KR100626741B1 - Method for forming titanium silicide ohmic contact layer of semiconductor device - Google Patents

Method for forming titanium silicide ohmic contact layer of semiconductor device Download PDF

Info

Publication number
KR100626741B1
KR100626741B1 KR1020000037352A KR20000037352A KR100626741B1 KR 100626741 B1 KR100626741 B1 KR 100626741B1 KR 1020000037352 A KR1020000037352 A KR 1020000037352A KR 20000037352 A KR20000037352 A KR 20000037352A KR 100626741 B1 KR100626741 B1 KR 100626741B1
Authority
KR
South Korea
Prior art keywords
film
forming
titanium silicide
titanium
semiconductor device
Prior art date
Application number
KR1020000037352A
Other languages
Korean (ko)
Other versions
KR20020002973A (en
Inventor
엄장웅
손현철
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020000037352A priority Critical patent/KR100626741B1/en
Publication of KR20020002973A publication Critical patent/KR20020002973A/en
Application granted granted Critical
Publication of KR100626741B1 publication Critical patent/KR100626741B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76846Layer combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L21/76856After-treatment introducing at least one additional element into the layer by treatment in plasmas or gaseous environments, e.g. nitriding a refractory metal liner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L21/76859After-treatment introducing at least one additional element into the layer by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76889Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances by forming silicides of refractory metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

본 발명은 티타늄 실리사이드 오믹 콘택층 형성 과정에서 실리콘 기판의 과다 소모에 따른 접합영역 파괴를 방지하고, 티타늄 실리사이드 형성을 위한 열처리 과정에서 응집화가 촉진되는 것을 효과적으로 방지할 수 있는 반도체 소자의 티타늄 실리사이드 오믹 콘택층 형성 방법에 관한 것으로, 실리콘 기판과 접하는 Ti막 상에 상부 장벽층(capping barrier) 즉, 산소확산 방지막으로서 TiAlN막을 증착하고, Ti막과 TiAlN막 계면에 질소를 이온주입법으로 첨가함으로써, 티타늄 실리사이드 형성을 위한 열처리 공정시 산소의 침입에 의한 티타늄실리사이드의 응집화를 억제함과 동시에 질소에 의한 티타늄의 질화를 동시에 진행시켜 실리콘 기판의 손실에 의한 소오스 또는 드레인 접합영역의 손상을 감소시키는데 그 특징이 있다. 이에 따라, 콘택저항 및 누설전류를 안정화시킬 수 있다.
The present invention provides a titanium silicide ohmic contact of a semiconductor device capable of preventing the fracture of a junction region due to excessive consumption of a silicon substrate in the process of forming a titanium silicide ohmic contact layer, and effectively preventing agglomeration from being promoted during a heat treatment process for forming a titanium silicide. A method of forming a layer, comprising: depositing a TiAlN film as a capping barrier, that is, an oxygen diffusion prevention film, on a Ti film in contact with a silicon substrate, and adding nitrogen to the Ti film and the TiAlN film interface by an ion implantation method, thereby producing titanium silicide It suppresses the coagulation of titanium silicide by the invasion of oxygen during the heat treatment process for formation and simultaneously the nitriding of titanium by nitrogen to reduce the damage of the source or drain junction region due to the loss of silicon substrate. have. As a result, contact resistance and leakage current can be stabilized.

Ti, 티타늄 실리사이드, 산소확산 방지, 열처리, 질화, 오믹 콘택Ti, titanium silicide, oxygen diffusion prevention, heat treatment, nitriding, ohmic contact

Description

반도체 소자의 티타늄 실리사이드 오믹 콘택층 형성 방법{Method for forming titanium silicide ohmic contact layer of semiconductor device} Method for forming titanium silicide ohmic contact layer of semiconductor device             

도 1a 및 도 1b는 종래 기술에 따른 오믹 콘택층 형성 공정 단면도,1a and 1b is a cross-sectional view of the ohmic contact layer forming process according to the prior art,

도2 a 내지 도 2d는 본 발명의 실시 예에 따른 반도체 소자의 금속배선 형성 공정 단면도.
2A to 2D are cross-sectional views of metal wire forming processes of a semiconductor device in accordance with an embodiment of the present invention.

*도면의 주요부분에 대한 도면 부호의 설명** Description of reference numerals for the main parts of the drawings *

23: Ti막 24: TiAl막23: Ti film 24: TiAl film

25: 질소이온주입층 26: 장벽금속층25: nitrogen ion implantation layer 26: barrier metal layer

27: 금속막 23A: 티타늄 실리사이드층
27: metal film 23A: titanium silicide layer

본 발명은 반도체 소자 제조 분야에 관한 것으로, 특히 티타늄 실리사이드 오믹 콘택층 형성 방법에 관한 것이다. TECHNICAL FIELD The present invention relates to the field of semiconductor device manufacturing, and more particularly, to a method for forming a titanium silicide ohmic contact layer.                         

반도체 소자는 웨이퍼 상에 여러 소자를 구현하고 각 소자의 상호 연결을 위해 금속배선을 형성한다. 금속배선의 물질 재료로는 주로 Al, W 등이 이용되고 있다.Semiconductor devices implement several devices on a wafer and form metallization for interconnecting each device. Al, W, etc. are mainly used as a material material of metal wiring.

Al은 Si, SiO2 등에 대한 접착력이 우수하고, 강하게 도핑된 n+, p+ 실리콘과 오믹(ohmic) 저항 특성을 가지며, 전기 비저항 값이 타 금속들에 비해 비교적 낮다는 장점들로 인해 반도체 소자의 금속배선 재료로서 가장 널리 사용되어온 재료이다. 그리고 W은 Al에 비해 저항이 크기는 하지만 피복 특성이 양호하여 고집적 반도체 소자의 배선 재료로 각광받고 있다.Al has excellent adhesion to Si, SiO 2, etc., has a strong doped n + , p + silicon and ohmic resistance, and has a relatively low electrical resistivity compared to other metals. Is the most widely used material for metal wiring. W has a higher resistance than Al, but has a good coating property, and thus, W has been spotlighted as a wiring material for highly integrated semiconductor devices.

이러한, Al은 저융점(670 ℃) 금속이라는 특징으로 인해 공정중에 EM(electromigration), SM(stress-migration), 접합파괴(junction spiking) 등의 현상을 유발하여 소자의 신뢰성에 악영향을 미칠 수 있다. EM 현상이란 전자가 Al 배선을 통해 이동할 때 Al 이온과 충돌하여 전자의 운동량(momentum)이 Al 이온에 전달됨으로써 전자의 흐름 방향으로 Al의 질량 유동(mass flux)이 생기는 현상을 말한다. 이러한 Al의 이동은 상온 부근의 온도에서 주로 결정립계를 통해 이동하는데 결정립계의 불균일성으로 인해 Al 유동의 차이(divergence)가 생기면, 배선에 공공(void)을 발생시켜 배선의 단선 불량을 유발하게 된다. 한편, SM 현상이란 Al 배선 주위의 절연막에 의한 응력에 의해 Al 배선에 변형이 발생하여 배선의 단선 불량을 유발하는 현상을 일컫는다. 이러한, EM, SM 현상은 소자가 고집적화됨에 따라 금속배선의 단면적이 감소하고, 전류밀도가 증가되므로 소자의 신뢰성에 악영향 을 미치게 된다. 따라서 이러한 현상들을 억제하기 위하여 반도체의 금속배선으로 Al을 사용할 경우에는 수 %의 Cu를 Al 타겟에 첨가하여 Al 합금을 증착하는 것이 일반적이다.Since Al is a low melting point (670 ° C.) metal, it may adversely affect the reliability of devices by causing phenomena such as EM (electromigration), stress-migration (SM), and junction spiking during the process. . EM phenomenon refers to a phenomenon in which the mass flux of Al occurs in the flow direction of electrons because electrons collide with Al ions and the momentum of the electrons is transferred to Al ions when the electrons move through the Al wiring. The movement of Al mainly moves through the grain boundary at a temperature near room temperature. If divergence of Al flow occurs due to the nonuniformity of the grain boundary, voids are generated in the wiring to cause disconnection of the wiring. On the other hand, the SM phenomenon refers to a phenomenon in which deformation occurs in the Al wiring due to stress caused by an insulating film around the Al wiring, causing a disconnection failure of the wiring. The EM and SM phenomena adversely affect the reliability of the device because the cross-sectional area of the metal wiring is reduced and the current density is increased as the device is highly integrated. Therefore, in order to suppress these phenomena, when Al is used as a metal wiring of a semiconductor, it is common to add Al% of Cu to the Al target to deposit an Al alloy.

접합파괴 현상이란 Si와 Al이 상호 확산됨으로 인하여 접합이 파괴되는 현상으로서 이를 방지하기 위하여 Al에 수 %의 Si를 첨가하여 Al막으로 Si가 확산되는 것을 억제하거나 Si과 Al 사이에 확산방지 역할을 하는 장벽금속층(barrier layer)를 형성하는 것이 일반적이다.Bond breakage is a phenomenon in which bonding is broken due to mutual diffusion of Si and Al. In order to prevent this, several percent of Si is added to Al to prevent diffusion of Si into the Al film or to prevent diffusion between Si and Al. It is common to form a barrier metal layer.

장벽금속층으로서는 Ti막이 주로 이용되는데, Ti막과 실리콘 기판을 오믹 콘택(ohmic contact)시키기 위하여 티타늄 실리사이드 오믹 콘택층을 형성한다.
As the barrier metal layer, a Ti film is mainly used. A titanium silicide ohmic contact layer is formed to ohmic contact the Ti film and the silicon substrate.

이하, 첨부된 도면 도 1a 및 도 1b를 참조하여 종래 기술에 따른 티타늄 실리사이드 오믹 콘택층 형성 방법을 설명한다.Hereinafter, a method of forming a titanium silicide ohmic contact layer according to the related art will be described with reference to FIGS. 1A and 1B.

도 1a는 트랜지스터 등의 하부구조 형성이 완료된 실리콘 기판(10)을 덮는 층간절연막(12)을 선택적으로 식각하여 실리콘 기판(10) 내의 소오스 또는 드레인 접합영역(11)을 노출시키는 콘택홀을 형성하고, 전체 구조 상에 Ti막(13)을 형성한 상태를 보이고 있다.FIG. 1A shows a contact hole exposing the source or drain junction region 11 in the silicon substrate 10 by selectively etching the interlayer insulating layer 12 covering the silicon substrate 10 on which the substructure of the transistor or the like is completed. The Ti film 13 is formed on the whole structure.

도 1b는 RTP(rapid thermal process) 등과 같은 열처리 공정으로 실리콘 기판(10)과 Ti막(13)을 상호확산시켜 소오스 또는 드레인 접합영역(11) 상에 TiSi2층(13A)을 형성한 것으로 보이고 있다. FIG. 1B shows that the TiSi 2 layer 13A is formed on the source or drain junction region 11 by mutually diffusing the silicon substrate 10 and the Ti film 13 by a heat treatment process such as a rapid thermal process (RTP). have.

전술한 바와 같이 상호확산에 의해 TiSi2층(13A)을 형성하는 과정에서 실리콘 기판(10)의 소모량이 심하여 그에 따라 접합영역(11)이 파괴될 수도 있다. 또한 열처리 공정시 산소가 TiSi2층(13A)으로 침입하여 산화시키므로 TiSi2층(13A) 형성과정에서 응집화를 촉진시켜 콘택저항이 불안정해지고 누설전류가 증가하여 반도체 소자의 특성을 열화시키는 문제점이 있다.
As described above, in the process of forming the TiSi 2 layer 13A by interdiffusion, the consumption of the silicon substrate 10 is severe, and thus the junction region 11 may be destroyed. In addition, since oxygen penetrates and oxidizes into the TiSi 2 layer 13A during the heat treatment process, it promotes agglomeration during the formation of the TiSi 2 layer 13A, so that contact resistance becomes unstable and leakage current increases, thereby deteriorating the characteristics of the semiconductor device. have.

상기와 같은 문제점을 해결하기 위한 본 발명은 티타늄 실리사이드 오믹 콘택층 형성 과정에서 실리콘 기판의 과다 소모에 따른 접합영역 파괴를 방지하고, 티타늄 실리사이드 형성을 위한 열처리 과정에서 응집화가 촉진되는 것을 효과적으로 방지할 수 있는 반도체 소자의 티타늄 실리사이드 오믹 콘택층 형성 방법을 제공하는데 그 목적이 있다.
The present invention for solving the above problems can be prevented from destroying the junction region due to excessive consumption of the silicon substrate in the process of forming the titanium silicide ohmic contact layer, and effectively prevent the coagulation in the heat treatment process for forming the titanium silicide. It is an object of the present invention to provide a method for forming a titanium silicide ohmic contact layer of a semiconductor device.

삭제delete

상기와 같은 목적을 달성하기 위한 본 발명은, 소오스 또는 드레인 접합을 구비한 트랜지스터 형성이 완료된 실리콘 기판 상부에 층간절연막을 형성하는 단계; 상기 층간절연막을 선택적으로 식각하여 상기 소오스 또는 드레인 접합을 노출시키는 콘택홀을 형성하는 단계; 상기 콘택홀을 포함한 전체 구조 상에 티타늄(Ti)막을 형성하는 단계; 상기 티타늄막 상에 산소확산방지막으로서 TiAlN막을 형성하되, 상기 티타늄막 형성후 공기노출없이 상기 TiAlN막을 형성하는 단계; 상기 티타늄막과 상기 TiAlN막의 계면에 질소를 이온주입하는 단계; 및 열처리 공정을 실시하여 상기 소오스 또는 드레인 접합 상에 상기 티타늄막과 상기 소오스 또는 드레인 접합의 실리콘의 반응에 의한 티타늄 실리사이드를 형성함과 동시에 상기 티타늄막을 질화시키는 단계를 포함하는 반도체 소자 제조 방법을 제공한다.The present invention for achieving the above object, the step of forming an interlayer insulating film on the silicon substrate is completed transistor formation with a source or drain junction; Selectively etching the interlayer insulating layer to form a contact hole exposing the source or drain junction; Forming a titanium (Ti) film on the entire structure including the contact hole; Forming a TiAlN film as an oxygen diffusion preventing film on the titanium film, and forming the TiAlN film without air exposure after the titanium film is formed; Ion implanting nitrogen at an interface between the titanium film and the TiAlN film; And performing a heat treatment process to form titanium silicide by reaction of the titanium film and silicon of the source or drain junction on the source or drain junction, and simultaneously to nitride the titanium film. do.

본 발명은 실리콘 기판과 접하는 Ti막 상에 상부 장벽층(capping barrier) 즉, 산소확산 방지막으로서 TiAlN막을 증착하고, Ti막과 TiAlN막 계면에 질소를 이온주입법으로 첨가함으로써, 티타늄 실리사이드 형성을 위한 열처리 공정시 산소의 침입에 의한 티타늄실리사이드의 응집화를 억제함과 동시에 질소에 의한 티타늄의 질화를 동시에 진행시켜 실리콘 기판의 손실에 의한 소오스 또는 드레인 접합영역의 손상을 감소시키는데 그 특징이 있다. 이에 따라, 콘택저항 및 누설전류를 안정화시킬 수 있다.
According to the present invention, a titanium silicide is formed by depositing a TiAlN film as a top barrier layer, that is, an oxygen diffusion prevention film, on a Ti film in contact with a silicon substrate, and adding nitrogen to the Ti film and the TiAlN film interface by ion implantation. It suppresses the coagulation of titanium silicide by the invasion of oxygen during the heat treatment process for formation and simultaneously the nitriding of titanium by nitrogen to reduce the damage of the source or drain junction region due to the loss of silicon substrate. have. As a result, contact resistance and leakage current can be stabilized.

이하, 첨부된 도면 도2 a 내지 도 2d를 참조하여 본 발명의 실시 예에 따른 반도체 소자의 오믹 콘택층 형성 방법을 설명한다.Hereinafter, a method of forming an ohmic contact layer of a semiconductor device according to an exemplary embodiment of the present invention will be described with reference to the accompanying drawings of FIGS. 2A to 2D.

먼저 도 2a에 도시한 바와 같이 트랜지스터 등의 하부구조 형성이 완료된 실 리콘 기판(20)을 덮는 층간절연막(22)을 선택적으로 식각하여 실리콘 기판(20) 내의 소오스 또는 드레인 접합영역(21)을 노출시키는 콘택홀을 형성하고, 세정(cleaning) 공정을 실시한 다음 전체 구조 상에 Ti막(23) 및 TiAlN막(24)을 형성한다. 이때, Ti막(23)은 상온 내지 500 ℃ 온도, 1 mtorr 내지 30 mtorr 압력 조건에서 10 sccm 내지 200 sccm의 Ar을 주입하고 1000 W 내지 4000 W의 DC 전력, 1000 W 내지 3000 W의 RF 전력을 인가하여 이온메탈플라즈마(ion metal plasma, IMP) 스퍼터링 방법으로 증착하며, 콘택홀 하부에서의 Ti막(23) 증착 두께가 30 Å 내지 200 Å이 되도록 한다. 산소확산방지막으로서 역할하는 TiAlN막(24)은 Ti막 증착 후 공기 노출없이 연속하여 TiAl 합금 타겟(target)을 이용한 스퍼터링 방법이나 화학기상증착방법으로 증착하며 콘택홀 하부에서의 TiAlN막(24) 증착두께는 10 Å 내지 200 Å이 되도록 한다.First, as illustrated in FIG. 2A, the interlayer insulating layer 22 covering the silicon substrate 20 on which the substructure of the transistor or the like is completed is selectively etched to expose the source or drain junction region 21 in the silicon substrate 20. To form a contact hole, a cleaning process is performed, and then a Ti film 23 and a TiAlN film 24 are formed over the entire structure. At this time, the Ti film 23 injects 10 sccm to 200 sccm Ar at room temperature to 500 ° C. and 1 mtorr to 30 mtorr pressure, and supplies DC power of 1000 W to 4000 W and RF power of 1000 W to 3000 W. It is applied to deposit by an ion metal plasma (IMP) sputtering method, so that the thickness of the Ti film 23 deposited below the contact hole is 30 kPa to 200 kPa. The TiAlN film 24, which serves as an oxygen diffusion barrier, is deposited by sputtering or chemical vapor deposition using a TiAl alloy target after exposure of the Ti film without air exposure, and depositing the TiAlN film 24 under the contact hole. The thickness is 10 kPa to 200 kPa.

이어서 Ti막(23)과 TiAlN막(24) 계면에 질소를 이온주입하여, 도 2b에 도시한 바와 같이 5 Å 내지 30 Å 두께의 질소이온주입층(25)을 형성한다.Subsequently, nitrogen is ion-implanted at the interface of the Ti film 23 and the TiAlN film 24 to form a nitrogen ion injection layer 25 having a thickness of 5 Pa to 30 Pa as shown in FIG. 2B.

다음으로, RTP 등과 같은 급속열처리 공정을 N2 분위기, 650 ℃ 내지 900 ℃ 온도 조건에서 10 초 내지 100 초 동안 실시하여 도 2c에 도시한 바와 같이 소오스 또는 드레인 접합영역(21) 상에 티타늄 실리사이드층(23A)을 형성함과 동시에 티타늄을 질화시킨다. 즉, Ti막(23)과 소오스 또는 드레인 접합(21)의 실리콘의 반응에 의해 티타늄실리사이드층(23A)이 형성된다. Next, a rapid heat treatment process such as RTP is performed for 10 seconds to 100 seconds under an N 2 atmosphere and a temperature of 650 ° C. to 900 ° C., and a titanium silicide layer is formed on the source or drain junction region 21 as shown in FIG. 2C. 23A is formed and titanium is nitrided at the same time. That is, the titanium silicide layer 23A is formed by the reaction of the Ti film 23 and the silicon of the source or drain junction 21.

계속하여 전체 구조 상에 TiN 등의 장벽금속층(26)과 W 또는 Al 등의 금속막(27)을 증착한다. 이후 금속막(27) 및 장벽금속층(26)을 패터닝하여 금속배선을 형성한다. Subsequently, a barrier metal layer 26 such as TiN and a metal film 27 such as W or Al are deposited on the entire structure. Thereafter, the metal film 27 and the barrier metal layer 26 are patterned to form metal wiring.                     

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.
The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes are possible in the art without departing from the technical spirit of the present invention. It will be clear to those of ordinary knowledge.

상기와 같이 이루어지는 본 발명은 반도체 소자의 금속배선 형성 공정 중 티타늄막 상에 산소확산방지막을 적층하고 이들의 경계에 질소를 첨가함으로써, 실리사이드 형성을 위한 열처리 공정시 산소 침입에 의한 티타늄 실리사이드의 응집화를 억제함과 동시에 질소에 의한 티타늄의 질화가 진행시킨다. 이에 따라 금속배선 형성시 소오스 또는 드레인 접합영역의 손상되는 것을 방지하여 콘택저항 및 누설전류를 감소시키고, 소자의 신뢰성 향상 등 소자 특성의 안정화에 크게 기여할 것으로 기대된다.According to the present invention as described above, the oxygen diffusion prevention film is deposited on the titanium film during the metallization process of the semiconductor device, and nitrogen is added to the boundary thereof, thereby agglomeration of titanium silicide by oxygen intrusion during the heat treatment process for silicide formation. At the same time, nitriding of titanium by nitrogen proceeds. As a result, it is expected that the formation of the metal wiring will prevent damage to the source or drain junction region, thereby reducing contact resistance and leakage current, and greatly contributing to stabilization of device characteristics such as improved device reliability.

Claims (6)

삭제delete 삭제delete 반도체 소자 제조 방법에 있어서,In the semiconductor device manufacturing method, 소오스 또는 드레인 접합을 구비한 트랜지스터 형성이 완료된 실리콘 기판 상부에 층간절연막을 형성하는 단계;Forming an interlayer insulating film on the silicon substrate on which transistor formation with a source or drain junction is completed; 상기 층간절연막을 선택적으로 식각하여 상기 소오스 또는 드레인 접합을 노출시키는 콘택홀을 형성하는 단계;Selectively etching the interlayer insulating layer to form a contact hole exposing the source or drain junction; 상기 콘택홀을 포함한 전체 구조 상에 티타늄(Ti)막을 형성하는 단계;Forming a titanium (Ti) film on the entire structure including the contact hole; 상기 티타늄막 상에 산소확산방지막으로서 TiAlN막을 형성하되, 상기 티타늄막 형성후 공기노출없이 상기 TiAlN막을 형성하는 단계;Forming a TiAlN film as an oxygen diffusion preventing film on the titanium film, and forming the TiAlN film without air exposure after the titanium film is formed; 상기 티타늄막과 상기 TiAlN막의 계면에 질소를 이온주입하는 단계; 및Ion implanting nitrogen at an interface between the titanium film and the TiAlN film; And 열처리 공정을 실시하여 상기 소오스 또는 드레인 접합 상에 상기 티타늄막과 상기 소오스 또는 드레인 접합의 실리콘의 반응에 의한 티타늄 실리사이드를 형성함과 동시에 상기 티타늄막을 질화시키는 단계Performing a heat treatment process to form titanium silicide by reaction of the titanium film and silicon of the source or drain junction on the source or drain junction and simultaneously nitriding the titanium film 를 포함하는 반도체 소자 제조 방법.Semiconductor device manufacturing method comprising a. 제 3 항에 있어서,The method of claim 3, wherein 상기 열처리 공정은,The heat treatment step, 650 ℃ 내지 900 ℃ 온도에서 10 초 내지 100 초 동안 실시하는 것을 특징으로 하는 반도체 소자 제조 방법.10 to 100 seconds at a temperature of 650 ℃ to 900 ℃ manufacturing method of a semiconductor device. 삭제delete 제 3 항에 있어서,The method of claim 3, wherein 상기 열처리공정후에,After the heat treatment process, 상기 TiAlN막 상에 장벽금속층 및 배선 금속층을 형성하고, 패터닝을 실시하여 금속배선을 형성하는 단계Forming a barrier metal layer and a wiring metal layer on the TiAlN film, and patterning the metal layer to form a metal wiring; 를 더 포함하는 것을 특징으로 하는 반도체 소자 제조 방법.A semiconductor device manufacturing method further comprising.
KR1020000037352A 2000-06-30 2000-06-30 Method for forming titanium silicide ohmic contact layer of semiconductor device KR100626741B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000037352A KR100626741B1 (en) 2000-06-30 2000-06-30 Method for forming titanium silicide ohmic contact layer of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000037352A KR100626741B1 (en) 2000-06-30 2000-06-30 Method for forming titanium silicide ohmic contact layer of semiconductor device

Publications (2)

Publication Number Publication Date
KR20020002973A KR20020002973A (en) 2002-01-10
KR100626741B1 true KR100626741B1 (en) 2006-09-22

Family

ID=19675581

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000037352A KR100626741B1 (en) 2000-06-30 2000-06-30 Method for forming titanium silicide ohmic contact layer of semiconductor device

Country Status (1)

Country Link
KR (1) KR100626741B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705949B1 (en) * 2001-12-18 2007-04-11 매그나칩 반도체 유한회사 Metal wiring in a semiconductor device and a method of forming the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101286239B1 (en) * 2007-08-24 2013-07-15 삼성전자주식회사 Structure of interconnection having a oxygen trap pattern in semiconductor device and method of fabricating the same
KR100971966B1 (en) * 2008-07-16 2010-07-22 주식회사 포스코 System And Method For Controlling Weight Of Turndish At Twin Roll Strip Caster

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130920A (en) * 1988-11-11 1990-05-18 Fujitsu Ltd Manufacture of semiconductor device
KR920010123A (en) * 1990-11-19 1992-06-26 이헌조 Valve control system of cooling water tank for steering engine
JPH0794448A (en) * 1993-09-27 1995-04-07 Nec Corp Manufacture of semiconductor device
KR20000000924A (en) * 1998-06-05 2000-01-15 김영환 Method for forming metal wires of semiconductor devices
KR20000025629A (en) * 1998-10-13 2000-05-06 김영환 Method for manufacturing semiconductor device using aln as diffusion barrier layer and method for forming lower electrode of capacitor using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130920A (en) * 1988-11-11 1990-05-18 Fujitsu Ltd Manufacture of semiconductor device
KR920010123A (en) * 1990-11-19 1992-06-26 이헌조 Valve control system of cooling water tank for steering engine
JPH0794448A (en) * 1993-09-27 1995-04-07 Nec Corp Manufacture of semiconductor device
KR20000000924A (en) * 1998-06-05 2000-01-15 김영환 Method for forming metal wires of semiconductor devices
KR20000025629A (en) * 1998-10-13 2000-05-06 김영환 Method for manufacturing semiconductor device using aln as diffusion barrier layer and method for forming lower electrode of capacitor using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1020000025629 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705949B1 (en) * 2001-12-18 2007-04-11 매그나칩 반도체 유한회사 Metal wiring in a semiconductor device and a method of forming the same

Also Published As

Publication number Publication date
KR20020002973A (en) 2002-01-10

Similar Documents

Publication Publication Date Title
JP3201061B2 (en) Manufacturing method of wiring structure
US5534730A (en) Conductive layer connection structure of a semiconductor device and a method of manufacturing thereof
KR100626741B1 (en) Method for forming titanium silicide ohmic contact layer of semiconductor device
JP3252397B2 (en) Wiring formation method
KR100402428B1 (en) Method for forming metal line of semiconductor
US6087259A (en) Method for forming bit lines of semiconductor devices
KR100652317B1 (en) Method for manufacturing metal pad of the semiconductor device
JPH05335330A (en) Embedding-formation of connection hole
KR100425581B1 (en) Semiconductor device having metal wiring layer completely buried in the hole and fabrication method by using selective nitridation process
US6657301B2 (en) Contact structure, method of forming the same, semiconductor device, and method of manufacturing the same
KR100914975B1 (en) Method for forming metal plug of semiconductor device
KR100606544B1 (en) Method for forming the copper wiring of semiconductor device
US7524749B2 (en) Metallization method of semiconductor device
JP2836585B2 (en) Method for manufacturing semiconductor device
KR100399066B1 (en) Method for aluminium-alloy in semiconductor device
KR100187675B1 (en) Method of forming barrier metal layer in a semiconductor device
KR100252843B1 (en) Method for forming diffusion barrier film of semiconductor device
KR100575332B1 (en) Metal contact formation method of semiconductor device
JP3451634B2 (en) Metal material deposition method
KR100353534B1 (en) Method for forming metal interconnection layer in semiconductor device
KR100646984B1 (en) Method of manufacturing a gate electrode in a semiconductor device
KR100257153B1 (en) Method of forming metal wiring in semiconductor device
KR100217916B1 (en) Forming method for barrier metal layer of semiconductor device
KR100342826B1 (en) Method for forming barrier metal layer of semiconductor device
KR19980033883A (en) Metal wiring formation method of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100825

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee