KR100731107B1 - 다마신 공정을 이용한 반도체 소자의 구리 금속 배선의형성 방법 - Google Patents

다마신 공정을 이용한 반도체 소자의 구리 금속 배선의형성 방법 Download PDF

Info

Publication number
KR100731107B1
KR100731107B1 KR1020050134077A KR20050134077A KR100731107B1 KR 100731107 B1 KR100731107 B1 KR 100731107B1 KR 1020050134077 A KR1020050134077 A KR 1020050134077A KR 20050134077 A KR20050134077 A KR 20050134077A KR 100731107 B1 KR100731107 B1 KR 100731107B1
Authority
KR
South Korea
Prior art keywords
copper
plating
plating layer
distance
substrate
Prior art date
Application number
KR1020050134077A
Other languages
English (en)
Inventor
홍지호
Original Assignee
동부일렉트로닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부일렉트로닉스 주식회사 filed Critical 동부일렉트로닉스 주식회사
Priority to KR1020050134077A priority Critical patent/KR100731107B1/ko
Priority to US11/617,153 priority patent/US20070151860A1/en
Application granted granted Critical
Publication of KR100731107B1 publication Critical patent/KR100731107B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/241Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/423Plated through-holes or plated via connections characterised by electroplating method

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

다마신 공정을 이용한 반도체 소자의 구리 금속 배선의 형성 방법이 개시된다. 본 방법은, (a) 반도체 기판 위의 층간 절연막에 구리를 전기화학 도금하되 도금 수조 내에서 제1 도금 거리를 유지하면서 제1 구리 도금층을 형성하는 단계와, (b) 상기 제1 구리 도금층의 표면 균일도를 측정하여 오목부의 형성 유무를 검사하는 단계와, (c) 상기 제1 구리 도금층에 상기 오목부가 형성된 경우 상기 도금 수조 내의 도금 거리를 조절하여 상기 제1 구리 도금층 위에 제2 구리 도금층을 형성하는 단계를 포함한다. 본 방법에 의하면, 구리 배선 형성 공정에서 발생되는 구리 잔류물로 인한 결함을 최소화할 수 있다.
다마신, 구리, 전기화학 도금

Description

다마신 공정을 이용한 반도체 소자의 구리 금속 배선의 형성 방법{METHOD FOR FORMING COPPER METALLIZATION LAYER IN SEMICONDUCTOR DEVICE USING DAMASCENE PROCESS}
도 1은 종래의 듀얼 다마신 공정에 의해 형성된 구리 금속 배선에 구리 잔류물이 발생한 상태를 하는 도면이다.
도 2a 내지 도 2g는 도 1에 도시한 구리 잔류물이 발생되는 과정을 설명하는 도면들이다.
도 3a 및 도 3b는 본 발명에 따른 구리 금속 배선의 형성 방법을 설명하는 도면들이다.
도 4a 및 도 4b는 도금 거리에 따른 구리 도금층의 프로파일 변화를 설명하는 도면들이다.
본 발명은 반도체 소자에 금속 배선을 형성하는 방법에 관한 것으로서, 보다 자세하게는 다마신 공정에 의하여 구리 금속 배선을 형성하는 방법에 관한 것이다.
반도체 제조 공정은 크게 실리콘 기판에 트랜지스터를 형성하는 기판 공정 (Front End of the Line, FEOL)과 배선을 형성하는 배선 공정(Back End Of the Line, BEOL)으로 구분된다. 여기서, 배선 공정은 집적 회로를 구성하는 개별 트랜지스터를 서로 연결하기 위하여 전원 공급 및 신호 전달의 통로를 실리콘 기판 위에 구현하는 공정을 말한다.
이러한 배선 공정에 높은 EM(Electro-migration) 내성을 갖는 재료인 구리(Cu)가 많이 사용되고 있다. 그런데, 구리는 식각이 용이하지 않고 공정 중에 산화되는 문제점으로 인하여, 일반적인 사진 기술을 적용하여 패터닝하기가 용이하지 않다. 대안으로서, 구리 금속 배선 형성을 위하여, 듀얼 다마신(dual damascene) 공정 기술이 개발되었다. 듀얼 다마신 공정은, 기판 위에 형성된 층간 절연막에 비아(via)와 트렌치(trench)를 형성한 후, 전기화학 도금법(Electro-Chemical Plating; ECP)을 이용하여 구리를 매립한 다음, 기판의 상면을 화학기계적 연마(Chemical Mechanical Polishing; CMP) 공정으로 평탄화시키는 공정이다.
한편, 다마신 공정을 이용한 구리 금속 배선의 제조에서, CMP 공정 이후에 구리 잔류물로 인한 결함이 발생할 수 있다. 도 1에는 CMP 공정 후에 발생한 구리 잔류물을 주사전자현미경을 통해 관찰한 이미지를 나타내었다. 도 1의 (a)는 격자 모양의 패턴(P)이 형성되어 있는데, 그 상부에 구리 잔류물(R)이 형성된 상태를 보여준다. 또한, 도 1의 (b)는 줄무늬 형성의 패턴(P)이 형성되어 있는데, 그 위에 형성된 구리 잔류물(R)로 인해 일부 패턴이 불연속적으로 관찰된다. 이러한 구리 잔류물(R)은 패턴간 단락을 형성하기 때문에 소자의 성능 및 수율을 감소시키는 주요 요인이 된다.
구리 잔류물의 발생 원인은 매우 다양한 것으로 알려져 있는데, 특히 구리 ECP 공정에서 형성되는 구리 도금층의 불균일성(Non-uniformity)에 의해서도 구리 잔류물이 발생할 수 있다. 구리 ECP 공정에서 도금액 내에 기포가 누적됨으로 인해, 공정 진행 중에 웨이퍼에 예기치 않은 전류가 유도될 수 있다. 기포에 의해 유도되는 전류는 도금 수조 내에 전계(Electric Field)가 정상적으로 형성되는 것을 방해하기 때문에, 구리 도금층의 균일도를 저해하게 된다. 특히, ECP 공정에서는 웨이퍼를 회전시키면서 도금이 진행되기 때문에, 도금액 내의 기포가 웨이퍼의 중앙 부분에 집중될 수 있다. 따라서, 웨이퍼의 중앙 부분이 가장자리 부분에 비해 얇게 도금된다.
도 2a 내지 도 2g를 참조하여, 구리 도금층의 불균일성으로 인해 구리 잔류물이 형성되는 과정을 간략히 설명한다.
먼저, 제1 층간 절연막(10)에 구리 원자의 확산을 방지하기 위한 장벽 금속층(12)을 형성하고 소정의 다마신 패턴(예컨대, 비아홀 또는 트랜치)을 형성한다. 그후, 구리 시드층(미도시)을 장벽 금속층(12) 위에 형성한 다음, ECP 공정을 수행하여 층간 절연막(10) 위에 구리 도금층(14)을 형성한다. 도 2a에는 ECP 공정에서 다마신 패턴을 충분히 채운 후 층간 절연막(10) 위로 소정의 높이까지 벌크 도금을 수행한 상태를 나타내었다. 벌크 도금(Bulk Plating)은, 다마신 패턴의 사이즈에 따라 도금 속도가 다르기 때문에, 모든 다마신 패턴이 충분히 갭필될 수 있도록 여분의 구리층을 형성하기 위해 진행된다.
만약, 도금액 내에서 웨이퍼의 중앙 부위(C)에 기포 등이 집중된다면, 도 2a 에서 보듯이, 웨이퍼의 중앙 부위(C)에 형성된 도금층의 두께는 웨이퍼의 가장자리 부위(E)에 형성된 도금층의 두께보다 얇아진다.
후속 공정인 구리 CMP 공정은, 일반적으로 벌크 도금층을 제거하는 메인 CMP 공정과, 제1 층간 절연막(10) 위에 형성된 장벽 금속층(12)을 제거하기 위한 마무리 CMP 공정으로 진행된다. 도 2b는 메인 CMP 공정을 진행한 후의 웨이퍼 표면을 개략적으로 보여주는데, 여기서 웨이퍼 중앙 부위(C)에 오목부(14a)가 형성된다. 메인 CMP 공정에서 연마 속도가 웨이퍼의 중앙 부위(C) 및 가장자리 부위(E)에서 대략 동일하기 때문에, 상대적으로 얇은 도금층이 형성된 중앙 부위(C)가 과도 연마된다. 이렇게 형성된 오목부(14a)의 프로파일은, 도 2c에서 보듯이, 마무리 CMP 공정에서도 하부의 제1 층간 절연막(10)의 프로파일로 남게된다.
다음으로, 상부 금속 배선을 형성하기 위해서는 다시 다마신 공정을 반복하여 수행하여야 한다. 따라서, 제1 층간 절연막(10) 위에 제2 층간 절연막(20)이 형성된다. 이때, 다마신 패턴을 형성할 때 식각 저지막으로 사용되는 장벽 절연막(18)이 제1 층간 절연막(10) 및 제2 층간 절연막(20) 사이에 개재된다. 도 2d에서 보듯이, 제1 층간 절연막(10)은 중앙 부위(C)에 오목부가 형성된 프로파일을 가지므로, 그 위에 형성된 제2 층간 절연막(20)의 표면도 동일한 프로파일을 가지게 된다. 따라서, 도 2e에서와 같이, 장벽 금속층(22)의 형성 및 구리 ECP 공정을 통한 상부 구리 도금층(24)의 형성 후에, 상부 구리 도금층(24)의 메인 CMP 공정을 거치면, 도 2f에서와 같이, 구리 잔류물(R)이 남을 수 있다. 구리 잔류물(R)은 장벽 금속층(22)을 제거하기 위한 마무리 CMP 공정을 거친 후에도 제거되지 않고, 도 2g 에서 보듯이, 제2 층간 절연막(20) 위에 잔존하게 된다.
지금까지 구리 CMP 공정 후에 형성된 구리 잔류물을 효과적으로 제거할 수 있는 방법이 개발되어 있지 않다. 따라서, 구리 잔류물이 형성되어 있더라도, 후속 공정을 그대로 진행할 수 밖에 없었기 때문에, 결국 소자의 성능 및 수율이 감소하게 된다.
본 발명은 상술한 문제를 해결하기 위한 것으로서, 구리 잔류물의 발생을 최소화할 수 있는 다마신 공정을 이용한 구리 금속 배선의 형성 방법을 제공하는 것을 목적으로 한다.
본 발명에 따른 다마신 공정을 이용한 반도체 소자의 구리 금속 배선의 형성 방법은, (a) 반도체 기판 위의 층간 절연막에 구리를 전기화학 도금하되 도금 수조 내에서 제1 도금 거리를 유지하면서 제1 구리 도금층을 형성하는 단계와, (b) 상기 제1 구리 도금층의 표면 균일도를 측정하여 오목부의 형성 유무를 검사하는 단계와, (c) 상기 제1 구리 도금층에 상기 오목부가 형성된 경우 상기 도금 수조 내의 도금 거리를 조절하여 상기 제1 구리 도금층 위에 제2 구리 도금층을 형성하는 단계를 포함한다.
특히, (c) 단계에서, 오목부가 기판의 중앙 부위에 형성된 경우에는, 제2 구리 도금층을 형성할 때 제1 도금 거리보다 짧은 도금 거리로 조정한다. 반대로, 오목부가 기판의 가장 자리 부위에 형성된 경우에는, 제2 구리 도금층을 형성할 때 제1 도금 거리보다 긴 도금 거리로 조정한다. 여기서, 도금 거리는 도금 수조 내에 배치된 구리 애노드(Anode) 및 기판 사이의 거리를 말한다.
이하에서는 첨부한 도면을 참조하여 본 발명에 따른 구리 금속 배선 형성 방법의 바람직한 실시예를 설명한다.
도 3a에서 보듯이, 층간 절연막(10) 위에 구리 원자의 확산을 방지하기 위한 장벽 금속층(12)을 형성한 후, 구리 시드층(미도시)을 장벽 금속층(12) 위에 형성한 다음, ECP 공정을 수행하여 층간 절연막(10) 위에 구리 도금층(14)을 형성한다. 도 2a를 통해 설명하였듯이, 만약 도금 수조 내에서 웨이퍼의 중앙 부위(C)에 기포 등이 집중된다면, 웨이퍼의 중앙 부위(C)에 형성된 도금층의 두께는 웨이퍼의 가장자리 부위(E)에 형성된 도금층의 두께보다 얇아진다. 따라서, 구리 도금층(14)에는 오목부(14a)가 형성된다.
한편, 구리 ECP 공정은, 도금액이 수용된 도금 수조 내에서 수행된다. 도 4a 및 도 4b에는, 도금액(110)이 수용된 도금 수조(100) 내에 기판(W)이 배치된 상태를 도시하였다. 도 4a에서 보듯이, 만약 도금 수조(100)에 배치된 구리 애노드 전극(120)과 기판(W) 사이의 거리, 즉 도금 거리가 짧다면, 애노드 전극(12)과 기판(W) 사이의 전계(Electric Field)는 화살표(130a)와 같은 형태로 형성된다. 이와 같이 도금 거리가 짧은 경우에는 기판(W)의 중앙 부위에 보다 강한 전계가 형성되므로 구리 원자가 주로 기판의 중앙 부위에 도금된다. 따라서, 기판 위에 형성되는 구리 도금층(140a)은 기판의 가장자리 보다 중앙에서 더 두껍게 형성된다.
반대로, 도 4b에서 보듯이, 만약 도금 거리가 상대적으로 긴 경우에는, 기판 의 가장 자리에 더 강한 전계가 형성되므로, 구리 원자는 주로 가장자리 부위에 도금된다. 따라서, 기판 위에 형성된 구리 도금층(140b)은 기판의 중앙 보다 가장자리에서 더 두껍게 형성된다.
최적화된 도금 거리를 측정하여 ECP 공정을 수행할 수도 있지만, 도금 수조(100) 내에서 도금액(110)이 순환되고 또한 ECP 공정 동안에 발생되는 기포로 인해 전계가 비정상적으로 형성될 수 있다. 따라서, 특정한 도금 거리를 유지하더라도, 기판 위에 형성되는 구리 도금층이 항상 균일하게 형성되지는 못한다. 따라서, 도 3a에서 보듯이, 오목부(14a)가 구리 도금층(14)에 형성되는 것을 완전히 차단할 수는 없다.
그러나, 기판의 중앙 부위(C)에 오목부(14a)가 형성되어 있다면, 도금 거리에 따른 구리 도금층의 프로파일 변화를 이용하여 구리 도금층의 균일도를 개선할 수 있다. 만약 도 3a에서 실시한 구리 도금층(14)이 특정 도금 거리로 유지되면서 형성된 것이라면, 도금 거리를 조절하여 전기화학 도금을 수행함으로써 제1 구리 도금층(14) 위에 2차 구리 도금층(15)을 형성한다(도 3b 참조).
보다 자세히 설명하면, 제1 구리 도금층(14)을 형성한 후 면저항 측정장치를 이용하여 제1 구리 도금층(14)의 면저항을 측정함으로써, 구리 도금층의 표면 균일도를 측정하여 오목부(14a)의 형성 유무를 판별한다. 이때, 오목부(14a)의 형성 유무는 도금 수조 내의 도금액의 유량, 즉 구리 애노드 전극(120)과 기판(W) 부근에서 유량 센서를 이용하여 도금액(110) 유속의 변동을 실시간으로 측정하거나, 구리 애노드 및 기판 사이에 형성되는 전계, 즉 애노드 전극(120)과 기판(W) 사이에서 전속밀도의 변동을 측정하여, 유속의 변동이 검출되거나 전속밀도의 변동이 검출되면 오목부(14a)가 형성된 것으로 예측할 수도 있다. 만약 최초 실시한 제1 구리 도금층을 제1 도금 거리로 유지하면서 형성하였다면, 2차 도금에서는 제1 도금 거리보다 짧은 도금 거리로 조정하여 수행한다. 이 경우, 도 4a에서 보듯이, 기판의 중앙 부분에 더 많은 구리 원자가 도금될 것이므로, 제1 구리 도금층에 형성된 오목부를 보상할 수 있다. 따라서, 균일도가 향상된 구리 도금층을 형성할 수 있으므로, 도 2a 내지 도 2g에서 설명한 구리 잔류물이 남지 않게 된다. 반대로, 제1 도금 거리가 상대적으로 긴 경우, 기판의 가장자리에서 오목부가 발생할 수도 있다. 이 경우에는 제1 도금 거리보다 긴 도금 거리로 조정하여 2차 도금을 실시하면 된다.
본 발명에 따르면, 구리 배선 형성 공정에서 발생되는 구리 잔류물로 인한 결함을 최소화할 수 있다. 따라서, 반도체 소자의 수율이 보다 향상되며, 아울러 소자의 제조 비용을 절감할 수 있다. 본 발명에 따른 구리 금속 배선의 형성 방법은, 듀얼 다마신 공정 뿐만 아니라 싱글 다마신 공정에도 적용될 수 있다.
지금까지 본 발명의 바람직한 실시예에 대해 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 본질적인 특성을 벗어나지 않는 범위 내에서 변형된 형태로 구현할 수 있을 것이다. 그러므로 여기서 설명한 본 발명의 실시예는 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 하고, 본 발명의 범위는 상술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함되는 것으로 해석되어야 한다.

Claims (4)

  1. 다마신 공정을 이용한 반도체 소자의 구리 금속 배선의 형성 방법으로서,
    (a) 반도체 기판 위의 층간 절연막에 구리를 전기화학 도금하되 도금 수조 내에서 제1 도금 거리를 유지하면서 제1 구리 도금층을 형성하는 단계와,
    (b) 상기 제1 구리 도금층의 표면 균일도를 측정하여 오목부의 형성 유무를 검사하는 단계와,
    (c) 상기 제1 구리 도금층에 상기 오목부가 형성된 경우 상기 도금 수조 내의 도금 거리를 조절하여 상기 제1 구리 도금층 위에 제2 구리 도금층을 형성하는 단계를 포함하는 구리 금속 배선의 형성 방법.
  2. 제1항에서,
    상기 (c) 단계에서, 상기 오목부가 상기 기판의 중앙 부위에 형성된 경우 상기 제1 도금 거리보다 짧은 도금 거리로 조정하여 상기 제2 구리 도금층을 형성하는 것을 특징으로 하는 구리 금속 배선의 형성 방법.
  3. 제1항에서,
    상기 (c) 단계에서, 상기 오목부가 상기 기판의 가장 자리 부위에 형성된 경 우 상기 제1 도금 거리보다 긴 도금 거리로 조정하여 상기 제2 구리 도금층을 형성하는 것을 특징으로 하는 구리 금속 배선의 형성 방법.
  4. 제1항에서,
    상기 도금 거리는 상기 도금 수조 내에 배치된 애노드(Anode) 및 상기 기판 사이의 거리인 것을 특징으로 하는 구리 금속 배선의 형성 방법.
KR1020050134077A 2005-12-29 2005-12-29 다마신 공정을 이용한 반도체 소자의 구리 금속 배선의형성 방법 KR100731107B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020050134077A KR100731107B1 (ko) 2005-12-29 2005-12-29 다마신 공정을 이용한 반도체 소자의 구리 금속 배선의형성 방법
US11/617,153 US20070151860A1 (en) 2005-12-29 2006-12-28 Method for forming a copper metal interconnection of a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050134077A KR100731107B1 (ko) 2005-12-29 2005-12-29 다마신 공정을 이용한 반도체 소자의 구리 금속 배선의형성 방법

Publications (1)

Publication Number Publication Date
KR100731107B1 true KR100731107B1 (ko) 2007-06-21

Family

ID=38223246

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050134077A KR100731107B1 (ko) 2005-12-29 2005-12-29 다마신 공정을 이용한 반도체 소자의 구리 금속 배선의형성 방법

Country Status (2)

Country Link
US (1) US20070151860A1 (ko)
KR (1) KR100731107B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7582558B2 (en) * 2006-07-14 2009-09-01 Intel Corporation Reducing corrosion in copper damascene processes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567300A (en) 1994-09-02 1996-10-22 Ibm Corporation Electrochemical metal removal technique for planarization of surfaces
KR20020022617A (ko) * 2000-09-19 2002-03-27 이데이 노부유끼 연마 방법, 연마 장치, 도금 방법 및 도금 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6746589B2 (en) * 2000-09-20 2004-06-08 Ebara Corporation Plating method and plating apparatus
US6866763B2 (en) * 2001-01-17 2005-03-15 Asm Nutool. Inc. Method and system monitoring and controlling film thickness profile during plating and electroetching

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567300A (en) 1994-09-02 1996-10-22 Ibm Corporation Electrochemical metal removal technique for planarization of surfaces
KR20020022617A (ko) * 2000-09-19 2002-03-27 이데이 노부유끼 연마 방법, 연마 장치, 도금 방법 및 도금 장치

Also Published As

Publication number Publication date
US20070151860A1 (en) 2007-07-05

Similar Documents

Publication Publication Date Title
KR100641502B1 (ko) 반도체 소자 제조시 듀얼 다마신 공정을 이용한 콘텍형성방법
US6489240B1 (en) Method for forming copper interconnects
US20030221966A1 (en) Method of electroplating copper over a patterned dielectric layer
US11171064B2 (en) Metalization repair in semiconductor wafers
KR100720515B1 (ko) 국부적 장벽 금속층이 형성된 구리 금속 배선의 형성 방법
US20020115283A1 (en) Planarization by selective electro-dissolution
US20020192944A1 (en) Method and apparatus for controlling a thickness of a copper film
JP2005500687A (ja) 平面化法と電解研磨との組み合わせを使用する半導体構造物の形成
CN111261585B (zh) 电化学镀系统和工艺执行方法、形成半导体结构的方法
KR100731107B1 (ko) 다마신 공정을 이용한 반도체 소자의 구리 금속 배선의형성 방법
KR100559041B1 (ko) 반도체 소자의 구리 배선 형성 방법
CN101740475B (zh) 具有双镶嵌结构的半导体器件及其形成方法
US8673768B2 (en) Fabrication method for improving surface planarity after tungsten chemical mechanical polishing
US20070155145A1 (en) Method for forming a copper metal interconnection of a semiconductor device using two seed layers
US7125803B2 (en) Reverse tone mask method for post-CMP elimination of copper overburden
KR20080047541A (ko) 반도체 장치 상에 캐핑 레이어를 형성하는 방법
KR101090372B1 (ko) 반도체 소자의 금속 배선 형성방법
US8772157B2 (en) Method of forming Cu interconnects
KR100788352B1 (ko) 반도체 소자의 구리 배선 형성방법
KR100563785B1 (ko) 반도체 장치의 구리 배선 형성 방법
KR20090124398A (ko) 반도체 소자 제조방법
US20030168345A1 (en) In-situ monitor seed for copper plating
CN112366177B (zh) 半导体器件及其形成方法
KR100720489B1 (ko) 구리 금속 배선의 평탄화 방법
JP2006515467A (ja) 後続の化学機械研磨(CMP:ChemicalMechanicalPolishing)プロセスのプロセス均一性が向上するようにパターン誘電層上に銅を電気メッキするための方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110520

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee