KR100605346B1 - 디바이스 제조 장치 및 디바이스의 제조 방법, 전자 기기 - Google Patents

디바이스 제조 장치 및 디바이스의 제조 방법, 전자 기기 Download PDF

Info

Publication number
KR100605346B1
KR100605346B1 KR1020030073281A KR20030073281A KR100605346B1 KR 100605346 B1 KR100605346 B1 KR 100605346B1 KR 1020030073281 A KR1020030073281 A KR 1020030073281A KR 20030073281 A KR20030073281 A KR 20030073281A KR 100605346 B1 KR100605346 B1 KR 100605346B1
Authority
KR
South Korea
Prior art keywords
discharge
substrate
liquid
light
detection
Prior art date
Application number
KR1020030073281A
Other languages
English (en)
Other versions
KR20040036569A (ko
Inventor
가미야마노부아키
다카하시하야토
Original Assignee
세이코 엡슨 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세이코 엡슨 가부시키가이샤 filed Critical 세이코 엡슨 가부시키가이샤
Publication of KR20040036569A publication Critical patent/KR20040036569A/ko
Application granted granted Critical
Publication of KR100605346B1 publication Critical patent/KR100605346B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/125Sensors, e.g. deflection sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • B41J29/393Devices for controlling or analysing the entire machine ; Controlling or analysing mechanical parameters involving printing of test patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/09Ink jet technology used for manufacturing optical filters

Abstract

본 발명의 디바이스 제조 장치(IJ)는, 기능성 재료를 함유하는 액상체를 토출하는 토출 헤드(1)와, 액상체가 토출되는 기판(P)을 지지하고, 토출 헤드(1)에 대하여 상대 이동 가능한 스테이지 장치(2)와, 기판(P)을 반송(搬送)하는 반송 장치(3)와, 토출 헤드(1)에 형성되는 토출 노즐(11)로부터 토출되는 액상체의 토출 상태를 검출하는 검출 장치(30)와, 기판(P)의 반송 동작 중에 검출 장치(30)에 의한 검출 동작을 실행하는 제어 장치(CONT)를 구비하고 있다.
기능성 재료, 액상체, 토출 헤드, 기판, 검출 장치, 반송, 제어 장치.

Description

디바이스 제조 장치 및 디바이스의 제조 방법, 전자 기기{DEVICE MANUFACTURING APPARATUS, DEVICE MANUFACTURING METHOD, AND ELECTRONIC APPARATUS}
도 1은 본 발명의 디바이스 제조 장치의 일 실시예를 나타내는 개략 사시도.
도 2는 토출 헤드를 나타내는 도면.
도 3은 토출 헤드를 나타내는 도면.
도 4는 검출 장치의 일 실시예를 나타내는 개략 사시도.
도 5는 검출 장치의 검출광의 광로(光路) 위를 토출 헤드로부터 토출된 액체 방울이 통과하는 상태를 나타내는 모식도.
도 6은 본 발명의 디바이스의 제조 방법의 일례를 나타내는 메인 루틴의 플로차트.
도 7은 서브 루틴인 수광부의 교정(calibration) 동작의 일례를 나타내는 플로차트.
도 8의 (a)∼(f)는 디바이스로서의 컬러 필터의 제조 공정의 일례를 나타내는 도면.
도 9는 유기 EL 장치의 측단면도.
도 10은 플라즈마 디스플레이의 분해 사시도.
도 11은 패턴의 형성 방법을 설명하기 위한 플로차트.
도 12의 (a) 및 (b)는 패턴의 형성 방법의 일례를 나타내는 모식도.
도 13의 (a) 및 (b)는 패턴의 형성 방법의 일례를 나타내는 모식도.
도 14의 (a) 및 (b)는 패턴의 형성 방법의 일례를 나타내는 모식도.
도 15의 (a)∼(d)는 마이크로 렌즈의 제조 방법의 공정 설명도.
도 16의 (a) 및 (b)는 화상 표시 장치의 전자원 기판의 모식도.
도 17의 (a)∼(c)는 화상 표시 장치의 제조 공정 설명도.
도 18의 (a)∼(c)는 디바이스를 탑재한 전자 기기의 일례를 나타내는 도면.
*도면의 주요 부분에 대한 부호의 설명*
1 : 토출 헤드
2 : 스테이지 장치
3 : 반송 장치(반송 수단)
11 : 토출 노즐
30 : 검출 장치(검출 수단)
31 : 투광부(投光部)
32 : 수광부(受光部)
40 : 표시 장치(표시 수단)
CONT : 제어 장치(제어 수단)
IJ : 액체 방울 토출 장치(디바이스 제조 장치)
본 발명은 액상체를 토출 가능한 토출 헤드를 구비한 디바이스 제조 장치 및 디바이스의 제조 방법에 관한 것이다.
종래, 미세(微細) 패턴을 갖는 디바이스의 제조 방법으로서 포토리소그래피법이 다용(多用)되고 있지만, 최근에는 액체 방울 토출 방식을 이용한 디바이스의 제조 방법이 주목받고 있다. 이 기술은 기능성 재료를 함유한 액상체 재료를 액체 방울 토출 장치의 토출 헤드로부터 토출하여 기판 위에 재료를 배치함으로써 패턴을 형성하는 것이며, 소량 다종(多種) 생산에 대응할 수 있는 점 등에서 매우 효과적이다. 액체 방울 토출 장치의 액체 방울 토출 방식으로서는, 압전체 소자의 변형에 의해 액상체 재료의 액체 방울을 토출시키는 피에조젯 방식이나, 열의 인가에 의해 급격하게 증기가 발생함으로써 액상체 재료를 토출시키는 방식이 주로 알려져 있다.
토출 헤드는 복수의 토출 노즐을 갖고 있지만, 예를 들어, 막힘 등의 원인에 의해 일부의 토출 노즐로부터 액상체가 토출되지 않을 경우가 있다. 액상체를 토출할 수 없는 토출 노즐(비동작 노즐)이 존재하면, 기판에 대하여 액체 방울을 토출함으로써 도트 패턴을 형성할 때, 도트 빠짐이 발생한다.
예를 들면, 일본국 특개2000-343686호 공보, 일본국 특개2001-212970호 공보, 일본국 특개2002-79693호 공보 및 일본국 특개2002-192740호 공보에는 프린터(인쇄 장치)에 관한 도트 빠짐 검출 방법(비동작 노즐 검출 방법)에 관한 기술이 기 재되어 있다.
상기 특허 문헌에 기재되어 있는 기술은 프린터에 적용되는 비동작 노즐 검출 방법에 관한 기술이다. 프린터에 의한 인쇄 동작은 정기적으로 실행되는 것이 아니기 때문에, 비동작 노즐 검출 동작은 인쇄 동작 개시 전에 실행되는 것이 통상적이다. 한편, 디바이스를 제조하기 위해 토출 헤드로부터 액상체를 토출하는 토출 동작은, 예를 들어, 공장 내에서 하루 종일 실행되는 것이다. 따라서, 액체 방울 토출 방식을 이용하여 디바이스를 제조할 때, 비동작 노즐 검출 동작의 타이밍을 최적으로 설정하는 것이 디바이스의 생산성(throughput) 향상에 효과적이다.
본 발명은 이러한 사정을 감안하여 안출된 것으로서, 액체 방울 토출 방식을 이용하여 디바이스를 제조할 때, 생산성을 저하시키지 않고 비동작 노즐 검출을 행하여, 도트 빠짐이 없는 원하는 성능을 갖는 디바이스를 제조할 수 있는 디바이스 제조 장치 및 디바이스의 제조 방법을 제공하는 것을 목적으로 한다.
본 발명의 제 1 형태는 디바이스 제조 장치로서, 기능성 재료를 함유하는 액상체를 토출하는 토출 헤드와, 상기 액상체가 토출되는 기판을 지지하고, 상기 토출 헤드에 대하여 상대 이동 가능한 스테이지 장치와, 상기 기판을 반송하는 반송 수단과, 상기 토출 헤드에 형성되는 토출 노즐로부터 토출되는 상기 액상체의 토출 상태를 검출하는 검출 수단과, 상기 기판의 반송 동작 중에 상기 검출 수단에 의한 검출 동작을 실행하는 제어 수단을 구비한다.
또한, 본 발명의 제 2 형태는 디바이스의 제조 방법으로서, 기능성 재료를 함유하는 액상체를 토출 헤드의 토출 노즐로부터 기판에 대하여 토출하는 공정과, 상기 기판을 반송하는 반송 공정과, 상기 기판의 반송 동작 중에 상기 토출 노즐로부터 토출되는 상기 액상체의 토출 상태를 검출하는 검출 공정을 갖는다.
상기 형태에 의하면, 디바이스를 제조하기 위한 기판을 스테이지 장치에 대하여 반송하고 있는 동안, 즉, 스테이지 장치에 대하여 기판의 급재(給材) 및 제재(除材)(로딩 및 언로딩) 동작을 행하고 있는 동안에, 토출 노즐로부터 액체 방울이 토출되고 있는지의 여부를 검출하는 비동작 노즐 검출 동작을 행하도록 했기 때문에, 기판의 반송 동작과 비동작 노즐 검출 동작을 병행하여 행할 수 있다.
따라서, 디바이스를 제조하기 위한 기판에 대하여 액상체를 토출하는 토출 동작을 방해하지 않고 비동작 노즐 검출 동작을 행할 수 있기 때문에, 생산성을 저하시키지 않고, 도트 빠짐이 없는 원하는 성능을 갖는 디바이스를 제조할 수 있다. 또한, 기판의 급재 및 제재 동작 중은 디바이스 제조 프로세스 전체 중 토출 노즐로부터 액상체가 토출되는 시간이 비교적 길기 때문에, 이 급재 및 제재 동작 중에 비동작 노즐 검출 동작을 행하는 것은 생산성 향상의 관점, 및 토출 노즐의 막힘 방지의 관점에서 효과적이다.
또한, 상기 검출 수단은 검출광을 사출하는 투광부와, 상기 투광부로부터 사출된 상기 검출광을 수광 가능한 수광부를 구비하고, 상기 수광부는, 상기 검출광의 광로 위를 상기 액상체가 통과하는 것에 의한 상기 검출광의 상기 수광부에서의 수광량 변화에 의거하여, 상기 토출 노즐로부터 상기 액상체가 토출되고 있는지의 여부를 판별하는 것이 바람직하다.
이것에 의하면, 비동작 노즐 검출 동작을 광학적으로 양호한 정밀도에 의해 행할 수 있다.
또한, 상기 제어 수단은 소정의 타이밍으로 상기 수광부의 교정을 행하는 것이 바람직하다.
복수회 비동작 노즐 검출 동작을 행할 때, 수광부의 온도(열)나 주위의 장치(노이즈 발생원)에 기인하는 노이즈 등에 의해 비동작 노즐 검출마다 수광부의 수광 감도나 출력 신호값이 다른 경우가 발생한다. 이것에 의하면, 비동작 노즐 검출 동작을 실행하기 전마다 등 소정의 타이밍으로 수광부의 교정을 행함으로써, 수광부의 검출 정밀도를 향상시킬 수 있다.
또한, 상기 토출 노즐의 회복 동작을 행하는 회복 수단을 구비하고 있을 수도 있으며, 이 경우에 있어서, 상기 제어 수단은 상기 검출 수단의 검출 결과에 따라 상기 회복 동작을 행하고, 소정 횟수의 검출을 재실행하는 것이 바람직하다.
이것에 의하면, 예를 들어, 비동작 노즐에 대한 클리닝 동작 등의 회복 동작을 행함으로써, 비동작 노즐을 토출 가능 상태로 회복할 수 있다.
또한, 상기 검출 수단의 검출 결과와, 검출 결과에 의거한 에러(error)를 표시하는 표시 수단을 구비하고 있을 수도 있다.
이것에 의하면, 표시 장치의 표시 결과에 의거하여, 예를 들어, 작업자는 비동작 노즐 검출 동작이 정상적으로 실행되었는지의 여부나 비동작 노즐이 존재했는지의 여부를 파악할 수 있고, 표시 장치의 표시 결과에 의거하여 적절한 처치를 실 시할 수 있다.
또한, 상기 검사 수단과 상기 스테이지 장치는 다른 위치에 설치되어 있는 것이 바람직하다.
이것에 의해, 스테이지 장치에 대한 기판의 반송 동작(급재 및 제재 동작)과 비동작 노즐 검출 동작을 원활하게 병행하여 행할 수 있어, 생산성의 향상을 실현할 수 있다.
또한, 상기 토출 헤드는 복수 구비되어 있는 것이 바람직하다.
복수의 토출 헤드 중, 예를 들어, 제 1 토출 헤드로부터 제 1 액상체 재료를 기판에 토출한 후, 이것을 소성(燒成) 또는 건조시키고, 이어서, 제 2 토출 헤드로부터 제 2 액상체 재료를 기판에 대하여 토출한 후 이것을 소성 또는 건조시키며, 이하, 복수의 토출 헤드를 사용하여 동일한 처리를 행함으로써, 기판 위에 복수의 재료층이 적층되어, 다층 패턴이 효율적으로 형성된다.
제 2 형태에 있어서, 수광부에 대하여 검출광을 조사하고, 상기 검출광의 광로 위를 상기 액상체가 통과하는 것에 의한 상기 수광부에서의 수광량 변화에 의거하여, 상기 토출 노즐로부터 상기 액상체가 토출되고 있는지의 여부를 판별하는 것이 바람직하다.
이것에 의하면, 비동작 노즐 검출 동작을 광학적으로 양호한 정밀도에 의해 행할 수 있다. 이 경우에 있어서, 소정의 타이밍으로 상기 수광부의 교정을 행할 수도 있다. 교정을 행하는 타이밍으로서는, 검출 동작 직전에 행하는 것이 바람직하다. 이것에 의하면, 복수회 비동작 노즐 검출 동작을 행할 때, 수광부의 온도( 열)나 주위의 장치(노이즈 발생원)에 기인하는 노이즈 등에 의해 비동작 노즐 검출마다 수광부의 수광 감도나 출력 신호값이 다른 경우가 발생하지만, 비동작 노즐 검출 동작을 실행하기 전마다 수광부의 교정을 행함으로써, 수광부의 검출 정밀도를 향상시킬 수 있다.
본 발명의 제 3 형태는 전자 기기로서, 상기 기재된 디바이스 제조 장치, 또는 상기 기재된 디바이스의 제조 방법에 의해 제조된 디바이스를 구비한다.
본 형태의 전자 기기에 의하면, 효율적으로 제조된 디바이스를 갖기 때문에, 비용의 저감화가 실현된 전자 기기를 제공할 수 있다.
이하, 본 발명의 디바이스 제조 장치에 대해서 설명한다.
도 1은 본 발명의 디바이스 제조 장치의 일 실시예를 나타내는 개략 사시도이다.
본 실시예의 디바이스 제조 장치는, 기능성 재료를 함유하는 액상체 재료(액상체)의 액체 방울을 토출 가능한 토출 헤드를 구비한 액체 방울 토출 장치를 포함하여 구성되어 있다.
도 1에 있어서, 디바이스 제조 장치(액체 방울 토출 장치)(IJ)는 액상체 재료의 액체 방울을 토출하는 토출 헤드(1)와, 디바이스를 제조하기 위한 기재(基材)인 기판(P)을 지지하는 스테이지 장치(2)와, 스테이지 장치(2)에 대하여 기판(P)을 반입 및 반출(로딩 및 언로딩)하는 반송 장치(반송 수단)(3)와, 토출 헤드(1)의 토출 동작을 포함하는 디바이스 제조 장치(IJ) 전체의 동작을 제어하는 제어 장치(제어 수단)(CONT)를 구비하고 있다. 본 실시예에 있어서, 반송 장치(3)는 로봇 암을 갖고, 스테이지 장치(2)의 도면 중의 -X방향에 설치되어 있다. 토출 헤드(1)는 그 토출면(1P)에 액상체 재료의 액체 방울을 토출하는 복수의 토출 노즐(11)(도 2 참조)을 갖고 있다. 액상체 재료는 수용 장치(탱크)(도시 생략)에 수용되어 있고, 튜브를 통하여 토출 헤드(1)로부터 토출되도록 되어 있다. 디바이스 제조 장치(IJ)는 토출 헤드(1)로부터 기판(P)의 표면에 액상체 재료를 배치함으로써 액상체 재료에 함유되어 있는 기능성 재료를 성막한다. 토출 헤드(1)는 구동 장치(4)에 의해 도면 중의 XY방향(수평 방향)으로 이동할 수 있는 동시에, Z방향(수직 방향)으로 이동할 수 있다. 또한, 토출 헤드(1)는 θX방향(X축 둘레 방향), θY방향(Y축 둘레 방향), 및 θZ방향(Z축 둘레 방향)으로 이동할 수 있다. 스테이지 장치(2)는 구동 장치(5)에 의해 도면 중의 XY 방향으로 이동할 수 있는 동시에, Z방향 및 θZ방향으로 이동할 수 있다. 구동 장치(4) 및 구동 장치(5)에 의해, 기판(P)을 지지하는 스테이지 장치(2)는 토출 헤드(1)에 대하여 상대적으로 이동할 수 있게 되어 있다.
스테이지 장치(2)와 다른 위치, 즉, 토출 헤드(1)에 의한 디바이스를 제조하기 위한 액체 방울 토출 동작 실행 위치와 다른 위치에는, 토출 헤드(1)를 클리닝하기 위한 클리닝 유닛(회복 수단)(6) 및 토출 헤드(1)를 캡핑하는 캡핑 유닛(7)이 설치되어 있다. 본 실시예에서는, 클리닝 유닛(6) 및 캡핑 유닛(7)은 스테이지 장치(2)의 +Y방향에 설치되어 있다. 클리닝 유닛(6)은 토출 헤드(1)의 토출 노즐(11)의 클리닝을 행한다. 클리닝을 행할 때에는, 우선, 토출 헤드(1)가 클리닝 유닛(6)에 대하여 위치 결정되고, 클리닝 유닛(6)과 토출 헤드(1)의 토출면(1P) 이 접속된다. 이어서, 클리닝 유닛(6)이 이 클리닝 유닛(6)과 토출 헤드(1)의 토출면(1P)에 의해 형성된 공간의 공기를 흡인한다. 상기 공간이 흡인됨으로써 토출 헤드(1)의 토출 노즐(11)에 존재하는 액상체 재료가 흡인되고, 이것에 의해 토출 헤드(1) 및 토출 노즐(11)의 클리닝이 실행된다. 클리닝 유닛(6)에 의한 토출 노즐(11)에 대한 클리닝 동작(회복 동작)이 실행됨으로써, 예를 들어, 비동작 노즐은 회복된다. 또한, 캡핑 유닛(7)은 토출 헤드(1)의 토출면(1P)의 건조를 방지하는 것으로서, 디바이스를 제조하지 않는 대기 시에 토출면(1P)에 캡을 씌운다.
도 2는 토출 헤드(1)의 분해 사시도이고, 도 3은 토출 헤드(1)의 사시도 일부 단면도이다. 도 2에 나타낸 바와 같이, 토출 헤드(1)는 토출 노즐(11)을 갖는 노즐 플레이트(10)와, 진동판(12)을 갖는 압력실 기판(13)과, 이들 노즐 플레이트(10)와 진동판(12)을 끼워 넣어 지지하는 하우징(14)을 구비하고 있다. 도 3에 나타낸 바와 같이, 토출 헤드(1)의 주요부 구조는 압력실 기판(13)을 노즐 플레이트(10)와 진동판(12)에 의해 사이에 끼운 구조를 갖는다. 압력실 기판(13)은 실리콘 단결정 기판 등에 의해 구성되고, 이것을 에칭함으로써 형성되는 복수의 캐비티(cavity)(압력실)(16)를 갖고 있다. 토출 노즐(11)은, 노즐 플레이트(10)에 있어서, 노즐 플레이트(10)와 압력실 기판(13)을 접합시켰을 때에 캐비티(16)에 대응하는 위치에 형성되어 있다.
복수의 캐비티(16)끼리의 사이는 측벽(17)에 의해 분리되어 있다. 캐비티(16)는 공급구(18)를 통하여 공통의 유로인 리저버(reservoir)(15)에 각각 접속하고 있다. 진동판(12)은, 예를 들어, 열산화막 등에 의해 형성된다. 진동판(12)은 탱크구(19)를 갖고, 탱크구(19)로부터 상기 탱크에 접속된 튜브를 통하여 액상체 재료가 공급된다. 진동판(12) 위의 캐비티(16)에 대응하는 위치에는 압전체 소자(20)가 설치되어 있다. 압전체 소자(20)는 PZT 소자 등의 압전성 세라믹스의 결정을 상부 전극 및 하부 전극(도시 생략)에 의해 사이에 끼운 구조를 갖는다. 압전체 소자(20)는 인가된 전압에 의거하여 변형한다.
도 1로 되돌아가, 디바이스 제조 장치(IJ)는 토출 헤드(1)의 토출 노즐(11)로부터 토출되는 액상체 재료의 액체 방울의 토출 상태, 구체적으로는 액상체 재료의 액체 방울이 토출되고 있는지의 여부를 검출하는 검출 장치(검출 수단)(30)를 구비하고 있다. 검출 장치(30)는 스테이지 장치(2)와 다른 위치, 즉, 토출 헤드(1)에 의한 디바이스를 제조하기 위한 액체 방울 토출 동작 실행 위치와 다른 위치에 설치되어 있고, 본 실시예에서는 스테이지 장치(2)의 +X방향에 설치되어 있다. 검출 장치(30)는 토출 헤드(1)에 설치된 복수의 토출 노즐(11) 각각으로부터 액상체 재료의 액체 방울이 토출되고 있는지의 여부를 검출함으로써, 막힘 등에 기인하여 액체 방울을 토출할 수 없는 토출 노즐(비동작 노즐)을 검출한다. 이것에 의해, 검출 장치(30)는 기판(P)에 액체 방울을 토출함으로써 기판(P) 위에 도트 패턴을 형성할 때의 기판(P) 위에서의 도트 빠짐이 발생하는 지의 여부를 검출할 수 있다.
검출 장치(30)는 검출광을 사출하는 투광부(31)와, 투광부(31)로부터 사출된 검출광을 수광 가능한 수광부(32)를 구비하고 있다. 투광부(31)는 소정의 직경을 갖는 레이저광을 사출하는 레이저광 조사 장치에 의해 구성되어 있다. 한편, 수광 부(32)는, 예를 들어, 포토다이오드에 의해 구성되어 있다. 또한, 디바이스 제조 장치(IJ)는, 이 검출 장치(30)의 검출 결과 및 검출 상황(검출 동작)에 관한 정보를 표시하는 표시 장치(표시 수단)(40)를 구비하고 있다. 표시 장치(40)는, 예를 들어, 액정 디스플레이나 CRT 등에 의해 구성되어 있다.
도 4는 투광부(31) 및 수광부(32)를 구비한 검출 장치(30)의 개략 사시도이다. 도 4에 나타낸 바와 같이, 투광부(31)와 수광부(32)는 대향하도록 설치되어 있다. 본 실시예에 있어서, 투광부(31)는 검출광인 레이저광을 Y축 방향을 따라 사출한다. 검출광의 광속(光束)은 직경(D)으로 설정되어 있고, 투광부(31)로부터 사출된 검출광은 수광부(32)를 향하여 직진한다. 토출 헤드(1)는, 검출광의 광로의 위쪽(+Z측)에 있어서, 검출광의 광로 방향(Y축 방향)에 대하여 교차하는 방향(X축 방향)으로 주사하면서 액체 방울을 토출하도록 되어 있다. 토출 헤드(1)의 토출 노즐(11)로부터 토출된 액체 방울은 검출광의 광로를 통과하도록 설정되어 있다.
도 5는 토출 헤드(1)의 토출 노즐(11)로부터 토출된 액체 방울이 검출광의 광로를 통과하는 상태를 나타내는 모식도이다. 또한, 도 5에 나타낸 토출 헤드(1)는 주사 방향인 X축 방향으로 3개 배열된 토출 노즐(11A, 11B, 11C)을 갖고 있지만, 토출 헤드(1)에 설치되는 토출 노즐(11)의 수는 임의로 설정할 수 있다.
도 5에 나타낸 바와 같이, 토출 헤드(1)는 X축 방향으로 주사하면서 토출 노즐(11A∼11C)의 각각으로부터 액체 방울을 토출한다. 토출된 액체 방울은 직경(D)의 광속인 검출광의 광로 위를 통과한다. 여기서, 검출광의 직경과 수광부(32)의 계측 영역의 직경은 동일한 값(D)으로 설정되어 있다. 검출광의 광로 위를 액체 방울이 통과하고, 이 검출광의 광로 위에 액체 방울이 배치됨으로써, 수광부(32)에서 수광되는 검출광의 수광량은 검출광의 광로 위에 액체 방울이 배치되어 있지 않은 상태에서의 수광량에 대하여 변화한다. 즉, 검출광의 광로 위에 액체 방울이 배치됨으로써, 수광부(32)의 수광 신호는 검출광의 광로 위에 액체 방울이 배치되어 있지 않은 경우에 비하여 저하된다. 수광부(32)의 수광 결과(수광 신호)는 제어 장치(CONT)에 출력된다. 제어 장치(CONT)는 검출광의 광로 위를 액체 방울이 통과하는 것에 의한 검출광의 수광부(32)에서의 수광량 변화(저하)에 의거하여, 토출 노즐(11)로부터 액체 방울이 토출되고 있는지의 여부를 판별할 수 있다.
구체적으로는, 검출광의 광로 위에 액체 방울이 배치되면, 수광부(32)에서의 수광량 저하에 따라 수광부(32)의 출력 신호(출력 전압)가 변화한다. 수광부(32)는, 이 출력 전압에 의거하여, 「HIGH」 또는 「LOW」의 신호를 제어 장치(CONT)에 출력한다. 여기서, 수광부(32)는 검출광의 광로 위에 액체 방울이 배치되어 있을 경우에 「HIGH」의 신호를 출력하고, 검출광의 광로 위에 액체 방울이 배치되어 있지 않을 경우에 「LOW」의 신호를 출력한다.
또한, 도 1에는 토출 헤드(1) 및 스테이지 장치(2)가 1개만 도시되어 있지만, 액체 방울 토출 장치(IJ)는 복수의 토출 헤드(1) 및 스테이지 장치(2)를 갖는 구성일 수도 있다. 이 경우, 복수의 토출 헤드(1) 각각으로부터 이종(異種) 또는 동종(同種)의 액상체 재료의 액체 방울이 토출되도록 되어 있다. 그리고, 기판(P)에 대하여 이들 복수의 토출 헤드(1) 중 제 1 토출 헤드로부터 제 1 액상체 재료를 토출한 후, 이것을 소성 또는 건조시키고, 이어서 제 2 토출 헤드로부터 제 2 액상체 재료를 기판(P)에 대하여 토출한 후 이것을 소성 또는 건조시키며, 이하, 복수의 토출 헤드를 사용하여 동일한 처리를 행함으로써, 기판(P) 위에 복수의 재료층이 적층되어, 다층 패턴이 형성된다.
다음으로, 상술한 구성을 갖는 디바이스 제조 장치(IJ)를 사용하여 디바이스를 제조하는 방법에 대해서, 도 6 및 도 7의 플로차트를 참조하면서 설명한다.
도 6은 디바이스 제조 장치(IJ)의 처리 순서(메인 루틴)를 나타내는 도면이고, 도 7은 도 6 중 스텝 S5인 수광부(32)의 교정 처리 순서(서브 루틴)를 나타내는 도면이다.
도 6에 있어서, 스테이지 장치(2)에 지지되어 있는 기판(P)에 대하여 토출 헤드(1)로부터 액상체 재료의 액체 방울이 디바이스를 제조하기 위해 토출되고, 이 액체 방울 토출 동작(패턴 묘화 동작)이 종료되면, 제어 장치(CONT)는 토출 헤드(1)에 대한 비동작 노즐 검출 동작을 개시한다(스텝 S1).
제어 장치(CONT)는 토출 헤드(1)에 의한 디바이스를 제조하기 위한 액체 방울 토출 동작을 종료하고, 토출 헤드(1) 내부에서의 액상체 재료의 건조(응고)에 기인하는 토출 노즐(11)의 막힘을 방지하기 위해 액상체 재료의 메니스커스를 진동시킨다. 즉, 제어 장치(CONT)는 토출 헤드(1)로부터 액체 방울이 토출하지 않을 정도로 압전체 소자(20)의 미진동(인자(印字) 외의 미진동) 동작을 개시한다(스텝 S2). 이어서, 제어 장치(CONT)는 구동 장치(4)에 의해 토출 헤드를 비동작 노즐 검출 동작 실행 위치, 즉, 검출 장치(30)의 근방으로 이동시킨다(스텝 S3). 이어 서, 제어 장치(CONT)는 스테이지 장치(2)에 지지되어 있는 패턴 묘화 처리 완료의 기판(P)을 스테이지 장치(2)로부터 반출(언로딩, 제재)하는 동작, 및 패턴 묘화되어야 할 다음의 새로운 기판(P)을 스테이지 장치(2)에 반입(로딩, 급재)하는 동작의 실행을 반송 장치(3)에 개시시킨다(스텝 S4). 또한, 스텝 S3 및 스텝 S4의 동작은 동시에 실행될 수도 있고, 스텝 S4의 동작을 스텝 S3의 동작 전에 실행하도록 할 수도 있다.
제어 장치(CONT)는 반송 장치(3)에 의해 스테이지 장치(2)에 대하여 기판(P)을 반송하는 동작(반송 공정)이 실행되고 있는 동안, 토출 헤드(1)의 토출 노즐(11)로부터 액체 방울이 토출되고 있는지의 여부를 검출하는 비동작 노즐 검출 공정(검출 공정)을 실행한다. 제어 장치(CONT)는 스텝 S4에서 반송 장치(3)에 대하여 급재 및 제재 동작의 개시를 지령하면, 검출 장치(30)에 의한 비동작 노즐 검출 동작을 개시한다. 우선, 제어 장치(CONT)는 비동작 노즐 검출 동작을 행할 때, 수광부(32)의 교정을 행한다(스텝 S5).
여기서, 도 7을 참조하면서 스텝 S5의 처리 순서(서브 루틴)에 대해서 설명한다. 본 실시예에 있어서, 수광부(32)의 교정 동작은 검출광의 조사에 의거한 수광부(32)에 대한 입력 신호와 수광부(32)의 출력 신호 사이의 게인(gain)(이득)을 자동적으로 최적으로 설정하는 동작(오토 게인 컨트롤(auto gain control))이다. 구체적으로는, 검출광의 광로 위에 액체 방울이 배치되어 있지 않은 상태에서, 수광부(32)로부터의 출력 신호가 「LOW」로 되도록 게인을 설정한다. 또한, 교정 동작 중 투광부(31)로부터 검출광이 일정한 출력으로 계속하여 사출되고 있으며, 토 출 헤드(1)로부터는 액체 방울이 토출되고 있지 않는다.
수광부(32)의 교정을 행할 때에, 제어 장치(CONT)는 수광부(32)의 입력 신호와 출력 신호 사이의 게인(이득)에 관한 데이터를 설정하고, 이 데이터를 수광부(32)에 전송한다(스텝 SA1). 구체적으로는, 제어 장치(CONT)는 미리 설정된 소정 범위 내에서 복수의 게인 데이터(게인값)를 설정하고, 이들 설정된 복수의 게인 데이터 중 큰 값을 갖는 게인 데이터로부터 작은 값을 갖는 게인 데이터를 차례로 수광부(32)에 전송한다. 여기서는, 우선, 설정된 복수의 게인 데이터 중 최대값의 게인 데이터가 전송된다. 예를 들면, 게인 데이터가 「4000∼2000」의 범위로 설정되면, 제어 장치(CONT)는, 우선, 「4000」의 값을 수광부(32)에 전송한다.
이어서, 제어 장치(CONT)는 전송한 게인 데이터 「4000」에 의거한 수광부(32)의 출력 신호가 정상적으로 출력되고 있는지의 여부를 판별한다. 즉, 게인 데이터가 최적값이 아니면, 검출광의 광로 위에 액체 방울이 배치되어 있지 않음에도 불구하고, 수광부(32)의 출력 신호가 「HIGH」로 되는 경우가 있다. 따라서, 제어 장치(CONT)는 전송한 게인 데이터 「4000」에 의거한 수광부(32)의 출력 신호가 「LOW」인지의 여부를 판별한다(스텝 SA2).
스텝 SA2에서 수광부(32)로부터의 출력 신호가 「LOW」가 아니라고 판단하면, 제어 장치(CONT)는 게인 데이터를 재설정하고, 이 재설정한 게인 데이터를 수광부(32)에 전송한다(스텝 SA3). 즉, 스텝 SA1에서 설정한 게인 데이터는 수광부(32)로부터 정상적인 출력 신호가 출력되어야 할 게인값에 대하여 크기 때문에, 제어 장치(CONT)는 게인 데이터를 스텝 SA1에서 설정한 값보다 작은 값, 예를 들어, 「2600」으로 재설정하고, 이 게인 데이터 「2600」을 수광부(32)에 전송한다.제어 장치(CONT)는,재설정한 게인 데이터 「2600」이 미리 설정된 설정값(예를 들어, 「2000」) 이하인지의 여부를 판별한다(스텝 SA4). 즉, 게인값이 소정 범위 「4000∼2000」 중의 최소값인 설정값 「2000」 이하일지라도 수광부(32)로부터 「LOW」가 출력되지 않을 경우는, 어떠한 원인(장치의 고장 등)에 의해 수광부(32)가 정상적인 출력 신호를 출력할 수 없는 상태가 발생했다고 생각할 수 있기 때문에, 게인 데이터가 설정값 이하라고 판단한 경우, 제어 장치(CONT)는 루프로부터 빠지도록 되어 있다. 한편, 게인 데이터가 설정값 이상이라고 판단한 경우, 제어 장치(CONT)는, 스텝 SA2로 되돌아가, 전송한 게인 데이터 「2600」에 의거한 수광부(32)의 출력 신호가 「LOW」인지의 여부를 판별한다.
스텝 SA2에서 수광부(32)로부터의 출력 신호가 「LOW」라고 판단하면, 제어 장치(CONT)는 게인 데이터의 설정 변경을 행하면서, 이 처리를 규정 횟수(예를 들어, 5회) 반복한다. 구체적으로는, 제어 장치(CONT)는 「LOW」가 얻어지는 게인 데이터 「2600, 2600, 2600, 2500, 2500」을 취득한다. 제어 장치(CONT)는 반복 횟수가 규정 횟수에 도달했는지의 여부를 판별한다(스텝 SA5).
제어 장치(CONT)는 상기 5회의 게인 데이터로부터 「LOW」가 얻어지는 최빈값을 결정한다(스텝 SA6). 여기서는, 5회의 게인 데이터 「2600, 2600, 2600, 2500, 2500」 중 「2600」이 가장 빈번하게 얻어지는 게인값(최빈값)이다. 이렇게 함으로써, 「LOW」의 출력 신호를 얻기 위한 게인 데이터의 신뢰성이 향상된다. 즉, 예를 들어, 수광부(32)의 주위에 존재하는 각종 장치(노이즈 발생원)의 노이즈 나 수광부(32) 자체의 온도(열)에 기인하여, 「LOW」가 얻어지는 게인값이 변동하는 경우가 있다. 따라서, 규정 횟수 처리를 반복하여, 최빈값을 결정함으로써 데이터 신뢰성이 향상된다.
이어서, 제어 장치(CONT)는 결정한 최빈값 「2600」이 미리 설정된 설정값(예를 들어, 「2000」) 이하인지의 여부를 판별한다(스텝 SA7). 스텝 SA7에서 최빈값이 설정값 이상이라고 판단하면, 제어 장치(CONT)는 미리 설정된 옵셋값에 의거하여 게인 데이터의 재설정을 행한다(스텝 SA8). 구체적으로는, 최빈값 「2600」으로부터 옵셋값(예를 들어, 「500」)을 감산(減算)하고, 게인 데이터를 「2100」으로 재설정한다. 이것은, 예를 들어, 수광부(32)의 주위에 존재하는 각종 장치(노이즈 발생원)의 노이즈나 수광부(32) 자체의 온도(열) 등에 기인하여, 게인값이 가령 「2600」일지라도 「HI」가 출력되는 경우가 있다. 따라서, 검출광의 광로 위에 액체 방울이 존재하지 않을 경우에, 수광부(32)로부터 「LOW」의 출력 신호가 확실하게 얻어지도록 게인값을 하향 수정한다. 게인 데이터가 설정되면, 수광부(32)의 교정 동작이 정상 종료되고(스텝 SA9), 메인 루틴으로 되돌아간다(스텝 SA10).
한편, 스텝 SA7에서 최빈값이 설정값 이하라고 판단하면, 제어 장치(CONT)는 수광부(32)의 교정 동작을 이상(異常) 종료하고(스텝 SA11), 메인 루틴으로 되돌아간다(스텝 SA12). 즉, 게인값이 소정 범위 「4000∼2000」 중의 최소값인 설정값 「2000」 이하일 경우, 게인값으로서 부적당하여, 그 후의 비동작 노즐 검출 동작을 원활하게 행할 수 없는 경우가 발생할 우려가 있다. 따라서, 제어 장치(CONT) 는 결정한 최빈값이 미리 설정한 설정값 이하일 경우, 수광부(32)의 교정 동작을 이상 종료한다.
여기서, 수광부(32)의 교정 동작의 동작 결과, 즉, 교정 동작이 정상 종료되었는지의 여부의 결과는 표시 장치(40)(도 1 참조)에 표시되도록 되어 있다.
도 6으로 되돌아가, 수광부(32)의 게인을 설정하기 위한 교정이 종료되면, 제어 장치(CONT)는 교정 동작이 정상적으로 종료되었는지의 여부를 판별한다(스텝 S6). 교정 동작이 정상적으로 종료되었다고 판단하면, 제어 장치(CONT)는 토출 헤드(1)의 압전체 소자(20)의 미진동(인자 외의 미진동), 즉, 토출 헤드(1) 내부의 액상체 재료의 메니스커스의 미진동을 종료한다(스텝 S7). 그리고, 제어 장치(CONT)는, 도 4 및 도 5를 이용하여 설명한 바와 같이, 투광부(31)로부터 수광부(32)에 대하여 검출광을 조사하고, 투광부(31)로부터 사출되는 검출광의 광로 방향에 대하여 교차하는 방향으로 토출 헤드(1)를 주사하면서 액체 방울을 토출시켜, 비동작 노즐 검출 동작을 행한다(스텝 S8). 수광부(32)의 출력 신호는 제어 장치(CONT)에 출력되고, 제어 장치(CONT)는 수광부(32)로부터의 출력 신호의 신호 처리(데이터 처리)를 행한다(스텝 S9). 제어 장치(CONT)는 검출광의 광로 위를 토출 헤드(1)로부터 토출된 액체 방울이 통과하는 것에 의한 수광부(32)에서의 수광량 변화(저하)에 의거하여, 토출 헤드(1)의 토출 노즐(11)로부터 액체 방울이 토출되고 있는지의 여부를 판별한다(스텝 S10). 복수의 토출 노즐(11)에서 비동작 노즐이 없다고 판단하면, 제어 장치(CONT)는 비동작 노즐 검출에 관한 일련의 처리를 종료한다(스텝 S11).
한편, 스텝 S6에서 교정 동작이 이상 종료되었다고 판단하면, 제어 장치(CONT)는 교정 동작의 재실행 횟수가 규정값 이내인지의 여부를 판별한다(스텝 S12). 교정 동작의 재실행 횟수가 규정값(예를 들어, 3회) 이내라고 판단한 경우, 제어 장치(CONT)는, 스텝 S5로 되돌아가, 수광부(32)의 교정 동작을 재실행한다. 한편, 스텝 S12에서 교정 동작의 재실행 횟수가 규정값(3회)에 도달했다고 판단한 경우, 제어 장치(CONT)는 표시 장치(40)에 교정 동작이 이상 종료되었음을 표시하고(스텝 S13), 처리를 종료한다(스텝 S14).
또한, 스텝 S10에서 비동작 노즐이 있다고 판단한 경우, 제어 장치(CONT)는 비동작 노즐 검출 동작의 재실행 횟수가 규정값 이내인지의 여부를 판별한다(스텝 S15). 비동작 노즐 검출 동작의 재실행 횟수가 규정값(예를 들어, 2회) 이내라고 판단한 경우, 제어 장치(CONT)는 토출 헤드(1)의 회복 동작을 행한다(스텝 S16). 구체적으로는, 클리닝 유닛(6)에 의한 토출 헤드(1)에 대한 클리닝 동작이 실행된다. 그리고, 회복 동작이 실행되면, 스텝 S8로 되돌아가, 비동작 노즐 검출 동작이 재실행된다. 한편, 스텝 S15에서 비동작 노즐 검출 동작의 재실행 횟수가 규정값(2회)에 도달했다고 판단한 경우, 제어 장치(CONT)는 표시 장치(40)에 토출 헤드(1)의 토출 노즐(11)이 정상적으로 동작하지 않음(즉, 비동작 노즐이 있음)을 표시하고(스텝 S17), 처리를 종료한다(스텝 S18).
그리고, 비동작 노즐 검출에 관한 일련의 처리(스텝 S1∼S18)의 동안, 반송 장치(3)는 스테이지 장치(2)에 대하여 새로운 기판(P)을 반입하고 있다. 제어 장치(CONT)는 스텝 S10에서 정상적으로 동작하는 것이 확인된 토출 헤드(1)를 스테이 지 장치(2)(디바이스를 제조하기 위한 액체 방울 토출 동작 실행 위치)로 이동시키고, 스테이지 장치(2)에 지지되어 있는 기판(P)에 대하여 토출 헤드(1)로부터 액상체 재료의 액체 방울을 토출한다.
상술한 바와 같이, 스테이지 장치(2)에 대하여 기판(P)의 급재 및 제재 작업을 행하고 있는 동안에, 토출 노즐(11)로부터 액체 방울이 토출되고 있는지의 여부를 검출하는 비동작 노즐 검출 동작을 행하도록 했기 때문에, 기판(P)의 급재 및 제재 동작과 비동작 노즐 검출 동작을 병행하여 행할 수 있다. 따라서, 디바이스를 제조하기 위한 액체 방울 토출 동작의 실행을 방해하지 않고, 높은 생산성을 유지한 상태에서 비동작 노즐 검출을 행할 수 있다. 그리고, 비동작 노즐이 없어 정상적으로 동작하는 것이 확인된 토출 헤드(1)를 사용하여 디바이스를 제조할 수 있기 때문에, 원하는 성능을 갖는 디바이스를 제조할 수 있다.
또한, 본 실시예에서는, 스테이지 장치(2)에 대하여 기판(P)을 차례로 급재 및 제재하는 구성이다. 따라서, 이 급재 및 제재 작업마다 비동작 노즐 검출 동작을 행함으로써, 생산성의 저하가 효과적으로 억제되고, 또한, 기판(P)에 액체 방울을 토출할 때에, 항상 정상적인 동작이 확인된 토출 헤드(1)를 사용하여 기판(P)에 대한 액체 방울 토출 동작을 실행할 수 있다.
또한, 본 실시예에서는, 비동작 노즐 검출 동작을 실행하는 타이밍은, 묘화 처리 완료의 기판(P)을 스테이지 장치(2)로부터 언로딩하는 동시에 새로운 기판(P)을 스테이지 장치(2)에 로딩할 때에 실행하는 구성이지만, 디바이스 제조 장치(IJ)의 상승 시도 포함한다.
도 8은 본 발명의 디바이스 제조 장치(IJ)에 의한 디바이스 제조 공정의 일례를 나타내는 도면으로서, 액정 장치의 컬러 필터의 제조 공정의 일례를 나타내는 도면이다.
우선, 도 8의 (a)에 나타낸 바와 같이, 투명한 기판(P)의 한쪽 면에 대하여 블랙 매트릭스(52)를 형성한다. 이 블랙 매트릭스(52)의 형성 방법으로서는, 광투과성이 없는 수지(바람직하게는 흑색)를 스핀 코팅 등의 방법에 의해 소정의 두께(예를 들어, 2㎛ 정도)로 도포함으로써 행한다. 이 블랙 매트릭스(52)의 격자로 둘러싸이는 최소의 표시 요소, 즉, 필터 소자(53)에 대해서는, 예를 들어, X축 방향의 폭을 30㎛, Y축 방향의 길이를 100㎛ 정도로 한다.
다음으로, 도 8의 (b)에 나타낸 바와 같이, 상기 토출 장치로부터 컬러 필터용의 액상체 재료(액체 방울)(54)를 토출하고, 이것을 필터 소자(53)에 착탄(着彈)시킨다. 토출하는 액상체 재료(54)의 양에 대해서는, 가열 공정에서의 액상체 재료의 부피 감소를 고려한 충분한 양으로 한다.
이렇게 하여 기판(P) 위의 모든 필터 소자(53)에 액체 방울(54)을 충전하면, 히터를 사용하여 기판(P)이 소정의 온도(예를 들어, 70℃ 정도)로 되도록 가열 처리한다. 이 가열 처리에 의해, 액상체 재료의 용매가 증발되어 액상체 재료의 부피가 감소한다. 이 부피 감소가 심할 경우에는, 컬러 필터로서 충분한 막의 두께가 얻어질 때까지, 액체 방울 토출 공정과 가열 공정을 반복한다. 이 처리에 의해, 액상체 재료에 함유되는 용매가 증발되고, 최종적으로 액상체 재료에 함유되는 고형분(기능성 재료)만이 잔류되어 막화(膜化)하여, 도 8의 (c)에 나타낸 바와 같 이 컬러 필터(55)로 된다.
이어서, 기판(P)을 평탄화하고, 또한, 컬러 필터(55)를 보호하기 위해, 도 8의 (d)에 나타낸 바와 같이 컬러 필터(55)나 블랙 매트릭스(52)를 덮어 기판(P) 위에 보호막(56)을 형성한다. 이 보호막(56)의 형성 시에는, 스핀 코팅법, 롤 코팅법, 립핑법 등의 방법을 채용할 수도 있지만, 컬러 필터(55)의 경우와 동일하게, 상기 토출 장치를 사용하여 행할 수도 있다.
이어서, 도 8의 (e)에 나타낸 바와 같이, 이 보호막(56)의 전면(全面)에 스퍼터링법이나 진공 증착법 등에 의해 투명 도전막(57)을 형성한다. 그 후, 투명 도전막(57)을 패터닝하고, 화소 전극(58)을 상기 필터 소자(53)에 대응시켜 패터닝한다. 또한, 액정 표시 패널의 구동에 TFT(Thin Film Transistor)를 사용할 경우에는, 이 패터닝은 불필요해진다.
이러한 컬러 필터의 제조에 있어서, 상기 토출 헤드(1)를 사용하고 있기 때문에, 컬러 필터 재료를 지장 없이 연속적으로 토출할 수 있고, 따라서, 양호한 컬러 필터를 형성할 수 있는 동시에, 생산성을 향상시킬 수 있다.
또한, 상기 토출 장치에서는, 액상체를 적절히 선택함으로써, 전기 광학 장치의 임의의 구성요소를 형성할 수 있다. 예를 들면, 유기 EL 소자의 형성 재료나 금속 배선의 재료로 되는 금속 콜로이드, 더 나아가서는 마이크로 렌즈 재료, 액정 재료 등 각종 재료를 액상체로서 사용함으로써, 전기 광학 장치를 구성하는 다양한 요소를 형성할 수 있다. 또는, 전기 광학 장치로서 SED(Surface-Conduction Electron-Emitter Display)를 형성할 수도 있다.
이하, 상기 액체 방울 토출 장치(IJ)를 사용한 전기 광학 장치의 제조 방법을 설명한다.
우선, 전기 광학 장치의 구성요소의 형성 예로서, 유기 EL 장치의 제조 방법에 대해서 설명한다.
도 9는 상기 토출 장치에 의해 일부의 구성요소가 제조된 유기 EL 장치의 측단면도이며, 우선, 이 유기 EL 장치의 개략 구성을 설명한다. 또한, 여기서 형성되는 유기 EL 장치는 본 발명에서의 전기 광학 장치의 일 실시예로 되는 것이다.
도 9에 나타낸 바와 같이, 유기 EL 장치(301)는 기판(311), 회로 소자부(321), 화소 전극(331), 뱅크부(341), 발광 소자(351), 음극(361)(대향 전극), 및 밀봉 기판(371)으로 구성된 유기 EL 소자(302)에 플렉시블 기판(도시 생략)의 배선 및 구동 IC(도시 생략)를 접속한 것이다. 회로 소자부(321)는 기판(311) 위에 형성되고, 복수의 화소 전극(331)이 회로 소자부(321) 위에 정렬하고 있다. 그리고, 각 화소 전극(331) 사이에는 뱅크부(341)가 격자 형상으로 형성되어 있고, 뱅크부(341)에 의해 생긴 오목부 개구(344)에 발광 소자(351)가 형성되어 있다. 음극(361)은 뱅크부(341) 및 발광 소자(351)의 상부 전면에 형성되고, 음극(361) 위에는 밀봉용 기판(371)이 적층되어 있다.
유기 EL 소자를 포함하는 유기 EL 장치(301)의 제조 프로세스는, 뱅크부(341)를 형성하는 뱅크부 형성 공정과, 발광 소자(351)를 적절히 형성하기 위한 플라즈마 처리 공정과, 발광 소자(351)를 형성하는 발광 소자 형성 공정과, 음극(361)을 형성하는 대향 전극 형성 공정과, 밀봉용 기판(371)을 음극(361) 위에 적층하여 밀봉하는 밀봉 공정을 구비하고 있다.
발광 소자 형성 공정은 오목부 개구(344), 즉, 화소 전극(331) 위에 정공 주입층(352) 및 발광층(353)을 형성함으로써 발광 소자(351)를 형성하는 것이며, 정공 주입층 형성 공정과 발광층 형성 공정을 구비하고 있다. 그리고, 정공 주입층 형성 공정은 정공 주입층(352)을 형성하기 위한 제 1 조성물(액상체)을 각 화소 전극(331) 위에 토출하는 제 1 토출 공정과, 토출된 제 1 조성물을 건조시켜 정공 주입층(352)을 형성하는 제 1 건조 공정을 갖고, 발광층 형성 공정은 발광층(353)을 형성하기 위한 제 2 조성물(액상체)을 정공 주입층(352) 위에 토출하는 제 2 토출 공정과, 토출된 제 2 조성물을 건조시켜 발광층(353)을 형성하는 제 2 건조 공정을 갖고 있다.
이 발광 소자 형성 공정에 있어서, 정공 주입층 형성 공정에서의 제 1 토출 공정과, 발광층 형성 공정에서의 제 2 토출 공정에서 상기 액체 방울 토출 장치(IJ)를 사용하고 있다.
이 유기 EL 장치(301)의 제조에 있어서도, 각 구성요소 형성을 위한 토출에 앞서, 미리 토출 헤드(1)의 토출 동작의 검사를 행하여 둠으로써, 토출 헤드(1)로부터 정공 주입층의 형성 재료, 발광층의 형성 재료를 각각 양호하게 토출할 수 있고, 따라서, 얻어지는 유기 EL 장치(301)의 신뢰성을 향상시킬 수 있다.
다음으로, 상기 구성요소의 형성 예로서, 플라즈마 디스플레이의 제조 방법에 대해서 설명한다.
도 1O은 상기 액체 방울 토출 장치(IJ)에 의해 일부의 구성요소, 즉, 어드레 스 전극(511)과 버스 전극(512a)이 제조된 플라즈마 디스플레이를 나타내는 분해 사시도이고, 도 10 중의 부호 500은 플라즈마 디스플레이이다. 이 플라즈마 디스플레이(500)는 서로 대향하여 배치된 유리 기판(501) 및 유리 기판(502)과, 이들 사이에 형성된 방전 표시부(510)로 개략 구성되어 있다.
방전 표시부(510)는 복수의 방전실(516)이 집합되어 이루어지고, 복수의 방전실(516) 중 적색 방전실(516(R)), 녹색 방전실(516(G)), 청색 방전실(516(B))의 3개의 방전실(516)이 쌍으로 되어 1화소를 구성하도록 배치되어 있다.
상기 (유리)기판(501)의 상면에는 소정의 간격에 의해 스트라이프 형상으로 어드레스 전극(511)이 형성되고, 이들 어드레스 전극(511)과 기판(501)의 상면을 덮도록 유전체층(519)이 형성되며, 유전체층(519) 위에서 어드레스 전극(511, 511) 사이에 위치하여 각 어드레스 전극(511)을 따르도록 격벽(515)이 형성되어 있다. 또한, 격벽(515)에 있어서는, 그 길이 방향의 소정 위치에서 어드레스 전극(511)과 직교하는 방향으로도 소정의 간격으로 구획되어 있으며(도시 생략), 기본적으로는 어드레스 전극(511)의 폭 방향 좌우 양측에 인접하는 격벽과, 어드레스 전극(511)과 직교하는 방향으로 연장 설치된 격벽에 의해 구획되는 직사각형 형상의 영역이 형성되고, 이들 직사각형 형상의 영역에 대응하도록 방전실(516)이 형성되며, 이들 직사각형 형상의 영역이 3개 쌍으로 되어 1화소가 구성된다. 또한, 격벽(515)으로 구획되는 직사각형 형상의 영역 내측에는 형광체(517)가 배치되어 있다. 형광체(517)는 적색, 녹색, 청색 중 어느 하나의 형광을 발광하는 것이며, 적색 방전실(516(R))의 저부(底部)에는 적색 형광체(517(R))가, 녹색 방전실(516(G))의 저 부에는 녹색 형광체(517(G))가, 청색 방전실(516(B))의 저부에는 청색 형광체(517(B))가 각각 배치되어 있다.
다음으로, 상기 유리 기판(502) 측에는, 앞의 어드레스 전극(511)과 직교하는 방향으로 복수의 ITO로 이루어지는 투명 표시 전극(512)이 스트라이프 형상으로 소정의 간격에 의해 형성되는 동시에, 고저항의 ITO를 보충하기 위해 금속으로 이루어지는 버스 전극(512a)이 형성되어 있다. 또한, 이들을 덮어 유전체층(513)이 형성되고, MgO 등으로 이루어지는 보호막(514)이 더 형성되어 있다.
그리고, 상기 기판(501)과 유리 기판(502)이 상기 어드레스 전극(511…)과 표시 전극(512…)을 서로 직교시키도록 대향시켜 상호 접합되고, 기판(501)과 격벽(515)과 유리 기판(502) 측에 형성되어 있는 보호막(514)으로 둘러싸이는 공간 부분을 배기하여 희유 가스를 봉입(封入)함으로써 방전실(516)이 형성되어 있다. 또한, 유리 기판(502) 측에 형성되는 표시 전극(512)은 각 방전실(516)에 대하여 2개씩 배치되도록 형성되어 있다.
상기 어드레스 전극(511)과 표시 전극(512)은 교류 전원(도시 생략)에 접속되고, 각 전극에 통전함으로써 필요한 위치의 방전 표시부(510)에서 형광체(517)를 여기(勵起) 발광시켜, 컬러 표시가 가능하게 되어 있다.
그리고, 본 예에서는, 특히 상기 어드레스 전극(511)과 버스 전극(512a), 및 형광체(517)에 대해서 각각 상기 액체 방울 토출 장치(IJ)를 사용하여 형성하고 있다. 즉, 이들 어드레스 전극(511)이나 버스 전극(512a)에 대해서는, 특별히 그 패터닝에 유리하기 때문에, 금속 콜로이드 재료(예를 들어, 금 콜로이드나 은 콜로이 드)나 도전성 미립자(예를 들어, 금속 미립자)를 분산시켜 이루어지는 액상 재료(액상체)를 토출하여, 건조 및 소결(燒結)함으로써 형성하고 있다. 또한, 형광체(517)에 대해서도, 형광체 재료를 용매에 용해시키거나, 또는 분산매에 분산시킨 액상 재료(액상체)를 토출하여, 건조 및 소결함으로써 형성하고 있다.
이 플라즈마 디스플레이(500)의 제조에 있어서도, 어드레스 전극(511), 버스 전극(512a)의 형성, 및 형광체(517) 형성을 위한 토출에 앞서, 미리 토출 헤드(1)의 토출 동작의 검사를 행하여 둠으로써, 토출 헤드(1)로부터 각 전극(511, 512a)의 형성 재료(액상 재료), 형광체(517)의 형성 재료(액상 재료)를 각각 양호하게 토출할 수 있고, 따라서, 얻어지는 플라즈마 디스플레이(500)의 신뢰성을 향상시킬 수 있다.
다음으로, 상기 구성요소의 형성 예로서, 도전막 배선 패턴(금속 배선 패턴)의 형성 방법에 대해서 설명한다.
도 11은 도전막 배선 패턴의 형성 방법의 일례를 나타내는 플로차트이다.
도 11에 있어서, 본 예에 따른 패턴의 형성 방법은, 액체 재료(액상체)의 액체 방울이 배치되는 기판을 소정의 용매 등을 사용하여 세정하는 공정(스텝 SB1)과, 기판의 표면 처리 공정의 일부를 구성하는 발액화(撥液化) 처리 공정(스텝 SB2)과, 발액화 처리된 기판 표면의 발액성을 조정하는 표면 처리 공정의 일부를 구성하는 발액성 제어 처리 공정(스텝 SB3)과, 표면 처리된 기판 위에 액체 방울 토출법에 의거하여 도전막 배선 형성용 재료를 함유하는 액체 재료의 액체 방울을 배치하여 막 패턴을 묘화(형성)하는 재료 배치 공정(스텝 SB4)과, 기판 위에 배치 된 액체 재료의 용매 성분의 적어도 일부를 제거하는 열·광처리를 포함하는 중간 건조 처리 공정(스텝 SB5)과, 소정의 패턴이 묘화된 기판을 소성하는 소성 공정(스텝 SB7)을 갖고 있다. 또한, 중간 건조 처리 공정의 후, 소정의 패턴 묘화가 종료되었는지의 여부가 판단되어(스텝 SB6), 패턴 묘화가 종료되었으면 소성 공정이 실행되고, 한편, 패턴 묘화가 종료되지 않았으면 재료 배치 공정이 실행된다.
다음으로, 상기 액체 방울 토출 장치(IJ)에 의한 액체 방울 토출법에 의거한 재료 배치 공정(스텝 SB4)에 대해서 설명한다.
본 예의 재료 배치 공정은, 도전막 배선 형성용 재료를 함유하는 액체 재료의 액체 방울을 상기 액체 방울 토출 장치(IJ)의 액체 방울 토출 헤드(1)로부터 기판(P) 위에 배치함으로써, 기판(P) 위에 복수의 선 형상 막 패턴(배선 패턴)을 배열하여 형성하는 공정이다. 액체 재료는 도전막 배선 형성용 재료인 금속 등의 도전성 미립자를 분산매에 분산시킨 액상체이다. 이하의 설명에서는, 기판(P) 위에 3개의 제 1, 제 2, 및 제 3 막 패턴(선 형상 패턴)(W1, W2, W3)을 형성하는 경우에 대해서 설명한다.
도 12, 도 13, 및 도 14는 본 예에서의 기판(P) 위에 액체 방울을 배치하는 순서의 일례를 설명하기 위한 도면이다. 이들 도면에 있어서, 기판(P) 위에는, 액체 재료의 액체 방울이 배치되는 격자 형상의 복수의 단위 영역인 픽셀을 갖는 비트맵(bitmap)이 설정되어 있다. 여기서, 1개의 픽셀은 정사각형으로 설정되어 있다. 그리고, 이들 복수의 픽셀 중 소정의 픽셀에 대응하도록 제 1, 제 2, 제 3 막 패턴(W1, W2, W3)을 형성하는 제 1, 제 2, 제 3 패턴 형성 영역(R1, R2, R3)이 설 정되어 있다. 이들 복수의 패턴 형성 영역(R1, R2, R3)은 X축 방향으로 배열하여 설정되어 있다. 또한, 도 12 내지 도 14에 있어서, 패턴 형성 영역(R1, R2, R3)은 사선을 그린 영역이다.
또한, 기판(P) 위의 제 1 패턴 형성 영역(R1)에는, 액체 방울 토출 장치(IJ)의 토출 헤드(1)에 설치된 복수의 토출 노즐 중 제 1 토출 노즐(11A)로부터 토출된 액체 재료의 액체 방울이 배치되도록 설정되어 있다. 마찬가지로, 기판(P) 위의 제 2 및 제 3 패턴 형성 영역(R2, R3)에는, 액체 방울 토출 장치(IJ)의 토출 헤드(1)에 설치된 복수의 토출 노즐 중 제 2 및 제 3 토출 노즐(11B, 11C)로부터 토출된 액체 재료의 액체 방울이 배치되도록 설정되어 있다. 즉, 제 1, 제 2, 제 3 패턴 형성 영역(R1, R2, R3)의 각각에 대응하도록 토출 노즐(11A, 11B, 11C)이 설치되어 있는 것이다. 그리고, 토출 헤드(1)는 설정한 복수의 패턴 형성 영역(R1, R2, R3) 각각의 복수의 픽셀 위치에 복수의 액체 방울을 차례로 배치하도록 되어 있다.
또한, 제 1, 제 2, 제 3 패턴 형성 영역(R1, R2, R3)의 각각에서는, 이들 패턴 형성 영역(R1, R2, R3)에 형성해야 할 제 1, 제 2, 제 3 막 패턴(W1, W2, W3)을 선폭(線幅) 방향에서의 한쪽 측(-X측)인 제 1 측부 패턴(Wa)으로부터 형성하고, 이어서 다른쪽 측(+X측)인 제 2 측부 패턴(Wb)을 형성하며, 이 제 1 및 제 2 측부 패턴(Wa, Wb)을 형성한 후에 선폭 방향 중앙부인 중앙 패턴(Wc)을 형성하도록 설정되어 있다.
본 예에서는, 각 막 패턴(선 형상 패턴)(W1∼W3)의 각각, 더 나아가서는 각 패턴 형성 영역(R1∼R3)의 각각은 동일한 선폭(L)을 갖고, 이 선폭(L)은 3개의 픽셀 분의 크기로 설정되어 있다. 또한, 각 패턴 사이의 스페이스부의 각각도 동일한 폭(S)으로 설정되어 있고, 이 폭(S)도 3개의 픽셀 분의 크기로 설정되어 있다. 그리고, 토출 노즐(11A∼11C)끼리의 간격인 노즐 피치는 6개의 픽셀 분으로 설정되어 있다.
이하의 설명에 있어서, 토출 노즐(11A, 11B, 11C)을 갖는 토출 헤드(1)는 기판(P)에 대하여 Y축 방향으로 주사하면서 액체 방울을 토출하는 것으로 한다. 그리고, 도 12 내지 도 14를 이용한 설명에 있어서, 1회째의 주사 시에 배치된 액체 방울에는 「1」을 첨부하고, 2회째, 3회째, …, n회째의 주사 시에 배치된 액체 방울에는 「2」, 「3」, …, 「n」을 첨부한다.
도 12의 (a)에 나타낸 바와 같이, 1회째의 주사 시에 있어서, 제 1, 제 2, 제 3 패턴 형성 영역(R1, R2, R3)의 각각에 대해서 제 1 측부 패턴(Wa)을 형성하기 위해 제 1 측부 패턴 형성 예정 영역에 1개 분의 픽셀을 비우면서 제 1, 제 2, 제 3 토출 노즐(11A, 11B, 11C)로부터 액체 방울이 동시에 배치된다. 또한, 각 토출 노즐(11A, 11B, 11C)로부터 액체 방울을 토출할 때에는, 그 토출에 앞서, 미리 토출 헤드(1)의 토출 동작을 검사하여 둔다. 여기서, 기판(P)에 대하여 배치된 액체 방울은 기판(P)에 착탄함으로써 기판(P) 위에서 확장 습윤된다. 즉, 도 12의 (a)에 원으로 나타낸 바와 같이, 기판(P)에 착탄한 액체 방울은 1개의 픽셀의 크기보다 큰 직경(C)을 갖도록 확장 습윤된다. 액체 방울은 Y축 방향에서 소정 간격(1개 분의 픽셀)을 두어 배치되어 있기 때문에, 기판(P) 위에 배치된 액체 방울끼리는 겹치지 않도록 설정되어 있다. 이렇게 함으로써, Y축 방향에서 기판(P) 위에 액체 재료가 과도하게 마련되는 것을 방지하여, 벌지(bulge)의 발생을 방지할 수 있다.
또한, 도 12의 (a)에서는, 기판(P)에 배치되었을 때의 액체 방울끼리는 겹치지 않도록 배치되어 있지만, 약간 겹치도록 액체 방울이 배치될 수도 있다. 또한, 여기서는 1개 분의 픽셀을 비워 액체 방울이 배치되어 있지만, 2개 이상의 임의의 수의 픽셀 분만큼 간격을 두어 액체 방울을 배치할 수도 있다. 이 경우, 기판(P)에 대한 토출 헤드(1)의 주사 동작 및 배치 동작(토출 동작)을 증가시켜 기판 위의 액체 방울끼리의 사이를 보간(補間)하는 것이 좋다.
또한, 기판(P)의 표면은 스텝 SB2 및 SB3에 의해 원하는 발액성으로 미리 가공되어 있기 때문에, 기판(P) 위에 배치한 액체 방울의 과도한 확장이 억제된다. 그 때문에, 패턴 형상을 양호한 상태로 확실하게 제어할 수 있는 동시에, 후막화(厚膜化)도 용이하다.
도 12의 (b)는 2회째의 주사에 의해 토출 헤드(1)로부터 기판(P)에 액체 방울을 배치했을 때의 모식도이다. 또한, 도 12의 (b)에 있어서, 2회째의 주사 시에서 배치된 액체 방울에는 「2」를 첨부하고 있다. 2회째의 주사 시에서는, 1회째의 주사 시에서 배치된 액체 방울 「1」의 사이를 보간하도록 각 토출 노즐(11A, 11B, 11C)로부터 액체 방울이 동시에 배치된다. 그리고, 1회째 및 2회째의 주사 및 배치 동작에서 액체 방울끼리가 연속되어, 제 1, 제 2, 제 3 패턴 형성 영역(R1, R2, R3)의 각각에서 제 1 측부 패턴(Wa)이 형성된다. 여기서, 액체 방울 「2」도 기판(P)에 착탄함으로써 확장 습윤되어, 액체 방울 「2」의 일부와 앞서 기판(P)에 배치되어 있는 액체 방울 「1」의 일부가 서로 겹친다. 구체적으로는, 액체 방울 「1」 위에 액체 방울 「2」의 일부가 서로 겹친다. 또한, 이 2회째의 주사에 있어서도, 각 토출 노즐(11A, 11B, 11C)로부터 액체 방울을 토출할 때에는, 그 토출에 앞서, 미리 토출 헤드(1)의 토출 동작을 검사하여 둘 수 있다.
여기서, 기판(P) 위에 제 1 측부 패턴(Wa)을 형성하기 위한 액체 방울을 배치한 후, 분산매의 제거를 행하기 위해 필요에 따라 중간 건조 처리(스텝 SB5)를 행할 수 있다. 중간 건조 처리는, 예를 들어, 핫플레이트, 전기로, 및 열풍발생기 등의 가열 장치를 사용한 일반적인 열처리 이외에, 램프 어닐링을 이용한 광처리일 수도 있다.
다음으로, 토출 헤드(1)와 기판(P)이 2개의 픽셀의 크기 분만큼 X축 방향으로 상대 이동한다. 여기서는, 토출 헤드(1)가 기판(P)에 대하여 +X방향으로 2개의 픽셀 분만큼 스텝 이동한다. 이것에 따라 토출 노즐(11A, 11B, 11C)도 이동한다. 그리고, 토출 헤드(1)는 3회째의 주사를 행한다. 이것에 의해, 도 13의 (a)에 나타낸 바와 같이, 막 패턴(W1, W2, W3) 각각의 일부를 구성하는 제 2 측부 패턴(Wb)을 형성하기 위한 액체 방울 「3」이 각 토출 노즐(11A, 11B, 11C)로부터 제 1 측부 패턴(Wa)에 대하여 X축 방향으로 간격을 두어 기판(P) 위에 동시에 배치된다. 여기서도, 액체 방울 「3」은 Y축 방향으로 1개 분의 픽셀을 비워 배치된다. 또한, 이 3회째의 주사에 있어서도, 각 토출 노즐(11A, 11B, 11C)로부터 액체 방울을 토출할 때에는, 그 토출에 앞서, 미리 토출 헤드(1)의 토출 동작을 검사하여 둔다.
도 13의 (b)는 4회째의 주사에 의해 토출 헤드(1)로부터 기판(P)에 액체 방 울을 배치했을 때의 모식도이다. 또한, 도 13의 (b)에 있어서, 4회째의 주사 시에서 배치된 액체 방울에는 「4」를 첨부하고 있다. 4회째의 주사 시에서는, 3회째의 주사 시에서 배치된 액체 방울 「3」의 사이를 보간하도록 각 토출 노즐(11A, 11B, 11C)로부터 액체 방울이 동시에 배치된다. 그리고, 3회째 및 4회째의 주사 및 배치 동작에서 액체 방울끼리가 연속되어, 패턴 형성 영역(R1, R2, R3)의 각각에서 제 2 측부 패턴(Wb)이 형성된다. 여기서는, 액체 방울 「4」의 일부와 앞서 기판(P)에 배치되어 있는 액체 방울 「3」의 일부가 서로 겹친다. 구체적으로는, 액체 방울 「3」 위에 액체 방울 「4」의 일부가 서로 겹친다. 또한, 이 4회째의 주사에 있어서도, 각 토출 노즐(11A, 11B, 11C)로부터 액체 방울을 토출할 때에는, 그 토출에 앞서, 미리 토출 헤드(1)의 토출 동작을 검사하여 둘 수 있다.
여기서도, 기판(P) 위에 제 2 측부 패턴(Wb)을 형성하기 위한 액체 방울을 배치한 후, 분산매의 제거를 행하기 위해 필요에 따라 중간 건조 처리를 행할 수 있다.
다음으로, 토출 헤드(1)가 기판에 대하여 -X방향으로 1개의 픽셀 분만큼 스텝 이동하고, 이것에 따라 토출 노즐(11A, 11B, 11C)도 -X방향으로 1개의 픽셀 분만큼 이동한다. 그리고, 토출 헤드(1)는 5회째의 주사를 행한다. 이것에 의해, 도 14의 (a)에 나타낸 바와 같이, 막 패턴(W1, W2, W3) 각각의 일부를 구성하는 중앙 패턴(Wc)을 형성하기 위한 액체 방울 「5」가 기판 위에 동시에 배치된다. 여기서도, 액체 방울 「5」는 Y축 방향으로 1개 분의 픽셀을 비워 배치된다. 여기서, 액체 방울 「5」의 일부와 앞서 기판(P)에 배치되어 있는 액체 방울 「1」, 「3」의 일부가 서로 겹친다. 구체적으로는, 액체 방울 「1」, 「3」 위에 액체 방울 「5」의 일부가 서로 겹친다. 또한, 이 5회째의 주사에 있어서도, 각 토출 노즐(11A, 11B, 11C)로부터 액체 방울을 토출할 때에는, 그 토출에 앞서, 미리 토출 헤드(1)의 토출 동작을 검사하여 둘 수 있다.
도 14의 (b)는 6회째의 주사에 의해 토출 헤드(1)로부터 기판(P)에 액체 방울을 배치했을 때의 모식도이다. 또한, 도 14의 (b)에 있어서, 6회째의 주사 시에서 배치된 액체 방울에는 「6」을 첨부하고 있다. 6회째의 주사 시에서는, 5회째의 주사 시에서 배치된 액체 방울 「5」의 사이를 보간하도록 각 토출 노즐(11A, 11B, 11C)로부터 액체 방울이 동시에 배치된다. 그리고, 5회째 및 6회째의 주사 및 배치 동작에서 액체 방울끼리가 연속되어, 패턴 형성 영역(R1, R2, R3)의 각각에서 중앙 패턴(Wc)이 형성된다. 여기서는, 액체 방울 「6」의 일부와 앞서 기판(P)에 배치되어 있는 액체 방울 「5」의 일부가 서로 겹친다. 구체적으로는, 액체 방울 「5」 위에 액체 방울 「6」의 일부가 서로 겹친다. 또한, 앞서 기판(P)에 배치되어 있는 액체 방울 「2」, 「4」 위에 액체 방울 「6」의 일부가 서로 겹친다. 또한, 이 6회째의 주사에 있어서도, 각 토출 노즐(11A, 11B, 11C)로부터 액체 방울을 토출할 때에는, 그 토출에 앞서, 미리 토출 헤드(1)의 토출 동작을 검사하여 둘 수 있다.
이상에 의해, 각 패턴 형성 영역(R1, R2, R3)의 각각에 막 패턴(W1, W2, W3)이 형성된다.
상술한 바와 같이, 패턴 형성 영역(R1, R2, R3)에 복수의 액체 방울을 차례 로 배치하여 서로 거의 동일한 형상의 막 패턴(W1, W2, W3)을 형성할 때, 각 패턴 형성 영역(R1, R2, R3) 각각의 복수의 픽셀에 대하여 액체 방울을 배치하는 배치 순서를 동일하게 설정했기 때문에, 각 액체 방울 「1」∼「6」의 각각이 그 일부를 중첩시키도록 배치된 경우일지라도, 그 중첩 형태는 각 막 패턴(W1, W2, W3)에서 동일하기 때문에, 각 막 패턴(W1, W2, W3)의 외관을 동일하게 할 수 있다. 따라서, 각 막 패턴(W1, W2, W3)끼리의 사이에서의 외관상의 불균일 발생을 억제할 수 있다.
그리고, 액체 방울의 배치 순서를 각 막 패턴(W1, W2, W3)의 각각에 대해서 동일하게 했기 때문에, 각 막 패턴(W1, W2, W3)의 각각에 대한 액체 방울의 배치(액체 방울끼리의 중첩 형태)가 동일해지기 때문에, 외관상의 불균일 발생을 억제할 수 있다.
또한, 막 패턴(W1, W2, W3) 각각에서의 액체 방울끼리의 중첩 상태가 동일하게 설정되어 있기 때문에, 막 패턴 각각의 막 두께 분포를 대략 동일하게 할 수 있다. 따라서, 이 막 패턴이 기판의 면방향에서 반복되는 반복 패턴일 경우, 구체적으로는, 예를 들어, 표시 장치의 화소에 대응하여 복수 마련되어 있는 패턴일 경우, 각 화소의 각각은 동일한 막 두께 분포를 갖게 된다. 따라서, 기판의 면방향의 각 위치에서 동일한 기능을 발휘할 수 있다.
또한, 제 1 및 제 2 측부 패턴(Wa, Wb)을 형성하고 나서 그 사이를 메우도록 중앙 패턴(Wc)을 형성하기 위한 액체 방울 「5」, 「6」을 배치하게 했기 때문에, 각 막 패턴(W1, W2, W3)의 선폭을 거의 균일하게 형성할 수 있다. 즉, 중앙 패턴(Wc)을 기판(P) 위에 형성하고 나서 측부 패턴(Wa, Wb)을 형성하기 위한 액체 방울 「1」, 「2」, 「3」, 「4」를 배치한 경우, 이들 액체 방울이 앞서 기판(P)에 형성되어 있는 중앙 패턴(Wc)으로 끌어당겨지는 현상이 발생하기 때문에, 각 막 패턴(W1, W2, W3)의 선폭 제어가 곤란해지는 경우가 있지만, 본 실시예와 같이, 앞서 측부 패턴(Wa, Wb)을 기판(P)에 형성하고 나서 그 사이를 메우도록 중앙 패턴(Wc)을 형성하기 위한 액체 방울 「5」, 「6」을 배치하게 했기 때문에, 각 막 패턴(W1, W2, W3)의 선폭 제어를 양호한 정밀도로 행할 수 있다.
또한, 중앙 패턴(Wc)을 형성하고 나서 측부 패턴(Wa, Wb)을 형성할 수도 있다. 이 경우, 각 막 패턴(W1∼W3)의 각각에 대해서 동일한 액체 방울 배치 순서로 함으로써, 각 패턴끼리의 사이에서의 외관상의 불균일 발생을 억제할 수 있다.
이러한 도전막 배선 패턴(금속 배선 패턴)의 형성에 있어서도, 토출에 앞서, 미리 토출 헤드(1)의 토출 동작을 검사하여 둠으로써, 액체 방울을 양호하게 토출할 수 있고, 따라서, 얻어지는 도전막 배선 패턴의 신뢰성을 향상시킬 수 있다.
다음으로, 상기 구성요소의 형성 예로서, 마이크로 렌즈의 제조 방법에 대해서 설명한다.
본 예에서는, 우선, 도 15의 (a)에 나타낸 바와 같이, 상기 액체 방울 토출 장치(IJ)의 토출 헤드(1)로부터 기판(P) 위에 광투과성 수지로 이루어지는 액체 방울(622a)을 토출하고, 이것을 도포한다. 또한, 각 토출 헤드(1)로부터 액체 방울(622a)을 토출할 때에는, 그 토출에 앞서, 미리 토출 헤드(1)의 토출 동작을 검사하여 둔다.
기판(P)으로서는, 얻어지는 마이크로 렌즈를, 예를 들어, 스크린용 광학막에 적용할 경우, 아세틸셀룰로오스나 프로필셀룰로오스 등의 셀룰로오스계 수지, 폴리염화비닐, 폴리에틸렌, 폴리프로필렌, 폴리에스테르 등의 투명 수지(광투과성 수지)로 이루어지는 광투과성 시트 또는 광투과성 필름이 사용된다. 또한, 기판으로서, 유리, 폴리카보네이트, 폴리아릴레이트, 폴리에테르설폰, 비정질 폴리올레핀, 폴리에틸렌테레프탈레이트, 폴리메틸메타크릴레이트 등의 투명 재료(광투과성 재료)로 이루어지는 기판도 사용할 수 있게 된다.
광투과성 수지로서는, 폴리메틸메타크릴레이트, 폴리하이드록시에틸메타크릴레이트, 폴리시클로헥실메타크릴레이트 등의 아크릴계 수지, 폴리디에틸렌글리콜비스알릴카보네이트, 폴리카보네이트 등의 알릴계 수지, 메타크릴 수지, 폴리우레탄계 수지, 폴리에스테르계 수지, 폴리염화비닐계 수지, 폴리아세트산비닐계 수지, 셀룰로오스계 수지, 폴리아미드계 수지, 불소계 수지, 폴리프로필렌계 수지, 폴리스티렌계 수지 등의 열가소성 또는 열경화성 수지를 들 수 있으며, 이들 중의 일종(一種)이 사용되거나, 또는 복수종이 혼합되어 사용된다.
다만, 본 예에서는, 특히 광투과성 수지로서 방사선 조사 경화형의 것이 사용된다. 이 방사선 조사 경화형의 것은 상기 광투과성 수지에 비이미다졸계 화합물 등의 광중합 개시제가 배합되어 이루어지는 것이며, 이러한 광중합 개시제가 배합됨으로써, 방사선 조사 경화성이 부여된 것이다. 방사선은 가시광선, 자외선, 원자외선, X선, 전자선 등의 총칭이며, 특히 자외선이 일반적으로 사용된다.
이러한 방사선 조사 경화형의 광투과성 수지의 액체 방울(622a)을 원하는 단 일 마이크로 렌즈의 크기에 따라 기판(P) 위에 1개 또는 복수개 토출한다. 그리하면, 이 액체 방울(622)로 이루어지는 광투과성 수지(623)는, 그 표면장력에 의해 도 15의 (a)에 나타낸 바와 같은 볼록 형상(대략 반구(半球) 형상)의 것으로 된다. 이렇게 하여, 형성해야 할 단일 마이크로 렌즈에 대하여 소정량의 광투과성 수지를 토출 도포하고, 다시 이 도포 처리를 원하는 마이크로 렌즈의 개수분 행한 후, 이들 광투과성 수지(623)에 자외선 등의 방사선을 조사하며, 도 15의 (b)에 나타낸 바와 같이 이것을 경화시켜 경화체(623a)로 한다. 또한, 토출 헤드(1)로부터 토출되는 액체 방울(622a)의 1방울당 용량은 토출 헤드(1)나 토출하는 잉크 재료에 따라서도 다르지만, 통상은 1pL∼20pL 정도로 된다.
이어서, 도 15의 (c)에 나타낸 바와 같이, 토출 헤드(1)로부터 이들 경화체(623a) 각각의 위에 다수의 광확산성 미립자(626)를 분산시킨 액체 방울(622b)을 원하는 개수 토출하여, 경화체(623a)의 표면에 부착시킨다. 광확산성 미립자(626)로서는, 실리카, 알루미나, 티타니아, 탄산칼슘, 수산화알루미늄, 아크릴 수지, 유기 실리콘 수지, 폴리스티렌, 요소 수지, 포름알데히드 축합물 등의 미립자를 들 수 있으며, 이들 중의 일종이 사용되거나, 또는 복수종이 혼합되어 사용된다. 다만, 광확산성 미립자(626)가 충분한 광확산성을 발휘하기 위해서는, 이 미립자가 광투과성일 경우, 그 굴절률이 상기 광투과성 수지의 굴절률과 충분히 차가 있을 필요가 있다. 따라서, 광확산성 미립자(626)가 광투과성일 경우에는, 이러한 조건을 충족시키도록 사용하는 광투과성 수지에 따라 적절히 선정되어 사용된다.
이러한 광확산성 미립자(626)는 미리 적절한 용제(예를 들어, 광투과성 수지에 사용되고 있는 용제)에 분산됨으로써, 토출 헤드(1)로부터 토출 가능한 잉크로 조정되고 있다. 이 때, 광확산성 미립자(626)의 표면을 계면활성제로 피복 처리하거나, 또는 용융 수지로 덮는 처리를 행함으로써 광확산성 미립자(626)의 용제로의 분산성을 높여 두는 것이 바람직하고, 이러한 처리를 행함으로써, 토출 헤드(1)로부터의 토출이 양호해지는 유동성을 광확산성 미립자(626)에 부가할 수 있다. 또한, 표면 처리를 행하기 위한 계면활성제로서는, 양이온계, 음이온계, 비이온계, 양성, 실리콘계, 불소수지계 등의 것이 광확산성 미립자(624)의 종류에 따라 적절히 선택되어 사용된다.
또한, 이러한 광확산성 미립자(626)로서는, 그 입경(粒徑)이 200㎚ 이상 500㎚ 이하인 것을 사용하는 것이 바람직하다. 이러한 범위로 하면, 입경이 200㎚ 이상인 것에 의해 그 광확산성이 양호하게 확보되고, 또한, 500㎚ 이하인 것에 의해 토출 헤드(1)의 노즐로부터 양호하게 토출할 수 있게 되기 때문이다.
또한, 광확산성 미립자(626)를 분산시킨 액체 방울(622b)의 토출에 대해서는, 광투과성 수지의 액체 방울(622a)을 토출한 토출 헤드(1)와 동일한 것을 사용할 수도 있고, 다른 것을 사용할 수도 있다. 동일한 것을 사용한 경우에는, 토출 헤드(1)를 포함하는 장치 구성을 간략화할 수 있다. 한편, 다른 것을 사용한 경우에는, 각 잉크(광투과성 수지로 이루어지는 잉크와 광확산성 미립자(624)로 이루어지는 잉크)마다 전용(專用) 헤드로 할 수 있기 때문에, 도포하는 잉크의 교체 시에 헤드의 세정 등을 행할 필요가 없어져, 생산성을 향상시킬 수 있다.
그 후, 가열 처리, 감압 처리, 또는 가열 감압 처리를 행함으로써, 광확산성 미립자(624)를 분산시킨 액체 방울(622b) 중의 용제를 증발시킨다. 그리하면, 경화체(623a)의 표면은 액체 방울(622b)의 용제에 의해 연화(軟化)되어 여기에 광확산성 미립자(626)가 부착되어 있음으로써, 용제가 증발되어 경화체(623a)의 표면이 재경화함에 따라, 광확산성 미립자(624)는 광투과성 수지의 경화체(623a) 표면에 고정된다. 그리고, 이와 같이 광확산성 미립자(624)를 경화체(623a) 표면에 고정시킴으로써, 도 15의 (d)에 나타낸 바와 같이, 그 표면부에 광확산성 미립자(624)를 분산시켜 이루어지는 본 발명의 마이크로 렌즈(625)가 얻어진다.
이러한 마이크로 렌즈(625)의 제조 방법에 있어서도, 토출에 앞서, 미리 토출 헤드(1)의 토출 동작을 검사하여 둠으로써, 액체 방울(622a, 622b)을 양호하게 토출할 수 있고, 따라서, 얻어지는 마이크로 렌즈(625)의 신뢰성을 향상시킬 수 있다.
또한, 잉크젯법을 이용하여 광투과성 수지(623)와 광확산성 미립자(624)로 이루어지는 볼록 형상(대략 반구 형상)의 마이크로 렌즈(625)를 형성하기 때문에, 금형 성형법이나 사출 성형법을 이용한 경우와 같이 성형 금형을 필요로 하지 않고, 또한, 재료의 손실도 거의 없어진다. 따라서, 제조 비용의 저감화를 도모할 수 있다. 또한, 얻어지는 마이크로 렌즈(625)가 볼록 형상(대략 반구 형상)의 것으로 되기 때문에, 이 마이크로 렌즈를, 예를 들어, 360°와 같은 넓은 각도 범위(방향)에 걸쳐 거의 균일하게 광확산시키는 것으로 할 수 있으며, 광확산성 미립자(626)를 복합화하고 있음으로써, 얻어지는 마이크로 렌즈에 높은 확산 성능 을 부여할 수 있다.
다음으로, 상기 구성요소의 형성 예로서, 전자 방출 소자를 구비한 화상 표시 장치의 제조 방법에 대해서 설명한다.
도 16의 (a) 및 (b)에 나타낸 기체(70A)는, 상기 액체 방울 토출 장치(IJ)에 의한 처리에 의해, 구성요소의 일부가 형성된 화상 표시 장치의 전자원 기판(70B)으로 되는 기판이다. 기체(70A)는 매트릭스 형상으로 배치된 복수의 피(被)토출부(78)를 갖는다.
구체적으로는, 기체(70A)는 기판(72)과, 기판(72) 위에 위치하는 나트륨 확산 방지층(74)과, 나트륨 확산 방지층(74) 위에 위치하는 복수의 소자 전극(76A, 76B)과, 복수의 소자 전극(76A) 위에 위치하는 복수의 금속 배선(79A)과, 복수의 소자 전극(76B) 위에 위치하는 복수의 금속 배선(79B)을 구비하고 있다. 복수의 금속 배선(79A) 각각은 Y축 방향으로 연장되는 형상을 갖는다. 복수의 금속 배선(79A) 각각은 X축 방향으로 연장되는 형상을 갖는다. 금속 배선(79A)과 금속 배선(79B) 사이에는 절연막(75)이 형성되어 있기 때문에, 금속 배선(79A)과 금속 배선(79B)은 전기적으로 절연되어 있다.
한쌍의 소자 전극(76A) 및 소자 전극(76B)을 포함하는 부분은 1개의 화소 영역에 대응한다. 한쌍의 소자 전극(76A) 및 소자 전극(76B)은 서로 소정의 간격만큼 떨어져 나트륨 확산 방지층(74) 위에서 대향하고 있다. 일정 화소 영역에 대응하는 소자 전극(76A)은 대응하는 금속 배선(79A)과 전기적으로 접속되어 있다. 또한, 그 화소 영역에 대응하는 소자 전극(76B)은 대응하는 금속 배선(79B)과 전기적 으로 접속되어 있다. 또한, 본 명세서에서는, 기판(72)과 나트륨 확산 방지층(74)을 합친 부분을 지지 기판으로 표기하는 경우도 있다.
기체(70A)의 각각의 화소 영역에서, 소자 전극(76A)의 일부와, 소자 전극(76B)의 일부와, 소자 전극(76A)과 소자 전극(76B) 사이에서 노출된 나트륨 확산 방지층(74)이 피토출부(78)에 대응한다. 보다 구체적으로는, 피토출부(78)는 도전성 박막(411F)(도 17의 (b) 참조)이 형성되어야 할 영역이며, 도전성 박막(411F)은 소자 전극(76A)의 일부와, 소자 전극(76B)의 일부와, 소자 전극(76A, 76B) 사이의 갭을 덮도록 형성된다. 도 16의 (b)에서 파선(破線)으로 나타낸 바와 같이, 본 예에서의 피토출부(78)의 형상은 원형이다.
도 16의 (b)에 나타낸 기체(70A)는 X축 방향 및 Y축 방향에서 규정되는 가상 평면과 평행하게 위치하고 있다. 그리고, 복수의 피토출부(78)가 형성하는 매트릭스의 행방향 및 열방향은 각각 X축 방향 및 Y축 방향과 평행하다. 기체(70A)에 있어서, 피토출부(78)는 X축 방향으로 이 순서에 의해 주기적으로 배열되어 있다. 또한, 피토출부(78)는 Y축 방향으로 소정의 간격을 두어 1열로 배열되어 있다.
피토출부(78)끼리의 X축 방향에 따른 간격(LRX)은 거의 190㎛이다. 피토출부(78)끼리의 상기 간격 및 피토출부의 상기 크기는, 40인치 정도의 크기의 고화질 텔레비전에 있어서, 화소 영역끼리의 간격에 대응한다.
상기 액체 방울 토출 장치(IJ)는, 도 16의 (a) 및 (b)의 기체(70A)의 피토출부(78) 각각에 대하여, 액상 재료(액상체)로서의 도전성 박막 재료(411)를 토출하는 것으로 되어 있다. 이 도전성 박막 재료(411)로서는, 예를 들어, 유기 팔라듐 용액이 사용된다.
액체 방울 토출 장치(IJ)를 사용하여 화상 표시 장치를 제조하기 위해서는, 우선, 소다 유리 등으로 형성된 기판(72) 위에 이산화규소(SiO2)를 주성분으로 하는 나트륨 확산 방지층(74)을 형성한다. 구체적으로는, 스퍼터링법을 이용하여 기판(72) 위에 두께 1㎛의 SiO2막을 형성함으로써 나트륨 확산 방지층(74)을 얻는다. 다음으로, 나트륨 확산 방지층(74) 위에 스퍼터링법 또는 진공 증착법에 의해 두께 5㎚의 티타늄층을 형성한다. 그리고, 포토리소그래피 기술 및 에칭 기술을 이용하여, 그 티타늄층으로부터 서로 소정의 거리만큼 떨어져 위치하는 한쌍의 소자 전극(76A) 및 소자 전극(76B)을 복수쌍 형성한다. 그 후, 스크린 인쇄 기술을 이용하여, 나트륨 확산 방지층(74) 위 및 복수의 소자 전극(76A) 위에 은(Ag) 페이스트를 도포하여 소성(燒成)함으로써, Y축 방향으로 연장되는 복수의 금속 배선(79A)을 형성한다. 다음으로, 스크린 인쇄 기술을 이용하여, 각 금속 배선(79A)의 일부분에 유리 페이스트를 도포하여 소성함으로써, 절연막(75)을 형성한다. 그리고, 스크린 인쇄 기술을 이용하여, 나트륨 확산 방지층(74) 및 복수의 소자 전극(76B) 위에 Ag 페이스트를 도포하여 소성함으로써, X축 방향으로 연장되는 복수의 금속 배선(79B)을 형성한다. 또한, 금속 배선(79B)을 제조할 경우에는, 금속 배선(79B)이 절연막(75)을 통하여 금속 배선(79A)과 교차하도록 Ag 페이스트를 도포한다. 이상과 같은 공정에 의해, 도 16의 (a) 및 (b)에 나타낸 기체(70A)를 얻는다.
다음으로, 대기압 하의 산소 플라즈마 처리에 의해 기체(70A)를 친액화(親液化)한다. 이 처리에 의해, 소자 전극(76A) 표면의 일부와, 소자 전극(76B) 표면의 일부와, 소자 전극(76A)과 소자 전극(76B) 사이에서 노출된 지지 기판의 표면이 친액화된다. 그리고, 이들의 표면이 피토출부(78)로 된다. 또한, 재질에 따라서는, 상기와 같은 표면 처리를 행하지 않아도, 원하는 친액성을 나타내는 표면이 얻어지는 경우도 있다. 이러한 경우에는, 상기 표면 처리를 행하지 않아도, 소자 전극(76A) 표면의 일부와, 소자 전극(76B) 표면의 일부와, 소자 전극(76A)과 소자 전극(76B) 사이에서 노출된 나트륨 확산 방지층(74)의 표면은 피토출부(78)로 된다.
피토출부(78)가 형성된 기체(70A)는, 반송 장치에 의해 액체 방울 토출 장치(IJ)의 스테이지에 운반된다. 그리고, 도 17의 (a)에 나타낸 바와 같이, 액체 방울 토출 장치(IJ)는 피토출부(78) 전체에 도전성 박막(411F)이 형성되도록 토출 헤드(1)로부터 도전성 박막 재료(411)를 토출한다. 또한, 이 도전성 박막 재료(411)를 토출할 때에는, 그 토출에 앞서, 미리 토출 헤드(1)의 토출 동작을 검사하여 둔다.
본 예에서는, 피토출부(78) 위에 착탄한 도전성 박막 재료(411)의 액체 방울 직경이 60㎛ 내지 80㎛의 범위로 되도록 토출 헤드(1)로부터 토출을 행한다. 기체(70A)의 피토출부(78) 전체에 도전성 박막 재료(411)의 층이 형성된 경우에는, 반송 장치가 기체(70A)를 건조 장치 내에 위치시킨다. 그리고, 피토출부(78) 위의 도전성 박막 재료(411)를 완전히 건조시킴으로써, 피토출부(78) 위에 산화팔라듐을 주성분으로 하는 도전성 박막(411F)을 얻는다. 이와 같이, 각각의 화소 영역에 있어서, 소자 전극(76A)의 일부와, 소자 전극(76B)의 일부와, 소자 전극(76A)과 소자 전극(76B) 사이에 노출된 나트륨 확산 방지층(74)을 덮는 도전성 박막(411F)이 형성된다.
다음으로, 소자 전극(76A)과 소자 전극(76B) 사이에 펄스 형상의 소정 전압을 인가함으로써, 도전성 박막(411F)의 일부분에 전자 방출부(411D)를 형성한다. 또한, 소자 전극(76A)과 소자 전극(76B) 사이의 전압의 인가를 유기물 분위기 하 및 진공 조건 하에서도 각각 행하는 것이 바람직하다. 이와 같이 하면, 전자 방출부(411D)로부터의 전자 방출 효율이 보다 높아지기 때문이다. 소자 전극(76A)과, 대응하는 소자 전극(76B)과, 전자 방출부(411D)가 설치된 도전성 박막(411F)은 전자 방출 소자이다. 또한, 각각의 전자 방출 소자는 각각의 화소 영역에 대응한다.
이상의 공정에 의해, 도 17의 (b)에 나타낸 바와 같이, 기체(70A)는 전자원 기판(70B)으로 된다.
다음으로, 도 17의 (c)에 나타낸 바와 같이, 전자원 기판(70B)과 앞면 기판(70C)을 공지의 방법에 의해 접합시킴으로써, 전자 방출 소자를 구비한 화상 표시 장치(70)가 얻어진다. 앞면 기판(70C)은 유리 기판(82)과, 유리 기판(82) 위에 매트릭스 형상으로 위치하는 복수의 형광부(84)와, 복수의 형광부(84)를 덮는 메탈 플레이트(86)를 갖는다. 메탈 플레이트(86)는 전자 방출부(411D)로부터의 전자 빔을 가속하기 위한 전극으로서 기능한다. 전자원 기판(70B)과 앞면 기판(70C)은, 복수의 전자 방출 소자 각각이 복수의 형광부(84) 각각에 대향하도록 위치 맞 춤되어 있다. 또한, 전자원 기판(70B)과 앞면 기판(70C) 사이는 진공 상태로 유지되어 있다.
이러한 전자 방출 소자를 구비한 화상 표시 장치의 제조 방법에 있어서도, 토출에 앞서, 미리 토출 헤드(1)의 토출 동작을 검사하여 둠으로써, 도전성 박막 재료(411)를 양호하게 토출할 수 있고, 따라서, 얻어지는 화상 표시 장치의 신뢰성을 향상시킬 수 있다.
본 발명의 액체 방울 토출 장치(IJ)에 의해, 상기 액정 장치 및 유기 EL 장치 등의 전기 광학 장치(디바이스)를 제조할 수 있다. 이하, 액체 방울 토출 장치를 갖는 디바이스 제조 장치(IJ)에 의해 제조된 전기 광학 장치를 구비한 전자 기기의 적용 예에 대해서 설명한다.
도 18의 (a)는 휴대 전화의 일례를 나타낸 사시도이다. 도 18의 (a)에 있어서, 부호 1000은 휴대 전화 본체를 나타내고, 부호 1001은 상기 전기 광학 장치를 사용한 표시부를 나타내고 있다. 도 18의 (b)는 손목시계형 전자 기기의 일례를 나타낸 사시도이다. 도 18의 (b)에 있어서, 부호 1100은 시계 본체를 나타내고, 부호 1101은 상기 전기 광학 장치를 사용한 표시부를 나타내고 있다. 도 18의 (c)는 워드프로세서 및 퍼스널 컴퓨터 등의 휴대형 정보처리 장치의 일례를 나타낸 사시도이다. 도 18의 (c)에 있어서, 부호 1200은 정보처리 장치, 부호 1202는 키보드 등의 입력부, 부호 1204는 정보처리 장치 본체, 부호 1206은 상기 전기 광학 장치를 사용한 표시부를 나타내고 있다. 도 18의 (a)∼(c)에 나타낸 전자 기기는 상기 실시예의 전기 광학 장치를 구비하고 있기 때문에, 표시 품위가 우수하고, 밝은 화면의 표시부를 구비한 전자 기기를 실현할 수 있다.
또한, 상술한 예에 더하여, 다른 예로서, 액정 텔레비전, 뷰파인더형이나 모니터 직시형의 비디오 테이프 리코더, 카 네비게이션(car navigation) 장치, 소형 무선 호출기, 전자 수첩, 전자 계산기, 워드프로세서, 워크스테이션, 화상 전화, POS 단말, 전자 페이퍼, 터치 패널을 구비한 기기 등을 들 수 있다. 본 발명의 전기 광학 장치는 이러한 전자 기기의 표시부로서도 적용할 수 있다.
이상 본 발명에 따르면 생산성을 저하시키지 않고 비동작 노즐 검출을 행하여, 도트 빠짐이 없으면서도 소정의 성능을 갖는 디바이스를 제조할 수 있는 디바이스 제조 장치 및 디바이스의 제조 방법을 제공한다.

Claims (16)

  1. 기능성 재료를 함유하는 액상체(液狀體)를 토출하는 토출 헤드와,
    상기 액상체가 토출되는 기판을 지지하고, 상기 토출 헤드에 대하여 상대 이동 가능한 스테이지 장치와,
    상기 기판을 반송(搬送)하는 반송 수단과,
    상기 토출 헤드에 형성되는 토출 노즐로부터 토출되는 상기 액상체의 토출 상태를 검출하는 검출 수단과,
    상기 기판의 반송 동작 중에 상기 검출 수단에 의한 검출 동작을 실행하는 제어 수단을 구비하는 것을 특징으로 하는 디바이스 제조 장치.
  2. 제 1 항에 있어서,
    상기 검출 수단은 검출광을 사출하는 투광부와,
    상기 투광부로부터 사출된 상기 검출광을 수광 가능한 수광부를 구비하고,
    상기 수광부는, 상기 검출광의 광로(光路) 위를 상기 액상체가 통과하는 것에 의한 상기 검출광의 상기 수광부에서의 수광량 변화에 의거하여, 상기 토출 노즐로부터 상기 액상체가 토출되고 있는지의 여부를 판별하는 것을 특징으로 하는 디바이스 제조 장치.
  3. 제 2 항에 있어서,
    상기 제어 수단은 소정의 타이밍으로 상기 수광부의 교정(calibration)을 행하는 것을 특징으로 하는 디바이스 제조 장치.
  4. 제 1 항에 있어서,
    상기 토출 노즐의 회복 동작을 행하는 회복 수단을 구비하는 것을 특징으로 하는 디바이스 제조 장치.
  5. 제 4 항에 있어서,
    상기 제어 수단은 상기 검출 수단의 검출 결과에 따라 상기 회복 동작을 행하고, 소정 횟수의 검출을 재실행하는 것을 특징으로 하는 디바이스 제조 장치.
  6. 제 1 항에 있어서,
    상기 검출 수단의 검출 결과와, 검출 결과에 의거한 에러(error)를 표시하는 표시 수단을 구비하는 것을 특징으로 하는 디바이스 제조 장치.
  7. 제 1 항에 있어서,
    상기 검사 수단과 상기 스테이지 장치는 다른 위치에 설치되어 있는 것을 특징으로 하는 디바이스 제조 장치.
  8. 제 1 항에 있어서,
    상기 토출 헤드는 복수 구비되어 있는 것을 특징으로 하는 디바이스 제조 장치.
  9. 제 1 항에 있어서,
    상기 디바이스는 액정 표시 소자, 유기 일렉트로루미네선스 소자, 플라즈마 표시 소자, 전자 방출 소자, 광학 소자, 및 도전막 소자 중의 적어도 하나를 포함하는 것을 특징으로 하는 디바이스 제조 장치.
  10. 기능성 재료를 함유하는 액상체를 토출 헤드의 토출 노즐로부터 기판에 대하여 토출하는 공정과,
    상기 기판을 반송(搬送)하는 반송 공정과,
    상기 기판의 반송 동작 중에 상기 토출 노즐로부터 토출되는 상기 액상체의 토출 상태를 검출하는 검출 공정을 갖는 것을 특징으로 하는 디바이스의 제조 방법.
  11. 제 10 항에 있어서,
    수광부에 대하여 검출광을 조사하고, 상기 검출광의 광로 위를 상기 액상체가 통과하는 것에 의한 상기 수광부에서의 수광량 변화에 의거하여, 상기 토출 노즐로부터 상기 액상체가 토출되고 있는지의 여부를 판별하는 것을 특징으로 하는 디바이스의 제조 방법.
  12. 제 11 항에 있어서,
    소정의 타이밍으로 상기 수광부의 교정을 행하는 것을 특징으로 하는 디바이스의 제조 방법.
  13. 삭제
  14. 삭제
  15. 제 1 항에 있어서,
    상기 검출 수단을 향하여 상기 토출 헤드를 이동 가능하게 하는 구동 장치를 구비하는 것을 특징으로 하는 디바이스 제조 장치.
  16. 제 10 항에 있어서,
    상기 검출 공정에 앞서, 상기 토출 헤드를 상기 검출 공정을 실행하는 위치로 이동시키는 것을 특징으로 하는 디바이스의 제조 방법.
KR1020030073281A 2002-10-24 2003-10-21 디바이스 제조 장치 및 디바이스의 제조 방법, 전자 기기 KR100605346B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPJP-P-2002-00309584 2002-10-24
JP2002309584 2002-10-24
JP2003301295A JP2004160449A (ja) 2002-10-24 2003-08-26 デバイス製造装置及びデバイスの製造方法、電子機器
JPJP-P-2003-00301295 2003-08-26

Publications (2)

Publication Number Publication Date
KR20040036569A KR20040036569A (ko) 2004-04-30
KR100605346B1 true KR100605346B1 (ko) 2006-07-28

Family

ID=32715696

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030073281A KR100605346B1 (ko) 2002-10-24 2003-10-21 디바이스 제조 장치 및 디바이스의 제조 방법, 전자 기기

Country Status (5)

Country Link
US (1) US7461912B2 (ko)
JP (1) JP2004160449A (ko)
KR (1) KR100605346B1 (ko)
CN (1) CN1277689C (ko)
TW (1) TWI282698B (ko)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259848A (ja) * 2004-03-10 2005-09-22 Toshiba Corp 半導体装置及びその製造方法
JP2006172853A (ja) * 2004-12-15 2006-06-29 Seiko Epson Corp パターン形成基板、電気光学装置及び電気光学装置の製造方法
US20080225072A1 (en) * 2007-03-15 2008-09-18 Jena Marie Klees Calibration of drop detector and acquisition of drop detect data for nozzles of fluid-ejection mechanisms
JP5285916B2 (ja) * 2008-01-09 2013-09-11 東レ株式会社 塗布ノズル検査装置および検査方法ならびに塗液の塗布方法
KR101471356B1 (ko) * 2008-07-28 2014-12-10 주식회사 탑 엔지니어링 액정방울 토출여부 확인방법 및 이를 실행하는 액정디스펜서
JP2010250959A (ja) * 2009-04-10 2010-11-04 Hitachi High-Technologies Corp プラズマ処理装置
US11673155B2 (en) 2012-12-27 2023-06-13 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
US11141752B2 (en) 2012-12-27 2021-10-12 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
KR20230106718A (ko) 2012-12-27 2023-07-13 카티바, 인크. 정밀 공차 내로 유체를 증착하기 위한 인쇄 잉크 부피제어를 위한 기법
US9700908B2 (en) 2012-12-27 2017-07-11 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
US9352561B2 (en) 2012-12-27 2016-05-31 Kateeva, Inc. Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances
US9832428B2 (en) 2012-12-27 2017-11-28 Kateeva, Inc. Fast measurement of droplet parameters in industrial printing system
KR20230084334A (ko) 2013-12-12 2023-06-12 카티바, 인크. 두께를 제어하기 위해 하프토닝을 이용하는 잉크-기반 층 제조
JP6351992B2 (ja) * 2014-02-17 2018-07-04 株式会社Screenホールディングス 変位検出装置、基板処理装置、変位検出方法および基板処理方法
CN110265326B (zh) * 2014-04-30 2024-03-08 科迪华公司 用于衬底涂覆的气垫设备和技术
US9960057B2 (en) * 2014-12-18 2018-05-01 Lam Research Ag Device for measuring the distribution or impulse of a series of droplets
WO2016140284A1 (ja) * 2015-03-02 2016-09-09 コニカミノルタ株式会社 パターン形成方法、透明導電膜付き基材、デバイス及び電子機器
JP6506153B2 (ja) * 2015-10-27 2019-04-24 株式会社Screenホールディングス 変位検出装置および変位検出方法ならびに基板処理装置
US10335995B2 (en) 2015-12-16 2019-07-02 Xerox Corporation System and method for compensating for dissimilar shrinkage rates in different materials used to form a three-dimensional printed object during additive manufacturing
US11809382B2 (en) 2019-04-01 2023-11-07 Nutanix, Inc. System and method for supporting versioned objects
US11704334B2 (en) 2019-12-06 2023-07-18 Nutanix, Inc. System and method for hyperconvergence at the datacenter
US11609777B2 (en) 2020-02-19 2023-03-21 Nutanix, Inc. System and method for multi-cluster storage
JP7468059B2 (ja) * 2020-03-27 2024-04-16 ブラザー工業株式会社 画像記録装置
CN112078258B (zh) * 2020-08-31 2021-09-07 江苏纳沛斯半导体有限公司 一种电动打点器计数器
US11900164B2 (en) 2020-11-24 2024-02-13 Nutanix, Inc. Intelligent query planning for metric gateway
US11822370B2 (en) 2020-11-26 2023-11-21 Nutanix, Inc. Concurrent multiprotocol access to an object storage system
US11899572B2 (en) 2021-09-09 2024-02-13 Nutanix, Inc. Systems and methods for transparent swap-space virtualization
WO2024024714A1 (ja) * 2022-07-29 2024-02-01 コニカミノルタ株式会社 測定レンジ決定装置、光測定装置、光測定システム、光測定方法、ディスプレイ調整装置及び調整方法並びにプログラム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269549A (ja) 1991-02-25 1992-09-25 Seiko Epson Corp インクジェット記録装置
US5216442A (en) * 1991-11-14 1993-06-01 Xerox Corporation Moving platen architecture for an ink jet printer
JPH08281174A (ja) 1995-04-07 1996-10-29 Sanyo Electric Co Ltd 塗布方法及び塗布装置
US6371590B1 (en) * 1996-04-09 2002-04-16 Samsung Electronics Co., Ltd. Method for testing nozzles of an inkjet printer
JP3113212B2 (ja) 1996-05-09 2000-11-27 富士通株式会社 プラズマディスプレイパネルの蛍光体層形成装置および蛍光体塗布方法
JPH1114820A (ja) 1997-06-24 1999-01-22 Canon Inc カラーフィルタの製造方法及び製造装置及びカラーフィルタ及び表示装置及びこの表示装置を備えた装置
JP3382526B2 (ja) 1997-12-25 2003-03-04 キヤノン株式会社 記録装置及びインク吐出状態検出方法
JP2000048716A (ja) 1998-07-31 2000-02-18 Toray Ind Inc 塗液の塗布装置および方法並びにプラズマディスプレイの製造装置および方法
US6357849B2 (en) * 1998-11-12 2002-03-19 Seiko Epson Corporation Inkjet recording apparatus
EP1034935B1 (en) * 1999-02-19 2007-05-02 Hewlett-Packard Company, A Delaware Corporation Keeping history of ink jet nozzle malfunctioning
JP2000284113A (ja) 1999-03-30 2000-10-13 Canon Inc カラーフィルタの製造方法及びカラーフィルタ及び表示装置及びこの表示装置を備えた装置
JP2000343686A (ja) 1999-06-02 2000-12-12 Seiko Epson Corp ノズルクリーニング後のノズル検査
JP2001027604A (ja) 1999-07-14 2001-01-30 Moritex Corp つや計
WO2001035073A1 (en) * 1999-07-27 2001-05-17 Oxford, V. U. E., Inc. Automatic etchant regeneration system with highly accurate sensor for monitoring etchant composition
JP3988373B2 (ja) 1999-09-29 2007-10-10 セイコーエプソン株式会社 ノズルクリーニング前のノズル検査
US6832825B1 (en) * 1999-10-05 2004-12-21 Canon Kabushiki Kaisha Test pattern printing method, information processing apparatus, printing apparatus and density variation correction method
JP4458586B2 (ja) 1999-10-05 2010-04-28 キヤノン株式会社 記録装置及び濃度むら補正方法
JP3820830B2 (ja) 2000-02-01 2006-09-13 セイコーエプソン株式会社 印刷装置に関する不動作ノズル検出方法および印刷装置、並びにそのためのプログラムを記録した記録媒体
JP3698055B2 (ja) 2000-12-25 2005-09-21 セイコーエプソン株式会社 ドット抜け検査を行う印刷装置
US6619776B2 (en) * 2001-03-30 2003-09-16 Brother Kogyo Kabushiki Kaisha Image forming device capable of detecting existence of ink and ink cartridge with high accuracy
US6457823B1 (en) * 2001-04-13 2002-10-01 Vutek Inc. Apparatus and method for setting radiation-curable ink

Also Published As

Publication number Publication date
CN1277689C (zh) 2006-10-04
US7461912B2 (en) 2008-12-09
TW200414800A (en) 2004-08-01
TWI282698B (en) 2007-06-11
US20040135830A1 (en) 2004-07-15
KR20040036569A (ko) 2004-04-30
CN1498691A (zh) 2004-05-26
JP2004160449A (ja) 2004-06-10

Similar Documents

Publication Publication Date Title
KR100605346B1 (ko) 디바이스 제조 장치 및 디바이스의 제조 방법, 전자 기기
US7185966B2 (en) Detection apparatus and detecting method, droplet discharge apparatus and droplet discharge method, device and electronic equipment
KR100873477B1 (ko) 토출 패턴 데이터 보정 방법, 토출 패턴 데이터 보정 장치, 및 액적 토출 장치
TW587023B (en) Method of generating ejection pattern data and head motion pattern data; apparatus for generating ejection pattern data; apparatus for ejecting functional liquid droplet; drawing system; method of manufacturing organic EL device, electron emitting device
US20090304916A1 (en) Defect Repairing Apparatus, Defect Repairing Method, Program, and Computer-Readable Recording Medium
KR100952380B1 (ko) 착탄 도트 측정 방법 및 착탄 도트 측정 장치, 및 액적토출 장치, 전기 광학 장치의 제조 방법, 전기 광학 장치및 전자 기기
KR20040079854A (ko) 성막 방법, 성막 장치, 컬러 필터 기판의 제조 방법 및제조 장치, 일렉트로루미네선스 장치용 기판의 제조 방법및 제조 장치, 표시 장치의 제조 방법, 표시 장치, 및전자 기기
KR100658478B1 (ko) 재료 도포 방법, 컬러 필터 기판의 제조 방법, 일렉트로루미네선스 표시 장치의 제조 방법, 플라즈마 표시 장치의 제조 방법, 및 토출 장치
JP5359973B2 (ja) 液滴吐出装置
JP2008100138A (ja) 液滴吐出装置、電気光学装置の製造方法、電気光学装置および電子機器
JP4503063B2 (ja) インク吐出装置、その方法、プログラムおよびコンピュータ読み取り可能な記録媒体
JP2008225246A (ja) 液滴吐出装置、並びに電気光学装置の製造方法、電気光学装置および電子機器
JP3800211B2 (ja) 液状体の吐出装置と液状体の吐出方法、電気光学装置とその製造方法、及び電子機器
JP2009006212A (ja) 液滴吐出装置、電気光学装置の製造方法および電気光学装置
KR20080106107A (ko) 액적 토출 헤드의 배치 방법, 헤드 유닛 및 액적 토출장치, 및, 전기 광학 장치의 제조 방법, 전기 광학 장치 및전자기기
JP2008225348A (ja) 液滴吐出装置の検査測定装置およびこれを備えた液滴吐出装置、並びに電気光学装置の製造方法、電気光学装置および電子機器
JP4696862B2 (ja) 画像処理装置、画像処理方法および描画装置
JP2003275650A (ja) 描画システム、およびこれを用いた液晶表示装置の製造方法、有機el装置の製造方法、電子放出装置の製造方法、pdp装置の製造方法、電気泳動表示装置の製造方法、カラーフィルタの製造方法、有機elの製造方法、スペーサ形成方法、金属配線形成方法、レンズ形成方法、レジスト形成方法および光拡散体形成方法
KR20040103769A (ko) 컬러 필터 기판의 제조 방법 및 그 제조 장치,일렉트로루미네선스 기판의 제조 방법 및 그 제조 장치,전기 광학 장치의 제조 방법, 및 전자 기기의 제조 방법
JP4289172B2 (ja) 吐出装置
JP2010204411A (ja) 液滴吐出装置、液滴吐出方法、及びカラーフィルターの製造方法
JP2004358353A (ja) 液滴吐出装置、液滴吐出方法、薄膜形成方法、及び電気光学装置
JP2007130572A (ja) ワーク処理方法、ワーク処理システム、並びに電気光学装置の製造方法、電気光学装置および電子機器
JP2005305242A (ja) 液滴吐出装置を用いた描画方法および液滴吐出装置、並びに電気光学装置の製造方法、電気光学装置および電子機器
JP2004216339A (ja) 液滴吐出装置、電気光学装置の製造方法、電気光学装置、及び電子機器

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100719

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee