KR100819530B1 - 플라즈마 에칭장치 및 플라즈마 처리실 내 부재의 형성방법 - Google Patents

플라즈마 에칭장치 및 플라즈마 처리실 내 부재의 형성방법 Download PDF

Info

Publication number
KR100819530B1
KR100819530B1 KR1020060020366A KR20060020366A KR100819530B1 KR 100819530 B1 KR100819530 B1 KR 100819530B1 KR 1020060020366 A KR1020060020366 A KR 1020060020366A KR 20060020366 A KR20060020366 A KR 20060020366A KR 100819530 B1 KR100819530 B1 KR 100819530B1
Authority
KR
South Korea
Prior art keywords
plasma
film
barrier film
substrate
processing chamber
Prior art date
Application number
KR1020060020366A
Other languages
English (en)
Other versions
KR20070090531A (ko
Inventor
무네오 후루세
마사노리 가도타니
가츠지 마타노
다다요시 가와구치
마사츠구 아라이
Original Assignee
가부시키가이샤 히다치 하이테크놀로지즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 히다치 하이테크놀로지즈 filed Critical 가부시키가이샤 히다치 하이테크놀로지즈
Priority to KR1020060020366A priority Critical patent/KR100819530B1/ko
Publication of KR20070090531A publication Critical patent/KR20070090531A/ko
Application granted granted Critical
Publication of KR100819530B1 publication Critical patent/KR100819530B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/08Control of fire-fighting equipment comprising an outlet device containing a sensor, or itself being the sensor, i.e. self-contained sprinklers
    • A62C37/10Releasing means, e.g. electrically released
    • A62C37/11Releasing means, e.g. electrically released heat-sensitive
    • A62C37/14Releasing means, e.g. electrically released heat-sensitive with frangible vessels
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/36Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device
    • A62C37/46Construction of the actuator

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Drying Of Semiconductors (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

본 발명은 플라즈마 에칭장치에 있어서, 에칭 처리실이나 에칭 처리실 내 부품을 구성하는 알루미늄 기재의 부식을 방지하여 용사피막의 비산에 의한 생산성의 저하를 없애는 것이다.
이를 위하여 본 발명에서는 플라즈마 에칭장치에 있어서, 알루미늄 합금으로 이루어지는 에칭 처리실 및 에칭 처리실 내 부품과 내플라즈마성이 양호한 세라믹스 용사막 사이에, 양극 산화피막을 배치한다. 이 양극 산화피막은 5 ㎛ 이하로 하여 내열성을 가지게 한다.

Description

플라즈마 에칭장치 및 플라즈마 처리실 내 부재의 형성방법{PLASMA ETCHING APPARATUS AND FORMING METHOD OF MEMBER IN PLASMA PRECESSING CHAMBER}
도 1은 본 발명의 일 실시예인 플라즈마 에칭장치를 나타내는 종단면도,
도 2는 본 발명의 실시예인 플라즈마 에칭장치의 에칭 처리실(100)의 단면도,
도 3은 웨이퍼 처리 매수와 에칭형상의 치수, 어스 커버의 온도와의 관계를 설명하는 도,
도 4는 본 발명의 일 실시예에 관한 어스 커버의 단면도,
도 5는 본 발명의 일 실시예에 관한 어스 커버의 단면 확대도,
도 6은 표면에 피막이 형성된 부재의 표면 구조의 개략을 모식적으로 나타내는 단면도,
도 7은 양극 산화피막의 균열발생 온도의 평가 결과를 설명하는 도면이다.
※ 도면의 주요부분에 대한 부호의 설명
1 : 챔버 2 : 볼트
3 : 어스 커버 4a : 석영판
4b : 샤워 플레이트 5a, 5b : O 링
6 : 헬륨 가스 7 : 히터
8 : 유로 100 : 처리실
101 : 안테나 102 : 자장 형성수단
W : 반도체 웨이퍼 103 : 진공 배기계
104 : 배기 조정수단 105a∼105c : 하우징
106 : 고전압 전원 107 : 바이어스 전원
108 : 매칭회로 109a : 온도조절 유닛
121 : 안테나 전원 122 : 매칭회로
130 : 유지 스테이지 131 : 유지 스테이지 커버
143 : 어스 커버 1430 : 기재 표면
1431 : 양극 산화피막 1432 : 용사막
본 발명은 플라즈마 에칭장치 및 플라즈마처리실 내벽의 형성방법에 관한 것으로, 특히 처리 가스로서 할로겐계의 가스를 사용하는 플라즈마 에칭장치 및 플라즈마처리실 내벽의 형성방법에 관한 것이다.
반도체 및 액정장치 등의 제조 프로세스에서는 처리 용기 내에서 BF3나 NF3와 같은 불화물, BCl3나 SnCl4 등의 염화물, HBr과 같은 브롬화물, Cl2를 비롯한 처리 가스를 사용하는 경우가 있다. 이 경우, 처리 용기 내 부재가 현저하게 부식 손모된다는 문제가 있었다.
예를 들면 반도체제조장치의 플라즈마처리 용기 내에 사용되고 있는 재료로서는 Al 및 Al 합금 등의 금속재료, 그 표면을 피복한 Al의 양극 산화막, 또는 보론카바이드 등의 용사피막, Al2O3나 Si3N4 등의 소결체 피막, 또한 불소수지나 에폭시수지 등의 고분자 피막이 알려져 있다. 이들 재료는 부식성이 강한 할로겐 이온에 접하면, 화학적 손상을 받기도 하고, SiO2, Si3N4 등의 미립자 및 플라즈마에 의하여 여기된 이온에 의하여 에로전 손상을 받는 것이 알려져 있다.
특히, 할로겐 화합물을 사용하는 에칭 프로세스에서는, 반응에 의하여 한층의 활성화를 도모하기 위하여 때때로 플라즈마가 사용된다. 그러나 이와 같은 플라즈마사용 환경하에서는 할로겐 화합물은 해리되어 매우 부식성이 강한 원자형상의 F, Cl, Br 등을 발생한다. 또 할로겐 화합물과 동시에, 그 환경 중에 SiO2나 Si3N4, Si, W 등의 미세 분말형상 고형물이 존재하면, 플라즈마처리 용기 및 처리 용기 내에 사용되고 있는 부품을 구성하는 부재가 화학적 부식과 함께 미립자에 의한 에로전 손상을 받아, 이른바 에로전 - 콜로전 작용을 강하게 받게 된다.
또한 에칭 처리실 내에서 플라즈마가 여기된 환경하에서는 Ar 가스와 같이 부식성이 없는 불활성 기체이어도 이온화되어, 이것이 고체면에 강하게 충돌하는 현상[이온 충격(Ion bombardment)]이 발생하기 때문에, 상기 플라즈마처리 용기 내에 설치되어 있는 각종 부재는, 더 한층 강한 손상을 받는 것도 알려져 있다.
종래의 플라즈마 에칭장치에 있어서, 내플라즈마성을 향상시키기 위하여 특허문헌 1에 기재된 바와 같이 플라즈마처리 용기 내 부재를, 5%∼10%의 기공율을 가지는 Y2O3의 용사막으로 피복하는 것이 알려져 있다.
또, 특허문헌 2에는 내플라즈마성 부재의 제조방법으로서, 알루미늄으로 이루어지는 기재 표면에 배리어막으로서의 알루마이트층을 형성하고, 그 위에 폭발 용사법에 의해 YAG 막을 형성하는 것이 개시되어 있다.
또한 특허문헌 3에는, 알루미나 기재 위에 Y2O3나 YAG를 용사한 내플라즈마부재로서, 알루미나 기재의 용사를 실시하는 부분의 표면의 평균 거칠기(Ra)를 5㎛ 이상 15㎛ 이하로 한 것이 개시되어 있다.
[특허문헌 1]
일본국 특개2001-164354호 공보
[특허문헌 2]
일본국 특개2003-166043호 공보
[특허문헌 3]
일본국 특개2005-225745호 공보
특허문헌 1에 기재된 방법에 의하면, 플라즈마에 접촉하는 처리 용기 표면은 Y2O3의 용사막으로 피복되어 있기 때문에, 플라즈마에 의한 손상도 저감하는 것이 기대된다. 또 이 방법에 의하면 용사막과 기재의 사이를, 기재 표면을 피복하는 Ni 및 그 합금, W 및 그 합금, Mo 및 그 합금, Ti 및 그 합금으로 이루어지는 50∼500㎛ 두께의 언더코트로 덮여져 있다. 그러나 용사피막으로 표면을 피복하는 기재 표면의 거칠기에 관해서는 충분한 고려가 이루어져 있지 않다. 실제로 기재 표면을 블라스트 처리 등으로 거칠게 한 후에 50∼500㎛의 금속막을 피복한 경우, 최표면의 거칠기는 당초 목적으로 한 것보다 작은 값이 된다. 또 용사처리를 행하는 기재 표면을 금속피막으로 피복한 후에 블라스트 등의 처리를 행하면, 금속 피막이 박리되기 때문에 내식성을 확보하는 것이 곤란하다.
또, 이들 실시예에서는 에칭 처리실 내벽의 표면처리로서 Y2O3 등의 용사막을, 내플라즈마 재료로서 플라즈마에 접촉시킴으로써 용사막 표면의 깎임 등에는 대응할 수 있다. 그러나 용사막으로 피복하고 있는 기재의 부식에 관해서는 고려되어 있지 않다. 특히 할로겐계의 가스를 사용하는 에칭 프로세스에서는 용사막 중에 할로겐계의 가스가 축적된다. 표면을 용사막 처리한 부품을 장기간 사용하는 경우나, 순수 또는 알콜, 용제로 세정함으로써 용사막 중에 축적된 할로겐계의 가스가 기재에 도달하여 기재가 부식되는 경우가 있다. 이에 의하여 기재를 플라즈마로부터 보호하기 위한 Y2O3 용사막이 박리된다.
이와 같이 상기 특허문헌 1에 기재된 종래 기술은 표면을 용사 처리한 에칭 처리실 내벽이나 에칭 처리실 내 부품과, 에칭 프로세스에서 사용하는 할로겐계 가스와의 반응에 관하여 충분한 배려가 이루어져 있지 않았다.
특히 에칭 처리실 내벽 등의 기재에 알루미늄 또는 알루미늄 합금을 사용하는 경우, Cl 등의 할로겐계의 가스는, Y2O3 등의 금속 산화막으로 이루어지는 용사피막 내를 확산에 의해 진행하여 에칭 처리실 내벽 등의 기재에 도달한다. 에칭 처리실 내벽 등의 기재가 알루미늄 또는 알루미늄 합금인 경우, 알루미늄 또는 알루미늄 합금과 Cl 등의 할로겐계의 가스가 반응하여 Al-Cl 등의 화합물을 만든다. 이 Al-Cl 화합물은 승화하여 다시 에칭 처리실 내로 비산하는 경우와, 기재 표면에 머무는 것이 있다. Al-Cl 화합물은 Y2O3 등의 금속 산화막으로 이루어지는 용사막 과, 용사막으로 피복되어 있는 기재와의 경계면에 퇴적되기 때문에, 부식이 진행되어 기재의 부식과 함께 용사막이 박리되는 경우가 있다. 그 결과, 에칭 처리실 내벽의 용사막이 박리된 부분의 기재가, 에칭 프로세스에서 사용하는 가스에 의하여 부식되어, 다량의 이물을 발생하게 된다. 또한 발생한 이물은 에칭 프로세스 중에 반도체소자용 웨이퍼 표면에도 퇴적되어 에칭에 의해 제작하는 반도체장치 등의 배선 불량의 원인이 된다.
다음에 특허문헌 2에서는 알루마이트 피막의 두께를 20㎛-30㎛로 하는 예가 들어져 있다. 그러나 알루미늄 기재 위에 이와 같은 두꺼운 알루마이트 피막을 형성하면, 그 피막 표면에 균열이 발생할 가능성이 크다. 이에 의하여 용사피막의 기공을 거쳐 진입하는 부식성 가스나 생성물에 의해 알루마이트 피막 나아가서는 아래쪽의 알루미늄 기재가 손상된다는 문제가 생긴다.
또, 특허문헌 3에서는 알루미나 기재(세라믹스)의 표면을, 직접 또는 미리 샌드 블라스트 등으로 처리한 후에 케미컬 에칭함으로써 상기 표면 거칠기를 형성하고 있다. 그러나 특허문헌 3의 구성도, 상기 특허문헌 1에 기재된 예와 마찬가지로 Y2O3이나 YAG 등의 용사피막으로부터 진입하는 부식성 가스나 생성물에 의한 하층의 손상은 피할 수 없다.
본 발명의 목적은 에칭 처리실 내벽 등의 기재의 부식을 억제함으로써 용사막의 박리를 저감함과 동시에, 용사피막에 기인하는 이물량의 저감을 행할 수 있는 플라즈마 에칭장치 및 플라즈마처리실 내벽의 형성방법을 제공하는 것에 있다.
본 발명의 다른 목적은, 에칭 프로세스에서 사용하는 할로겐계의 가스에 의한 에칭 처리실 내벽 등의 부식을 저감한 플라즈마 에칭장치 및 플라즈마처리실 내벽의 형성방법을 제공하는 것에 있다.
본원에 있어서 개시되는 발명 중 대표적인 것의 개요를 간단하게 설명하면 이하와 같다.
플라즈마를 이용하여 처리실 내에서 피처리물을 에칭처리하는 플라즈마 에칭 처리장치에 있어서, 플라즈마가 접촉하는 처리실 내벽을 피복하는 용사피막과, 상기 처리실 내벽 기재의 조면(粗面) 처리된 표면과 상기 용사피막과의 사이에 형성된 5㎛ 이하의 두께의 배리어막을 가지는 것을 특징으로 하는 플라즈마 에칭장치.
본 발명에서는 에칭 처리실 내벽 부재의 표면에, 용사막의 앵커효과를 가지게 하기 위한 블라스트처리 등의 조면처리를 실시한 후에, 양극 산화막 처리 등에 의해 5㎛ 이하의 얇은 배리어막을 배치하고, 이 박막 위에 내플라즈마성이 높은 세라믹스 등의 용사막을 부착함으로써 달성된다.
상기 배리어막, 예를 들면 양극 산화피막을 얇게 함으로써 이 배리어막의 위에 용사막을 부착하여도 용사막에는 충분한 앵커효과가 얻어져 용사막이 박리되지는 않는다. 또, 배리어막을 얇게 함으로써 내열성도 확보되어, 배리어막의 위에 용사막을 부착하여도 배리어막에 균열이 발생되는 일은 없다. 그 결과, 할로겐계의 프로세스 가스가, 용사막 중을 확산에 의하여 진행하여도 에칭 처리실 내벽 부재의 기재와 용사막의 사이에 배치한 배리어막에 의하여 기재에 도달하는 것을 저 지한다.
이 부식방지의 배리어막은, 기재가 알루미늄 또는 알루미늄 합금인 경우는, 양극 산화막, 도금막, 스퍼터막 및 CVD 막 중 어느 하나를 생각할 수 있다. 기재가 스테인리스강인 경우는, 도금막, 스퍼터막 및 CVD 막 중 어느 하나를 생각할 수 있다.
본 발명은 에칭 처리장치에 있어서, 플라즈마에 면하는 에칭 처리실 내벽 및/또는 에칭 처리실 내 부품(이하, 단지 에칭 처리실 내벽 또는 처리실 내벽)의 표면을 피복하는 용사막의 박리방지에 관한 것이다.
이하, 본 발명의 일 실시예를 도 1 내지 도 7에 의하여 설명한다.
도 1은 본 발명의 일 실시예에 관한 에칭 처리장치의 단면도이다. 도 1에 나타내는 에칭 처리장치는, 진공용기 내에 설치된 하우징(105a∼105c)으로 구성되는 처리실(100)과, 전자파를 방사하는 안테나(101)와, 처리실(100) 내에 있어서 반도체 웨이퍼(W) 등의 피처리체를 탑재하는 유지 스테이지(130)를 구비하고 있다. 유지 스테이지(130)는 정전흡착 전극이라고도 불리우고 있다. 안테나(101)는 진공용기의 일부를 구성하는 하우징(105b)에 유지되고, 한쪽 끝이 석영판(114a)에 접속되어 있다. 안테나(101)의 석영판(114a)은 상부 전극을 구성하고, 하부 전극을 구성하는 유지 스테이지와는 평행하게 대향하는 형으로 설치된다. 처리실(100)의 주위에는 예를 들면 전자 코일과 요크로 이루어지는 자장 형성수단(102)이 설치되어 있다. 처리실(100)은 진공 배기계(103)에 의하여 예를 들면 10000분의 1 Pa의 압력의 진공을 달성할 수 있는 진공용기이다. 피처리체의 에칭 또는 성막 등의 처리 를 행하는 처리가스는, 도시 생략한 가스 공급수단으로부터 소정의 유량과 혼합비를 가지고 공급되어 샤워 플레이트(114b)를 거쳐 처리실(100) 내로 도입되어, 하우징(105c)에 접속된 진공 배기계(103)와 배기 조정수단(104)에 의해 처리실(100) 내의 처리 압력이 제어된다. 일반적으로 에칭 처리장치에서는 에칭 중의 처리압력을 0.1 Pa 내지 10 Pa 이하의 범위로 조정하여 사용하는 경우가 많다.
안테나(101)의 다른쪽 끝에는, 매칭회로(122)를 거쳐 안테나 전원(121)이 접속된다. 안테나 전원(121)은 300 MHz 내지 1 GHz의 UHF대 주파수의 전력을 공급하는 것으로, 본 실시예에서는 안테나 전원(121)의 주파수를 450 MHz로 하고 있다. 유지 스테이지(130)에는 정전흡착용 고전압 전원(106)과, 예를 들면 200 kHz 내지 13.56 MHz 범위의 바이어스 전력을 공급하는 바이어스 전원(107)이, 매칭회로(108)를 거쳐 각각 접속된다. 또 유지 스테이지(130)에는 온도제어용 온도조절 유닛(109a)이나 전열가스 공급유닛(109b)이 접속된다. 또한 본 실시예에서는 바이어스 전원(107)의 주파수를 2 MHz로 하고 있다.
이와 같은 에칭 처리장치에서는 안테나(101)를 거쳐 공급되는 고주파의 전계와 자장 코일에 의하여 형성되는 자계와의 상호작용에 의하여 처리실(100) 내로 도입된 에칭 가스가 효율좋게 플라즈마화(136)된다. 또 에칭 처리에 있어서는 웨이퍼(W)에 입사하는 플라즈마 중의 이온의 입사 에너지를 유지 스테이지(130)에 인가한 고주파 바이어스에 의해 제어함으로써 원하는 에칭형상을 얻을 수 있는 것이다.
본 실시예에서는 에칭 처리실(100) 내부의 벽 부재로서 샤워 플레이트(114b) 이외의 부분, 즉 에칭 처리실(100)의 하우징(105a) 내에 착탈 자유롭게 유지되는 원통의 벽이나, 하우징(105c), 유지 스테이지(130)의 하부 주위의 커버(131), 그외 에칭 처리실 내에 위치하여 플라즈마에 노출되는 부품 표면의 벽을, 이하 단지 에칭 처리실 내벽이라 부른다.
다음에 이 처리실(100)의 에칭 처리실 내벽의 구성에 대하여 상세하게 기술한다. 도 2에 본 발명에 관한 에칭 처리장치의 처리실(100)의 단면을 상세하게 나타낸다. 처리실(100)은 주로 알루미늄 합금제의 내경 600 mm의 원통형상의 챔버(105a)와, 이 원통 챔버(105a) 내에 착탈 가능하게 유지되어 볼트(142)로 원통 챔버(105a)에 체결된 원통형상의 어스 커버(143)와, 두께 25 mm의 석영제의 원판으로 이루어지는 석영판(114a) 및 석영판(114a) 바로 밑에 위치하는 원판형상의 샤워 플레이트(114b)로 구성된다.
도 4에 나타내는 바와 같이, 어스 커버(143)의 기재(1430) 표면에는 플라즈마와 접촉하는 면에 두께 0.01 mm 이상이고, 순도 99.9 퍼센트의 Y2O3을 용사하여 용사막(1432)이 형성되고, 기재(1430) 전체의 표면에 양극 산화피막(1431)이 형성되어 있다. 이 표면의 양극 산화피막(1431)은, 기재(1430) 전체의 표면을 양극 산화 처리하여 미리 정한 두께까지 막을 형성하여 얻어진 것이다. 또 용사막(1432) 이외의 그 밖의 부분에는 양극 산화피막(1431)의 처리가 기재(1430)의 표면에 노출되어 있다. 용사피막의 재료로서는 Y2O3에 한정된 것이 아니라, YF3나 Yb2O3 등의 내플라즈마성이 우수한 세라믹스 재료를 선정하면 된다.
도 2로 되돌아가 어스 커버(143)와 챔버(105a)는 O 링(145a, 145b)으로 시일되고, 그것들 사이의 간극(141)에는 온도 조절장치(146)에 의하여 헬륨 가스가 공 급된다(압력 : 1000 Pa 정도). 챔버(105a)의 바깥 둘레면에는 온도 조절용 히터(147)가 설치되고, 또한 챔버(105a)의 하부에는 온도 조절용 냉매가 순환하는 유로(148)가 형성되어 있다. 히터(147) 및 유로(148)를 순환하는 냉매도 온도조절장치(146)에 의해 제어된다. 또한 볼트(142)로 체결된 챔버(105a)와 어스 커버(143)의 간극(141)에 열전도성이 뛰어난 부재(예를 들면 질화 알루미늄)를 끼워 넣어도 된다. 이와 같은 형상의 처리실에서는 어스 커버(143)가 챔버(105a)와 다른 부재로 되어 있기 때문에, 어스 커버(143)를 간단하게 교환하는 것이 가능하여 클리닝 및 메인티넌스를 행하는 것도 용이하다.
뒤에서 상세하게 설명하는 바와 같이, 본 실시예에서는 어스 커버(143), 하부 하우징(105c) 및 유지 스테이지(130)의 하부 주위의 스테이지 커버(131)는 어느 것이나 에칭 처리실 내벽으로서 알루미늄의 기재 표면에 배리어막이 형성되고, 그 위에 YF3나 Yb2O3, Y2O3 등의 내플라즈마성이 뛰어난 세라믹스 재료로 이루어지는 용사막이 형성되어 있다.
본 실시예에 나타낸 에칭 처리장치에서는 전자 코일과 요크로 이루어지는 자장 형성수단(102)에 의하여 도 2에 있어서 나타내는 바와 같은 자력선(135)이 형성된다. 그 때문에 안테나로부터 인가된 고주파와 전자 코일과 요크로 이루어지는 자력선(135)에 의하여 샤워 플레이트(114b)의 바로 밑에는 밀도가 높은 플라즈마(136)가 생성된다. 또한 생성된 플라즈마는 자력선(135)에 의하여 구속되기 때문에 자력선(135)의 연장상에 있는 어스 커버(143) 표면의 플라즈마의 밀도도 높아진다. 이때 에칭 처리장치에서는 바이어스 전력을 공급하는 바이어스 전원, 유지 스 테이지(130), 플라즈마(136), 어스 커버(143) 표면과의 사이에서 전기회로가 형성된다. 이 회로에서는 플라즈마 밀도가 높은 어스 커버 표면이 접지면이 된다. 접지면인 어스 커버(143)의 표면에서는 플라즈마 중의 전자가 고속으로 이동하기 때문에 남겨진 이온에 의해 전장, 즉 이온 시스가 안정되게 생긴다. 따라서 어스 커버(143)에서는 이온 시스(전장)에 의해 플라즈마 중의 이온이 입사되기 때문에 가열된다. 그 때문에 어스 커버(143)의 표면에 형성한 피막이 가열된다. 어스 커버(143)에서는 알루미늄 기재와 알루미늄 기재 위를 피복한 용사막의 팽창율의 차이에 의하여 용사막이 박리됨에 의한 이물의 발생이 염려된다.
또, 어스 커버(143)의 표면을 피복한 용사막은, 용사재료로 완전하게 충전하는 것이 곤란하여 용사막 중에 일정한 기공을 보유하고 있다. 용사막 중의 기공에는 에칭 프로세스에서 사용하는 할로겐계의 프로세스 가스가 용이하게 침입한다. 용사막 중으로 침입한 프로세스 가스는 용사막 중의 기공을 확산에 의해 진행하여 기재에 도달하기 때문에, 플라즈마에 접촉하는 표면을 용사막으로 피복한, 알루미늄 합금으로 이루어지는 에칭 처리실 및 에칭 처리실 내 부품은, 용사피막과 알루미늄 기재의 사이에서 부식되는 경우가 있다.
그런데 에칭 처리장치에서는, 에칭 특성을 안정시키기 위하여 처리실 내의 벽면의 온도변화를 작게 하는 것이 중요하다. 도 3에 웨이퍼 처리 매수와, 에칭형상의 치수 및 어스 커버 표면의 온도의 관계를 나타낸다. 상기 도면에 나타내는 에칭형상이란, 에칭부의 홈 간격의 치수를 나타낸 것이다. 상기 도면으로부터 에칭 처리 매수의 증가에 따라 치수가 안정되는 것을 알 수 있다. 한편, 어스 커버 표면의 온도는 처리 매수의 증가에 따라 높아지는 것을 알 수 있다. 이와 같이 에칭형상의 치수가 변화되는 이유는, 주로 어스 커버의 표면으로부터 방출되는 아웃 가스(수분 등)나 어스 커버 표면에서의 라디칼 등의 반응이, 어스 커버의 온도에 따라 다르기 때문이다. 따라서 에칭 처리장치에서는 어스 커버 벽면의 온도를 일정하게 유지하는 것이 아주 중요하다. 지금까지의 검토에 의하면, 수분 등의 방출 등을 고려하여 어스 커버 표면의 온도는 100℃ 이상으로 하는 것이 바람직한 결과가 얻어지고 있다.
이상과 같은 본 실시예의 에칭 처리장치에서는 에칭 등의 처리를 행하기 전의 어스 커버(143)는, 히터(147)에 의해 소정의 온도로 제어되고, 에칭 등의 처리 중에서는 플라즈마로부터의 입열과 냉매에 의하여 소정의 온도로 제어된다. 이와 같은 온도 조정기구는, 본 방법에 한정된 것이 아니라, 예를 들면 도 4에 나타내는 바와 같이 어스 커버 내에 냉매유로를 설치하고 냉매를 유입하여 소정의 온도로 관리하여도 된다. 또한 안테나 전원 : 1000 W 정도, 바이어스 전원 500 W일 때, 냉매의 온도를 80℃ 정도로 설정하면 어스 커버의 온도는 120℃ 정도로 유지할 수 있는 것을 확인하고 있다. 또 가스(예를 들면 공기나 질소)를 유입하는 경우는, 에칭처리로 어스 커버를 소정의 온도까지 승온하여, 소정의 온도가 된 후, 가스를 유입하면 된다.
에칭 처리장치에서는 처리실을 구성하는 부재로서 알루미늄 합금, 그 플라즈마와 접촉하는 표면에는 양극 산화처리(알루미 알루마이트, Al2O3)를 실시하는 것이 일반적이다. 또 더 한층의 내플라즈마성이 요구되는 경우는, 양극 산화피막 처 리 뿐만 아니라, 내플라즈마성이 뛰어난 세라믹스 등의 용사막을 플라즈마처리실 표면에 형성시키는 것이 일반적이다. 플라즈마처리실 표면에 형성시키는 용사피막은 반용융의 입자를 피용사 부재 표면에 고속으로 부착, 적층시키기 때문에 층형상이 되어, 그 피막 내부 및 피막과 기재의 경계(공동)에 수분이 흡착하지 않도록 공동을 메우는 처리(봉공처리)를 실시한다. 에칭 처리장치에서는 이와 같은 피막을 형성하여 장기 안정성을 확보하고 있으나, 이와 같은 피막에 균열이 생기면 플라즈마 특성이 변화되어 에칭형상에 불균일이 생긴다. 또한 에칭 특성 뿐만 아니라, 균열 선단의 기재(알루미늄 합금)가, 플라즈마 중의 프로세스 가스에 접촉하여 반응한 경우, 이물의 발생원이 된다. 또 할로겐계의 프로세스 가스는 에칭 프로세스 중에 용사막 중을 확산에 의하여 진행하여 알루미늄 기재에 도달한다. 이것에 의하여 알루미늄 기재가 부식되어 용사막에 균열이 발생하는 경우도 있다. 또한 알루미늄 기재가 부식된 상태에서 에칭 처리실을 대기 개방하면, 부식된 알루미늄의 할로겐 화합물이 대기 중의 수분을 흡수함으로써 체적 팽창되어 알루미늄 기재를 피복한 용사막을 박리하는 경우도 있다. 따라서 에칭 처리장치의 이물량을 저감하기 위해서는 용사피막의 균열발생을 억제하는 것이 중요하고, 용사막 중을 확산에 의해 진행하는 할로겐계의 프로세스 가스를 기재인 알루미늄 합금에 접촉시키지 않도록 양극 산화막을 배치하는 것이 중요하다.
이 모식도를 도 4에 나타내고, 국부적으로 확대하여 도 5에 나타낸다. 이 알루미늄 기재와 용사막의 사이에 배치한 양극 산화막에 균열 등이 발생하면 알루미늄 기재가 부식되기 때문에, 양극 산화피막에 균열을 발생시키지 않는 것이 중요 하다.
스테이지 커버나 하부 하우징에 대해서도 동일한 과제가 있다. 이하, 어스 커버를 예로 본 발명에 의한 상기 과제의 해결에 대하여 설명한다.
도 5에 나타내는 바와 같이 처리실의 내벽 부재를 구성하는 알루미늄 기재(1430)의 표면이 5㎛∼10㎛의 평균 거칠기이다. 그리고 이 기재 표면에 형성된 평균거칠기 0.1㎛ 이상이고 5㎛ 이하의 양극 산화막, 즉 알루마이트로 이루어지는 배리어막(1431)과, 이 배리어막 위에 형성된 내플라즈마성 부재로서의 세라믹 용사피막(1432)을 구비하고, 이 용사피막을 플라즈마가 접촉하는 내벽 부재의 표면으로 하고 있다.
도 6을 사용하여 용사에 의하여 표면에 피막이 형성된 부재의 표면의 구조를 설명한다. 도 6은 표면에 피막이 형성된 부재의 표면의 구조의 개략을 모식적으로 나타내는 단면도이다. 이 도면에 있어서 부재 표면(600)은, 그 모재(601)인 알루미늄 등의 도전성을 가지는 재료의 합금으로 이루어지는 부재에 용사에 의한 피막이 형성된 표면이고, 그 모재(601)의 표면은 적절한 거칠기를 가지고 있다. 이와 같은 표면의 거칠기는 용사에 의해 내뿜어진 피막 재료의 용사 입자와의 사이의 결합을 크게 하기위하여 형성되어 있다. 이와 같은 거칠기의 값의 범위는, 평균 거칠기 Ra = 5㎛∼10㎛가 일반적이다.
도 6에 나타내는 바와 같이 용사에 의해 형성되는 용사피막(604)은 납작하게 찌그러진 복수의 용사입자(602)가 서로 위치를 어긋나게 하면서 겹침으로써 형성되어 있다. 이들 복수의 용사입자(602)의 사이에는 기공(603)이나 산화물 등의 개재 물(605)이 존재하고 있다. 기공(603)은 그 안쪽에 처리 가스에 함유된 부식성 가스나 플라즈마로 여기된 반응성 물질의 입자가 들어가 용사피막(602)의 부식이나 화합하여 열화를 일으키게 하는 원인이 되는 것이다. 한편, 상기 모재(601) 표면의 거칠기에 의한 요철이 표면에 존재함으로써 오목부에 용사입자(602)가 들어 가거나 볼록부 선단이 용사입자(602)에 박히거나 하여, 용사입자(602)와 모재(601)의 표면이 기계적으로 걸어 맞춰지는 구성으로 되어 있다.
일반적으로 용사피막(604)의 모재(601)에 대한 부착은, 모재(601) 표면의 요철과 용사입자(602) 사이의 기계적 결합(앵커 효과), 야금적 결합, 반데어 월스력과 같은 분자간 인력에 의한 물리적 결합 등과의 복합적 작용에 의한다고 생각된다. 본 실시예에 나타내는 바와 같이 모재(601)가 알루미늄 합금이고 또한 용사되는 재료가 세라믹스재인 경우에는 모재(601)와 용사재료에 의한 용사입자(602)와의 사이의 결합은 주로 앵커효과에 의한 것이라고 예상된다.
상기한 바와 같이 용사피막(604) 내의 기공(603)이나 용사입자(602) 끼리의 경계에 큰 부식성 입자나 반응성 입자가 들어 가면, 용사피막(604)의 열화가 진행되어 모재(601)가 부식되거나 열화되거나 하게 된다. 이것을 억제하기 위하여 알루미늄 합금에 의한 모재(601) 표면과 용사피막(604)과의 사이에 다른 부재의 피막을 배치하는 경우에, 이 다른 부재의 피막의 표면이, 용사피막과의 기계적 결합인 앵커효과를 손상하지 않는 요철을 구비하고 있을 필요가 있다. 앵커효과가 손상되면 가령 표면을 다른 부재로 피복하여도 용사피막(604)이 벗겨지거나 손상되거나 하여, 오히려 큰 영역의 표면이 부식성의 입자에 노출된다.
본 실시예에서는 어스 커버를 구성하는 기재의 표면에 얇은 양극 산화막으로 이루어지는 배리어막, 예를 들면 모재가 알루미늄 합금인 경우에는 알루마이트의 막을 형성하고, 그 표면에 용사피막을 형성함으로써 상기 앵커효과를 확보할 수 있게 하고 있다. 단, 모재(601) 표면의 피막을 양극 산화로 형성하는 경우에는, 모재(601) 표면 거칠기 그대로의 볼록부에서는 피막 두께가 작아지고, 오목부에서는 두꺼워지는 경향이 있다. 발명자들은 이 때문에 양극 산화피막의 두께가 두꺼워지면 요철의 크기, 표면 거칠기의 크기가 저하된다는 식견을 얻었다. 발명자들은 또한 이와 같은 양극 산화피막을 형성하고, 또한 앵커효과를 필요 이상으로 저감하지 않는 양극 산화막의 두께는, 5㎛ 이하이고 0.1㎛ 이상인 것이 필요하다는 식견을 얻었다. 본 발명에 관한 상기 실시예는 이와 같은 식견에 의거하여 상기된 것이다.
즉, 알루미늄 합금에 세라믹스를 용사하는 경우, 모재의 표면을 블라스트 등으로 거칠어지게 하나, 통상 그 거칠기는 Ra : 5∼10 이라고 생각된다. 그러나 본 발명과 같이 알루미늄 모재의 표면을 이 거칠기로 처리하고, 또한 표면에 알루미늄 합금의 방식효과를 가지게 하기 위하여 양극 산화피막처리하는 경우, 위에 붙는 막은 원래의 볼록부에서는 얇아지고, 원래의 오목부에서는 두꺼워진다. 따라서 거칠기 Ra : 5∼10를 유지하기 위하여 양극 산화피막의 두께를 0.1㎛∼5.0㎛로 할 필요가 있다.
이와 같이 본 실시예는 에칭 처리실 내벽의 기재 예를 들면 어스 커버와, 용사막과의 사이에, 배리어막으로서 얇은 부식 방지층을 배치한 것이다. 이것에 의 하여 에칭 프로세스에서 사용하는 할로겐계의 프로세스 가스가, 에칭 처리실 내벽의 표면을 피복한 용사막 중을 확산에 의해 진행하여도 배리어막으로 가스의 진행이 정지되어 에칭 처리실 내벽에 도달하는 것을 억지할 수 있다.
특히, 에칭 처리실 내벽의 알루미늄 기재와, 플라즈마에 접촉하는 용사막과의 사이에 배치하는 배리어막을 5㎛ 이하의 양극 산화막으로 한 것으로 에칭 처리실 내벽을 용사 처리할 때에, 열충격 또는 세라믹스 입자의 충격에 의해 배리어막에 균열은 발생하지 않고, 배리어막의 박리도 일어나지 않는다. 양극 산화피막은 250℃ 이상으로 가열하여도 균열이 발생하지 않는다. 또 배리어막은 에칭 처리실 내벽을 블라스트처리, 연삭처리 또는 연마처리 등으로 조면화 처리한 후에 성막하고 있으나, 0.1㎛∼5㎛로 얇기 때문에, 조면화 처리한 표면 상태를 재현하는 것이 가능하고, 용사막의 에칭 처리실 내벽에 대한 밀착 강도도 높다.
따라서 할로겐계의 프로세스 가스를 사용하는 플라즈마 에칭장치의 에칭 처리실 내벽의 용사막은, 할로겐계의 프로세스 가스가 용사막의 기공으로부터 침입하여 기재가 부식됨으로써 박리되는 일은 없다. 그 결과, 에칭 처리실 내의 용사막 기인의 이물이나, 기재 기인의 이물은 발생하지 않게 된다.
이것에 의하여 에칭 처리하는 웨이퍼상의 이물 및 오염량을 저감하는 것이 가능하게 되어 에칭 처리한 웨이퍼의 불량율을 저감할 수 있다.
이와 같이 에칭 처리실 내벽의 알루미늄 또는 알루미늄 합금으로 이루어지는 기재와, 플라즈마에 접촉하는 용사막의 사이에 배리어막을 배치함으로써 에칭장치 자체의 생산성을 향상시키는 것이 가능하게 된다.
또한 어스 커버 내의 냉매유로에 냉매를 흘려, 어스 커버의 온도를 예를 들면 120℃ 정도의 소정 온도로 유지하도록 제어함으로써 에칭 처리실 내벽 및 에칭 처리실 내 부품에 가해지는 열응력으로 용사막이 박리될 가능성을, 더 한층 적게 할 수 있다.
다음에 이들 피막의 균열발생에 대하여 설명한다. 본 실시예에서는 알루미늄 기재 위에 성막한 일반적인 두께 5∼50㎛의 수종류(A∼E)의 알루마이트(황산, 옥살산)의 내열온도에 대하여 평가하였다. 실험은, 20 mm × 20 mm (두께 5 mm)의 알루미늄 시료의 표면에 상기 피막을 실시하고, 그후 고정밀도로 온도조정을 할 수 있는 핫플레이트 위에서 가열하면서 시료 표면의 균열의 발생을 현미경을 사용하여 조사하였다. 그 결과를 도 7에 나타낸다. 상기 도면에 나타내는 바와 같이 양극 산화피막의 종류에 관계없이 5㎛ 이하의 막두께로 한 경우, 알루미늄 기재를 250℃ 이상의 고온으로 가열하여도 양극 산화피막에는 균열이 발생하고 있지 않다. 이와 같이 양극 산화피막의 막두께를 5㎛ 이하로 하고, 그 위에 내플라즈마성이 우수한 세라믹 피막을 용사함으로써, 플라즈마처리실 및 처리실 내 부품의 표면을 피복하는 용사피막에 균열이 발생하지는 않는다. 또 용사피막과 알루미늄 기재의 사이에 균열이 없는 양극 산화피막을 배치하고 있기 때문에, 용사막 중을 확산에 의해 진행하는 프로세스 가스가 알루미늄 등으로 이루어지는 기재에 접촉하는 것을 저지하는 것이 가능하게 되어 에칭 특성 등, 안정성이 높은 플라즈마장치를 얻을 수 있다.
본 발명에 의하면, 에칭 처리실 내벽 부재를 피복한 용사막이, 부식에 의하여 기재로부터 박리된다는 것은 없어지고, 용사막의 박리를 방지한다는 목적은 달성된다.
즉, 용사막의 균열발생을 억지하는 것이 가능해져, 용사막이 비산하여 이물이 되는 일이 없다. 그 결과, 플라즈마에 의한 에칭 처리실 내벽 부재의 손상도 적고, 에칭 등의 처리를 행하는 웨이퍼상으로의 이물의 비산도 없어지기 때문에, 결함이 적은 장치의 생산성을 효율좋게 행하는 것이 가능하게 된다.

Claims (12)

  1. 플라즈마를 이용하여 처리실 내에서 피처리물을 에칭 처리하는 플라즈마 에칭 처리장치에 있어서,
    상기 처리실 내에 배치된 부재로서, 그 표면에 배치되고 용사에 의하여 형성되어 상기 플라즈마에 접촉하는 용사피막과 상기 피막의 아래쪽에 배치되어 이것에 피복되는 막으로서 양극 산화에 의하여 형성된 5 ㎛ 이하 두께의 배리어막을 가지는 부재를 구비한 것을 특징으로 하는 플라즈마 에칭장치.
  2. 제 1항에 있어서,
    상기 부재는, 상기 배리어막에 의하여 피복되는 표면이 5㎛∼10㎛의 평균 거칠기를 가지는 것을 특징으로 하는 플라즈마 에칭장치.
  3. 제 1항에 있어서,
    상기 부재는, 상기 배리어막에 의하여 피복되는 알루미늄 또는 알루미늄 합금으로 구성된 기재의 표면이 5㎛∼10㎛의 평균 거칠기를 가지고, 상기 배리어막으로서 상기 기재의 표면에 양극 산화된 알루마이트를 구비한 것을 특징으로 하는 플라즈마 에칭장치.
  4. 제 1항에 있어서,
    상기 부재는, 상기 배리어막에 의하여 피복되는 스테인리스강으로 구성된 기재의 표면이 5㎛∼10㎛의 평균 거칠기를 가지고, 상기 배리어막으로서 상기 기재의 표면에 도금막, 스퍼터막 또는 CVD 막 중 어느 하나를 구비한 것을 특징으로 하는 플라즈마 에칭장치.
  5. 제 1항에 있어서,
    상기 부재는 상기 배리어막에 의하여 피복되는 기재가, 석영으로 구성된 것을 특징으로 하는 플라즈마 에칭장치.
  6. 제 1항에 있어서,
    상기 용사피막의 재료는, Y2O3, Gd203, Yb2O3, YF3 중 어느 1 종류 또는 2 종류 이상으로 구성되는 것을 특징으로 하는 플라즈마 에칭장치.
  7. 제 3항에 있어서,
    상기 배리어막의 두께는 0.1㎛∼5㎛ 이고,
    상기 용사피막의 재료는, Y2O3또는 YF3으로 구성되는 것을 특징으로 하는 플라즈마 에칭장치.
  8. 플라즈마를 이용하여 처리실 내에서 피처리물을 에칭 처리하는 플라즈마 에칭 처리장치에 있어서,
    상기 처리실의 측벽부를 구성하는 알루미늄 또는 알루미늄 합금으로 구성된 원통형상을 구비한 챔버와,
    상기 챔버의 내부에서 착탈 가능하게 유지된 원통형상의 어스 커버를 가지고,
    상기 어스 커버가, 알루미늄 또는 알루미늄 합금으로 구성된 기재와, 상기 기재의 표면에 배치되어 양극 산화에 의하여 형성된 5㎛ 이하 두께의 알루마이트로 구성되는 배리어막과, 상기 배리어막 위에 용사에 의하여 형성된 상기 플라즈마에 면하는 용사피막을 구비한 것을 특징으로 하는 플라즈마 에칭장치.
  9. 제 8항에 있어서,
    상기 어스 커버는, 상기 기재의 전 표면에 배치된 상기 배리어막과 상기 배리어막의 상기 플라즈마에 면하는 영역을 피복하여 배치된 상기 용사피막을 구비한 것을 특징으로 하는 플라즈마 에칭장치.
  10. 플라즈마를 이용하여 처리실 내에서 피처리물을 에칭 처리하는 플라즈마 에칭 처리장치의 상기 처리실 내벽을 구성하는 상기 처리실 내 부재의 형성방법에 있어서,
    상기 부재의 상기 플라즈마에 면하는 측의 표면에 5㎛의 두께 이하의 배리어막을 형성하고, 상기 배리어막 위에 용사피막을 형성하는 것을 특징으로 하는 플라즈마처리실 내 부재의 형성방법.
  11. 제 10항에 있어서,
    상기 기재의 표면을 5㎛∼10㎛의 평균 거칠기가 되도록 블라스트처리 또는 연삭처리한 후, 상기 기재의 표면에 도금, 양극 산화, CVD 또는 PVD 중 어느 하나에 의하여 상기 배리어막을 형성하는 것을 특징으로 하는 플라즈마처리실 내 부재의 형성방법.
  12. 제 10항에 있어서,
    상기 기재가 알루미늄 또는 알루미늄 합금으로 구성되고,
    상기 배리어막으로서 5 ㎛ 이하의 양극 산화막을 형성하고,
    Y2O3, Gd2O3, Yb2O3, YF3 중 어느 1 종류 또는 2 종류 이상으로 구성되는 재료에 의해 상기 용사피막을 형성하는 것을 특징으로 하는 플라즈마처리실 내 부재의 형성방법.
KR1020060020366A 2006-03-03 2006-03-03 플라즈마 에칭장치 및 플라즈마 처리실 내 부재의 형성방법 KR100819530B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060020366A KR100819530B1 (ko) 2006-03-03 2006-03-03 플라즈마 에칭장치 및 플라즈마 처리실 내 부재의 형성방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060020366A KR100819530B1 (ko) 2006-03-03 2006-03-03 플라즈마 에칭장치 및 플라즈마 처리실 내 부재의 형성방법

Publications (2)

Publication Number Publication Date
KR20070090531A KR20070090531A (ko) 2007-09-06
KR100819530B1 true KR100819530B1 (ko) 2008-04-04

Family

ID=38688919

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060020366A KR100819530B1 (ko) 2006-03-03 2006-03-03 플라즈마 에칭장치 및 플라즈마 처리실 내 부재의 형성방법

Country Status (1)

Country Link
KR (1) KR100819530B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176787A (ja) * 2008-01-22 2009-08-06 Hitachi High-Technologies Corp エッチング処理装置及びエッチング処理室用部材
KR101108692B1 (ko) * 2010-09-06 2012-01-25 한국기계연구원 다공성 세라믹 표면을 밀봉하는 치밀한 희토류 금속 산화물 코팅막 및 이의 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100303615B1 (ko) * 1995-03-16 2001-11-30 가나이 쓰도무 플라즈마처리장치및플라즈마처리방법
KR20040048343A (ko) * 2002-11-28 2004-06-09 동경 엘렉트론 주식회사 플라즈마 처리 용기 내부재

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100303615B1 (ko) * 1995-03-16 2001-11-30 가나이 쓰도무 플라즈마처리장치및플라즈마처리방법
KR20040048343A (ko) * 2002-11-28 2004-06-09 동경 엘렉트론 주식회사 플라즈마 처리 용기 내부재

Also Published As

Publication number Publication date
KR20070090531A (ko) 2007-09-06

Similar Documents

Publication Publication Date Title
JP4856978B2 (ja) プラズマエッチング装置及び処理室の内壁の形成方法
KR102142040B1 (ko) 염소 및 불소 플라즈마 내식성을 가진 코팅된 반도체 처리 부재 및 그 복합 산화물 코팅
US20070215278A1 (en) Plasma etching apparatus and method for forming inner wall of plasma processing chamber
US10544500B2 (en) Ion assisted deposition top coat of rare-earth oxide
EP1518255B1 (en) Thermal sprayed yttria-containing coating for plasma reactor
CN110016645B (zh) 用于盖与喷嘴上的稀土氧化物基涂层的离子辅助沉积
KR100864331B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
KR100882758B1 (ko) 반도체 공정 설비내의 세륨 옥사이드 함유 세라믹 부품 및 코팅
JP2019108612A (ja) プラズマ耐食性希土類酸化物系薄膜コーティング
JP4331479B2 (ja) 半導体処理装置における高靭性ジルコニアセラミック構成要素とコーティングおよびその製造方法
WO2013084902A1 (ja) プラズマ処理装置及びプラズマ処理方法
KR20040101330A (ko) 반도체 공정 장치용의 저오염 구성부품 및 상기 구성부품제조 방법
US20080314321A1 (en) Plasma processing apparatus
WO2021167897A1 (en) Method for conditioning semiconductor processing chamber components
JP4181069B2 (ja) プラズマ処理装置
JP4098259B2 (ja) プラズマ処理装置
KR100819530B1 (ko) 플라즈마 에칭장치 및 플라즈마 처리실 내 부재의 형성방법
US20050199183A1 (en) Plasma processing apparatus
JP2006222240A (ja) プラズマ処理装置
JP2008098660A (ja) プラズマ処理装置
TW202327407A (zh) 用於電容耦合腔室的被覆部件

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130304

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140303

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150302

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160309

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170302

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180302

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190306

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20200303

Year of fee payment: 13