KR100845485B1 - 프로브 카드 및 미소 구조체의 검사 장치 - Google Patents

프로브 카드 및 미소 구조체의 검사 장치 Download PDF

Info

Publication number
KR100845485B1
KR100845485B1 KR1020060029929A KR20060029929A KR100845485B1 KR 100845485 B1 KR100845485 B1 KR 100845485B1 KR 1020060029929 A KR1020060029929 A KR 1020060029929A KR 20060029929 A KR20060029929 A KR 20060029929A KR 100845485 B1 KR100845485 B1 KR 100845485B1
Authority
KR
South Korea
Prior art keywords
sound wave
microstructure
generating means
test
movable portion
Prior art date
Application number
KR1020060029929A
Other languages
English (en)
Other versions
KR20060105686A (ko
Inventor
마사미 야카베
나오키 이케우치
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20060105686A publication Critical patent/KR20060105686A/ko
Application granted granted Critical
Publication of KR100845485B1 publication Critical patent/KR100845485B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0035Testing
    • B81C99/005Test apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

본 발명은 간편한 방식으로 미소한 가동부를 갖는 미소 구조체를 고정밀도로 검사하는 프로브 카드 및 검사 장치를 제공하는 것을 목적으로 한다.
프로브 카드(6)는 스피커(2)와, 프로브 침(4)을 고정하는 회로 기판(100)을 포함하고, 회로 기판(100)에 스피커(2)가 적재된다. 그리고, 회로 기판(100)에는 개구 영역이 설치되고, 그 위에 스피커(2)를 적재함으로써 테스트 음파가 미소 구조체의 가동부에 대하여 출력된다. 그리고, 이 테스트 음파에 따라 가동부가 움직임으로써 변화하는 전기적 특성 변화를 프로브 침(4)에 의해 검출하여 미소 구조체의 특성을 검사한다.

Description

프로브 카드 및 미소 구조체의 검사 장치{PROBE CARD AND TESTING DEVICE OF MICRO STRUCTURE}
도 1은 본 발명의 실시 형태 1에 따른 미소 구조체의 검사 시스템(1)의 개략 구성도.
도 2는 3축 가속도 센서의 디바이스 상면에서 본 도면.
도 3은 3축 가속도 센서의 개략도.
도 4는 각 축 방향의 가속도를 받은 경우의 연추체(plumb bob)와 빔의 변형을 설명한 개념도.
도 5는 각 축에 대하여 설치되는 휘트스톤 브리지(wheatstone bridge)의 회로 구성도.
도 6은 3축 가속도 센서의 경사각에 대한 출력 응답을 설명한 도면.
도 7은 중력 가속도(입력)와 센서 출력과의 관계를 설명한 도면.
도 8은 3축 가속도 센서의 주파수 특성을 설명한 도면.
도 9는 본 발명의 실시 형태 1에 따른 미소 구조체의 검사 방법에 대해서 설명한 흐름도.
도 10은 스피커(2)로부터 출력된 테스트 음파에 응답하는 3축 가속도 센서의 주파수 응답을 설명한 도면.
도 11은 본 발명의 실시 형태에 따른 테스트시에 미소 구조체의 전극 패드와 전기적으로 결합되는 프로브 카드(6)에 대해서 설명한 도면.
도 12는 가속도 센서에 프로브 침의 선단을 검사용 전극에 접촉시킨 경우의 공진 주파수의 변화를 설명한 도면.
도 13은 본 발명의 실시 형태에 따른 측정부(25)와 검사용 전극 PD와의 접속에 대해서 설명한 도면.
도 14는 본 발명의 실시 형태 2에 따른 프로브 카드의 구조를 설명한 도면.
도 15는 본 발명의 실시 형태 2의 변형예 1에 따른 프로브 카드의 구조를 설명한 도면.
도 16은 본 발명의 실시 형태 2의 변형예 2에 따른 프로브 카드의 구조를 설명한 도면.
도 17은 본 발명의 실시 형태 2의 변형예 3에 따른 프로브 카드의 구조를 설명한 도면.
도 18은 본 발명의 실시 형태 2의 변형예 4에 따른 프로브 카드의 구조를 설명한 도면.
도 19는 본 발명의 실시 형태 2의 변형예 5에 따른 프로브 카드의 구조를 설명한 도면.
도 20은 본 발명의 실시 형태 3에 따른 프로브 카드의 구조를 설명한 도면.
도 21은 본 발명의 실시 형태 3의 변형예에 따른 프로브 카드의 구조를 설명한 도면.
도 22는 본 발명의 실시 형태 4에 따른 측정 대상 디바이스와 개구 영역의 위치 관계를 설명한 도면.
도 23은 본 발명의 실시 형태 4의 변형예에 따른 측정 대상 디바이스와 개구 영역의 위치 관계를 설명한 도면.
〈도면의 주요 부분에 대한 부호의 설명〉
1 : 검사 시스템
2, 2a∼2d : 스피커
3 : 마이크
4 : 프로브 침
5 : 테스터
6 : 프로브 카드
10 : 기판
11 : 측정 디바이스군
15 : 입출력 인터페이스
20 : 제어부
25 : 측정부
30 : 스피커 제어부
35 : 신호 조정부
40 : 측정 유닛
45 : 릴레이
50 : 플리팅용 전원
60 : 스테이지
70, 70a : 방진재
75, 75a : 점 지지 부재
80 : 방음재
100 : 회로 기판
본 발명은 미소 구조체, 예컨대 MEMS(Micro E1ectro Mechanical Systems)를 검사하는 프로브 카드 및 검사 장치에 관한 것이다.
최근, 특히 반도체 미세 가공 기술 등을 이용하여 기계·전자·광·화학 등의 다양한 기능을 집적화한 디바이스인 MEMS가 주목받고 있다. 지금까지 실용화된 MEMS 기술로서는, 예컨대 자동차·의료용의 각종 센서로서 마이크로 센서인 가속도 센서나 압력 센서, 에어플로우 센서 등에 MEMS 디바이스가 탑재되어 오고 있다. 또한, 잉크젯 프린터 헤드에 이 MEMS 기술을 채용함으로써 잉크를 분출하는 노즐수의 증가와 정확한 잉크의 분출이 가능하게 되어 화질의 향상과 인쇄 속도의 고속화를 도모할 수 있게 되었다. 더욱이, 반사형 프로젝터에 있어서 이용되고 있는 마이크로 미러 어레이 등도 일반적인 MEMS 디바이스로서 알려져 있다.
또한, 향후 MEMS 기술을 이용한 다양한 센서나 액츄에이터가 개발됨으로써 광통신·모바일 기기에 대한 응용, 컴퓨터의 주변기기에 대한 응용, 나아가서는 바이오 분석이나 휴대용 전원에 대한 응용으로 전개될 것으로 기대되고 있다. 기술조사 레포트 제3호(경제산업부 산업기술환경국기술조사실 제조산업국산업기계과 발행 평성15년 3월 28일)에는, MEMS에 관한 기술의 현황과 과제라는 의제로 각종 MEMS 기술이 소개되어 있다.
한편으로는, MEMS 디바이스의 발전에 동반하여, 그 구조가 미세하기 때문에 그것을 적정하게 검사하는 방식도 중요해지고 있다. 종래에 있어서는, 패키징 후에 디바이스를 회전시키거나, 또는 진동 등의 수단을 이용하여 그 특성 평가를 실행하였지만, 미세 가공 기술 후의 웨이퍼 상태 등의 초기 단계에 있어서 적정한 검사를 실행하여 불량을 검출함으로써 수율을 향상시키고 제조 비용을 더욱 저감시킬 수 있게 된다.
일본 특허 공개 평성 제5-34371호 공보에 있어서는, 일례로서 웨이퍼 상에 형성된 가속도 센서에 대하여 공기를 분무함으로써 변화하는 가속도 센서의 저항치를 검출하여 가속도 센서의 특성을 판별하는 검사 방식이 제안되어 있다.
[특허 문헌 1] 일본 특허 공개 평성 제5-34371호 공보
[비특허 문헌 1] 기술조사 레포트 제3호(경제산업부 산업기술 환경국 기술조사실 제조산업국 산업기계과 발행 평성15년 3월28일)
일반적으로, 가속도 센서 등의 미소한 가동부를 갖는 구조체는 미소한 움직임에 대해서도 그 응답 특성이 변화하는 디바이스이다. 따라서, 그 특성을 평가하 기 위해서는, 정밀도가 높은 검사를 행할 필요가 있다. 상기 공보에 개시되어 있는 공기의 분무에 의해 디바이스에 변화를 가하는 경우에도 미세 조정을 실시하여 가속도 센서의 특성을 평가해야 하지만, 기체의 유량을 제어함과 함께 균일하게 디바이스에 기체를 분무하여 정밀도가 높은 검사를 실행하는 것은 매우 곤란하며, 가령 실행한다고 하더라도 복잡하고 또한 고가의 테스터를 준비하지 않으면 안된다.
또한, 공기 분무의 경우에는, 공기에 대하여 지향성을 갖게 함으로써 특정 위치에 대하여 공기를 분무하여 고정밀도로 검사를 실행하는 것은 곤란하다.
본 발명은, 상기와 같은 문제를 해결하기 위해서 안출된 것으로서, 간편한 방식으로 미소한 가동부를 갖는 미소 구조체를 고정밀도로 검사하는 프로브 카드 및 미소 구조체의 검사 장치를 제공하는 것을 목적으로 한다.
본 발명의 제1 관점에 따른 프로브 카드는 기판상에 형성된 가동부를 갖는 적어도 1개의 미소 구조체의 특성을 평가하는 평가 수단과 접속되는 프로브 카드로서, 테스트시에 기판상에 형성된 가동부의 움직임에 기초한 전기적 변화량을 검출하기 위해 기판상에 형성된 미소 구조체의 검사용 전극과 전기적으로 접속되는 프로브 침과, 미소 구조체의 가동부에 대하여 테스트 음파를 출력하기 위한 음파 발생 수단을 포함한다.
바람직하게는, 프로브 카드는 음파 발생 수단으로부터 출력된 테스트 음파를 검출하는 마이크로폰을 더 포함한다. 마이크로폰에 의해 검출된 결과에 기초하여 음파 발생 수단으로부터 출력되는 테스트 음파의 특성이 조정된다.
바람직하게는, 음파 발생 수단은 기계적인 진동 동작 이외의 무진동 동작에 의해 테스트 음파를 출력한다.
특히, 음파 발생 수단은 열에 의한 공기의 팽창 압축에 기초하여 테스트 음파를 출력하는 열 음향 엔진을 포함한다.
바람직하게는, 프로브 카드는 프로브 침을 고정하는 고정 부재를 포함하고, 고정 부재는 음파 발생 수단으로부터 테스트 음파가 미소 구조체의 가동부에 대하여 출력되는 개구 영역을 갖는다.
특히, 음파 발생 수단은 기계적인 진동 동작에 의해 테스트 음파를 출력하고, 프로브 카드는 고정 부재에 대하여 음파 발생 수단을 적재하기 위한 지지 부재를 더 포함하며, 지지 부재는 음파 발생 수단의 진동을 억제하는 방진 재료를 구비한다.
특히, 지지 부재는 음파 발생 수단을 복수 점에서 지지하는 복수의 점 지지부를 포함한다.
특히, 프로브 카드는 고정 부재와 음파 발생 수단 사이에서 테스트 음파가 새지 않도록 고정 부재와 음파 발생 수단 사이에서 개구 영역을 따라 설치된 방음재를 더 포함한다.
특히, 지지 부재는 음파 발생 수단과 고정 부재 사이에 설치되는 적어도 1개의 제1 및 제2 지지 부재 유닛을 포함하고, 제1 및 제2 지지 부재 유닛 중 한쪽은 방진 재료로 형성되며, 다른 쪽 지지 부재 유닛은 한쪽 지지 부재 유닛과 비교하여 경도가 높은 재질로 형성된다.
특히, 프로브 침은 개구 영역에 대하여 밀어내어지고 있다.
바람직하게는, 프로브 침의 선단은 미소 구조체의 검사용 전극에 대하여 수직으로 접촉하도록 형성되어 있다.
특히, 음파 발생 수단은 기계적인 진동 동작에 의해 테스트 음파를 출력하고, 프로브 카드는 프로브 침을 고정하는 고정 부재와, 음파 발생 수단을 지지하기 위한 지지 부재를 포함한다. 고정 부재는 음파 발생 수단으로부터 테스트 음파가 미소 구조체의 가동부에 대하여 출력되는 개구 영역을 구비한다. 지지 부재는 고정 부재의 개구 영역에 대하여 현수되도록 지지한다.
특히, 프로브 카드는 고정 부재와 음파 발생 수단 사이에서 테스트 음파가 새지 않도록 고정 부재와 음파 발생 수단 사이에서 개구 영역을 따라 설치된 방음재를 더 포함한다.
바람직하게는, 상기 음파 발생 수단을 상기 개구 영역 이외의 영역에서 덮기 위한 상기 고정 부재와 접합되는 커버를 더 포함한다.
특히, 상기 기판상에 형성된 상기 미소 구조체는 상기 개구 영역의 중심축이 통과하는 위치에 배치된다.
또한, 복수개의 상기 음파 발생 수단을 포함하고, 상기 고정 부재는 상기 복수개의 음파 발생 수단에 각각 대응하여 설치되며, 각 상기 음파 발생 수단으로부터 상기 테스트 음파가 상기 미소 구조체의 가동부에 대하여 출력되는 복수의 개구 영역을 구비하고, 상기 기판상에 형성된 상기 미소 구조체는 상기 복수의 개구 영역의 각각의 개구 영역의 중심축에 의해 둘러싸여지는 영역면의 중심축이 통과하는 위치에 배치된다.
특히, 상기 프로브 카드는 상기 기판과 상기 프로브 카드 사이에서 상기 테스트 음파를 새게 하지 않고 상기 가동부에 집중시키도록 상기 기판과 상기 프로브 카드 사이에서 상기 개구 영역 주위를 따라 설치된 집음(集音) 부재를 더 포함한다.
바람직하게는, 상기 집음 부재는 상기 프로브 침을 고정하는 고정 부재의 일부이다.
바람직하게는, 플리팅 현상을 이용하여 프로브 침과 검사용 전극을 도통시키는 도통 수단을 더 구비한다.
특히, 도통 수단은 테스트시 전에 플리팅 현상을 일으키기 때문에 검사용 전극에 전압을 인가하기 위해서 이용되는 플리팅용 전원과, 테스트시 전의 플리팅 현상을 일으킬 때에 플리팅용 전원과 접속하고, 테스트시에 외부의 검사 장치와 접속되는 전환 회로를 포함한다.
본 발명의 제2 관점에 따른 미소 구조체의 검사 장치는 기판에 형성된 가동부를 갖는 적어도 1개의 미소 구조체의 특성을 평가하는 평가 수단과 접속되는 미소 구조체의 검사 장치로서, 상기 프로브 카드와, 프로브 카드와 접속되어 미소 구조체의 특성을 평가하기 위한 평가 수단을 구비한다. 평가 수단은 프로브 침을 통해 음파 발생 수단에 의해 출력된 테스트 음파에 응답한 미소 구조체의 가동부의 움직임을 검출하고, 검출 결과에 기초하여 미소 구조체의 특성을 평가한다.
(실시예)
이하, 본 발명의 실시 형태에 대하여 도면을 참조하면서 상세히 설명한다. 또한, 도면중 동일하거나 또는 대응 부분에는 동일 부호를 부여하고 그 설명은 반복하지 않는다.
(제1 실시 형태)
도 1은 본 발명의 제1 실시 형태에 따른 미소 구조체의 검사 시스템(1)의 개략 구성도이다.
도 1을 참조하면, 본 발명의 제1 실시 형태에 따른 검사 시스템(1)은 테스터(검사 장치)(5)와, 미소한 가동부를 갖는 미소 구조체의 칩(TP)이 복수개 형성된 기판(10)을 구비한다.
본 예에 있어서는 테스트할 미소 구조체의 일례로서, 다축인 3축 가속도 센서를 예로 들어 설명한다.
테스터(5)는 소밀파(疏密波)인 음파를 출력하는 스피커(2)와, 외부와 테스터 내부 사이에서 입출력 데이터의 전달을 실행하기 위한 입출력 인터페이스(15)와, 테스터(5) 전체를 제어하는 제어부(20)와, 테스트 대상물과의 접촉에 이용되는 프로브침(4)과, 프로브 침(4)을 통해 테스트 대상물의 특성 평가를 위한 측정치를 검출하기 위한 측정부(25)와, 제어부(20)로부터의 지시에 응답하여 스피커(2)를 제어하는 스피커 제어부(30)와, 외부의 소리를 검출하는 마이크로폰(마이크)(3)과, 마이크(3)가 검출한 음파를 전압 신호로 변환하고, 또한 증폭하여 제어부(20)에 출력하기 위한 신호 조정부(35)를 구비한다. 그리고, 마이크(3)는 테스트 대상물 근방에 배치할 수 있다. 한편, 후술하겠지만, 스피커(2)와, 프로브 침(4)과, 마이크(3) 는 하나의 프로브 카드에 설치되어 있는 것으로 한다.
본 실시 형태에 따른 검사 방법에 대하여 설명하기 전에 우선 테스트 대상물인 미소 구조체의 3축 가속도 센서에 대하여 설명한다.
도 2는 3축 가속도 센서의 디바이스 상면에서 본 도면이다.
도 2에 도시된 바와 같이, 기판(10)에 형성되는 칩(TP)에는, 복수개의 전극 패드(PD)가 그 주변에 배치되어 있다. 그리고, 전기 신호를 전극 패드에 대하여 전달 또는 전극 패드로부터 전달하기 위해서 금속 배선이 설치되어 있다. 그리고, 중앙부에는 클로버형을 형성하는 4개의 연추체(plumb bob)(AR)가 배치되어 있다.
도 3은 3축 가속도 센서의 개략도이다.
도 3을 참조하면, 이 3축 가속도 센서는 피에조 저항형이며 검출 소자인 피에조 저항 소자가 확산 저항으로서 설치되어 있다. 이 피에조 저항형 가속도 센서는 저렴한 IC 프로세스를 이용할 수 있는 동시에, 검출 소자인 저항 소자를 작게 형성하여도 감도 저하가 없기 때문에, 소형화·저비용화에 유리하다.
구체적인 구성으로서는, 중앙의 연추체(AR)는 4개의 빔(BM)으로 지지한 구조로 되어 있다. 빔(BM)은 X, Y의 2축 방향으로 상호 직교하도록 형성되어 있고, 1축당 4개의 피에조 저항 소자를 구비하고 있다. 4개의 Z축 방향 검출용 피에조 저항 소자는 X축 방향 검출용 피에조 저항 소자에 대하여 횡으로 배치되어 있다. 연추체(AR)의 상면 형상은 클로버형을 형성하며, 중앙부에서 빔(BM)과 연결되어 있다. 이 클로버형 구조를 채용함으로써, 연추제(AR)를 크게 하는 동시에 빔 길이도 길게 할 수 있으므로 소형이면서도 고감도의 가속도 센서를 실현할 수 있다.
이 피에조 저항형 3축 가속도 센서의 동작 원리는 연추체가 가속도(관성력)를 받으면, 빔(BM)이 변형되고, 그 표면에 형성된 피에조 저항 소자의 저항치의 변화에 의해 가속도를 검출하는 메커니즘이다. 그리고, 이 센서 출력은 3축이 각각 독립적으로 부착된 후술하는 휘트스톤 브리지(wheatstone bridge)의 출력으로부터 추출하는 구성으로 설정되어 있다.
도 4는 각 축방향의 가속도를 받은 경우의 연추체와 빔의 변형을 설명하는 개념도이다.
도 4에 도시되는 바와 같이 피에조 저항 소자는 가해진 왜곡에 의해 그 저항치가 변화하는 성질(피에조 저항 효과)을 가지며, 인장 왜곡의 경우에는 저항치가 증가하고, 압축 왜곡의 경우에는 저항치가 감소한다. 본 예에서는 X 축 방향 검출용 피에조 저항 소자(Rx1 내지 Rx4), Y 축 방향 검출용 피에조 저항 소자(Ry1 내지 Ry4) 및 Z 축 방향 검출용 피에조 저항 소자(Rz1 내지 Rz4)가 일례로서 도시되어 있다.
도 5는 각 축에 대하여 설치되는 휘트스톤 브리지의 회로 구성도이다.
도 5의 (a)는 X(Y) 축에서의 휘트스톤 브리지의 회로 구성도이다. X 축 및 Y 축의 출력 전압으로서는 각각 Vxout 및 Vyout로 한다.
도 5의 (b)는 Z 축에서의 휘트스톤 브리지의 회로 구성도이다. Z 축의 출력 전압으로서는 Vzout로 한다.
전술한 바와 같이 가해진 왜곡에 의해 각 축 4 개의 피에조 저항 소자의 저항치는 변화되고, 이 변화에 기초하여 각 피에조 저항 소자는 예컨대 X 축 Y 축에 서는 휘트스톤 브리지에서 형성되는 회로의 출력 각 축의 가속도 성분이 독립적으로 분리된 출력 전압으로서 검출된다. 또한, 상기한 회로가 구성되도록 도 2에서 도시되는 바와 같은 전술한 금속 배선 등이 연결되고, 소정의 전극 패드로부터 각 축에 대한 출력 전압이 검출되도록 구성되어 있다.
또한, 이 3 축 가속도 센서는 가속도의 DC 성분도 검출할 수 있기 때문에 중력 가속도를 검출하는 경사각 센서로서도 이용하는 것이 가능하다.
도 6은 3 축 가속도 센서의 경사각에 대한 출력 응답을 설명하는 도면이다.
도 6에 도시되는 바와 같이 센서를 X, Y, Z 축 주위로 회전시켜 X, Y, Z 축 각각의 브리지 출력을 디지털 전압계로 측정한 것이다. 센서의 전원으로서는 저 전압 전원 +5 V를 사용하고 있다. 또한, 도 6에 도시되는 각 측정점은 각 축 출력의 영점 오프셋을 산술적으로 감한 값이 플롯되어 있다.
도 7은 중력 가속도(입력)와 센서 출력의 관계를 설명하는 도면이다.
도 7에 도시되는 입출력 관계는 도 6의 경사각의 코사인으로부터 X, Y, Z 축에 각각 관련되어 있는 중력 가속도 성분을 계산하고, 중력 가속도(입력)와 센서 출력의 관계를 구하여 그 입출력의 선형성을 평가한 것이다. 즉, 가속도와 출력 전압의 관계는 대략 선형이다.
도 8은 3 축 가속도 센서의 주파수 특성을 설명하는 도면이다.
도 8에 도시되는 바와 같이 X, Y, Z 축의 각각의 센서 출력의 주파수 특성은 일례로서 3 축 모두 200 Hz 부근까지는 편평한 주파수 특성을 나타내고 있고 X 축에서는 602 Hz, Y 축에서는 600 Hz, Z 축에서는 883 Hz에서 공진하고 있다.
다시 도 1을 참조하여 본 발명의 실시예에서의 미소 구조체의 검사 방법은 미소 구조체인 3 축 가속도 센서에 대하여 소밀파인 음파를 출력함으로써 그 음파에 기초하는 미소 구조체의 가동부의 움직임을 검출하여 그 특성을 평가하는 방식이다.
도 9의 흐름도를 이용하여 본 발명의 실시예 1에 따른 미소 구조체의 검사 방법에 관해서 설명한다.
도 9를 참조하여, 우선 미소 구조체의 검사(테스트)를 시작(스타트)한다(단계 S0). 다음에, 검출 칩(TP)의 전극 패드(PD)에 프로브 침(4)을 접촉시킨다(단계 S1). 구체적으로는, 도 5에서 설명한 휘트스톤 브리지 회로의 출력 전압을 검출하기 위해 소정의 전극 패드(PD)에 프로브 침(4)을 접촉시킨다. 또한, 도 1의 구성에서는 1 세트의 프로브 침(4)을 이용한 구성이 도시되어 있지만, 복수 세트의 프로브 침을 이용한 구성으로 하는 것도 가능하다. 복수 세트의 프로브 침을 이용함으로써 병렬로 출력 신호를 검출할 수 있다.
다음에, 스피커(2)로부터 출력하는 테스트 음파를 설정한다(단계 S2a). 구체적으로는, 제어부(20)는 입출력 인터페이스(15)를 통해 외부로부터의 입력 데이터의 입력을 받는다. 그리고, 제어부(20)는 스피커 제어부(30)를 제어하고, 입력 데이터에 기초하여 원하는 주파수 및 원하는 음압의 테스트 음파를 스피커(2)로부터 출력하도록 스피커 제어부(30)에 대하여 지시한다. 다음에, 스피커(2)로부터 검출 칩(TP)에 대하여 테스트 음파를 출력한다(단계 S2b).
다음에, 마이크(3)를 이용하여 스피커(2)로부터 검출 칩(TP)에 대하여 주어 지는 테스트 음파를 검출한다(단계 S3). 마이크(3)로 검출한 테스트 음파는 신호 조정부(35)에서 전압 신호로 변환·증폭되어 제어부(20)에 출력된다.
다음에, 제어부(20)는 신호 조정부(35)로부터 입력되는 전압 신호를 분석하고, 판정하며, 원하는 테스트 음파가 도달하였는지의 여부를 판정한다(단계 S4).
단계 S4에서 제어부(20)는 원하는 테스트 음파라고 판정한 경우에는 다음 단계(S5)로 진행하고, 검출 칩의 특성치를 측정한다. 구체적으로는, 프로브 침(4)을 통해 전달되는 전기 신호에 기초하여 측정부(25)에서 특성치를 측정한다(단계 S5).
구체적으로는, 스피커(2)로부터 출력되는 소밀파인 테스트 음파의 도달, 즉 공기 진동에 의해 검출 칩의 미소 구조체인 가동부는 움직인다. 이 움직임에 기초하여 변화되는 미소 구조체인 3 축 가속도 센서의 저항치의 변화에 관해서 프로브 침(4)을 통해 주어지는 출력 전압에 기초하여 측정하는 것이 가능하다.
한편, 단계 S4에서 원하는 테스트 음파가 아니라고 판정한 경우에는 재차 단계 S2a로 복귀하여 테스트 음파를 재설정한다. 그 때, 제어부(20)는 스피커 제어부(30)에 대하여 테스트 음파의 보정을 하도록 스피커 제어부(30)에 대하여 지시한다. 스피커 제어부(30)는 제어부(20)로부터의 지시에 응답하여 원하는 테스트 음파가 되도록 주파수 및/또는 음압을 미세 조정하여 스피커(2)로부터 원하는 테스트 음파를 출력하도록 제어한다. 또한, 본 예에서는 테스트 음파를 검출하고, 원하는 테스트 음파로 보정하는 방식에 관해서 설명하고 있지만, 미리 원하는 테스트 음파가 검출 칩의 미소 구조체에 도달하는 경우에는 특별히 테스트 음파의 보정 수단 및 테스트 음파를 보정하는 방식을 마련하지 않는 구성으로 하는 것도 가능하다. 구체적으로는, 미리 단계 S2a 내지 S4에 이르는 처리를 테스트 시작 전에 실행하고, 스피커 제어부(30)에서 원하는 테스트 음파를 출력하기 위한 보정된 제어치를 기억한다. 그리고, 실제 미소 구조체의 테스트시에는 스피커 제어부(30)는 이 기억된 제어치로 스피커(2)로의 입력을 제어함으로써, 전술한 테스트시에서의 단계 S3 및 S4의 처리를 생략하는 것도 가능하다.
다음에, 제어부(20)는 측정된 특성치, 즉 측정 데이터가 허용 범위인지의 여부를 판정한다 (단계 S6). 단계 S6에서 허용 범위라고 판정된 경우에는 합격(단계 S7)이라 하고, 데이터의 출력 및 보존을 실행한다(단계 S8). 그리고, 단계 S9로 진행한다. 예컨대, 제어부(20)에서 허용 범위의 판정의 일례로서 스피커(2)로부터 출력되는 테스트 음파의 음압에 응답하여 원하는 출력 전압을 얻을 수 있는지, 보다 구체적으로는 스피커(2)로부터 출력되는 테스트 음파의 음압의 변화에 응답하여 3 축 가속도 센서의 저항치가 선형으로 변화해 가는지의 여부, 즉 도 7에서 설명한 선형 관계를 얻을 수 있는지의 여부를 판정함으로써, 그 칩이 적정한 특성을 갖고 있는지의 여부를 판정할 수 있다. 또한, 데이터의 보존에 관해서는, 도시하지 않았지만 제어부(20)로부터의 지시에 기초하여 테스터(5) 내부에 설치된 메모리 등의 기억부에 기억되는 것으로 한다.
단계 S9에서 다음에 검사할 칩이 없는 경우에는 미소 구조체의 검사(테스트)를 종료한다(단계 S10).
한편, 단계 S9에서 추가로 다음에 검사해야 하는 칩이 있는 경우에는 최초의 단계 S1로 복귀하여 재차 전술한 검사를 실행한다.
여기서, 단계 S6에서 제어부(20)는 측정된 특성치, 즉 측정 데이터가 허용 범위가 아니라고 판정한 경우에는 불합격(단계 S11)이라고 하고, 재검사한다(단계 S12). 구체적으로는, 재검사에 의해 허용 범위 외라고 판정되는 칩에 관해서는 제거할 수 있다. 또는 허용 범위 외라고 판정되는 칩이라도 복수의 그룹으로 나눌 수 있다. 즉, 엄격한 테스트 조건에 클리어 할 수 없는 칩이라도 보수·보정 등을 행함으로써 실제상 출하하더라도 문제없는 칩도 다수 존재하는 것을 생각할 수 있다. 따라서, 재검사 등에 의해 그 그룹을 나눔으로써 칩을 선별하고, 선별 결과에 기초하여 출하하는 것도 가능하다.
또한, 본 예에서는 일례로서 3 축 가속도 센서의 움직임에 응답하고, 3 축 가속도 센서에 설치된 피에조 저항 소자의 저항치의 변화를 출력 전압에 의해 검출하며, 판정하는 구성에 관해서 설명하였지만, 특별히 저항 소자에 한정되지 않고 용량 소자나 리액티브 소자 등의 임피던스치의 변화 또는 임피던스치의 변화에 기초하는 전압, 전류, 주파수, 위상 차, 지연 시간 및 위치 등의 변화를 검출하고, 판정하는 구성으로 하는 것도 가능하다.
도 10은 스피커(2)로부터 출력된 테스트 음파에 응답하는 3 축 가속도 센서의 주파수 응답을 설명하는 도면이다. 또한, 여기서는 패키지 후의 공진 주파수 특성이 나타나 있는 것으로 한다. 도 8에 관해서도 마찬가지이다.
도 10에서는 음압으로서 1 Pa(파스칼)의 테스트 음파를 부여하고, 그 주파수를 변화시킨 경우에 3 축 가속도 센서로부터 출력되는 출력 전압이 나타나 있다. 종축이 3 축 가속도 센서의 출력 전압(mV), 횡축이 테스트 음파의 주파수(Hz)를 나 타내고 있다.
여기서는, 특히 X 축 방향에 대하여 얻어지는 출력 전압이 나타나 있다.
도 10에 도시되는 바와 같이 2 개의 영역(A, B)이 도시되어 있다. 구체적으로는, 공진 주파수 영역(A)과, 비 공진 주파수 영역(B)이 도시되어 있다.
도 10을 참조하여, 출력 전압이 최대인 즉 공진함으로써 변화된 최대의 출력 전압을 얻을 수 있는 주파수가 공진 주파수에 상당한다. 도 10에서는 이 출력에 대응하는 주파수가 약 600 Hz이다. 즉, 전술한 3 축 가속도 센서의 X 축에서의 주파수 특성과 거의 일치한다.
따라서, 예컨대 음압을 일정하게 하여 테스트 음파의 주파수를 변화시킴으로써 얻어지는 출력 전압 특성으로부터 공진 주파수를 특정하는 것이 가능하고, 이 특정된 공진 주파수가 원하는 공진 주파수인지의 여부를 비교하며, 원하는 공진 주파수인지의 여부를 판정하는 것이 가능해진다. 본 예에서는 X 축밖에 도시하지 않았지만, 마찬가지로 Y 축 및 Z 축에서도 동일한 주파수 특성을 얻는 것이 가능하기 때문에 3 축 각각에서 가속도 센서의 특성을 평가할 수 있다.
예컨대 공진 주파수인 공진점이 600 Hz 이외의 주파수로 공진하는 경우에 있어서는, 그 축에 있어서 적성 또한 원하는 주파수를 얻을 수 없기 때문에 불량이라고 판정할 수도 있다. 즉, 특히 미소 구조체이기 때문에 외관 검사는 어렵고, 내부 구조의 파괴나 미소 구조체의 가동부에 존재하는 크랙 등을 테스트 음파를 접촉시킴으로써 검사할 수 있다. 또한, 여기서는 최대의 출력 전압으로부터 공진 주파수를 특정하는 경우에 대해서 설명하고 있지만, 공진함으로써 가동부는 최대의 변위 량이 된다. 따라서, 최대의 변위량이 얻어지는 주파수가 공진 주파수에 해당한다. 이것에 의해 최대의 변위량으로부터 공진 주파수를 특정하고, 상기와 마찬가지로 원하는 공진 주파수인지 여부를 비교하여 불량 판정할 수 있다.
또한, 예컨대 영역 B의 주파수 영역, 즉 비공진 주파수 영역을 이용하여 테스트 음파의 음압을 변화시키고, 출력 결과로부터 3축 가속도 센서의 감도, 오프셋 등의 검출 검사를 실행하는 것도 가능하다.
또한, 본 예에 있어서는 하나의 칩(TP)에 대하여 프로브 침(4)을 통해 검사하는 방식에 대해서 설명하고 있지만, 테스트 음파는 균일하게 퍼지기 때문에 복수의 칩에 대하여 병렬 상태로 동일한 검사를 실행하는 것도 가능하다. 또한, 테스트 음파의 주파수 및 음압의 제어는 비교적 용이하기 때문에 공기의 유량을 제어하는 등의 구성과 비교하여 장치의 구성을 간편하며, 또한 용이한 구성으로 할 수 있다.
이상, 설명한 바와 같이 본 실시 형태 1에 따른 검사 방법 및 검사 장치의 구성에 의해 소밀파인 음파를 제어한다는 간편한 방식으로 미소 구조체 가동부의 작동으로부터 미소 구조체의 특성을 고정밀도로 검사할 수 있다.
여기서, 상기에 있어서는 테스트 음파를 출력하여 미소 구조체 가동부의 특성을 검사하는 방식에 대해서 설명하였지만, 이하에 있어서는 상기한 테스트를 실행할 때에 있어서의 미소 구조체와 테스터와 전기적인 접속을 실행하는 프로브 카드의 구성에 대해서 설명한다.
도 11은 미소 구조체의 전극 패드와 테스트시에 있어서 전기적으로 결합되는 본 발명의 실시 형태에 따른 프로브 카드(6)에 대해서 설명하는 도면이다.
본 발명의 프로브 카드는 도 11에 도시하는 바와 같은 카드형 부재에 한정되지 않는다. 후술하는 바와 같이 스피커(2)나 그 커버를 포함하는 상자형 형상이어도 좋다. 본 발명에서는 미소 구조체의 전극 패드(PD)에 전기적으로 접속하기 위한 프로브 침(4)을 구비하고, 프로브 침(4)과 전극 패드(PD)의 위치 결정을 위해 정렬 제어되는 구조체를 프로브 카드라고 한다.
도 11을 참조하여 본 발명의 실시 형태에 따른 프로브 카드(6)는 복수의 프로브 침(4)을 고정하고, 전기적으로 결합하는 회로 기판(100)과, 회로 기판에 접합된 마이크(3)와, 스피커(2)를 포함한다. 여기서는 일례로서, 회로 기판(100)의 중앙부에 개구 영역이 설치된다. 그리고, 회로 기판(100)의 상면부로부터 개구 영역을 통해 웨이퍼(10)의 미소 구조체 칩(TP)의 가동부에 대하여 테스트 음파가 출력되도록 스피커(2)가 배치된다. 마이크(3)는 회로 기판의 하면부에 설치되어 있는 것으로 한다.
통상, 프로브 침과 전기적으로 결합되는 검사용 전극인 전극 패드는 도 2에 도시되는 바와 같이 칩(TP)의 주변 영역에 형성된다. 따라서, 프로브 침으로 둘러싸인 영역에서 개구 영역을 설치하고, 그 위에 스피커(2)를 배치함으로써 미소 구조체의 가동부 바로 위쪽으로부터 테스트 음파를 출력할 수 있다. 또한, 프로브 침은 일 예로서 개구 영역에 대하여 밀어내도록 배치되어 있다. 즉, 프로브 침의 선단이 개구 영역 내부에 위치되어 있다. 상기 구성에 의해 미소 구조체의 검사용 전극의 바로 위쪽이 개구 영역인 경우에도 밀어내고 있는 프로브 침을 이용하여 적절하게 검사용 전극과 접촉시킬 수 있다.
또한, 프로브 침 중 적어도 선단은, 미소 구조체의 검사용 전극에 대하여 수 직으로 접촉하도록 형성된다. 이것에 의해 수직(도 3에서 말하는 Z축 방향)에만 침압이 걸리게 되며, 수평 방향(도 3에서 말하는 X축 방향 또는 Y축 방향)으로 침압이 걸리는 것을 억제하여 후술하는 침압에 기인하는 외란을 억제할 수 있다.
또한, 웨이퍼(10)의 하부에는 진공 흡착하여 웨이퍼를 반송할 수 있는 스테이지(60)가 설치되어 있다. 또한, 도시하지 않았지만, 프로브 카드(6)를 웨이퍼의 소정 위치로 정렬 조정하는 정렬 조정 기구가 설치되어 있는 것으로 한다.
상기 구성으로 함으로써, 프로브 카드(6)의 프로브 침(4)의 정렬 조정시에, 동시에 스피커(2) 및 마이크로폰(3)에 대해서도 정렬 조정이 행해지기 때문에 각각 독립적으로 정렬 조정을 행할 필요가 없이 작업 효율이 향상된다. 또한, 각각을 독립적으로 정렬 조정하는 경우에는 조정 기구를 각각 설치해야 하기 때문에 테스터의 비용이 증대하는 동시에, 각각 제어해야 하기 때문에 복잡한 제어가 필요해진다.
본원 구성의 프로브 카드를 이용함으로써, 작업 효율을 향상시키는 동시에 조정 기구의 비용을 삭감하고, 제어도 간편하게 할 수 있으므로 전체적으로 테스터의 비용을 저하시킬 수 있다.
다음에, 프로브 카드(6)의 구조에 대해서 설명한다.
도 12는 가속도 센서에 프로브 침의 선단을 검사용 전극에 접촉시킨 경우의 공진 주파수의 변화를 설명하는 도면이다.
횡축은 프로브 침의 선단을 접촉시킨 프로브 카드(6)의 변위량을 나타내고 있다. 또한, 종축은 미소 구조체의 공진 주파수의 계측치를 나타내고 있다. 프로브 침의 선단을 접촉시키는 변위량이 증대하는 동시에 침압의 값도 커진다.
도 12를 참조하여 침압이 증가하면 할수록 공진 주파수는 저하되고 있다. 이것은 침압의 영향에 의해 디바이스의 주파수 특성이 변화하고 있는 것을 나타내고 있다.
특히 MEMS 디바이스와 같이 가동부를 갖는 미소 구조체의 경우에는, 프로브 침(4)을 접촉시킴으로써 가동부의 작동이 변화하는, 즉 디바이스의 응답 특성이 변화할 가능성이 있다. 프로브 침(4)을 접촉시키는 것에 의한 영향에는 두가지 요인이 있다. 하나는 프로브 침(4)을 경유하여 진동이 미소 구조체로 전해짐으로써 테스트 음파 이외의 진동의 영향이 중첩되는 것이다. 다른 하나는 프로브 침(4)의 침압에 의해 미소 구조체에 불필요한 응력이 가해지며, 미소 구조체의 가동부의 작동이 변화하는 것이다.
따라서, 정밀도가 높은 계측, 즉 디바이스 본래의 응답 특성을 계측하기 위해서는 전자의 영향을 제외하기 위해 프로브 침(4)으로부터 진동이 전해지지 않도록 하는 것과, 후자의 영향을 제외하기 위해 가능한 한 침압을 작고, 또한 침압의 방향을 미소 구조체가 변형되지 않도록 한정하는 것이 바람직하다.
전자의 영향을 배제하기 위해 후술하는 바와 같이 회로 기판(100) 상에 스피커(2)가 방진 재료로 형성된 지지 부재로 지지되는 구성으로 할 수 있다. 또한, 본 실시 형태의 구성 회로 기판에 적재하는 스피커(2)로서는, 기계적 진동 없이 테스트 음파를 출력하는 스피커를 이용하는 것이 가능하다.
예컨대, 스피커(2)로서 열을 가함으로써 공기를 팽창 압축시켜 소리를 출력 하는 열음향 엔진을 이용하는 것이 가능하다. 상기 구성에 의해 스피커(2)로부터 기계적 진동이 프로브 침(4)에 전달되지 않는다. 따라서, 외란의 영향을 억제하여 정밀도가 높은 검사를 실행하는 것이 가능하다.
프로브 침(4)을 접촉하는 응력에 의한 미소 구조체로의 영향을 작게 하기 위해 침압을 작게 하면, 프로브 침(4)과 전극 패드(PD) 사이의 접촉 저항이 증가한다. 침압의 응력과 접촉 저항은 이율 배반의 관계에 있다. 여기서, 본 발명의 실시 형태에 따른 검사 방식에 있어서는 플리팅 현상을 이용함으로써 침압의 영향을 억제한다. 또한, 플리팅 현상은 금속(본 발명에서는 전극 패드)의 표면에 형성된 산화막에 인가되는 전위 경도가 105∼106 V/cm 정도가 되면, 산화막의 두께나 금속 조성의 불균일성에 의해 전류가 흘러 산화막이 파괴되는 현상을 말한다.
도 13은 본 발명의 실시 형태에 따른 측정부(25)와 검사용 전극(PD)의 접속에 대해서 설명하는 도면이다.
도 13을 참조하여 본 발명의 실시 형태에 따른 측정부(25)는 플리팅용 전원(50)과, 측정 유닛(40)을 포함한다. 또한, 프로브 카드(6)의 회로 기판(100)에는 칩의 복수의 전극 패드(PD)에 각각 접촉하는 한 쌍의 프로브 침(4)과, 각 프로브 침(4)에 각각 접속된 릴레이(45)를 가지며, 릴레이(45)를 통해 측정 유닛(40)과 플리팅용 전원(50) 사이에서 한 쌍의 프로브 침(4)을 전환하여 접속하도록 하고 있다.
측정 유닛(40)은 드라이버(41)와, 비교기(42)를 포함하고 있으며, 드라이버(41)로부터 검사용 신호를 출력하여 비교기(42)에 의해 그 결과를 비교 판정할 수 있는 구성으로 이루어져 있다. 또한, 여기서는 한 쌍의 프로브 침에 2개의 드라이버 및 2개의 비교기가 접속되는 구성이 표시되어 있지만, 1개의 드라이버 및 1개의 비교기를 접속한 구성으로 하는 것도 가능하다.
본 실시 형태의 측정부(25)에서는 플리팅용 전원(50)으로부터 한 쌍의 프로브 침(4) 사이에 전압을 공급함으로써, 프로브 침(4)과 전극 패드(PD) 사이에 플리팅 현상을 발생시켜 프로브 침(4)과 전극 패드(PD) 사이의 접촉 저항을 작게 한다. 플리팅 현상을 이용하여 접촉 저항을 작게 함으로써, 프로브 침(4)의 침압을 낮출 수 있다.
프로브 침(4)의 컨프라이언스 특성(휘기 쉬움)이 높은 쪽이 바람직하다. 프로브 침(4)의 선단 기판(10)에 대한 높이는 정확하게는 일정하지 않고, 프로브 침(4)마다 약간 다른 경우가 있다. 프로브 침(4)의 선단 높이의 균일 정밀도와, 프로브 카드(6)의 제조 비용은 트레이드 오프 관계에 있다. 프로브 침(4)의 선단 높이의 차이를 흡수하고, 모든 프로브 침(4)을 전극 패드에 접촉시켰을 때에, 프로브 침(4)의 컨플라이언스 특성이 높으면, 프로브 침(4)마다 침압의 차이가 작다. 컨플라이언스 특성을 높게 함으로써, 프로브 침(4)의 선단 높이에 차이가 있더라도 그 침압을 대략 일정하게 할 수 있다.
또한, 프로브 침(4)의 선단이 전극 패드(PD)에 접촉한 것을 검출하고, 그 점으로부터 일정한 길이(오버드라이브량이라고 함)만큼 프로브 침(4)을 전극 패드(PD)에 누르도록 구성한다. 특히 MEMS와 같이 기판(10)에 입체 구조를 형성하는 가공에서는 기판(10)의 표면을 완전한 평면으로 유지하는 것은 곤란하며, 칩(TP)마다 약간 높이가 다른 것이다. 프로브 침(4)의 선단이 전극 패드(PD)에 접촉한 것을 검출하고, 일정한 오버드라이브량으로 프로브 침(4)을 누름으로써, 칩(TP)마다 높이가 달라도 칩(TP)마다 측정하는 침압을 일정하게 할 수 있다.
프로브 침(4)의 선단이 전극 패드(PD)에 접촉한 것을 검출하기 위해서는, 예컨대 레이저 계측에 의해 프로브 카드와 전극 패트(PD)의 거리를 측정하는 방법, 프로브 침(4)의 선단과 전극 패드(PD)의 화상으로부터 형상을 추출함으로써 접촉 상태를 검출하는 방법 또는 플리팅을 이용하기 위해 쌍을 이룬 프로브 침(4) 사이의 전극 저항의 변화에 의해 검출하는 방법이 있다. 쌍을 이룬 프로브 침(4) 사이의 전기 저항의 변화에 의한 경우에는 전기 저항이 매우 큰 개방 상태이기 때문에, 쌍을 이루는 프로브 침(4)이 하나의 전극 패드(PD)에 접촉하여 전기 저항이 작아진 것에 의해 검출할 수 있다.
이렇게 해서, 기판(10) 상의 칩(TP)마다의 높이의 차이와, 프로브 침(4)의 선단 높이의 차이를 흡수하여 침압이 일정한 조건으로 미소 구조체의 검사를 행할 수 있다.
미소 구조체의 검사를 행하는 경우에는, 우선, 한 쌍의 프로브 침(4)을 각 전극 패드(PD)에 접촉시킨 후, 릴레이(45)를 통해 한 쌍의 프로브 침(4)과 플리팅용 전원(50)을 접속한다. 또한, 프로브 침(4) 중 적어도 선단은 디바이스, 즉 각 전극 패드(PD)에 대하여 수직인 방향으로부터 접촉시키는 것이 바람직하다. 경사 방향으로부터 접촉시킨 경우에는 침압의 영향이 X축 및 Y축에 나타날 가능성이 있기 때문이다.
전술한 바와 같이, 프로브 침(4)의 선단이 전극 패드(PD)에 접촉한 것을 검출하고, 그 점으로부터 일정한 오버드라이브량 만큼 프로브 침(4)을 전극 패드(PD) 방향으로 이동하여 침압을 일정한 작은 값으로 유지한다. 프로브 침(4)과 전극 패드(PD)의 접촉 저항을 작게 하고, 또한 프로브 침(4)의 침압에 의한 응력을 무시할 수 있을 정도로 억제하도록 미리 오버드라이브량을 적절한 값으로 정해 둔다. 기판(10)의 모든 칩(TP)에 대하여 프로브 침(4)을 접촉시키고 난 후 미리 정해진 오버드라이브량 만큼 변위시킴으로써 칩(TP)에 부여하는 영향을 최소로 하여, 칩(TP)마다 동일한 조건으로 검사를 행할 수 있다.
다음에, 플리팅용 전원(50)으로부터 한 쌍의 프로브 침(4)에 한쪽의 프로브 침(4)에 대하여 전압을 인가한다. 그리고, 서서히 승압하면 한 쌍의 프로브 침에 인가되는 전압차에 기초하는 플리팅 현상에 의해 한 쌍의 프로브 침(4) 사이의 산화막이 부수어져 한 쌍의 프로브 침(4) 사이에서 전류가 흐르며, 프로브 침(4)과 전극 패드(PD) 사이에서 전기적으로 도통한다. 계속해서, 릴레이(45)를 통해 한 쌍의 프로브 침(4)을 플리팅용 전원(50)으로부터 측정 유닛(40)측으로 전환하여 측정 유닛(40)과 전기적으로 결합시킨다. 본 예에 있어서는 릴레이(45)를 이용하여 플리팅용 전원(50)과 측정 유닛(40)의 전환을 실현하는 구성에 대해서 설명하고 있지만 이것에 한정되지 않고 릴레이(45) 대신에 반도체 스위치를 이용하여 전환을 실행하는 것도 가능하다.
그리고, 프로브 침(4)을 통해 측정 유닛(40)으로부터 전극 패드(PD)에 검사용 신호를 인가하여 웨이퍼의 소정의 검사를 실행한다. 이와 같이 플리팅 현상을 이용하는 경우에는 프로브 침(4)과 전극 패드(PD) 사이의 침압을 매우 낮게 설정할 수 있어, 전극 패드 등을 손상시킬 우려가 없고 신뢰도가 높은 검사를 행할 수 있다.
(실시 형태 2)
상기한 실시 형태에 있어서는, 무진동형 열음향 엔진을 스피커(2)로서 이용하는 것이 가능한 점에 대해서 설명하였지만, 이것에 한정되지 않고, 예컨대 통상의 기계 진동형 스피커를 이용하는 것도 가능하다.
도 14는 본 발명의 실시 형태 2에 따른 프로브 카드의 구조를 설명하는 도면이다.
도 14의 (a)를 참조하여 여기서는 회로 기판(100) 상에 스피커(2)가 적재되어 있다. 여기서, 스피커(2)는 회로 기판(100)에 대하여 지지 부재에 의해 지지되어 있으며, 지지 부재를 방진 재료(방진재)(70)로 형성할 수 있다. 이것에 의해 스피커(2)로부터의 진동을 회로 기판에 전달하는 것을 방지하여 정밀도가 높은 검사를 실행할 수 있다. 방진 재료(70)로서는 실리콘 고무 또는 수지 등을 이용하는 것이 가능하다.
도 14의 (b)는 회로 기판(100)의 개구 영역에 따라서 방진 재료로 형성된 지지 부재가 설치되어 있는 경우를 설명하는 도면이다.
도 14의 (c)는 지지 부재에 대해서 회로 기판(100)과 스피커(2)의 접촉 면적을 삭감함으로써 진동이 전달되는 것을 더욱 방지한 구성이다. 여기서는 4점의 방진재(70a)에 의해 스피커(2)가 지지되어 있는 경우를 나타내고 있다.
(실시 형태 2의 변형예 1)
도 15는 본 발명의 실시 형태 2의 변형예 1에 따른 프로브 카드의 구조를 설명하는 도면이다.
도 15의 (a)를 참조하여 여기서는 회로 기판(100) 상에 스피커(2)가 방진 재료로 형성된 지지 부재에 의해 지지되는 동시에, 도 15의 (b)에 도시된 바와 같이 개구 영역을 따라 방음 부재(방음재)(80)가 회로 기판(100)과 스피커(2) 사이에 설치되어 있다. 이에 따라 개구 영역 이외의 부분에 테스트 음파가 새는 것을 방지하고 외부에서 발생하고 있는 소리(노이즈)의 영향을 제거하여 지향성이 강한 테스트 음파를 출력할 수 있다.
(실시 형태 2의 변형예 2)
도 16은 본 발명의 실시 형태 2의 변형예 2에 따른 프로브 카드의 구조를 설명하는 도면이다.
도 16의 (a)를 참조하여 여기서는 회로 기판(100) 상에 스피커(2)가 적재되어 있다. 여기서 스피커(2)는 회로 기판(100)에 대하여 지지 부재(75)에 의해 지지되어 있으며, 지지 부재를 방진 재료로 형성할 수 있다. 여기서, 지지 부재로서는 도 16의 (b)에 도시된 바와 같이 복수 점에서 스피커(2)를 지지하는 점 지지 부재(75a)가 이용되어 있다. 여기서는 4점으로 지지되어 있다. 이에 따라 스피커(2)와 회로 기판(100)이 접촉하는 면적은 더욱 작아지기 때문에 스피커(2)로부터의 진동을 회로 기판에 전달하는 것을 더욱 방지하여 정밀도가 높은 검사를 실행할 수 있다.
(실시 형태 2의 변형예 3)
도 17은 본 발명의 실시 형태 2의 변형예 3에 따른 프로브 카드의 구조를 설명하는 도면이다.
도 17의 (a)를 참조하여 여기서는 회로 기판(100) 상에 스피커(2)가 방진 재료로 형성된 지지 부재에 의해 지지되는 동시에, 도 17의 (b)에 도시된 바와 같이 개구 영역에 따라서 방음 부재가 회로 기판(100)과 스피커(2) 사이에 설치되어 있다. 이에 따라 개구 영역 이외의 부분에 테스트 음파가 새는 것을 방지하여 지향성이 강한 테스트 음파를 출력할 수 있다.
(실시 형태 2의 변형예 4)
도 18은 본 발명의 실시 형태 2의 변형예 4에 따른 프로브 카드의 구조를 설명하는 도면이다.
도 18을 참조하여 본 발명의 실시 형태 2의 변형예 4에 따른 프로브 카드는 도 14에서 설명한 프로브 카드의 구성에 부가하여, 또한 스피커(2)로부터 출력된 테스트 음파를 집음(集音)하여 출력하는 집음부(85)를 더 마련한다. 집음부(85)는 기판과 프로브 카드 사이에서 테스트 음파를 누설하지 않고 미소 구조체의 가동부에 집중시키도록 기판과 프로브 카드 사이에 있어서 프로브 카드의 개구 영역의 주위를 따라 마련된다. 집음부(85)는 예컨대 혼(horn)을 역방향으로 부착한 구성과 동일하며 지향성이 강한 테스트 음파를 출력할 수 있다.
또한 집음부(85)는 프로브 침(4)의 포스트(고정 베어링)를 겸하고 있다. 프로브 침(4)이 컴플라이언스가 높은(휘기 쉬운) 재료로 구성되더라도 포스트부는 쉽 게 변형되지 않는다. 프로브 침(4)의 캔틸레버(cantilever) 구조의 지점이 기판에 가깝기 때문에, 프로브 침(4)의 선단의 변위 방향이 기판(10)에 거의 수직이 된다. 이 때문에 프로브 카드에 대하여 기판면과 수직 방향으로 기판(10)을 이동하여 프로브 침(4)과 기판(10)을 접촉시키도록 하면, 프로브 침(4)의 선단을 기판(10)에 접촉시켜 전술한 오버 드라이브량을 더 변위시키더라도 기판(10)의 표면에 대하여 수직 방향의 응력밖에 발생하지 않는다. 그 결과, 미소 구조체에 대하여 기판면 방향의 응력이 걸리지 않는 상태에서 미소 구조체의 테스트를 행할 수 있다.
또한, 스피커(2), 개구 영역, 집음부(85), 프로브 침(4)의 세트를 프로브 카드에 복수 세트 마련하고 기판(100)의 복수의 칩(TP)의 테스트를 동시에 행할 수 있도록 구성하더라도 좋다. 이 경우, 테스트를 행하는 칩(TP) 사이의 테스트 음파를 각각의 집음부(85)가 차폐하기 때문에 복수의 칩(TP)에서 간섭하는 일이 없이 동시에 테스트를 행할 수 있다.
(실시 형태 2의 변형예 5)
도 19는 본 발명의 실시 형태 2의 변형예 5에 따른 프로브 카드의 구조를 설명하는 도면이다.
도 19의 (a)를 참조하여 여기서는 회로 기판(100) 상에 스피커(2)가 현수되도록 지지 부재에 의해 고정되어 있다. 구체적으로는 스피커(2)를 덮도록 하여 회로 기판(100)과 접합된 부재(90)(커버)가 회로 기판(100) 상에 설치되어 있으며, 부재(90)의 상측으로부터 케이블(L)에 의해 스피커(2)가 현수된 구조로 되어 있다.
상기 구성에 의해 스피커(2)는 케이블(L)로써 지지되어 있기 때문에 접촉 면 적이 작아 진동이 쉽게 전달되지 않는다. 이에 따라 스피커(2)로부터의 진동을 회로 기판에 전달하는 것을 더욱 방지하여 정밀도가 높은 검사를 실행할 수 있다.
도 19의 (b)는 케이블(L)의 길이를 조정하여 개구 영역 부근에 가깝게 한 경우의 도면이다. 이러한 구성으로 함으로서 테스트 음파의 누설을 억제하여 지향성이 높은 테스트 음파를 개구 영역으로부터 출력할 수 있다.
또한, 도 19의 (c)에 도시된 바와 같이 방음 부재(70)를 개구 영역을 따라서 스피커(2)와 회로 기판 사이에 마련함으로써 테스트 음파의 누설을 억제하여 지향성이 높은 테스트 음파를 출력하도록 하는 것도 가능하다.
(실시 형태 3)
도 20은 본 발명의 실시 형태 3에 따른 프로브 카드의 구조를 설명하는 도면이다.
도 20을 참조하여 본 발명의 실시 형태 3에 따른 프로브 카드는, 도 14에서 설명한 프로브 카드의 구성과 비교하여 스피커(2)를 덮도록 해서 부재(90)가 회로 기판(10) 상에 설치되어 있는 점과, 방진재(70)와 스피커(2) 사이에 방진재와는 다른 별도의 부재(71)를 더 마련한 점이 다르다. 여기서, 별도의 부재(71)는 방진재(70)와 비교하여 경도가 높은 재료를 이용할 수 있는 예컨대, 세라믹 재료 또는 목재 등을 이용하는 것도 가능하다. 또한, 이 부재(71)는 이들 세라믹 재료 등에 한정되지 않고 여러가지 부재를 이용할 수 있지만 단열성 또는 열전달 계수가 낮은 재질인 것이 바람직하다.
상기 구성에 의해 스피커(2)를 비교적 경도가 높은 재료로 적재할 수 있기 때문에 스피커(2)를 안정하게 고정할 수 있게 된다.
또한, 여기서는 회로 기판(100)과 스피커(2) 사이에 방진재(70) 및 부재(71)의 순서로 설치한 구성에 대해서 설명하고 있지만, 방진재(70)와 부재(71)의 설치 순서를 반대로 하는 것도 가능하다.
또한, 여기서는 방진재(70)와 부재(71)를 하나의 세트로서 마련한 구성에 대해서 설명하였지만, 이것에 한정되지 않고 예컨대 방진재 및 부재의 복수 세트를 중첩시키는 것도 당연히 가능하다.
그리고, 본 예에서는 스피커(2)를 덮도록 하여 회로 기판(100)과 접합된 부재(90)(커버)를 마련하고 있기 때문에 스피커(2)의 진동에 따라 스피커(2)의 후방측으로 출력되는 소리의 우회를 방지할 수 있다. 이에 따라, 후방측의 테스트 음파의 우회를 억제하여 테스트 음파의 제어성을 향상시킬 수 있다.
(실시 형태 3의 변형예)
상기한 실시 형태 3에 따른 구성에서는 단순히 스피커(2)를 덮도록 부재(90)(커버)를 회로 기판(100) 상에 마련한 구성에 대해서 설명하였지만, 부재(커버)와 스피커(2)를 일체형으로 해서 회로 기판(100) 상에 마련한 구성으로 하는 것도 가능하다.
도 21은 본 발명의 실시 형태 3의 변형예에 따른 프로브 카드의 구조를 설명하는 도면이다.
도 21을 참조하여 본 발명의 실시 형태 3의 변형예에 따른 프로브 카드는, 도 20에서 설명한 프로브 카드의 구성과 비교하여 부재(커버)(90)를 부재(커버 )(90#)로 치환한 점이 다르다. 부재(90#)는 일례로서 회로 기판(100)의 개구 영역과 동일한 개구 영역을 갖는 상자형의 형상으로서 마련된다. 그리고, 방진재(70) 및 부재(71)는 상자형의 형상으로서 형성된 부재(90#)의 내부에서 접합된다. 그리고, 부재(71) 상에 스피커(2)가 적재된다. 즉, 스피커(2)는 상자형 형상의 부재(커버)(90)의 내부에 수납된 구조가 된다.
이 구조에 의해 스피커(2)의 진동에 따라 스피커(2)의 후방측으로 출력되는 소리의 우회를 방지할 수 있다. 이에 따라, 후방측의 테스트 음파의 우회를 억제하여 테스트 음파의 제어성을 향상시킬 수 있다. 또한, 본 구성에서는 상자형 형상의 부재(커버)(90)는 회로 기판(100)에 대하여 착탈할 수 있도록 설치되어 있는 것으로 한다.
이에 따라, 부재(90)의 내부에 수납되는 스피커측과, 회로 기판(100)에 마련된 프로브 침측으로 독립하여 성형하는 것이 가능하기 때문에 고속으로 또는 효율적으로 양산하는 것도 가능해진다.
(실시 형태 4)
본 실시 형태 4에서는 테스트 음파를 효율적으로 측정 대상이 되는 디바이스군에 인가하는 방식에 대해서 설명한다. 즉, 회로 기판(100)의 개구 영역의 위치와 측정 대상이 되는 디바이스의 정렬에 대해서 설명한다.
도 22는 본 발명의 실시 형태 4에 따른 측정 대상 디바이스와 개구 영역의 위치 관계를 설명하는 도면이다.
도 22의 (a)를 참조하여 여기서는 프로브 카드와, 측정 디바이스군(11)에 대 해서 측면 방향에서 본 도면이 도시되어 있다. 본 실시 형태 4에 따른 구성에 있어서는 측정 디바이스(11)는 프로브 카드의 개구 영역(PCWD)의 개구면에 대하여 수직인 중심축이 측정 디바이스(11)의 중심을 통과하도록 배치된다.
도 22의 (b)에는 프로브 카드와, 측정 디바이스군(11)에 대해서 바로 위 방향에서 본 도면이 도시되어 있다. 구체적으로는 스피커(2)가 방진재(70)에 적재되어 있다. 또한, 방진재(70)는 스피커(2)의 형상을 따라 원형으로 설치되고 있고, 방진재(70)의 개구 영역(VWD)은 원형 형상으로 되어 있다. 또한, 회로 기판(100)의 개구 영역은 사각 형상의 개구 영역(PCWD)으로서 설치되어 있다. 또한, 여기서는 정방 형상의 개구 영역이 일례로서 도시되어 있다.
그리고, 본 예에 있어서는 측정 디바이스군(11)을 개구 영역의 중심축이 통과하는 위치에 배치한다. 구체적으로, 도 22에 도시되어 있는 바와 같이 측정 디바이스군(11)이 3×3의 복수의 칩이 집합한 경우에는, 그 중심의 칩에 대하여 중심축이 통과하도록 배치한다. 또한, 여기서는, 복수의 칩으로 구성되는 측정 디바이스군(11)에 대해서 설명하였지만, 이것에 한정되지 않고 단일 칩의 경우라도 마찬가지로 적용할 수 있다. 구체적으로, 단일 칩에 대해서는 단일 칩에 대하여 개구 영역의 중심축이 통과하도록 배치한다.
이에 따라, 스피커(2)로부터 출력한 테스트 음파를 효율적으로 측정 디바이스군(11)에 대하여 인가할 수 있다.
다음에, 복수의 스피커(2)를 이용한 경우의 정렬에 대해서 설명한다.
도 23은 본 발명의 실시 형태 4의 변형예에 따른 측정 대상 디바이스와 개구 영역과의 위치 관계를 설명한 도면이다. 여기서는 일례로서 4개의 스피커(2)를 이용하여 정방 형상으로 스피커 및 개구 영역이 설치된 경우에 대해서 설명한다.
도 23의 (a)를 참조하여, 여기서는 프로브 카드와, 측정 디바이스군(11)에 대해서 측면 방향에서 본 도면이 도시되어 있다.
도 23의 (b)는 프로브 카드와, 측정 디바이스군(11)에 대해서 바로 위 방향에서 본 도면이 도시되어 있다. 여기서는, 4개의 스피커(2a∼2d)가 도시되어 있다.
각 스피커(2a∼2d)에 대응하는 회로 기판의 개구 영역의 중심축을 Sa∼Sd로 한다. 그리고, 본 실시 형태에 있어서는 각 중심축(Sa∼Sd)으로 둘러싸여지는 영역면의 중심축이 통과하는 위치에 측정 디바이스군(11)을 배치한다.
이에 따라, 회로 기판의 각 개구 영역으로부터 측정 디바이스군(11)까지의 거리는 동일하게 설정된다. 즉, 각 스피커(2a∼2d)로부터 균등하게 측정 디바이스군(11)에 대하여 테스트 음파가 인가되기 때문에 효율적으로 테스트 음파를 측정 디바이스군(11)에 대하여 인가할 수 있다. 또한, 여기서는 복수의 칩으로 구성되는 측정 디바이스군(11)에 대해서 설명하였지만, 이것에 한정되지 않고 단일 칩의 경우에도 마찬가지로 적용할 수 있다. 구체적으로는 단일 칩에 대해서는 단일 칩에 대하여 각 중심축(Sa∼Sd)으로 둘러싸여지는 영역면의 중심축이 통과하는 위치에 배치한다.
또한, 본 예에 있어서는 주로 3축 가속도 센서에 대해서 설명하였지만, 이것에 한정되지 않고, 다른 MEMS 디바이스에 있어서도 미소 구조체의 가동부에 대하여 본 실시 형태 1 및 2에 따른 테스트 음파를 인가함으로써 3축 가속도 센서와 동일 한 효과를 얻을 수 있다.
이번에 개시된 실시 형태는 모든 점에서 예시로서 제한적인 것이 아니라고 생각한다. 본 발명의 범위는 상기한 설명뿐만 아니라 특허청구범위에 의해 나타내어지고, 특허청구범위와 균등한 의미 및 범위 내에서의 모든 변경이 포함되는 것이 의도된다.
본 발명에 관한 프로브 카드 및 미소 구조체의 검사 장치는, 미소 구조체의 가동부에 대하여 테스트 음파를 출력하기 위한 음파 발생 수단을 포함하고, 평가 수단은 프로브 침을 통해 음파 발생 수단에 의해 출력된 테스트 음파에 응답한 미소 구조체의 가동부의 움직임을 검출하고, 검출 결과에 기초하여 미소 구조체의 특성을 평가한다.
즉, 프로브 카드에 음파 발생 수단이 포함되기 때문에, 프로브 카드의 프로브 침의 정렬 조정에 의해 음파 발생 수단에 대해서도 위치 결정되기 때문에, 독립적으로 음파 발생 수단에 대해서도 정렬 조정할 필요가 없고, 또한 그 정렬 조정을 위한 기구를 설치할 필요가 없어 효율이 향상되는 동시에, 간편한 방식으로 테스트를 행할 수 있게 된다.

Claims (21)

  1. 삭제
  2. 기판상에 형성된 가동부를 갖는 적어도 1개의 미소 구조체의 특성을 평가하는 평가 수단과 접속되는 프로브 카드로서,
    테스트시에 기판상에 형성된 가동부의 움직임에 기초한 전기적 변화량을 검출하기 위해 상기 기판상에 형성된 상기 미소 구조체의 검사용 전극과 전기적으로 접속되는 프로브 침과;
    상기 미소 구조체의 가동부에 대하여 테스트 음파를 출력하기 위한 적어도 1개의 음파 발생 수단과;
    상기 음파 발생 수단으로부터 출력된 상기 테스트 음파를 검출하는 마이크로폰을 포함하고,
    상기 마이크로폰에 의해 검출된 결과에 기초하여 상기 음파 발생 수단으로부터 출력되는 상기 테스트 음파의 특성을 조정하는 것을 특징으로 하는 프로브 카드.
  3. 기판상에 형성된 가동부를 갖는 적어도 1개의 미소 구조체의 특성을 평가하는 평가 수단과 접속되는 프로브 카드로서,
    테스트시에 기판상에 형성된 가동부의 움직임에 기초한 전기적 변화량을 검출하기 위해 상기 기판상에 형성된 상기 미소 구조체의 검사용 전극과 전기적으로 접속되는 프로브 침과;
    상기 미소 구조체의 가동부에 대하여 테스트 음파를 출력하기 위한 적어도 1개의 음파 발생 수단을 포함하되,
    상기 음파 발생 수단은 기계적인 진동 동작 이외의 무진동 동작에 의해 상기 테스트 음파를 출력하는 것을 특징으로 하는 프로브 카드.
  4. 제3항에 있어서, 상기 음파 발생 수단은 열에 의한 공기의 팽창 압축에 기초하여 상기 테스트 음파를 출력하는 열 음향 엔진을 포함하는 것을 특징으로 하는 프로브 카드.
  5. 기판상에 형성된 가동부를 갖는 적어도 1개의 미소 구조체의 특성을 평가하는 평가 수단과 접속되는 프로브 카드로서,
    테스트시에 기판상에 형성된 가동부의 움직임에 기초한 전기적 변화량을 검출하기 위해 상기 기판상에 형성된 상기 미소 구조체의 검사용 전극과 전기적으로 접속되는 프로브 침과;
    상기 미소 구조체의 가동부에 대하여 테스트 음파를 출력하기 위한 적어도 1개의 음파 발생 수단과;
    상기 프로브 침을 고정하는 고정 부재와;
    상기 고정 부재에 대하여 상기 음파 발생 수단을 적재하기 위한 지지 부재를 포함하고,
    상기 음파 발생 수단은 기계적인 진동 동작에 의해 상기 테스트 음파를 출력하고,
    상기 고정 부재는 상기 음파 발생 수단으로부터 상기 테스트 음파가 상기 미소 구조체의 가동부에 대하여 출력되는 개구 영역을 갖고,
    상기 지지 부재는 상기 음파 발생 수단의 진동을 억제하는 방진 재료를 포함하는 것을 특징으로 하는 프로브 카드.
  6. 삭제
  7. 제5항에 있어서, 상기 지지 부재는 상기 음파 발생 수단을 복수 점에서 지지하는 복수의 점 지지부를 포함하는 것을 특징으로 하는 프로브 카드.
  8. 제5항에 있어서, 상기 프로브 카드는 상기 고정 부재와 상기 음파 발생 수단 사이에서 상기 테스트 음파가 새지 않도록 상기 고정 부재와 상기 음파 발생 수단 사이에서 개구 영역을 따라 설치된 방음재를 더 포함하는 것을 특징으로 하는 프로브 카드.
  9. 제5항에 있어서, 상기 지지 부재는 상기 음파 발생 수단과 상기 고정 부재 사이에 설치되는 적어도 1개의 제1 및 제2 지지 부재 유닛을 포함하고,
    상기 제1 및 제2 지지 부재 유닛 중 한쪽은 방진 재료로 형성되며, 다른 쪽 지지 부재 유닛은 상기 한쪽 지지 부재 유닛과 비교하여 경도가 높은 재질로 형성되는 것을 특징으로 하는 프로브 카드.
  10. 삭제
  11. 삭제
  12. 기판상에 형성된 가동부를 갖는 적어도 1개의 미소 구조체의 특성을 평가하는 평가 수단과 접속되는 프로브 카드로서,
    테스트시에 기판상에 형성된 가동부의 움직임에 기초한 전기적 변화량을 검출하기 위해 상기 기판상에 형성된 상기 미소 구조체의 검사용 전극과 전기적으로 접속되는 프로브 침과;
    상기 미소 구조체의 가동부에 대하여 테스트 음파를 출력하기 위한 적어도 1개의 음파 발생 수단과;
    상기 프로브 침을 고정하는 고정 부재와;
    상기 음파 발생 수단을 지지하기 위한 지지 부재를 포함하며,
    상기 음파 발생 수단은 기계적인 진동 동작에 의해 상기 테스트 음파를 출력하고,
    상기 고정 부재는 상기 음파 발생 수단으로부터 상기 테스트 음파가 상기 미소 구조체의 가동부에 대하여 출력되는 개구 영역을 구비하고,
    상기 지지 부재는 상기 고정 부재의 상기 개구 영역에 대하여 현수되도록 지지하는 것을 특징으로 하는 프로브 카드.
  13. 제12항에 있어서, 상기 프로브 카드는 상기 고정 부재와 상기 음파 발생 수단 사이에서 상기 테스트 음파가 새지 않도록 상기 고정 부재와 상기 음파 발생 수단 사이에서 상기 개구 영역을 따라 설치된 방음재를 더 포함하는 것을 특징으로 하는 프로브 카드.
  14. 삭제
  15. 삭제
  16. 기판상에 형성된 가동부를 갖는 적어도 1개의 미소 구조체의 특성을 평가하는 평가 수단과 접속되는 프로브 카드로서,
    테스트시에 기판상에 형성된 가동부의 움직임에 기초한 전기적 변화량을 검출하기 위해 상기 기판상에 형성된 상기 미소 구조체의 검사용 전극과 전기적으로 접속되는 프로브 침과;
    상기 미소 구조체의 가동부에 대하여 테스트 음파를 출력하기 위한 복수개의 음파 발생 수단과;
    상기 프로브 침을 고정하는 고정 부재를 포함하고,
    상기 고정 부재는 상기 복수개의 음파 발생 수단에 각각 대응하여 설치되며, 각 상기 음파 발생 수단으로부터 상기 테스트 음파가 상기 미소 구조체의 가동부에 대하여 출력되는 복수의 개구 영역을 구비하고,
    상기 기판상에 형성된 상기 미소 구조체는 상기 복수의 개구 영역의 각각의 개구 영역의 중심축에 의해 둘러싸여지는 영역면의 중심축이 통과하는 위치에 배치되는 것을 특징으로 하는 프로브 카드.
  17. 기판상에 형성된 가동부를 갖는 적어도 1개의 미소 구조체의 특성을 평가하는 평가 수단과 접속되는 프로브 카드로서,
    테스트시에 기판상에 형성된 가동부의 움직임에 기초한 전기적 변화량을 검출하기 위해 상기 기판상에 형성된 상기 미소 구조체의 검사용 전극과 전기적으로 접속되는 프로브 침과;
    상기 미소 구조체의 가동부에 대하여 테스트 음파를 출력하기 위한 적어도 1개의 음파 발생 수단과;
    상기 프로브 침을 고정하고, 상기 음파 발생 수단으로부터 상기 테스트 음파가 상기 미소 구조체의 가동부에 대하여 출력되는 개구 영역을 갖는 고정 부재와;
    상기 기판과 상기 프로브 카드 사이에서 상기 테스트 음파를 새게 하지 않고 상기 가동부에 집중시키도록 상기 기판과 상기 프로브 카드 사이에서 상기 개구 영역의 주위를 따라 설치된 집음 부재를 포함하는 것을 특징으로 하는 프로브 카드.
  18. 제17항에 있어서, 상기 집음 부재는 상기 프로브 침을 고정하는 고정 부재의 일부인 것을 특징으로 하는 프로브 카드.
  19. 삭제
  20. 삭제
  21. 삭제
KR1020060029929A 2005-03-31 2006-03-31 프로브 카드 및 미소 구조체의 검사 장치 KR100845485B1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005102760 2005-03-31
JPJP-P-2005-00102760 2005-03-31
JPJP-P-2005-00266720 2005-09-14
JP2005266720 2005-09-14
JP2006093448A JP4573794B2 (ja) 2005-03-31 2006-03-30 プローブカードおよび微小構造体の検査装置
JPJP-P-2006-00093448 2006-03-30

Publications (2)

Publication Number Publication Date
KR20060105686A KR20060105686A (ko) 2006-10-11
KR100845485B1 true KR100845485B1 (ko) 2008-07-10

Family

ID=36648363

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060029929A KR100845485B1 (ko) 2005-03-31 2006-03-31 프로브 카드 및 미소 구조체의 검사 장치

Country Status (7)

Country Link
US (1) US7348788B2 (ko)
EP (1) EP1707532A3 (ko)
JP (1) JP4573794B2 (ko)
KR (1) KR100845485B1 (ko)
CN (1) CN1866030B (ko)
SG (1) SG126130A1 (ko)
TW (1) TWI290625B (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4387987B2 (ja) * 2004-06-11 2009-12-24 株式会社オクテック 微小構造体の検査装置、微小構造体の検査方法および微小構造体の検査プログラム
JP4628419B2 (ja) * 2005-03-03 2011-02-09 東京エレクトロン株式会社 微小構造体の検査装置、微小構造体の検査方法および微小構造体の検査プログラム
US20080223136A1 (en) * 2005-08-04 2008-09-18 Tokyo Electron Limited Minute structure inspection device, inspection method, and inspection program
US20090039908A1 (en) * 2006-04-26 2009-02-12 Tokyo Electron Limited Microstructure inspecting apparatus and microstructure inspecting method
JP5121202B2 (ja) * 2006-09-29 2013-01-16 東京エレクトロン株式会社 プローブカードおよび微小構造体の検査装置
EP2221614A1 (en) 2007-11-26 2010-08-25 Tokyo Electron Limited Microstructure inspecting device, and microstructure inspecting method
DE102007059279B3 (de) * 2007-12-08 2010-01-21 X-Fab Semiconductor Foundries Ag Vorrichtung zum Testen der mechanisch-elektrischen Eigenschaften von mikroelektromechanischen Sensoren (MEMS)
TWI401976B (zh) * 2008-12-31 2013-07-11 Beijing Funate Innovation Tech 揚聲器
CN104637922B (zh) * 2013-11-14 2018-04-27 中芯国际集成电路制造(上海)有限公司 用于栅介质完整性的测试结构及其测试方法
GB2524517A (en) 2014-03-25 2015-09-30 Ibm A semiconductor automatic test equipment, a backing apparatus for use therein, and methods for operating these equipments
CN103969104B (zh) * 2014-05-21 2017-02-22 上海华力微电子有限公司 一种聚焦离子束机台之探针的降震装置及其降震方法
US9921268B2 (en) 2015-11-18 2018-03-20 International Business Machines Corporation Auto-alignment of backer plate for direct docking test boards
TWI602443B (zh) * 2016-06-01 2017-10-11 京元電子股份有限公司 麥克風元件測試座及其測試裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773948A (en) * 1980-10-27 1982-05-08 Hitachi Ltd Contact type testing method and tester
KR20020015294A (ko) * 2000-08-21 2002-02-27 타다토모 수가 검사 방법 및 검사 장치
US20020189357A1 (en) * 2001-06-19 2002-12-19 Computed Ultrasound Global Inc. Method and apparatus for determining dynamic response of microstructure by using pulsed broad bandwidth ultrasonic transducer as BAW hammer
KR20060046415A (ko) * 2004-06-11 2006-05-17 동경 엘렉트론 주식회사 미소 구조체의 검사 장치, 미소 구조체의 검사 방법 및미소 구조체의 검사 프로그램

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157029A (ja) * 1986-12-22 1988-06-30 Agency Of Ind Science & Technol 歪ゲ−ジの動的応答特性測定法
DE3706765C3 (de) * 1987-03-03 1995-11-09 Telefunken Microelectron Aufprallsensor für ein Fahrzeug, mit einer Prüfschaltung
DE3736294A1 (de) * 1987-10-27 1989-05-11 Messerschmitt Boelkow Blohm Einrichtung zur funktionskontrolle von beschleunigungssensoren
US4816125A (en) * 1987-11-25 1989-03-28 The Regents Of The University Of California IC processed piezoelectric microphone
JPH0267956A (ja) 1988-09-02 1990-03-07 Oki Electric Ind Co Ltd 電子部品のリード・オープン不良検出装置
JPH0534371A (ja) * 1991-07-31 1993-02-09 Tokai Rika Co Ltd 半導体加速度センサの感度測定装置
JPH06313785A (ja) 1993-04-28 1994-11-08 Hioki Ee Corp 振動による実装部品の半田付け不良検出方法並びに加振装置及び加振、測定プローブユニット
JPH0933567A (ja) * 1995-07-21 1997-02-07 Akebono Brake Ind Co Ltd 半導体加速度センサのセンサチップ検査方法及び検査装置
JPH112643A (ja) 1997-06-12 1999-01-06 Denso Corp 加速度センサの周波数特性検査装置
US6088474A (en) * 1997-07-23 2000-07-11 Texas Instruments Incorporated Inspection system for micromechanical devices
US6232790B1 (en) * 1999-03-08 2001-05-15 Honeywell Inc. Method and apparatus for amplifying electrical test signals from a micromechanical device
JP3440037B2 (ja) * 1999-09-16 2003-08-25 三洋電機株式会社 半導体装置、半導体エレクトレットコンデンサマイクロホンおよび半導体エレクトレットコンデンサマイクロホンの製造方法。
US6750152B1 (en) * 1999-10-01 2004-06-15 Delphi Technologies, Inc. Method and apparatus for electrically testing and characterizing formation of microelectric features
US6629448B1 (en) * 2000-02-25 2003-10-07 Seagate Technology Llc In-situ testing of a MEMS accelerometer in a disc storage system
US6567715B1 (en) * 2000-04-19 2003-05-20 Sandia Corporation Method and system for automated on-chip material and structural certification of MEMS devices
EP1322545A2 (en) * 2000-10-03 2003-07-02 Honeywell International Inc. Method of trimming micro-machined electromechanical sensors (mems) devices
JP2002250665A (ja) * 2001-02-23 2002-09-06 Omron Corp 静電容量式センサ及びその製造方法
US6686993B1 (en) * 2001-03-05 2004-02-03 Analog Devices, Inc. Probe card for testing optical micro electromechanical system devices at wafer level
TW548408B (en) 2001-07-13 2003-08-21 Computed Ultrasound Global Inc Method and apparatus for determining dynamic response of microstructure
US6553321B2 (en) * 2001-08-24 2003-04-22 Xerox Corporation Intelligent assembly systems and methods
US6753528B1 (en) * 2002-04-18 2004-06-22 Kla-Tencor Technologies Corporation System for MEMS inspection and characterization
US6908791B2 (en) * 2002-04-29 2005-06-21 Texas Instruments Incorporated MEMS device wafer-level package
US6810738B2 (en) 2002-07-10 2004-11-02 Hitachi Metals, Ltd. Acceleration measuring apparatus with calibration function
JP4456325B2 (ja) * 2002-12-12 2010-04-28 東京エレクトロン株式会社 検査方法及び検査装置
JP2005028504A (ja) * 2003-07-11 2005-02-03 Sony Corp Mems素子及びその製造方法
JP2006078435A (ja) * 2004-09-13 2006-03-23 Okutekku:Kk 微小構造体の検査装置および微小構造体の検査方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773948A (en) * 1980-10-27 1982-05-08 Hitachi Ltd Contact type testing method and tester
KR20020015294A (ko) * 2000-08-21 2002-02-27 타다토모 수가 검사 방법 및 검사 장치
US20020189357A1 (en) * 2001-06-19 2002-12-19 Computed Ultrasound Global Inc. Method and apparatus for determining dynamic response of microstructure by using pulsed broad bandwidth ultrasonic transducer as BAW hammer
KR20060046415A (ko) * 2004-06-11 2006-05-17 동경 엘렉트론 주식회사 미소 구조체의 검사 장치, 미소 구조체의 검사 방법 및미소 구조체의 검사 프로그램

Also Published As

Publication number Publication date
EP1707532A2 (en) 2006-10-04
EP1707532A3 (en) 2007-11-21
JP2007108157A (ja) 2007-04-26
TW200704931A (en) 2007-02-01
TWI290625B (en) 2007-12-01
SG126130A1 (en) 2006-10-30
KR20060105686A (ko) 2006-10-11
US20070069746A1 (en) 2007-03-29
CN1866030B (zh) 2011-12-07
US7348788B2 (en) 2008-03-25
CN1866030A (zh) 2006-11-22
JP4573794B2 (ja) 2010-11-04

Similar Documents

Publication Publication Date Title
KR100845485B1 (ko) 프로브 카드 및 미소 구조체의 검사 장치
JP4387987B2 (ja) 微小構造体の検査装置、微小構造体の検査方法および微小構造体の検査プログラム
KR101011491B1 (ko) 미소 구조체의 검사 장치, 미소 구조체의 검사 방법 및 기판 유지 장치
US20090128171A1 (en) Microstructure Probe Card, and Microstructure Inspecting Device, Method, and Computer Program
TWI289204B (en) Minute structure inspection device, minute structure inspection method, and minute structure inspection program
EP1801578A1 (en) Microstructure inspecting apparatus and microstructure inspecting method
KR101019080B1 (ko) 미소 구조체의 검사 장치 및 미소 구조체의 검사 방법
EP1930732A1 (en) Minute structure inspection device, inspection method, and inspection program
US20080223136A1 (en) Minute structure inspection device, inspection method, and inspection program
JP4856426B2 (ja) 微小構造体の検査装置、及び微小構造体の検査方法
JP4822846B2 (ja) 微小構造体の検査装置、微小構造体の検査方法および微小構造体の検査プログラム
JP2006284553A (ja) 微小構造体の検査装置、微小構造体の検査方法および微小構造体の検査プログラム
KR101013594B1 (ko) 프로브 카드 및 미소 구조체의 검사 장치
JP4712474B2 (ja) 半導体装置、半導体装置の製造方法、半導体装置の製造方法プログラムおよび半導体製造装置
JP2010048597A (ja) 微小構造体の検査装置および微小構造体の検査方法
JPWO2007018186A1 (ja) 微小構造体の検査装置,検査方法および検査プログラム

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120621

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130621

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee