KR100672666B1 - 씨모스 이미지 센서의 제조방법 - Google Patents

씨모스 이미지 센서의 제조방법 Download PDF

Info

Publication number
KR100672666B1
KR100672666B1 KR1020040114660A KR20040114660A KR100672666B1 KR 100672666 B1 KR100672666 B1 KR 100672666B1 KR 1020040114660 A KR1020040114660 A KR 1020040114660A KR 20040114660 A KR20040114660 A KR 20040114660A KR 100672666 B1 KR100672666 B1 KR 100672666B1
Authority
KR
South Korea
Prior art keywords
device isolation
region
semiconductor substrate
image sensor
photodiode
Prior art date
Application number
KR1020040114660A
Other languages
English (en)
Other versions
KR20060075767A (ko
Inventor
한창훈
Original Assignee
동부일렉트로닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부일렉트로닉스 주식회사 filed Critical 동부일렉트로닉스 주식회사
Priority to KR1020040114660A priority Critical patent/KR100672666B1/ko
Priority to CNA2005100974885A priority patent/CN1819225A/zh
Priority to US11/318,439 priority patent/US20060138470A1/en
Publication of KR20060075767A publication Critical patent/KR20060075767A/ko
Application granted granted Critical
Publication of KR100672666B1 publication Critical patent/KR100672666B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

본 발명은 소자 격리막과 포토 다이오드 영역 사이의 암전류 발생을 방지하여 소자의 특성을 향상시키도록 한 씨모스 이미지 센서 및 그 제조방법에 관한 것으로서, 액티브 영역과 소자 분리 영역으로 정의된 제 1 도전형 반도체 기판과, 상기 반도체 기판의 소자 격리 영역에 형성되는 소자 격리막과, 상기 반도체 기판의 액티브 영역에 형성되는 저농도 제 2 도전형 확산 영역과, 상기 소자 격리막과 제 2 도전형 확산 영역 사이의 경계부분을 포함한 상기 소자 격리막의 주위에 형성되는 고농도 제 1 도전형 에피층을 포함하여 구성됨을 특징으로 한다.
이미지 센서, 소자 격리막, 포토다이오드

Description

씨모스 이미지 센서의 제조방법{Method For Fabricating of CMOS Image Sensor}
도 1은 일반적인 3T형 CMOS 이미지 센서의 단위화소를 나타낸 레이아웃도
도 2는 도 1의 Ⅱ-Ⅱ'선에 따른 종래 기술에 의한 CMOS 이미지 센서의 포토다이오드와 트랜스퍼 트랜지스터를 나타낸 단면도
도 3은 도 1의 Ⅱ-Ⅱ'선에 따른 본 발명에 의한 CMOS 이미지 센서의 포토다이오드와 트랜스퍼 트랜지스터를 나타낸 단면도
도 4a 내지 도 4f는 본 발명에 의한 씨모스 이미지 센서의 제조방법을 나타낸 공정단면도
도면의 주요 부분에 대한 설명
200 : 반도체 기판 201 : 에피층
202 : 산화막 203 : 질화막
204 : 포토레지스트 205 : 트랜치
210 : P+형 에피층 220 : 소자 격리막
231 : n-형 확산 영역
본 발명은 씨모스 이미지 센서의 제조방법에 관한 것으로서, 특히 암전류의 발생을 방지하여 이미지 센서의 특성을 향상하도록 한 씨모스 이미지 센서의 제조방법에 관한 것이다.
일반적으로, 이미지 센서(Image sensor)는 광학적 영상(optical image)을 전기적 신호로 변환시키는 반도체 소자로써, 크게, 전하 결합 소자(charge coupled device: CCD)와 씨모스(CMOS; Complementary Metal Oxide Silicon) 이미지 센서(Image Sensor)로 구분된다.
상기 전하 결합 소자(charge coupled device: CCD)는 빛의 신호를 전기적 신호로 변환하는 복수개의 포토 다이오드(Photo diode; PD)가 매트릭스 형태로 배열되고, 상기 매트릭스 형태로 배열된 각 수직 방향의 포토 다이오드 사이에 형성되어 상기 각 포토 다이오드에서 생성된 전하를 수직방향으로 전송하는 복수개의 수직 방향 전하 전송 영역(Vertical charge coupled device; VCCD)과, 상기 각 수직 방향 전하 전송 영역에 의해 전송된 전하를 수평방향으로 전송하는 수평방향 전하전송영역(Horizontal charge coupled device; HCCD) 및 상기 수평방향으로 전송된 전하를 센싱하여 전기적인 신호를 출력하는 센스 증폭기(Sense Amplifier)를 구비하여 구성된 것이다.
그러나, 이와 같은 CCD는 구동 방식이 복잡하고, 전력 소비가 클 뿐만 아니라, 다단계의 포토 공정이 요구되므로 제조 공정이 복잡한 단점을 갖고 있다.
또한, 상기 전하 결합 소자는 제어회로, 신호처리회로, 아날로그/디지털 변환회로(A/D converter) 등을 전하 결합 소자 칩에 집적시키기가 어려워 제품의 소형화가 곤란한 단점을 갖는다.
최근에는 상기 전하 결합 소자의 단점을 극복하기 위한 차세대 이미지 센서로서 씨모스 이미지 센서가 주목을 받고 있다.
상기 씨모스 이미지 센서는 제어회로 및 신호처리회로 등을 주변회로로 사용하는 씨모스 기술을 이용하여 단위 화소의 수량에 해당하는 모스 트랜지스터들을 반도체 기판에 형성함으로써 상기 모스 트랜지스터들에 의해 각 단위 화소의 출력을 순차적으로 검출하는 스위칭 방식을 채용한 소자이다.
즉, 상기 씨모스 이미지 센서는 단위 화소 내에 포토 다이오드와 모스 트랜지스터를 형성시킴으로써 스위칭 방식으로 각 단위 화소의 전기적 신호를 순차적으로 검출하여 영상을 구현한다.
상기 씨모스 이미지 센서는 씨모스 제조 기술을 이용하므로 적은 전력 소모, 적은 포토공정 스텝에 따른 단순한 제조공정 등과 같은 장점을 갖는다.
또한, 상기 씨모스 이미지 센서는 제어회로, 신호처리회로, 아날로그/디지털 변환회로 등을 씨모스 이미지 센서 칩에 집적시킬 수가 있으므로 제품의 소형화가 용이하다는 장점을 갖고 있다.
따라서, 상기 씨모스 이미지 센서는 현재 디지털 정지 카메라(digital still camera), 디지털 비디오 카메라 등과 같은 다양한 응용 부분에 널리 사용되고 있다.
한편, CMOS 이미지 센서는 트랜지스터의 개수에 따라 3T형, 4T형, 5T형 등으로 구분된다. 3T형은 1개의 포토다이오드와 3개의 트랜지스터로 구성되며, 4T형은 1개의 포토다이오드와 4개의 트랜지스터로 구성된다. 상기 3T형 CMOS 이미지 센서의 단위화소에 대한 레이아웃(lay-out)을 살펴보면 다음과 같다.
도 1은 일반적인 3T형 CMOS 이미지 센서의 단위화소를 나타낸 레이아웃도이다.
도 1에 도시한 바와 같이, 액티브 영역(10)이 정의되어 액티브 영역(10) 중 폭이 넓은 부분에 1개의 포토다이오드(20)가 형성되고, 상기 나머지 부분의 액티브 영역(10)에 각각 오버랩되는 3개의 트랜지스터의 게이트 전극(120, 130, 140)이 형성된다.
즉, 상기 게이트 전극(120)에 의해 리셋 트랜지스터(Rx)가 형성되고, 상기 게이트 전극(130)에 의해 드라이브 트랜지스터(Dx)가 형성되며, 상기 게이트 전극(140)에 의해 선택 트랜지스터(Sx)가 형성된다.
여기서, 상기 각 트랜지스터의 액티브 영역(10)에는 각 게이트 전극(120, 130, 140) 하측부를 제외한 부분에 불순물 이온이 주입되어 각 트랜지스터의 소오스/드레인 영역이 형성된다.
따라서, 상기 리셋 트랜지스터(Rx)와 상기 드라이브 트랜지스터(Dx) 사이의 소오스/드레인 영역에는 전원전압(Vdd)이 인가되고, 상기 셀렉트 트랜지스터(Sx) 일측의 소오스/드레인 영역은 판독회로(도면에는 도시되지 않음)에 접속된다.
상기에서 설명한 각 게이트 전극(120, 130, 140)들은, 도면에는 도시되지 않 았지만, 각 신호 라인에 연결되고, 상기 각 신호 라인들은 일측 끝단에 패드를 구비하여 외부의 구동회로에 연결된다.
이하, 첨부된 도면을 참고하여 종래의 CMOS 이미지 센서를 설명하면 다음과 같다.
도 2는 도 1의 Ⅱ-Ⅱ'선에 따른 종래 기술에 의한 CMOS 이미지 센서의 포토다이오드와 트랜스퍼 트랜지스터를 나타낸 단면도이다.
도 2에 도시된 바와 같이, P++형 반도체 기판(100) 상에 P-형 에피층(101)이 형성된다. 그리고, 액티브 영역(도 1의 10)과 소자 분리 영역으로 정의된 상기 반도체 기판(100)의 소자 분리 영역에 소자 분리막(103)이 형성된다.
도 2의 트랜스퍼 트랜지스터(120)를 위한 에피층(101)의 부분 상에 게이트 절연막(121)을 개재하여 게이트(123)가 형성되고, 상기 게이트(123)의 양측면에 절연막 측벽(125)이 형성된다.
그리고, 상기 포토 다이오드 영역(PD)의 상기 에피층(101)에는 n-형 확산 영역(131) 및 P°형 확산 영역(132)이 형성된다.
여기서, 상기 P°형 확산 영역(132)은 상기 n-형 확산 영역(131) 상에 형성된다. 또한, 상기 소오스/드레인 영역(S/D)은 고농도 n형 확산 영역(n+)과 저농도 n형 확산영역(n-)이 형성된다.
그러나, 이와 같은 구조를 갖는 종래의 씨모스 이미지 센서에서는 암전류 (dark current)의 증가로 인하여 소자의 성능 저하와 전하 저장능력 저하와 같은 문제점을 갖는다.
즉, 상기 암전류는 광이 포토 다이오드에 입사되지 않는 상태에서 상기 포토 다이오드에서 다른 영역으로 이동하는 전자에 의해 생성된다. 상기 암전류는 주로 반도체 기판의 표면 인접부, 소자 분리막과 P°형 확산 영역의 경계부, 소자 분리막과 n-형 확산 영역의 경계부, P°형 확산 영역과 n- 확산 영역의 경계부 및 P°형 확산 영역과 n- 확산 영역에 분포하는 각종 결함이나 댕글링 본드(dangling bond)등에서 비롯되는 것으로 보고되고 있다. 상기 암전류는 저조도(low illumination) 환경에서 씨모스 이미지 센서의 성능 저하와 전하저장 능력 저하와 같은 심각한 문제를 야기할 수 있다.
따라서, 종래의 씨모스 이미지 센서는 상기 암전류, 특히 실리콘 기판의 표면 인접부에서 발생하는 암전류를 감소시키기 위해 상기 포토 다이오드의 표면에 P°형 확산 영역을 형성하였다.
하지만, 종래의 씨모스 이미지 센서는 상기 소자 분리막(13)과 상기 포토 다이오드의 P°형 확산 영역 경계부 및 상기 소자 분리막(13)과 상기 포토다이오드의 n-형 확산 영역 경계부에서 발생하는 암전류에 의해 큰 영향을 받는다.
이를 좀 더 상세히 언급하면, 도 2에서 알 수 있는 바와 같이, 포토 다이오드(PD)의 n-형 확산 영역(131) 및 P°형 확산 영역(132)을 형성하기 위한, 이온주입 마스크층으로서의 감광막 패턴(미도시)이 상기 반도체 기판(100)상에 형성될 때, 상기 포토 다이오드(PD)를 위한 액티브 영역 전체가 상기 감광막 패턴의 개구부 내에서 노출된다. 이러한 상태에서 상기 포토 다이오드(PD)의 액티브 영역에 상기 n-형 확산 영역(131) 및 P°형 확산 영역(132)을 위한 불순물이 이온주입되면, 상기 포토 다이오드(PD)의 액티브 영역과 소자 분리막(103) 사이의 경계부에도 상기 n-형 확산 영역(131) 및 P°형 확산 영역(132)을 위한 불순물이 이온주입된다.
따라서, 상기 n-/P°형 확산 영역(131),(132)과 상기 소자 분리막(103) 사이의 경계부에서는 상기 불순물의 이온주입에 의한 손상이 유발되고 나아가 결함이 발생한다. 상기 결함은 전자 및 정공 캐리어의 발생을 야기하고, 또한 상기 전자 의 재결합을 제공한다. 그 결과, 상기 포토 다이오드의 누설 전류가 증가하고 나아가 씨모스 이미지 센서의 암전류(dark current)가 증가한다.
상기에서 설명한 바와 같이, 종래의 씨모스 이미지 센서는 포토 다이오드의 확산 영역을 형성하기 위한 불순물의 이온주입 때에 소자 분리막과 포토 다이오드를 위한 액티브 영역 사이의 경계부에 상기 불순물이 이온주입되는 구조를 갖고 있다. 그 결과, 종래의 씨모스 이미지 센서는 소자 분리막과 포토 다이오드를 위한 액티브 영역 사이의 경계부에 발생하는 암전류의 증가를 억제하기가 어려워서 암전류 특성을 향상시키는데 한계가 있다.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위한 것으로, 소자 격리막 의 주위에 P+형 에피층을 형성하여 소자 분리막 경계에서 발생하는 전자를 바로 재결합을 유도함으로써 소자의 특성을 향상시키도록 한 씨모스 이미지 센서의 제조방법을 제공하는데 그 목적이 있다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 씨모스 이미지 센서의 제조방법은 액티브 영역과 소자 분리 영역으로 정의된 제 1 도전형 반도체 기판에 산화막과 질화막을 차례로 형성하는 단계와, 상기 반도체 기판의 소자 분리 영역이 노출되도록 상기 질화막과 산화막을 선택적으로 식각하는 단계와, 상기 노출된 반도체 기판의 표면에 트랜치를 형성하는 단계와, 상기 노출된 트랜치 표면내에 고농도 제 1 도전형 에피층을 형성하는 단계와, 상기 트랜치의 내부에 소자 격리막을 형성하는 단계와, 상기 질화막 및 산화막을 제거하는 단계와, 상기 고농도 제 1 도전형 에피층에 의해 상기 소자 격리막과 일정한 간격을 갖도록 상기 반도체 기판의 액티브 영역에 제 2 도전형 확산 영역을 형성하는 단계를 포함하여 형성함을 특징으로 한다.
삭제
이하, 첨부된 도면을 참고하여 본 발명에 의한 씨모스 이미지 센서의 제조방법을 보다 상세히 설명하면 다음과 같다.
도 3은 도 1의 Ⅱ-Ⅱ'선에 따른 본 발명에 의한 CMOS 이미지 센서의 포토다이오드와 트랜스퍼 트랜지스터를 나타낸 단면도이다.
도 3에 도시된 바와 같이, P++형 반도체 기판(200) 상에 P-형 에피층(P-EPI)(201)이 형성된다. 그리고, 액티브 영역(도 1의 10)과 소자 분리 영역으로 정의된 상기 반도체 기판(200)의 소자 분리 영역에 소자 분리막(220)이 형성된다.
여기서, 상기 반도체 기판(200)의 액티브 영역은 포토 다이오드 영역과 트랜지스터 영역으로 정의되어 있다.
도 1의 트랜스퍼 트랜지스터(120)를 위한 에피층(101)의 부분 상에 게이트 절연막(221)을 개재하여 게이트(223)가 형성되고, 상기 게이트(223)의 양측면에 절연막 측벽(225)이 형성된다.
그리고, 상기 포토 다이오드 영역(PD)의 상기 에피층(201)에는 n-형 확산 영역(231)이 형성된다.
또한, 상기 게이트(223) 일측의 반도체 기판(200) 표면내에 소오스/드레인 영역(S/D)이 형성되는데, 상기 소오스/드레인 영역(S/D)은 고농도 n형 확산 영역(n+)(226)과 저농도 n형 확산영역(n-)(224)으로 형성된다.
한편, 본 발명은 종래와 같은 소자 격리막(220)과 포토 다이오드영역인 n-형 확산 영역(231)과 접하여 발생하는 암전류 발생을 방지하기 위하여 상기 소자 격리막(220)의 계면에 P+형 에피층(210)이 형성되어 있다.
여기서, 상기 소자 격리막(220)의 측면에 형성된 P+형 에피층(210)에 의해 포토다이오드 영역을 형성할 때, 주입되는 n-형 이온이 상기 소자 격리막(220)의 경계에 주입되는 것을 방지하여 n-형 확산 영역(231)이 소자 격리막(220)과 접하는 것을 방지하고 있다.
또한, 상기 P+ 에피층(210)은 약 100 ~ 500Å의 두께를 갖는다.
도 4a 내지 도 4f는 본 발명에 의한 씨모스 이미지 센서의 제조방법을 나타낸 공정단면도이다.
여기서, 본 발명은 CMOS 이미지 센서에서 소자 격리 영역과 액티브 영역으로 정의된 반도체 기판에 소자 격리막과 포토다이오드 영역을 형성하는 방법을 중심으로 설명한다.
도 4a에 도시한 바와 같이, 고농도 제 1 도전형(P++형) 단결정 실리콘 등의 반도체 기판(200)에 에피택셜(epitaxial) 공정으로 저농도 제 1 도전형(P-형) 에피층(201)을 형성한다.
여기서, 상기 에피층(201)은 포토 다이오드에서 공핍 영역(depletion region)을 크고 깊게 형성하여 광 전하를 모으기 위한 저전압 포토 다이오드의 능 력을 증가시키고 나아가 광 감도를 향상시키기 위함이다.
이어, 상기 에피층(201)을 포함한 반도체 기판(200)상에 산화막(202)을 형성하고, 상기 산화막(202)상에 질화막(203)을 형성한다.
이어, 상기 질화막(203)상에 포토레지스트(204)를 도포한 후, 노광 및 현상공정으로 패터닝하여 소자격리영역을 정의한다.
그리고, 상기 패터닝된 포토레지스트(204)를 마스크로 이용한 식각공정으로 상기 질화막(203)과 산화막(202)을 선택적으로 식각하여 반도체 기판(200)의 표면을 노출시킨다.
여기서, 상기 반도체 기판(200)의 노출된 부분은 소자 분리 영역이다.
도 4b에 도시한 바와 같이, 상기 패터닝된 포토레지스트(204)를 마스크로 이용하여 상기 노출된 반도체 기판(200)의 선택적으로 식각하여 표면으로부터 소정깊이를 갖는 트랜치(205)를 형성한다.
이어, 상기 트랜치(205)를 형성하기 위해 사용한 포토레지스트(204)를 제거한다.
도 4c에 도시한 바와 같이, 상기 질화막(203) 및 산화막(202)을 마스크로 이용하여 상기 노출된 트랜치(205)에 할로겐화 물질을 주입하여 상기 트랜치(205)의 표면에 P+에피층(210)을 형성한다.
여기서, 상기 할로겐화 물질은 SiHCl3 또는 SiCl4를 이용하고, 상기 할로겐화 이온 주입시 전자와의 재결합을 유도하기 위하여 보롬(B) 또는 브롬플로나이드 (BF2) 등을 소스가스로 함께 주입한다.
한편, 상기 P+ 에피층(210)을 형성할 때 SiHCl3 또는 SiCl4 등의 할로겐화 물질들을 이용하여 실리콘 원자의 표면 이동을 증가시켜 노출된 반도체 기판(200)의 표면에 형성하는 것이다.
한편, 상기 P+ 에피층(210)을 형성할 때 보롬(B) 또는 갈륨(Ga) 이온을 주입하여 형성할 수도 있다.
또한, 상기 P+ 에피층(210)은 약 100 ~ 500Å의 두께를 갖도록 형성한다.
도 4d에 도시한 바와 같이, 상기 트랜치(205)를 포함한 반도체 기판(200)전면에 SOG(Spin On Glass) 또는 USG(Undoped Silicate Glass) 등의 절연막을 증착한다.
이어, 전면에 화학기계적경면연마(CMP : Chemical Mechanical Polishing)법 또는 에치 백(etch back) 공정을 실시하여 상기 트랜치(205)의 내부에 소자 격리막(220)을 형성한다.
도 4e에 도시한 바와 같이, 상기 질화막(203) 및 산화막(202)을 제거하고 클리닝 공정 및 평탄화 공정을 실시하여 상기 트랜치(205)에 매립되는 소자 격리막(220)을 형성한다.
도 4f에 도시한 바와 같이, 상기 반도체 기판(200)에 포토레지스트(도시되지 않음)를 도포한 후, 노광 및 현상 공정으로 패터닝하여 포토다이오드 영역을 오픈 하고, 상기 패터닝된 포토레지스트를 마스크로 이용하여 n-형 불순물 이온을 주입하여 상기 포토다이오드 영역에 n-형 확산 영역(231)을 형성한다.
여기서, 도면에는 도시하지 않았지만, 상기 n-형 확산 영역(231)을 형성하기 전에 상기 반도체 기판(200)의 액티브 영역에 통상적인 공정을 통해 게이트 절연막을 개재하여 각 게이트를 형성한다.
따라서, 상기 P+형 에피층(210)은 상기 n-형 확산 영역(231)을 형성할 때 n-형 확산 영역(231)과 소자 분리막(220) 사이에 배치되므로 상기 포토다이오드와 소자 분리막(220)의 경계부에서 발생하는 암전류를 저감시킨다.
따라서, 상기 n-형 확산 영역(231)상에 P0 확산 영역(도시되지 않음)을 추가로 형성할 수도 있다.
이상 설명한 내용을 통해 당업자라면 본 발명의 기술 사상을 이탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다.
따라서, 본 발명의 기술적 범위는 실시예에 기재된 내용으로 한정하는 것이 아니라 특허 청구범위에 의해서 정해져야 한다.
이상에서 설명한 바와 같은 본 발명에 따른 씨모스 이미지 센서의 제조방법은 다음과 같은 효과가 있다.
첫째, 포토 다이오드 영역과 소자 분리막 사이의 경계부에는 포토 다이오드 형성용 불순물 이온이 주입되지 않도록 하므로 상기 포토 다이오드 영역과 상기 소자 분리막 사이의 경계면에 P+형 에피층의 형성에 의해 결함을 방지할 수 있다.
둘째, 상기 포토 다이오드 영역과 상기 소자 분리막 사이의 경계부에 P+형 에피층을 형성함으로써 상기 포토 다이오드 영역과 소자 분리막 사이 경계부에서 발생 가능한 암전류를 최소화하여 씨모스 이미지 센서의 동작 신뢰성을 향상시킬 수 있다.
셋째, 포토다이오드의 소자 분리막 경계에 P+형 에피층을 선택적으로 형성함으로써 소자 분리막 경계에서 발생하는 전자를 바로 재결합을 유도하여 이미지 센서의 암전류를 줄일 수 있다.

Claims (10)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 삭제
  5. 액티브 영역과 소자 분리 영역으로 정의된 제 1 도전형 반도체 기판에 산화막과 질화막을 차례로 형성하는 단계;
    상기 반도체 기판의 소자 분리 영역이 노출되도록 상기 질화막과 산화막을 선택적으로 식각하는 단계;
    상기 노출된 반도체 기판의 표면에 트랜치를 형성하는 단계;
    상기 노출된 트랜치 표면내에 할로겐화 물질을 주입하여 고농도 제 1 도전형 에피층을 형성하는 단계
    상기 트랜치의 내부에 소자 격리막을 형성하는 단계;
    상기 질화막 및 산화막을 제거하는 단계;
    상기 고농도 제 1 도전형 에피층에 의해 상기 소자 격리막과 일정한 간격을 갖도록 상기 반도체 기판의 액티브 영역에 제 2 도전형 확산 영역을 형성하는 단계를 포함하여 형성함을 특징으로 하는 씨모스 이미지 센서의 제조방법.
  6. 제 5 항에 있어서, 상기 고농도 제 1 도전형 에피층은 100 ~ 500Å의 두께로 형성하는 것을 특징으로 하는 씨모스 이미지 센서의 제조방법.
  7. 삭제
  8. 제 5 항에 있어서, 상기 할로겐화 물질은 SiCl4 또는 SiHCl3을 사용하는 것을 특징으로 하는 씨모스 이미지 센서의 제조방법.
  9. 제 5 항에 있어서, 상기 고농도 제 1 도전형 에피층을 형성하기 위해 할로겐화 물질을 주입할 때 B 또는 BF2의 소스 가스를 주입하는 것을 특징으로 하는 씨모스 이미지 센서의 제조방법.
  10. 삭제
KR1020040114660A 2004-12-29 2004-12-29 씨모스 이미지 센서의 제조방법 KR100672666B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020040114660A KR100672666B1 (ko) 2004-12-29 2004-12-29 씨모스 이미지 센서의 제조방법
CNA2005100974885A CN1819225A (zh) 2004-12-29 2005-12-28 Cmos图像传感器及其制造方法
US11/318,439 US20060138470A1 (en) 2004-12-29 2005-12-28 CMOS image sensor and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040114660A KR100672666B1 (ko) 2004-12-29 2004-12-29 씨모스 이미지 센서의 제조방법

Publications (2)

Publication Number Publication Date
KR20060075767A KR20060075767A (ko) 2006-07-04
KR100672666B1 true KR100672666B1 (ko) 2007-01-24

Family

ID=36610391

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040114660A KR100672666B1 (ko) 2004-12-29 2004-12-29 씨모스 이미지 센서의 제조방법

Country Status (3)

Country Link
US (1) US20060138470A1 (ko)
KR (1) KR100672666B1 (ko)
CN (1) CN1819225A (ko)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7064406B2 (en) * 2003-09-03 2006-06-20 Micron Technology, Inc. Supression of dark current in a photosensor for imaging
KR100748342B1 (ko) * 2005-09-14 2007-08-09 매그나칩 반도체 유한회사 씨모스 이미지 센서의 제조방법
KR100837271B1 (ko) 2006-08-10 2008-06-12 삼성전자주식회사 반도체 장치 및 그 제조방법
KR100997326B1 (ko) * 2007-12-27 2010-11-29 주식회사 동부하이텍 이미지 센서 및 그 제조방법
US8253200B2 (en) * 2008-11-19 2012-08-28 Omnivision Technologies, Inc. Lightly-doped drains (LDD) of image sensor transistors using selective epitaxy
US20100148230A1 (en) * 2008-12-11 2010-06-17 Stevens Eric G Trench isolation regions in image sensors
JP5564918B2 (ja) * 2009-12-03 2014-08-06 ソニー株式会社 撮像素子およびカメラシステム
US9318370B2 (en) * 2011-08-04 2016-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. High-k dielectric liners in shallow trench isolations
CN102916027A (zh) * 2012-11-12 2013-02-06 豪威科技(上海)有限公司 Cmos影像传感器及其形成方法
CN103413818B (zh) * 2013-08-30 2015-11-11 格科微电子(上海)有限公司 图像传感器及其制作方法
US9123604B2 (en) * 2013-10-17 2015-09-01 Omnivision Technologies, Inc. Image sensor with doped semiconductor region for reducing image noise
US10672810B2 (en) * 2017-10-31 2020-06-02 Taiwan Semiconductor Manufacturing Co., Ltd. CMOS image sensor with shallow trench edge doping
CN111834468A (zh) * 2019-04-15 2020-10-27 宁波飞芯电子科技有限公司 光电二极管制备方法及其光电二极管
US11289530B2 (en) * 2020-01-21 2022-03-29 Omnivision Technologies, Inc. Shallow trench isolation (STI) structure for CMOS image sensor
US11282890B2 (en) 2020-01-21 2022-03-22 Omnivision Technologies, Inc. Shallow trench isolation (STI) structure for suppressing dark current and method of forming

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030056323A (ko) * 2001-12-28 2003-07-04 주식회사 하이닉스반도체 암신호 감소를 위한 이미지센서 제조 방법
KR20040003981A (ko) * 2002-07-05 2004-01-13 주식회사 하이닉스반도체 크로스토크를 방지할 수 있는 이미지센서 및 그 제조 방법
KR20040008056A (ko) * 2002-07-15 2004-01-28 주식회사 하이닉스반도체 소자 격리 특성을 향상시킨 이미지센서 및 그 제조 방법
KR20040032542A (ko) * 2002-10-10 2004-04-17 주식회사 하이닉스반도체 크로스 토크를 방지할 수 있는 이미지센서 및 그 제조 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355933B1 (en) * 1999-01-13 2002-03-12 Advanced Micro Devices, Inc. Ion source and method for using same
IL156497A (en) * 2002-06-20 2007-08-19 Samsung Electronics Co Ltd Image sensor and method of fabricating the same
KR100461975B1 (ko) * 2002-12-27 2004-12-17 매그나칩 반도체 유한회사 이미지센서의 트렌치 소자분리막 형성방법
US6949445B2 (en) * 2003-03-12 2005-09-27 Micron Technology, Inc. Method of forming angled implant for trench isolation
US7102184B2 (en) * 2003-06-16 2006-09-05 Micron Technology, Inc. Image device and photodiode structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030056323A (ko) * 2001-12-28 2003-07-04 주식회사 하이닉스반도체 암신호 감소를 위한 이미지센서 제조 방법
KR20040003981A (ko) * 2002-07-05 2004-01-13 주식회사 하이닉스반도체 크로스토크를 방지할 수 있는 이미지센서 및 그 제조 방법
KR20040008056A (ko) * 2002-07-15 2004-01-28 주식회사 하이닉스반도체 소자 격리 특성을 향상시킨 이미지센서 및 그 제조 방법
KR20040032542A (ko) * 2002-10-10 2004-04-17 주식회사 하이닉스반도체 크로스 토크를 방지할 수 있는 이미지센서 및 그 제조 방법

Also Published As

Publication number Publication date
CN1819225A (zh) 2006-08-16
KR20060075767A (ko) 2006-07-04
US20060138470A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
US20060138470A1 (en) CMOS image sensor and method for fabricating the same
US7507635B2 (en) CMOS image sensor and method of fabricating the same
KR100778856B1 (ko) 씨모스 이미지 센서의 제조방법
KR100672669B1 (ko) Cmos 이미지 센서 및 그의 제조 방법
KR100672701B1 (ko) 씨모스(cmos) 이미지 센서 및 그의 제조 방법
KR100640980B1 (ko) 씨모스 이미지 센서의 제조방법
US7241671B2 (en) CMOS image sensor and method for fabricating the same
KR100672670B1 (ko) 씨모스 이미지 센서의 제조방법
KR100720505B1 (ko) 씨모스 이미지 센서 및 그 제조방법
US7732245B2 (en) Photodiode of CMOS image sensor and method for manufacturing the same
CN112259569A (zh) 图像传感器及图像传感器像素结构的形成方法
KR20070033718A (ko) 씨모스 이미지 센서 및 그 제조방법
KR100760914B1 (ko) 씨모스 이미지 센서의 제조 방법
KR100752182B1 (ko) 씨모스 이미지 센서 및 그 제조방법
KR100672668B1 (ko) Cmos 이미지 센서 및 그의 제조 방법
KR100731099B1 (ko) 씨모스 이미지 센서 및 그 제조방법
KR100606912B1 (ko) 씨모스 이미지 센서의 제조방법
CN111785749A (zh) 图像传感器及图像传感器像素结构的形成方法
KR100606911B1 (ko) 씨모스 이미지 센서의 제조방법
KR100672665B1 (ko) 씨모스 이미지 센서의 제조 방법
KR100752183B1 (ko) 씨모스 이미지 센서의 제조방법
KR100935764B1 (ko) 이미지 센서 및 그 제조 방법
KR20020058919A (ko) 포토다이오드의 용량을 증가시키면서 전하운송을 향상시킬수 있는 이미지 센서 제조 방법
KR100672700B1 (ko) Cmos 이미지 센서의 제조 방법
KR100649001B1 (ko) 씨모스 이미지 센서의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111220

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee