电荷转换为与该信号电荷的量相应的电压信号(电压);以及保持电容(溢出保持电容)13,其连接浮动扩散区12,并且能够积累从光电转换元件11R、11L溢出的信号电荷。本实施方式的光电转换元件11R、11L例如为光电二极管。
另外,像素10具备:传输晶体管(第一开关晶体管)14R、14L,其分别连接光电转换元件11R、11L与浮动扩散区12;保持开关晶体管(第二开关晶体管)15,其连接浮动扩散区12与保持电容13;复位晶体管(第三开关晶体管)16,其连接保持电容13与复位电源(复位电位)VDD1;放大晶体管17,其将浮动扩散区12的电压信号进行放大;以及选择晶体管18,其连接放大晶体管17与列信号线22。
针对以矩阵状配置的多个像素10,在每个像素行布线多个行信号线21。并且,各种驱动信号φTX_L、φTX_R、φS、φRES、φSEL从垂直驱动部3经行信号线21被供应到各像素10。上述驱动信号φTX_L、φTX_R、φS、φRES、φSEL为上述脉冲。
浮动扩散区12将由光电转换元件11R、11L产生的信号电荷进行电荷电压转换为电压信号并将其输出。本实施方式的浮动扩散区12还依次经保持开关晶体管15和复位晶体管16与复位电源VDD1连接。
保持电容13为电容器,如上所述,经保持开关晶体管15与浮动扩散区12连接,并且还经复位晶体管16与复位电源VDD1连接。
对传输晶体管14L的栅极电极施加驱动信号φTX_L。该驱动信号φTX_L基于来自控制部6的信号(指令)从垂直驱动部3输出。当驱动信号φTX_L变为Hi时(即,当传输晶体管14L导通时),传输晶体管14L的传输栅极变为导通状态,光电转换元件11中积累的信号电荷经该传输晶体管14传输到浮动扩散区12。此外,当驱动信号φTX_L变为Low时,传输晶体管14L关断。
同样地,对传输晶体管14R的栅极电极施加驱动信号φTX_R。该驱动信号φTX_R基于来自控制部6的信号(指令)从垂直驱动部3输出。当驱动信号φTX_R变为Hi时(即,当传输晶体管14R导通时),传输晶体管14R的传输栅极变为导通状态,光电转换元件11R中积累的信号电荷经该传输晶体管14R传输到浮动扩散区12。此外,当驱动信号φTX_R变为Low时,传输晶体管14R关断。
对保持开关晶体管15的栅极电极施加驱动信号φS。该驱动信号φS基于来自控制部6的信号从垂直驱动部3输出。当驱动信号φS变为Hi(即,保持开关晶体管15导通)时,保持开关晶体管15的保持栅极变为导通状态,信号电荷可以从浮动扩散区12移动到保持电容13。此外,当驱动信号φS变为Low时,保持开关晶体管15关断。
对复位晶体管16的栅极电极施加驱动信号φRES。该驱动信号φRES基于来自控制部6的信号从垂直驱动部3输出。当驱动信号φRES变为Hi(即,复位晶体管16导通)时,复位晶体管16的复位栅极变为导通状态,根据施加到保持开关晶体管15的栅极电极的驱动信号φS,浮动扩散区12以及保持电容13的电位或保持电容13的电位复位成复位电源(复位电位)VDD1的电平(复位电平)。此外,当驱动信号φRES变为Low时,复位晶体管16关断。
在放大晶体管17中,栅极电极连接浮动扩散区12,且漏极电极连接到电源VDD2。该放大晶体管 17为将浮动扩散区12的电压作为像素信号读出的读出电路(所谓的源极跟随电路SF)的输入部。即,放大晶体管17通过使源极电极经选择晶体管18连接到列信号线22,从而构成连接到该列信号线22的一端的恒流源和源极跟随电路SF。
选择晶体管18连接到放大晶体管17的源极电极和列信号线22。对选择晶体管18的栅极电极施加驱动信号φSEL。该驱动信号φSEL基于来自控制部6的信号从垂直驱动部3输出。当驱动信号φSEL变为Hi(即,选择晶体管18导通)时,选择晶体管18的选择栅极变为导通状态,像素10变为选择状态。由此,从放大晶体管17输出的像素信号经选择晶体管18输出到列信号线22。此外,当驱动信号φSEL变为Low时,选择晶体管18关断。
最后,参照图6来说明像素10中的两个光电转换元件11R、11L之间的势垒、以及上述两个光电转换元件11R、11L与保持电容13之间的势垒的关系。
如图6所示,本实施方式的像素10中,两个光电转换元件11R、11L之间的势垒低于上述两个光电转换元件11R、11L与保持电容13之间的势垒的关系。在图5所示的电路构成中,两个光电转换元件11R、11L之间的势垒通过调节传输晶体管14R、14L的保持栅极来设定,两个光电转换元件11R、11L与保持电容13之间的势垒通过调节保持开关晶体管15的保持栅极来设定。
因此,在本实施方式的像素10中,在传输晶体管14R、14L以及保持开关晶体管15关断的时点,在光电转换元件11R、11L中的一个(例如,光电转换元件11L)中产生超过可以保持的蓄电电容的信号电荷的情况下,从上述一个光电转换元件11R、11L溢出的信号电荷首先超过较低的光电转换元件11R、11L之间的势垒(传输晶体管14R、14L的保持栅极),优先流入另一光电转换元件11R、11L(例如,光电转换元件11R)并被积累。并且,当光电转换元件11R、11L两者中积累的信号电荷达到可以保持的累积电容的极限时,从光电转换元件11R、11L溢出的信号电荷超过较高的光电转换元件11R、11L与保持电容13之间的势垒(保持开关晶体管15的保持栅极),流入保持电容13并被积累。
典型地,光电转换元件11R、11L中保持的电荷的噪声往往低于保持电容13中保持的信号电荷的噪声。所以,如本实施方式那样,根据构成为将在光电转换元件11R、11L中生成的信号电荷尽可能地积累到光电转换元件11R、11L中而不是保持电容13的像素10,可以实现输出的摄影数据信号的SN比相对较高的效果。
此外,在第一像素10A中,在从光电转换元件11R、11L中的一个溢出的信号电荷流入另一个光电转换元件11R、11L的情况下,光电转换元件11R、11L的每一个中接受的相位的光的信息溢出或混合,因此,光电转换元件11R、11L中保持的信号电荷无助于生成正确的相位差数据信号。所以,在本实施方式中,当在某第一像素10A中产生信号电荷溢出的情况下,该第一像素10A虽然通过后述的驱动方法能够输出可靠的拍摄数据信号,但无法输出可靠的相位差数据信号。在这样的情况下,可以利用第二像素10B生成的信号,作为可靠的相位差数据信号。
[固体拍摄装置的像素的驱动例]
参照图7来说明如上述那样构成的像素10的驱动时间点。此外,图7示出像素10的驱动信号(控制信号的脉冲)、以及相应地出现在列信号线22的输出电压(像素信号),Vout表示输出电压。
首先,在时刻t01,在选择晶体管18为关断的状态下,传输晶体管14R、14L、保持开关晶体管15、复位晶体管16导通,浮动扩散区12和保持电容13变为复位电平。
这样,在浮动扩散区12连接到复位电源VDD1的状态下传输晶体管14关断,由此光电转换元件11R、11L变为浮置状态,分别在光电转换元件11R、11L中开始积累通过光的输入产生的信号电荷。
几乎在传输晶体管14R、14L关断的同时(详细地,稍有延迟),保持开关晶体管15、复位晶体管16分别关断,由此,浮动扩散区12和保持电容13也变为浮置状态。
在此,在信号电荷从光电转换元件11R、11L中的至少一个溢出的(溢出来)情况下,分别变为浮置状态的保持电容13、以及还未溢出的光电转换元件11R、11L可以保持(积累)该溢出来的信号电荷。详细地说,如上面关于图6所述,从该光电转换元件11R、11L中的个溢出来的信号电荷首先保持(积累)在另一个光电转换元件11R、11L中。之后,在光电转换元件11R、11L中的任意一个中保持的信号电荷达到可以保持的累积电容的极限之后,溢出来的信号电荷流入保持电容13中被保持。
这样,在传输晶体管14R、14L、保持开关晶体管15以及复位晶体管16关断的状态下,在传输晶体管14R、14L关断后,从经过规定的积累期间ΔT之后的时刻t02开始读出该像素10的像素信号。
具体地说,当从像素10的各开关晶体管14R、14L、15、16、18为关断的状态开始,控制部6(详细地,接受控制部6的指令的垂直驱动部3)使驱动信号φSEL变为Hi从而将选择晶体管18导通时,该像素10与列信号线22连接。
接着,在时刻t03,浮动扩散区12的电位(浮动扩散区参照电位)从源极跟随电路SF读出,在A/D转换后作为第一信号(像素信号)存储于存储器8。
在本实施方式的固体拍摄装置1中,在列信号处理部4,在A/D转换后的状态(即,转换为数字信号的状态)下,第一信号存储到存储器8中,但不限于该构成。也可以在从源极跟随电路SF读出的像素信号(浮动扩散区12的电压)保持为模拟信号的同时执行之后的各处理。此外,在之后的时间点,从源极跟随电路SF读出的像素信号(第二~第五信号)也是同样的。
接着,在时刻t04,控制部6在使驱动信号φTX_R变为Hi并将传输晶体管14R导通,光电转换元件11R在积累期间ΔT的期间积累的信号电荷传输到浮动扩散区12之后,使驱动信号φTX_R变为Low,将传输晶体管14关断。
该信号在时刻t05从源极跟随电路SF读出,在A/D转换之后作为第二信号(像素信号)存储于存储器8。
接着,在时刻t06,控制部6在使驱动信号φTX_R以及φTX_L这两者变为Hi并将传输晶体管14R以及14L导通,光电转换元件11R以及11L在积累期间ΔT的期间积累的信号电荷传输到浮动扩散区12之后,使驱动信号φTX_R以及φTX_L变为Low,并将传输晶体管14关断。
该信号在时刻t07从源极跟随电路SF读出,在A/D转换之后作为第三信号(像素信号)存储于存储器8。
接着,在时刻t08,控制部6在使驱动信号φS变为Hi并将保持开关晶体管15导通,由此使浮动扩散区12和保持电容13导通之后,再次使驱动信号φTX_R以及φTX_L变为Hi以及Low,并将传输晶体管14导通以及关断。此时的浮动扩散区12的电压在t09从源极跟随电路SF读出,在A/D转换之后作为第四信号(像素信号)作为存储于存储器8。
最后,在时刻t10,控制部6使驱动信号φRES变为Hi并将复位晶体管16导通,由此将浮动扩散区12和保持电容13连接到复位电源(复位电位)VDD1,使浮动扩散区12和保持电容13的信号电荷全部初始化(复位)。该初始化后的浮动扩散区12与保持电容13的电压(复位电平)在t11从源极跟随电路SF读出,在A/D转换之后作为第五信号(像素信号)存储于存储器8。
通过处理以上像素10的驱动中获得的第一~第五信号,能够恢复基于光电转换元件11R及11L、以及保持电容13中保持的信号电荷的信号。具体地说,通过从第二信号中减去第一信号,从而恢复基于复位噪声以及DC电平的偏差得到校正后的光电转换元件11R中保持的电荷的信号(信号R)。同样地,通过从第三信号中减去第一信号,从而恢复基于复位噪声以及DC电平的偏差被校正后的光电转换元件11R以及11L中保持的电荷总数的信号(信号R+L)。另外,通过从第三信号中减去第二信号,从而恢复基于复位噪声以及DC电平的偏差被校正后的光电转换元件11L中保持的电荷总数的信号(信号L)。而且,通过从信号04中减去信号05,从而恢复基于DC电平的偏差被校正后的光电转换元件11R以及11L、以及保持电容13中保持的信号电荷的信号(信号R+L+C)。
在此,在像素10为第一像素10A的情况下,在由积累期间ΔT的期间分别入射到光电转换元件11R、11L的光产生的信号电荷均未超过光电转换元件11R、11L可以保持的电容,没有发生来自光电转换元件11R、11L的溢出的情况下,通过上述处理恢复的信号R+L能够被用作正确的拍摄数据信号。
并且,在这种情况下,从光电转换元件11R、11L输出的信息保持与分别入射到到其上的光的相位有关的信息,因此,通过上述处理恢复的信号R和信号L能够被用作通过将其进行比较从而可以生成正确的相位差数据信号的、可靠的相位信号。
另外,在第一像素10A中,在积累期间ΔT的期间分别入射到光电转换元件11R、11L中的光产生的信号电荷超过光电转换元件11R、11L中的一个可以保持的电容,信号电荷从光电转换元件11R、11L中的一个溢出到另一个的的情况下,通过上述处理恢复的信号R+L能够被用作正确的拍摄数据信号。
然而,在这种情况下,由于信号电荷从光电转换元件11R、11L的一个溢出到另一个,因此,信号R以及信号L不具有作为相位信号的意义。所以,信号R以及信号L无法被用作生成可靠的相位差数据信号。
另外,在第一像素10A中,在由积累期间ΔT的期间分别入射到光电转换元件11R、11L的光产生的信号电荷超过光电转换元件11R、11L中的一个可以保持的电容,信号电荷从光电转换元件11R、11L溢出到保持电容13的情况下,通过上述处理恢复的信号R+L与上述2种情况不同,由于超过了光电转换元件11R、11L处理的信号量,因此,其不具有作为拍摄数据信号的意义。在这种情况下,如果使用来自保持电容13的信号,则上述信号R+L+C能够用作正确的拍摄数据信号。
在这种情况下,信号R以及信号L也不具有作为相位信号的意义,因此,无法用于生成可靠的相位差数据信号。
另外,在像素10为第二像素10B的情况下,该第二像素10B通常不生产有用的拍摄数据信号。而在接受的光的相位为互补关系的第二像素10B的组合中,通过上述处理恢复的各个第二像素10B的信号R+L(不发生从光电转换元件11R、11L向保持电容13溢出的情况)或信号R+L+C(发生从光电 转换元件11R、11L向保持电容13溢出的情况)能够在第二像素10B组中用作用于生成可靠的相位差数据信号的相位信号。
[来自固体拍摄装置的相位差数据信号的输出例]
由以上可知,在本实施方式的固体拍摄装置1中,具备从第一像素10A生成相位差数据信号的单元、以及从第二像素10B生成相位差数据信号的单元这两个单元。这些单元能够根据使用固体拍摄装置1的拍摄场景的亮度或曝光时间适当选择。例如,在拍摄场景为较低亮度或曝光时间(积累期间ΔT)较短的情况下,在光电转换元件11R、11L中难以产生溢出,因此认为可以有效利用在生成拍摄数据的第一像素10A中生成的相位差数据信号。另一方面,在拍摄场景为较高亮度或曝光时间(积累期间ΔT)较长的情况下,在光电转换元件11R、11L中容易产生溢出,在第一像素10A中难以生成可靠的相位差数据信号,因此认为优选利用在第二像素10B中生成的相位差数据信号来进行代替。以下,说明在本实施方式的固体拍摄装置1的像素阵列部2中输出相位差数据信号的例子。
图8是示出来自固体拍摄装置的相位差数据信号的第一输出例的流程图。如图8所示,第一输出例包含以下的步骤801~803。
首先,在步骤801中,通过上述像素10的驱动例所示的方法等,在存储器8上积累像素阵列部2的固定范围内包含的多个像素10(即,第一像素10A以及第二像素10B)中生成的信号数据。存储器8例如是行存储器,该行存储器例如积累在像素阵列部2中以矩阵状二维配置的多个像素10中的、作为读取对象的排列在一个以上的行上的像素10的信号数据。
接着,在步骤802中,与该存储器8上积累的信号数据相关的(即,在存储器8上可参考的)像素10中,对关于第一像素10A的信号数据进行以下处理,从而从第一像素10A中的每一个中输出相位差数据信号。
具体地说,在存储器8上可参考的第一像素10A中的每一个输出基于该第一像素10A的光电转换元件11R、11L中积累的信号电荷生成的相位差数据信号(以下,也称为第一相位差数据信号)、以及基于在存储器8上可参考的第二像素10B组中积累的信号电荷生成的相位差数据信号(以下,还称为第二相位差数据信号)这两个信号。
为了生成作为对象的第一像素10A的相位差信息输出的第二相位差数据信号而参考的第二像素10B组优选是位于作为对象的第一像素10A的附近的第二像素10B组,作为对象的第一像素10A与构成第二像素10B组的第二像素10B中的每一个的平均距离更优选为存储器8上可参考的所有第二像素10B组中的最短的组。
之后,在步骤803中,如果在像素阵列部2内还有未在存储器8上读取的像素10,则更新存储器8上积累的信号数据,重复上述步骤801~802,直到像素阵列部2中包含的所有像素10被读取为止。
在上述第一输出例的情况下,对于从像素阵列部2的第一像素10A输出的第一相位差数据信号以及第二相位差数据信号,能通过接收输出的信号的摄像头设备的控制装置等来判断灵活使用哪一个相位差数据信号。或者,也可以根据输出目的地灵活使用两个相位差数据信号。
图9是示出来自固体拍摄装置的相位差数据信号的第二输出例的流程图。如图9所示,第二输出例包含以下的步骤901~903。
首先,在步骤901中,与第一输出例同样地,在存储器8上积累在像素阵列部2的固定范围内包含的多个像素10中生成的信号数据。
接着,在步骤902中,在存储器8上可参考的第一像素10A中的每一个基于来自固体拍摄装置1的外部的指令来选择输出第一相位差数据信号还是输出第二相位差数据信号。上述来自外部的指令例如由搭载有固体拍摄装置1的摄像头设备所具备的控制装置等执行。
例如,在确定摄像头设备不使用像素10的保持电容13的情况下,即,在不采用HDR模式的情况下,摄像头设备的控制装置可以指示输出第一相位差数据信号作为对象的第一像素10A的相位差信息。另一方面,在确定摄像头设备使用像素10的保持电容13的情况下,即,采用HDR模式的情况下,摄像头设备的控制装置可以指示输出第二相位差数据信号作为对象的第一像素10A的相位差信息。
在这种情况下,关于像素阵列部2中的像素10是否使用保持电容13,在大多数情况下,基于摄像头设备的控制装置的设定采用相同的模式。然而,并不总是需要像素阵列部2中的所有像素10采用相同的模式,可以向配置于像素阵列部2的一部分的第一像素10A发送使用保持电容13的指令,向剩余部分发送不使用保持电容13的指令。例如,也可以按照使具备摄像头设备的所有像素10中的、易受光的中央附近的像素10不使用保持电容13,使难以受光的周边附近的像素10使用保持电容13的方式,根据像素10的配置位置给出不同的指令。
之后,在步骤903中,如果在像素阵列部2内还有未在存储器8上读取的像素10,则更新存储器8上积累的信号数据,重复上述步骤901~902,直到像素阵列部2中包含的所有像素10被读取为止。
在上述第二输出例的情况下,与第一输出例相比,能够削减输出的信号的量,因此,能够降低接收输出的信号的摄像头设备的控制装置等中的信号处理的负担。
图10是示出来自固体拍摄装置的相位差数据信号的第二输出例的流程图。如图10所示,第二输出例包含以下的步骤1001~1003。
首先,在步骤1001中,与第一输出例同样地,在存储器8上积累在像素阵列部2的固定范围内包含的多个像素10中生成的信号数据。
接着,在步骤1002中,在存储器8上可参考的第一像素10A中的每一个,基于固体拍摄装置1自身的判断来选择输出第一相位差数据信号还是输出第二相位差数据信号。上述选择例如由信号处理部7基于作为对象的第一像素10A的各种信号执行。
通过图11详细示出针对上述步骤1002中的各第一像素10A的处理。在步骤1101中,针对作为对象的第一像素10A,信号处理部7判断基于光电转换元件11R、11L中积累的信号电荷的信号R以及L中的每一个是否达到表示在光电转换元件11R、11L中产生溢出的阈值。在信号R以及L均未达到该阈值的情况下,在步骤1102中,输出第一相位差数据信号作为对象的第一像素10A的相位差信息。而在信号R以及L中的至少一个达到该阈值的情况下,光电转换元件11R、11L中产生溢出,无法从该信号R以及L获得可靠的相位差数据信号,因此,在步骤1103中,输出第二相位差数据信号作为对象的第一像素10A的相位差信息。之后,在步骤1104中,重复步骤1101~1103,直到在存储器8上可参考的所有第一像素10A输出相位差数据信号为止。
在采用第一相位差数据信号作为第一像素10A的相位差信息的情况下,输出通过比较上述第一像素10A中的信号R和信号L而生成的相位差数据信号。
另外,在采用第二相位差数据信号作为第一像素10A的相位差信息的情况下,判断在构成第二像素10B组的各像素中是否产生从光电转换元件11R、11L向保持电容13的溢出,优选在不产生上述溢出的情况下,将该第二像素10B的信号R+L作为用于在该组中生成相位差数据信号的相位信号,在产生上述溢出的情况下,将该第二像素10B的信号R+L+C作为该相位信号。例如可以通过判断是否达到表示在光电转换元件11R、11L两者中产生溢出的阈值,从而判断是否产生从光电转换元件11R、11L向保持电容13的溢出。
此外,在不产生从光电转换元件11R、11L向保持电容13的溢出的情况下,保持电容13中保持的信号电荷理论上为零。所以,即使在这样的情况下,也认为第二像素10A生成信号R+L+C代替信号R+L作为该相位信号。然而,实际上,信号R+L+C中包含由保持电容13导致的信号噪声。所以,在不产生向保持电容13的溢出的情况下,为了提高该相位信号的SN比,如上所述,优选使用信号R+L,而不是信号R+L+C。
另外,在输出第二相位差数据信号作为第一像素10A的相位差信息的情况下,优选接收输出的相位差数据信号的设备(例如,摄像头设备)对输出的相位差数据信号进行适当的互补处理,以进行与基于另外的第一像素10A的光电转换元件11R、11L中积累的信号电荷生成的相位差数据信号同等的处理。
之后,在步骤1003中,如果在像素阵列部2内还有未在存储器8上读取的像素10,则更新存储器8上积累的信号数据,重复上述步骤1001~1002,直到像素阵列部2中包含的所有像素10被读取为止。
在上述第三输出例的情况下,与第二输出例相比,基于第一像素10A的光电转换元件11R、11L中是否产生溢出来选择通过固体拍摄装置1自身的判断而输出的相位差数据信号,因此,能够从固体拍摄装置1输出更可靠的相位差信号。
如以上那样从各像素10输出的相位差数据信号例如可以用于在具备固体拍摄装置1的摄像头设备等中进行自动对焦。另外,上述相位差数据信号除了用于自动对焦之外,例如还能够用于深度估计(深度映射)等各种各样的用途中。
<第二实施方式>
接着,说明第二实施方式。
[固体拍摄装置的构成]
本发明的第二实施方式的固体拍摄装置1除了像素10中的两个光电转换元件11R、11L之间的势垒和上述两个光电转换元件11R、11L与保持电容13之间的势垒的关系不同之外,与第一实施方式相同。以下,在本实施方式中,使用与第一实施方式相同的附图标记说明固体拍摄装置的构成要素。
图12示出第二实施方式的固体拍摄装置1的像素10中的、两个光电转换元件11R、11L之间的势垒和上述两个光电转换元件11R、11L与保持电容13之间的势垒的关系。如图12所示,在本实施方式的像素10中,两个光电转换元件11R、11L之间的势垒高于上述两个光电转换元件11R、11L与保持电容13之间的势垒。因此,在本实施方式的像素10中,在传输晶体管14R、14L以及保持开关晶体管15关断的时点,在光电转换元件11R、11L中的一个(例如,光电转换元件11L)中生成超过可以保持的 蓄电电容的信号电荷的情况下,从上述一个光电转换元件11R、11L溢出的信号电荷首先超过较低的光电转换元件11R、11L与保持电容13之间的势垒,优先流入保持电容13中并被积累。
在本实施方式中,即使在仅光电转换元件11R、11L中的一个(例如,光电转换元件11L)溢出的情况下,如果另一个(例如,光电转换元件11R)如果不溢出,则也能保持保持电容13中积累的信号电荷的生成源是上述一个光电转换元件11R、11L(例如,光电转换元件11L),即,保持电容13中积累的信号电荷具有相位信息。所以,在这种情况下,如果比较产生溢出的上述一个光电转换元件11R、11L(例如,光电转换元件11L)中积累的信号电荷与保持电容13中积累的信号电荷的总数、以及未产生溢出的另一个光电转换元件11R、11L(例如,光电转换元件11R)中积累的信号电荷,能够生成可靠的相位差数据信号。因此,根据本实施方式,在光电转换元件11R、11L中生成的信号电荷溢出的亮度高的或曝光时间长的拍摄场景中,能够实现生成与第一实施方式相比可靠性高的相位差数据信号的效果。
[固体拍摄装置的像素的驱动例]
本实施方式的像素10的驱动时间点可以与第一实施方式相同。与第一实施方式同样地,通过处理在这样的像素10的驱动中获得的第一~第五信号,能够恢复信号R、信号R+L、信号L以及信号R+L+C。而且,在本实施方式中,通过从信号R+L+C中减去信号R,可以恢复信号R+C,通过从信号R+L+C中减去信号R,可以恢复信号L+C。
在此,在第一像素10A中,在积累期间ΔT的期间不从光电转换元件11R、11L中产生溢出的情况下,与第一实施方式同样地,信号R+L能够用作正确的拍摄数据信号,信号R和信号L可以用作通过将其们进行比较从而可以生成正确的相位差数据信号的、可靠的相位信号。
另一方面,在第一像素10A中,在积累期间ΔT的期间从光电转换元件11R、11L的至少一个中产生溢出的情况下,与第一实施方式不同,信号R+L超过光电转换元件11R、11L可以处理的信号量,因此,其不具有作为拍摄数据信号意义。在这种情况下,能够将信号R+L+C用作正确的拍摄数据信号。
另外,在这种情况下,由于信号R以及信号L不具有作为相位信号的意义,因此无法用于生成可靠的相位差数据信号。然而,如果仅一个光电转换元件11R、11L中产生溢出,则通过比较信号R、L中的、产生溢出的光电转换元件11R、11L对应的信号加上信号C后得到的信号、以及未产生溢出的光电转换元件11R、11L对应的信号,能够生成正确的相位差数据信号。例如,在光电转换元件11L中生成的信号电荷产生溢出,而在光电转换元件11R中未产生溢出的情况下,通过比较信号R和信号L+C,能够生成正确的相位差数据信号。
此外,在光电转换元件11R、11L两者中产生溢出的情况下,保持电容13中积累的信号电荷从光电转换元件11R、11L两者中溢出而流出来的信号电荷被混合。所以,在这样的情况下,无法将保持电容13中积累的信号电荷用作相位信号。
在不生成拍摄数据信号的第二像素10B中,在光电转换元件11R、11L的任意一个中都不产生溢出的情况下,信号R+L在第二像素10B组中可以用作用于生成可靠的相位差数据信号的相位信号,在产生溢出的情况下,信号R+L+C在第二像素10B组中可以用作用于生成可靠的相位差数据信号的相位信号。
[来自固体拍摄装置的相位差数据信号的输出例]
除了以下所示的第三输出例的步骤1002的详细内容之外,可以与第一实施方式同样的方式从第二实施方式的固体拍摄装置1的像素阵列部2中输出相位差数据信号。通过图13详细示出针对上述第二实施方式中的步骤1002中的各第一像素10A的处理。
在步骤1301中,针对作为对象的第一像素10A,信号处理部7判断基于光电转换元件11R、11L中积累的信号电荷的信号R以及L中的每一个是否达到表示在光电转换元件11R、11L中产生溢出的阈值。
如果信号R以及L均未达到上述阈值,则在步骤1302中输出通过比较上述第一像素10A中的信号R和信号L而生成的第一相位差数据信号。
另一方面,在信号R以及L中的一个达到上述阈值,即,光电转换元件11R、11L中的一个中产生溢出的情况下,在步骤1303中,输出通过比较上述第一像素10A中的信号R、L中的、产生溢出的光电转换元件11R、11L对应的信号加上信号C后得到的信号、以及未产生溢出的光电转换元件11R、11L对应的信号而生成的相位差数据信号(也称为添加了溢出电容的第一相位差信号)。
另外,在信号R以及L两者都达到该阈值的情况下,从光电转换元件11R、11L两者溢出的信号电荷流入保持电容13,基于保持电容13的信号C不具有相位信息,因此,在步骤1304中,输出第二相位差数据信号作为对象的第一像素10A的相位差信息。能够与第一实施方式的步骤1103同样地进行上 述1304。
之后,在步骤1305中,重复步骤1301~1304,直到存储器8上有关可参考的所有第一像素10A输出相位差数据信号为止。
此外,本发明的固体拍摄装置不限于上述实施方式,毋庸置疑,在不脱离本发明主旨的范围内可以进行各种变更。例如,可以在某实施方式的构成中添加另一实施方式的构成,还可以将某实施方式的构成的一部分置换为另一实施方式的构成。而且,可以删除某实施方式的构成的一部分。
具体地说,在上述第一实施方式以及第二实施方式中,作为构成以能够生成接受光的相位差数据信号的方式构成的两个以上的第二像素10B的组合的第二像素10B,可以采用像素的受光面由不透明膜60部分遮光的像素组,但本发明中的第二像素不限于这种方式。
例如,如图14以及图15所示的例子那样,可以采用共用一个片上透镜30′的两个以上的第二像素10B′的组合作为第二像素组。在上述例子中,在像素阵列部2′中,两个第二像素10B′相邻而成为一组,在各个第二像素10B′组中独立设置有一个片上透镜30′。在上述例子中,可以与上述第一实施方式以及第二实施方式同样地方式处理由第二像素10B′生成的信号电荷,且能够输出相位差数据信号。
而且,在上述第一实施方式以及第二实施方式中,像素10具备两个光电转换元件11R、11L,但像素10所具备的光电转换元件的数量不限于两个,也可以是三个以上。另外,需要具备两个以上的光电转换元件11R、11L的像素仅为第一像素10A,第二像素10B可以仅具备一个光电转换元件。
在上述实施方式中提及的“上”、“下”、“左”以及“右”等方向用语只要不特别说明,表示附图中的上下左右等方向,并不限定本发明实施方式的方向。
为了表示本发明,在上述参照附图的同时,通过实施方式适当且充分地说明了本发明,但是本领域技术人员应该认识到,能够容易地进行上述实施方式的变更和/或改良。因此,只要本领域技术人员实施的变更方式或改良方式不是脱离权利要求书所记载的权利要求书的等级,则该变更方式或该改良方式被解释为包含在该权利要求书的权利范围内。
附图标记说明:
1…固体拍摄装置,2…像素阵列部,21…行信号线,22…列信号线,3…垂直驱动部,4…列信号处理部,5…水平驱动部,6…控制部,7…信号处理部,8…存储器(存储部),10A、10B…像素,11R、11L…光电转换元件,12…浮动扩散区,13…保持电容,14R、14L…传输晶体管(第一开关晶体管),15…保持开关晶体管,第一保持开关晶体管(第二开关晶体管),16…复位晶体管(第三开关晶体管),17…放大晶体管,18…选择晶体管,20…半导体区域,30…片上透镜,40…彩色滤光片,50…透明膜,60…不透明膜,SF…源极跟随电路,VDD1…复位电源(复位电位),VDD2…电源,φRES、φS、φS1、φSEL、φTX_R、φTX_L…驱动信号

Claims (11)

  1. 一种固体拍摄装置,其特征在于,
    具备多个第一像素、以及与所述多个第一像素不同的多个第二像素,
    所述多个第一像素以及所述多个第二像素的每一个具备:
    一个以上的光电转换元件,其构成该像素的受光面,并通过对接受的光进行光电转换而产生电荷;
    浮动扩散区,其连接到所述一个以上的光电转换元件,将所述电荷转换为与该电荷的量相应的电压;以及
    保持电容,其连接到所述浮动扩散区,并且能够积累从所述一个以上的光电转换元件溢出的所述电荷,
    所述多个第一像素的每一个构成为具备两个以上的所述光电转换元件,所述两个以上的光电转换元件均连接所述浮动扩散区,通过将所述两个以上的光电转换元件中积累的所述电荷分别进行比较,能够生成相位差数据信号,
    所述多个第二像素之中的两个以上的第二像素一起构成第二像素组,
    所述第二像素组构成为通过将构成该第二像素组的第二像素的每一个中积累的所述电荷分别进行比较,能够生成相位差数据信号。
  2. 根据权利要求1所述的固体拍摄装置,其中,
    在构成所述第二像素组的所述两个以上的像素中的每一个像素中,该像素的所述受光面的一部分被遮挡,以妨碍在该受光面的一部分处接受光。
  3. 根据权利要求1所述的固体拍摄装置,其中,
    在所述多个第一像素的每一个中设置有独立的一个片上透镜,
    在所述第二像素组的每一个中设置有独立的一个片上透镜,构成所述第二像素组的所述两个以上的像素共用所述一个片上透镜。
  4. 根据权利要求1~3中任意一项所述的固体拍摄装置,其中,
    在所述多个第一像素的每一个中,所述两个以上的光电转换元件之间的势垒低于所述光电转换元件与所述保持电容之间的势垒。
  5. 根据权利要求4所述的固体拍摄装置,其中,
    在所述多个第二像素的每一个中,
    在所述一个以上的光电转换元件中积累的电荷的总数为既定的饱和电荷量以下的情况下,基于所述一个以上的光电转换元件中积累的电荷的总数,生成相位差数据信号,
    在所述一个以上的光电转换元件中积累的电荷的总数大于既定的饱和电荷量的情况下,基于所述一个以上的光电转换元件中积累的电荷与所述保持电容中积累的电荷的总数,生成相位差数据信号。
  6. 根据权利要求1~5中任一项所述的固体拍摄装置,其中,
    在所述多个第一像素的每一个中,
    所述两个以上的光电转换元件之间的势垒高于所述光电转换元件与所述保持电容之间的势垒。
  7. 根据权利要求6所述的固体拍摄装置,其中,
    在所述多个第二像素的每一个中,
    在所述一个以上的光电转换元件中积累的电荷均为既定的饱和电荷量以下的情况下,基于所述一个以上的光电转换元件中积累的电荷的总数,生成相位差数据信号,
    在所述一个以上的光电转换元件中的任意一个中积累的电荷大于既定的饱和电荷量的情况下,基于所述一个以上的光电转换元件中积累的电荷与所述保持电容中积累的电荷的总数,生成相位差数据信号。
  8. 根据权利要求1~7中任意一项所述的固体拍摄装置,其中,
    所述固体拍摄装置,针对所述多个第一像素中的每一个,
    判断所述两个以上的光电转换元件中的每一个保持的电荷是否均达到表示在该光电转换元件中产生溢出的阈值,在均未达到该阈值的情况下,在该第一像素中,输出基于在所述两个以上的光电转换元件中产生的所述电荷生成的相位差数据信号,在至少一个达到该阈值的情况下,输出基于在由所述固体拍摄装置确定的所述第二像素组中产生的所述电荷生成的相位差数据信号。
  9. 一种摄像头设备,其特征在于,包含:
    权利要求1~8中任意一项所述的固体拍摄装置、以及
    构成为控制所述固体拍摄装置的控制装置。
  10. 根据权利要求9所述的摄像头设备,其中,
    基于来自所述控制装置的信号,确定所述固体拍摄装置是否基于所述第一像素所具备的所述两个以上的光电转换元件中产生的所述电荷针对每个像素输出相位差数据信号、和/或是否基于所述两个以上的第二像素组中产生的所述电荷针对每个像素输出相位差数据信号。
  11. 根据权利要求9或10所述的固体拍摄装置,其中,
    所述摄像头设备是移动终端。
PCT/CN2022/087233 2022-04-15 2022-04-15 固体拍摄装置以及摄像头设备 WO2023197333A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280000991.6A CN117256159A (zh) 2022-04-15 2022-04-15 固体拍摄装置以及摄像头设备
JP2022525510A JP2024516752A (ja) 2022-04-15 2022-04-15 固体撮像装置及びカメラ機器
PCT/CN2022/087233 WO2023197333A1 (zh) 2022-04-15 2022-04-15 固体拍摄装置以及摄像头设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/087233 WO2023197333A1 (zh) 2022-04-15 2022-04-15 固体拍摄装置以及摄像头设备

Publications (1)

Publication Number Publication Date
WO2023197333A1 true WO2023197333A1 (zh) 2023-10-19

Family

ID=88328677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087233 WO2023197333A1 (zh) 2022-04-15 2022-04-15 固体拍摄装置以及摄像头设备

Country Status (3)

Country Link
JP (1) JP2024516752A (zh)
CN (1) CN117256159A (zh)
WO (1) WO2023197333A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1812507A (zh) * 2005-01-14 2006-08-02 佳能株式会社 固态图像拾取器件及其控制方法,以及照相机
CN101141570A (zh) * 2006-09-08 2008-03-12 佳能株式会社 摄像设备、遮光件和快门叶片行进特性获取和估计方法
JP2013172210A (ja) * 2012-02-17 2013-09-02 Canon Inc 撮像装置
CN105979172A (zh) * 2015-03-11 2016-09-28 佳能株式会社 像素、固态成像设备和成像装置
CN108281438A (zh) * 2018-01-18 2018-07-13 德淮半导体有限公司 图像传感器及其形成方法
CN110832844A (zh) * 2017-07-07 2020-02-21 普里露尼库斯股份有限公司 固态摄像装置、固态摄像装置的驱动方法、以及电子设备
CN111193888A (zh) * 2014-07-09 2020-05-22 瑞萨电子株式会社 半导体器件
CN112004026A (zh) * 2020-09-01 2020-11-27 北京小米移动软件有限公司 相位对焦装置、方法、拍摄方法、装置、终端设备及介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1812507A (zh) * 2005-01-14 2006-08-02 佳能株式会社 固态图像拾取器件及其控制方法,以及照相机
CN101141570A (zh) * 2006-09-08 2008-03-12 佳能株式会社 摄像设备、遮光件和快门叶片行进特性获取和估计方法
JP2013172210A (ja) * 2012-02-17 2013-09-02 Canon Inc 撮像装置
CN111193888A (zh) * 2014-07-09 2020-05-22 瑞萨电子株式会社 半导体器件
CN105979172A (zh) * 2015-03-11 2016-09-28 佳能株式会社 像素、固态成像设备和成像装置
CN110832844A (zh) * 2017-07-07 2020-02-21 普里露尼库斯股份有限公司 固态摄像装置、固态摄像装置的驱动方法、以及电子设备
CN108281438A (zh) * 2018-01-18 2018-07-13 德淮半导体有限公司 图像传感器及其形成方法
CN112004026A (zh) * 2020-09-01 2020-11-27 北京小米移动软件有限公司 相位对焦装置、方法、拍摄方法、装置、终端设备及介质

Also Published As

Publication number Publication date
JP2024516752A (ja) 2024-04-17
CN117256159A (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
US10015426B2 (en) Solid-state imaging element and driving method therefor, and electronic apparatus
KR102369398B1 (ko) 고체 촬상 장치 및 그 구동 방법, 및 전자 기기
US20190020839A1 (en) Image sensor pixels with overflow capabilities
JP5821315B2 (ja) 電子機器、電子機器の駆動方法
US8077239B2 (en) Solid-state image pickup device and camera
KR101666225B1 (ko) 고체 촬상 장치, 고체 촬상 장치의 구동 방법 및 촬상 장치
JP2010130657A (ja) 固体撮像装置及びそれを用いた撮像システム
JP2007142738A (ja) 物理情報取得方法および物理情報取得装置
KR20120140609A (ko) 고체 촬상 장치, 고체 촬상 장치의 구동 방법, 및 전자 기기
US20130141620A1 (en) Solid-state image pickup device, image pickup device, and signal reading method
JP2016015680A (ja) 固体撮像素子および撮像装置
JP2009089087A (ja) 固体撮像装置及び撮像装置
JP2006121151A (ja) 信号処理方法および信号処理装置並びに物理情報取得装置
WO2023197333A1 (zh) 固体拍摄装置以及摄像头设备
JP6676317B2 (ja) 撮像装置、および、撮像システム
JP6825675B2 (ja) 撮像素子及び撮像装置
JP6217338B2 (ja) 固体撮像素子及び撮像装置
JP2010263443A (ja) 固体撮像素子
JP7160129B2 (ja) 撮像素子および撮像装置
JP7156330B2 (ja) 撮像素子及び撮像装置
JP6760907B2 (ja) 撮像素子及び撮像装置
JP2007214791A (ja) 撮像素子、撮像装置、及び撮像素子の駆動方法
JP2021073772A (ja) 固体撮像素子及び撮像装置
JP2009049523A (ja) 固体撮像素子、撮像装置、及び固体撮像素子の駆動方法
WO2011129039A1 (ja) 固体撮像装置及びカメラ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000991.6

Country of ref document: CN

Ref document number: 2022525510

Country of ref document: JP