KR100550112B1 - 배기열 회수 시스템 - Google Patents

배기열 회수 시스템 Download PDF

Info

Publication number
KR100550112B1
KR100550112B1 KR1020037010247A KR20037010247A KR100550112B1 KR 100550112 B1 KR100550112 B1 KR 100550112B1 KR 1020037010247 A KR1020037010247 A KR 1020037010247A KR 20037010247 A KR20037010247 A KR 20037010247A KR 100550112 B1 KR100550112 B1 KR 100550112B1
Authority
KR
South Korea
Prior art keywords
exchange medium
exhaust
heat
heat recovery
heat exchange
Prior art date
Application number
KR1020037010247A
Other languages
English (en)
Other versions
KR20040023588A (ko
Inventor
와타나베겐지
이토도모나리
Original Assignee
도쿄 덴료쿠 가부시기가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄 덴료쿠 가부시기가이샤 filed Critical 도쿄 덴료쿠 가부시기가이샤
Publication of KR20040023588A publication Critical patent/KR20040023588A/ko
Application granted granted Critical
Publication of KR100550112B1 publication Critical patent/KR100550112B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • F24D11/005Central heating systems using heat accumulated in storage masses water heating system with recuperation of waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/10Gas turbines; Steam engines or steam turbines; Water turbines, e.g. located in water pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/13Small-scale CHP systems characterised by their heat recovery units characterised by their heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/17Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/26Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0086Partitions
    • F28D2020/0095Partitions movable or floating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

본 발명은 발전기에서 발생하는 배기열을 회수하여 급탕이나 공조에 이용하는 배기열 회수 시스템에 관한 것으로 저비용화를 꾀할 수 있고, 또한 에너지 효율이 높은 배기열 회수 시스템을 제공하는 것을 목적으로 한다.
배기열 회수 시스템은 발전기에서 발생하는 배기가스와 순환 사용되는 열교환매체를 열교환시키고, 열교환매체를 가열하는 배기열 회수용 열교환기(HEX1)를 구비한다. 또한, 열교환매체를 일시적으로 저장하는 탱크(13)와, 탱크(13) 내를 대기 중에 개방하는 대기 개방관(41)을 구비한다.

Description

배기열 회수 시스템{Exhaust heat recovery system}
본 발명은 발전기에서 발생하는 배기열을 회수하여 급탕이나 공조에 이용하는 배기열 회수 시스템에 관한 것이다.
그리고, 본출원은 일본국의 특허 출원(특허출원번호 제2001-369357호)에 근거함으로써 그 일본 출원의 기재 내용은 본 명세서의 일부로서 수용되는 것이다.
최근, 오피스 빌딩이나 상업 시설 등의 비교적 소규모 장소에서 가스나 석유 등을 연료로 하는 구동원에 의하여 발전기를 구동하여 전력을 자급하는 시스템이 채용되는 경향이 있다. 특히, 발전기의 구동원으로서 저연비, 저소음으로 구동되는 소형 가스 터빈의 이용 기술이 발전하고 범용성이 높아짐으로써 상기 시스템의 채용이 확대되어 가는 추세이다.
상기와 같은 전력 자급 시스템에는 발전기를 구동할 때에 구동원으로부터 발생하는 배기열을 회수하여 같은 장소 안에서 급탕이나 공조에 이용하는 배기열 회수 시스템이 병설되는 경우가 많다.
도 13에 배기열 회수 시스템의 일례를 나타낸다. 도 13에서 부호 501은 가스 터빈, 502는 배기열 회수용 열교환기, 503은 저탕조, 504는 급탕전, 505는 급수 탱크, 506은 급탕 온도 조절용 열교환기, 507은 냉각탑이다. 가스 터빈(501)과 배기열 회수용 열교환기(502)는 배기가스 도입관(508)에 의하여 접속되어 있고, 또한 배기열 회수용 열교환기(502)에는 물을 가열한 배기가스를 배출하는 배기탑(509)이 설치되어 있다.
배기열 회수용 열교환기(502)와 저탕조(503)는 물(열탕)을 순환시키는 폐회로를 구성하는 1차 배관(510)에 의하여 접속되어 있다. 또한, 저탕조(503)와 급탕전 (504), 급탕 온도 조절용 열교환기(506)는 열탕을 순환시키는 폐회로를 구성하는 2차 배관(511)에 의하여 접속되어 있다. 급수 탱크(505)는 2차 배관(511)에 급수관(512)에 의하여 접속되어 있다. 또한, 급탕 온도 조절용 열교환기(506)와 냉각탑(507)은 냉매로서의 물을 순환시키는 폐회로를 구성하는 냉매 배관(513)에 의하여 접속되어 있다.
상기 배기열 회수 시스템에서는, 가스 터빈(501)의 배기열은 배기열 회수용 열교환기(502)에 도입되어 저탕조(503)를 통해 배출되지만, 배기열 회수용 열교환기(502)에서 1차 배관을 순환하는 물과 열교환을 행하여 이것을 가열한다. 배기열 회수용 열교환기(502)에서 가열된 물(열탕)은 저탕조(503)에 유입된다. 저탕조(503)의 물(열탕)은 2차 배관(511)을 순환하고, 급탕전(504)이 열리면 회로 밖으로 유출되어 이용된다. 저탕조(503)의 물(열탕)의 잔량이 적어지면, 급수 탱크(505)로부터 적절히 급수가 실시된다.
또한, 상기 배기열 회수 시스템에서는 2차 배관(511)을 순환하는 물(열탕)의 이용이 적으면, 회로 내의 온도가 지나치게 상승하여 버린다. 그래서, 이러한 경우를 포함해서 급탕 온도 조절용 열교환기(506)에서 잉여 열에너지를 회수하고 냉각탑(507)에서 대기 중에 방출하게 되어 있다.
상기 배기열 회수 시스템에서는 급탕 온도 조절용 열교환기(506)나 냉각탑(507)에 의하여 구성되는 냉각 설비를 필요로 하는 등, 시스템 전체가 복잡하고 또한 규모가 커지며 설치에 많은 비용이 든다는 문제가 있다.
또한, 전력 자급 시스템의 이용 확대에 따라, 에너지 효율이 더 높은 배기열 회수 시스템이 요구되고 있다.
본 발명은 상술하는 사정을 감안하여 이루어진 것으로, 저비용화를 도모할 수 있고, 또한 에너지 효율이 높은 배기열 회수 시스템을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해, 본 발명은 발전기에서 발생하는 배기가스와 소정의 설비에서 순환사용되는 열교환매체를 받아들이고 이 배기가스 및 열교환매체를 열교환시켜서 상기 열교환매체를 가열하는 배기열 회수용 열교환기와, 상기 배기열 회수용 열교환기로부터 보내져 온 상기 열교환매체를 일시적으로 저장하는 탱크와, 상기 탱크에 설치되어 그 탱크 내를 대기 중에 개방하는 대기 개방관을 구비하는 것을 특징으로 한다.
이 배기열 회수 시스템에서는 탱크 내에 저장되는 열교환매체에 의하여 열 저장 효과가 생겨 열교환매체의 온도 변동이 완만하게 된다. 또한, 그 탱크가 대기 개방형이므로, 열교환매체의 압력 상승이 생기기 어렵고, 열교환매체가 용이하게 온도 상승한다. 또한, 탱크가 대기 개방형이기 때문에 열교환매체 중에 발생한 기포·증기가 탱크 내에서 분리되어 방출되며, 액체 중에 기포·증기가 혼입되는 문제발생을 피할 수 있고, 이것에 의하여 열교환매체를 비등점 가까운 고온 그대로 다루는 것이 가능하게 된다. 즉, 이 배기열 회수 시스템에서는 열교환매체를 비등점에 가까운 고온으로 가열함과 동시에 그 고온 상태를 안정적으로 유지할 수 있다. 또한, 탱크가 대기 개방형이므로 고비용의 내압 구조를 사용하지 않아도 되므로 저비용화를 꾀할 수 있다.
이 배기열 회수 시스템에서, 상기 탱크는 상기 배기열 회수용 열교환기보다 아래쪽에 배치되면 좋다.
이 배기열 회수 시스템에서는 탱크가 배기열 회수용 열교환기보다 아래쪽에 배치됨으로써 배기열 회수용 열교환기를 포함하는 배관 경로 내의 열교환매체가 중력에 의하여 용이하게 탱크로 돌아가게 된다. 그 때문에, 예컨대 열교환매체가 이상 비등한 경우 등, 열교환매체를 탱크로 되돌려 침전시켜 정화시킬 수 있게 된다. 또한, 장기 운전 정지 시 등에서, 배기열 회수용 열교환기를 포함하는 배관 경로 내의 열교환매체를 탱크로 돌려 그것들을 건조 보관함으로써 부식을 억제할 수 있게 된다.
또한, 이 배기열 회수 시스템에서 상기 대기 개방관은 일단이 상기 탱크에 접속되고 타단이 상기 배기가스의 유로에 접속되어 있으면 좋다.
이 배기열 회수 시스템에서는 대기 개방관의 일단이 탱크로 접속되고 타단이 배기가스의 유로에 접속되어 있음으로써 탱크 내를 확실히 대기 개방할 수 있다. 또한, 대기 개방관의 타단이 배기가스의 유로에 접속됨으로써 열교환매체의 증기가 분출된 경우에도 외부로의 비산을 방지할 수 있다.
또한, 이 배기열 회수 시스템에서 상기 대기 개방관에는 상기 탱크로부터 증발한 상기 열교환매체의 증기를 응축하는 응축기가 설치되어 있으면 좋다.
이 배기열 회수 시스템에서는 대기 개방관에 응축기가 설치되어 있으므로 탱크로부터 증발한 열교환매체의 증기가 그 응축기에 응축되어 탱크로 되돌아가게 된다. 이 때문에 열교환매체의 용량 저하가 억제된다.
이 경우에, 상기 응축기는 탱크 쪽의 유로에 대하여 대기 쪽의 유로가 위쪽이 되도록 배치되어 있으면 좋다.
응축기가 탱크 쪽에 대하여 대기 쪽의 유로를 위쪽으로 해서 배치되어 있기 때문에 응축기에서 응축된 열교환매체의 증기가 확실히 탱크로 되돌아가게 된다.
또한, 이 배기열 회수 시스템에서 상기 탱크 내의 상기 열교환매체에는 단열재를 포함하는 뚜껑체가 떠있으면 된다.
이 배기열 회수 시스템에서는 탱크 내의 열교환매체에 단열재를 포함하는 뚜껑체가 떠있기 때문에 보온 효과가 작동하고, 대기 개방된 탱크라 해도 대기 중으로 빠져나가는 열에너지량이 억제되어 배기열로부터 회수한 열에너지를 효율적으로 이용할 수 있게 된다.
이 경우에, 상기 뚜껑체의 상면에는 그 뚜껑체의 이동에 따른 상기 대기 개방관의 폐쇄을 방지하는 폐쇄 방지 부재가 설치되어 있으면 된다.
뚜껑체의 상면에 폐쇄 방지 부재가 설치되어 있기 때문에 탱크 내의 수면 변동에 의하여 뚜껑체가 이동한 경우에도 대기 개방관의 폐쇄가 방지된다.
또한, 상기 뚜껑체의 하면에는 그 뚜껑체의 전도 및 반전을 방지하는 전도 방지 부재가 설치되어 있으면 좋다.
뚜껑체의 하면에 전도 방지 부재가 설치되어 있기 때문에 탱크 내의 수면 변동에 의하여 뚜껑체가 이동한 경우에도 뚜껑체의 전도 및 반전이 방지되며 뚜껑체 의 보온 효과가 안정적으로 유지된다.
또한, 상기 탱크 내벽과 상기 뚜껑체 사이에는 상기 열교환매체의 증기 방출에 따른 상기 뚜껑체의 심한 움직임을 억제하기 위한 간극이 설치되어 있으면 좋다.
탱크의 내벽과 뚜껑체 사이에 간극이 설치되어 있기 때문에 열교환매체의 증기 방출에 따른 뚜껑체의 심한 움직임이 억제되며 뚜껑체의 보온 효과가 안정적으로 유지된다.
도 1은 본 발명의 배기열 회수 시스템이 병설되는 전력 자급 시스템의 전체 구성의 일례를 개략적으로 나타내는 도면이다.
도 2는 본 발명의 배기열 회수 시스템의 제1실시예의 구성을 나타내는 도면이다.
도 3은 배기열 회수용 열교환기의 내부 구조를 모식적으로 나타내는 도면이다.
도 4는 저열조의 특징적인 부분을 모식적으로 나타내는 도면이다.
도 5는 배기열 회수 시스템을 가동시킬 때의 처리 절차의 일례를 나타내는 흐름도이다.
도 6은 본 발명의 배기열 회수 시스템의 제2실시예의 구성을 나타내는 도면이다.
도 7은 도 6의 배기열 회수 시스템을 가동시킬 때의 처리 절차의 일례를 나타내는 흐름도이다.
도 8은 도 6의 배기열 회수 시스템에서의 급탕 온도 제어 프로세스의 처리 절차의 일례를 나타내는 흐름도이다.
도 9는 본 발명의 배기열 회수 시스템의 제3실시예의 구성을 나타내는 도면이다.
도 10은 도 9의 배기열 회수 시스템을 가동시킬 때의 처리 절차의 일례를 나타내는 흐름도이다.
도 11은 본 발명의 배기열 회수 시스템의 제4실시예의 구성을 나타내는 도면이다.
도 12는 도 11의 배기열 회수 시스템을 가동시킬 때의 처리 절차의 일례를 나타내는 흐름도이다.
도 13은 종래의 배기열 회수 시스템의 구성을 나타내는 도면이다.
이하, 본 발명의 배기열 회수 시스템의 실시예를 도면을 참조해서 설명한다.
도 1은 배기열 회수 시스템(10)이 병설된 전력 자급 시스템(11)의 전체 구성을 개략적으로 나타내고 있다. 전력 자급 시스템(11) 자체는 소형 가스 터빈(마이크로 가스 터빈)(MT)을 구동원으로서 발전기를 구동하여 전력을 얻지만, 이에 병설되는 배기열 회수 시스템(10)은 발전기를 구동할 때 가스 터빈(MT)으로부터 발생하는 배기가스의 열을 회수하고, 그것을 공조나 급탕 등 소정의 설비(12)에 이용하는 것이다.
도 2는 배기열 회수 시스템(10)의 실시예의 구성을 나타내는 도면으로서, 본 실시예의 배기열 회수 시스템(10)은 발전기에서 발생하는 배기가스의 열을 이용하여 순환 사용되는 물(온수)을 가열한다. 온수를 순환 사용하는 설비(12)(온수 이용 설비)로서는, 예컨대 바닥 난방장치, 흡수식 냉온수와 같은 열이용 공조 장치 등을 들 수 있다. 또한, 설비(12)로서 간접 열교환기를 적용함으로써 식음료용 급탕을 포함한 다양한 가열에 이용된다.
도 2에서 HEX1은 배기가스와 열교환매체 사이에 열교환을 시켜 열교환매체를 가열하는 배기열 회수용 열교환기, 13은 배기열 회수용 열교환기(HEX1)에서 가열된 열교환매체를 일시적으로 저장하는 버퍼 탱크로서의 저열조, HEX2는 가열된 열교환매체와 물(온수) 사이에서 열교환을 시켜 물을 가열하는 물 가열용 열교환기, P1은 열교환매체를 수송하는 펌프이다. 그리고, 상기 열교환매체로서는, 예컨대 물(온수) 또는 약액이 사용된다.
가스 터빈(MT)(도 1 참조)과 배기열 회수용 열교환기(HEX1)는 배기가스 도입관(20)에 의하여 접속되어 있다. 배기열 회수용 열교환기(HEX1)로의 배기가스 도입 직전의 배기가스 도입관(20)에는 배기가스의 온도를 검출하는 온도 센서(TC1)가 설치되어 있다. 또한, 배기열 회수용 열교환기(HEX1)에는 배기가스를 외부로 배출하는 배기탑(21)이 설치되어 있다.
배기열 회수용 열교환기(HEX1), 저열조(13) 및 펌프(P1)는 열교환매체를 순환시키는 1차 열교환매체 순환회로를 구성하는 1차 열교환매체 배관(25)에 의하여 접속되어 있다. 또한, 물 가열용 열교환기(HEX2)는 플레이트형 열교환기로서, 저열조(13) 및 온수 순환용의 온수 배관(29)에 접속되어 있다. 그리고, 온수 배관(29)에서의 온수의 공급압은 온수를 순환 사용하는 설비(12) 쪽에 부여되어 있다.
도 3은 배기열 회수용 열교환기(HEX1)의 구조를 개략적으로 나타내고 있다.
배기열 회수용 열교환기(HEX1)는 박스(30) 내부에 알루미늄제의 냉각 핀(31)을 다수 장착한 스테인리스제의 전열관(32)이 지그재그 상태로 수납된 것이다. 박스(30) 상부에는 배기가스의 도입구(33)와 도출구(34)가 양쪽에 설치되어 있고, 상술한 배기가스 도입관(20)(도 2 참조)이 도입구(33)에, 상술한 배기탑(21)(도 2 참조)이 도출구(34)에 각각 접속된다. 또한, 전열관(32)은 상술한 1차 열교환매체 배관 (25)(도 2 참조)에 접속되어 1차 열교환매체 순환회로의 일부를 구성한다.
배기열 회수용 열교환기(HEX1)에는 배기가스 도입관(20)을 통해 도입되는 배기가스를 배기열 회수용 열교환기(HEX1)로의 도입 전에 배기탑(21)에 인도하여 대기 중에 배출시키는 제어 밸브(V1)가 설치되고, 제어 밸브(V1)와 배기탑(21) 사이에는 배기열 회수용 열교환기(HEX1)에 도입되는 배기가스의 일부를 우회시키는 바이패스 유로(35)가 설치되어 있다. 제어 밸브(V1)는 도입구(33) 및 바이패스 유로(35)의 일부 또는 전부를 막는 버터플라이 밸브와 버터플라이 밸브를 구동하는 전동 모터 등의 구동 장치(미도시)를 포함하고, 인접하는 도입구(33)와 바이패스 유로(35)의 입구 사이에서 요동하도록 구성되어 있다.
또한, 본 실시예에서는 배기열 회수용 열교환기(HEX1)에서 전열관(32) 내의 열교환매체의 흐름 방향과 그 전열관(32) 바깥쪽을 흐르는 배기가스의 흐름 방향이 역방향이 되는 이른바 대향류(對向流)가 되고 있다. 열교환되는 2개의 유체가 서로 역방향으로 흐르는 대향류식 열교환은 효율이 높고 균일한 열교환을 실현하기 쉽다. 다만, 본 발명은 대향류식 열교환에 한정되지 않고 열교환매체의 흐름 방향과 배기가스의 흐름 방향이 같은 방향이 되는 병류(竝流)식 열교환을 채용해도 된다.
도 2로 돌아가서, 1차 열교환매체 배관(25)에는 배기열 회수용 열교환기(HEX1)에 도입되는 열교환매체를 배기열 회수용 열교환기(HEX1)의 전후에서 우회시키는 3방향 전환 밸브(V2) 및 바이패스 배관(40)이 설치되어 있다.
배기열 회수용 열교환기(HEX1)로부터 열교환매체가 도출된 후의 1차 열교환매체 배관(25)에는 열교환매체의 온도를 검출하는 온도 검출 수단으로서 온도 센서(TC2)가 설치되어 있다. 제어 밸브(V1)는 이 온도 센서(TC2)의 검출 결과에 근거하여 개폐 제어되고, 필요에 따라서 배기가스를 우회시켜 배기열 회수용 열교환기(HEX1)로의 도입을 막게 되어 있다. 또한, 3방향 전환 밸브(V2)도 마찬가지로 온도 센서(TC2)의 검출 결과에 근거하여 제어되고 필요에 따라서 열교환매체를 우회시켜 배기열 회수용 열교환기(HEX1)로의 도입을 막게 되어 있다.
저열조(13)는 배기열 회수용 열교환기(HEX1)보다 아래쪽에 배치되어 있다. 또한, 저열조(13)에는 저열조(13) 내를 대기 중에 개방하는 대기 개방관(41)이 설치되어 있다. 대기 개방관(41)은 일단이 저열조(13)에 접속되며 타단이 배기가스의 유로로서의 배기탑(21)에 접속되어 있다. 또한, 대기 개방관(41)에는 저열조(13)로부터 증발한 열교환매체의 증기를 응축하는 응축기(42)가 설치되어 있다. 응축기(42)는 탱크 쪽의 유로에 대하여 대기 쪽의 유로인 배기탑(21) 쪽이 위쪽이 되도록 경사 배치되어 있다. 또한, 저열조(13) 내에는 단열재를 포함하는 뚜껑체(43)가 열교환매체 액면을 덮으며 떠있다.
도 4a 내지 도4c는 저열조(13)의 특징적인 부분을 모식적으로 나타내고 있다.
도 4a는 저열조(13) 내의 열교환매체 상에 떠있는 뚜껑체(43) 구조의 일례를 나타내고 있다. 본 실시예에서는 뚜껑체(43)는 단열재로서의 수지 부재(43a)를 폴리프로필렌 등 판상의 수지 부재(43b) 사이에 끼운 구조로 이루어진다. 또한, 체결 부재인 볼트(43c)에 의하여 두 수지 부재(43a, 43b)가 서로 고정되어 박리가 방지되어 있다. 그리고, 본 실시예에서는 뚜껑체(43)의 단열재로서 발포성 수지를 사용함으로써 저열조(13) 내의 열교환매체에 대하여 충분한 부력을 얻을 수 있다.
또한, 도 4b 및 도 4c에 나타내는 바와 같이, 뚜껑체(43) 상면에는 뚜껑체(43)의 이동에 따른 대기 개방관(41)의 폐쇄를 방지하는 돌기로서의 폐쇄 방지 부재(43d)가 설치되어 있다. 뚜껑체(43) 상면에 폐쇄 방지 부재(43d)가 설치되어 있기 때문에 저열조(13) 내의 액면 변동에 의하여 뚜껑체(43)가 이동한 경우에도 대기 개방관(41)의 폐쇄가 방지된다.
또한, 뚜껑체(43)의 하면에는 뚜껑체(43)의 전도 및 반전을 방지하는 전도 방지 부재(43e)가 설치되어 있다. 본 예에서는 전도 방지 부재(43e)는 뚜껑체(43)의 하면에서 아래쪽을 향하여 연장되는 복수의 막대기 형상 부재로 이루어진다. 뚜껑체(43)의 하면에 전도 방지 부재(43e)가 설치되어 있기 때문에 저열조(13) 내의 액면 변동에 의하여 뚜껑체(43)가 이동한 경우에도 뚜껑체(43)의 전도 및 반전이 방지되어 뚜껑체(43)의 보온 효과가 안정적으로 유지된다.
또한, 저열조(13)의 내벽과 뚜껑체(43) 사이에는 열교환매체의 증기 방출에 따른 뚜껑체(43)의 심한 움직임을 억제하기 위한 간극(44)이 설치되어 있다. 이 간극 (44)으로부터 증기가 어느 정도 위쪽으로 빠짐으로써 열교환매체의 증기 방출에 따른 뚜껑체(43)의 심한 동작이 억제되어 뚜껑체(43)의 보온 효과가 안정적으로 유지된다. 그리고, 본 실시예에서는 증기를 빼는 개구로서 저열조(13)의 내벽과 뚜껑체(43) 사이의 간극(44)으로 하고 있지만, 뚜껑체(43)에 관통공을 마련하는 것 등 다른 형태로 해도 된다.
다음에, 상기와 같이 구성된 배기열 회수 시스템에 의한 배기열 회수의 구조를 설명한다.
우선, 가스 터빈(MT)으로부터 배출된 배기가스는 배기가스 도입관(20)을 통해서 배기열 회수용 열교환기(HEX1)에 도입되고, 1차 열교환매체 순환회로를 흐르는 열교환매체와 열교환을 하여 그 열교환매체를 가열하고, 그 후 배기탑(21)으로부터 배출된다.
배기열 회수용 열교환기(HEX1)에서 가열된 열교환매체는 펌프(P1)의 작용에 의하여 1차 열교환매체 순환회로를 흐름과 동시에, 저열조(13)에서 일시적으로 저장된다. 또한, 1차 열교환매체 순환회로를 흐르는 열교환매체는 물 가열용 열교환기(HEX2)에 도입되며 온수 배관(29)을 흐르는 물(온수)과 열교환을 하여 그 물을 가열하고, 다시 저열조(13)에 저장된다. 그리고, 물 가열용 열교환기(HEX2)에서 가열된 온수는 온수 이용 설비 (12)의 공급압에 의하여 온수 배관(29)을 흘러서 이용된다.
다음에, 상기 배기열 회수 시스템을 가동시킬 때의 처리 흐름에 대하여 도 5에 나타낸 흐름도를 참조하여 설명한다.
가동 전의 배기열 회수 시스템의 각부의 초기 상태는 제어 밸브(V1): 배기가스를 우회, 3방향 전환 밸브(V2): 열교환매체를 우회, 펌프(P1): 정지로 되어 있다.
이 상태에서 배기열 회수 시스템을 가동하면, 스텝300에서 온도 센서(TC1)의 검출 결과로부터 배기가스 온도가 200℃보다 높은지 아닌지의 여부가 판별되고, 배기가스 온도가 200℃ 이상이 되면, 배기열 회수 시스템의 각부 상태가 스텝301에서 전환되며 제어 밸브(V1): 비례 제어, 3방향 전환 밸브(V2): 배기열 회수용 열교환기 (HEX1)에 열교환매체 도입, 펌프(P1): 운전이 되고, 이후 배기열 회수회로의 제어 프로세스가 실행된다.
배기열 회수회로 제어 프로세스에서는, 우선 스텝310에서 온도 센서(TC2)의 검출 결과에 근거하여 배기열 회수 직후의 열교환매체 온도가 원하는 설정 온도, 예컨대 97℃에 달하면, 제어 밸브(V1)가 비례 제어된다. 이 제어 밸브(V1)의 비례 제어는 온도 센서(TC2)의 검출 결과로부터 열교환매체 온도가 98℃보다 낮은 경우에 연속적으로 제어된다.
또한, 스텝311에서 온도 센서(TC2)의 검출 결과로부터 열교환매체 온도가 98℃ 이상인 경우, 스텝312로 진행되며 제어 밸브(V1): 배기가스를 우회, 3방향 전환 밸브(V2): 열교환매체를 우회로 전환되고, 스텝313에서 열교환매체 온도가 100℃ 이상인 상태를 2분 이상 유지한 것이 확인되면, 스텝314에서 배기열 회수 시스템 각부의 상태가 상술한 초기 상태와 같은 상태로 전환되고, 스텝315에서 “제어 밸브(V1) 동작 불량/열회수 정지”라는 경보가 통지된다.
또한, 스텝313에서 열교환매체 온도가 100℃ 이상인 상태를 2분 이상 유지하지 않는 경우, 스텝316에서 열교환매체 온도가 98℃보다 낮은지 아닌지의 여부가 판별되며, 98℃보다 낮은 경우 스텝317에서 제어 밸브(V1): 비례 제어, 3방향 전환 밸브(V2): 배기열 회수용 열교환기(HEX1)에 열교환매체 도입으로 전환되고, 스텝310으로 돌아간다. 또한, 스텝316에서 열교환매체 온도가 98℃보다 높은 경우, 스텝312로 돌아가 스텝312∼스텝316이 반복된다. 그리고, 이 배기열 회수 제어 프로세스에서 상술한 각 온도 및 시간은 소정의 범위 내에서 임의로 설정 변경된다.
이와 같이 본 실시예의 배기열 회수 시스템에서는 열교환매체를 일시적으로 저장하는 저열조(13)를 가지고 있으므로 저열조(13) 내에 저장되는 열교환매체에 의하여 열 저장 효과(보온 효과)가 생겨 열교환매체의 온도 변동이 완만하게 된다. 또한, 저열조(13)가 대기 개방형이므로 열교환매체의 압력 상승이 생기기 어려워 열교환매체가 용이하게 온도 상승한다. 이 때문에, 열교환매체를 효율적으로 고온으로 가열할 수 있다. 또한, 저열조(13)가 대기 개방형이기 때문에 열교환매체 중에 발생한 기포·증기가 저열조(13)내에서 분리되어 방출되고, 액중에 기포·증기가 혼입되는 문제발생을 피할 수 있다. 즉, 이 배기열 회수 시스템에서는 이러한 이른바 무압 구조를 채용함으로써 열교환매체를 비등점에 가까운 고온으로 가열함과 동시에, 그 고온 상태를 안정적으로 유지할 수 있으며 이에 따라 순환용의 물을 고온으로 가열함과 동시에 그 고온 상태를 안정적으로 유지할 수 있다. 또한, 탱크가 대기 개방형이므로 고비용인 내압 구조를 사용하지 않아도 되므로 저비용화를 꾀할 수 있다.
이 경우, 저열조(13)가 배기열 회수용 열교환기(HEX1)보다 아래쪽에 배치되어 있으므로, 배기열 회수용 열교환기(HEX1)를 포함하는 배관 경로 내의 열교환매체가 중력에 의하여 용이하게 저열조(13)로 돌아간다. 이 때문에, 예컨대 열교환매체가 이상 비등한 경우 등, 열교환매체를 탱크로 되돌려 침전시켜 정화시키는 것이 가능하게 된다. 또한, 장기 운전 정지 시 등에서 배기열 회수용 열교환기(HEX1)를 포함하는 배관 경로 내의 열교환매체를 저열조(13)로 되돌려 그것들을 건조 보관함으로써, 부식을 억제할 수 있다는 이점이 있다.
또한, 본 실시예의 배기열 회수 시스템에서는 대기 개방관(41)의 일단이 저열조 (13)에 접속되고 타단이 배기가스의 유로로서의 배기탑(21)에 접속되어 있으므로 저열조(13) 내를 확실히 대기 개방할 수 있음과 동시에, 열교환매체의 증기가 분출한 경우에도 외부로의 비산을 방지할 수 있다.
또한, 본 실시예의 배기열 회수 시스템에서는 대기 개방관(41)에는 저열조(13)로부터 증발한 열교환매체의 증기를 응축하는 응축기(42)가 설치되어 있으므로 저열조(13)로부터 증발한 열교환매체의 증기가 그 응축기(42)에 응축되어 저열조(13)로 돌아간다. 이 때문에, 열교환매체 용량의 저하가 억제된다. 이 경우, 응축기(42)는 저열조(13) 쪽의 유로에 대하여 대기 쪽의 유로가 위가 되어 배치되어 있으므로 응축기(42)에서 응축된 열교환매체의 증기가 확실히 탱크로 돌아간다.
또한, 본 실시예의 배기열 회수 시스템에서는 저열조(13) 내의 열교환매체에 단열재를 포함하는 뚜껑체(43)가 떠있으므로 보온 효과가 작동되며, 대기 개방된 탱크라도 대기 중에 빠져나가는 열에너지량이 억제되어 배기열로부터 회수한 열에너지를 효율적으로 이용할 수 있다.
또한, 본 실시예의 배기열 회수 시스템에서는 물 가열용 열교환기(HEX2)가 플레이트형 열교환기이므로 완전 대향류 등에 의하여 높은 열전달율로 효율적인 열교환이 실시된다. 이 때문에, 설비(12)에서 순환 사용되는 온수의 온도가 빨리 상승한다.
또한, 본 실시예의 배기열 회수 시스템에서는 배기열 회수용 열교환기(HEX1)에서 가열된 열교환매체의 온도를 온도 센서(TC2)로 항시 검출해 두고, 그 검출 결과에 근거하여 배기열 회수용 열교환기(HEX1)에 도입되는 배기가스의 도입량을 제어 밸브(V1)로 제어한다. 그리고, 열교환매체가 소정의 온도를 상회하면 배기열 회수용 열교환기(HEX1)에 도입해야 하는 배기가스를 도입 전에 바이패스 유로(35)에 우회시켜 대기 중으로 배출한다. 이에 의하여 배기열 회수용 열교환기(HEX1)에서는 필요한 만큼의 열에너지만 회수되며, 필요 없는 열에너지는 배기열 회수용 열교환기(HEX1)에 도입되지 않고 대기 중에 배출된다. 이 때문에, 종래와 같은 냉각 설비가 불필요하게 되어 이 점에서도 저비용화를 꾀할 수 있다.
다음에, 본 발명의 배기열 회수 시스템의 제2실시예를 도 6, 도 7 및 도 8을 참조하여 설명한다. 본 실시예의 배기열 회수 시스템(10)은 발전기에서 발생하는 배기가스의 열을 이용하여 급탕용의 물을 가열하는 것이다. 그리고, 상기 제1 실시예에서 이미 설명한 것과 동일한 기능을 가지는 구성 요소에는 동일 부호를 첨부하여 그 설명을 생략 또는 간략화한다.
본 실시예의 배기열 회수 시스템에서는, 상기 제1실시예와 달리 보조 가열 장치로서 가스 급탕기(14)를 구비한다. 또한, 물 가열용 열교환기(HEX2)는 실제로 급탕에 이용되는 물을 가열한다.
배기열 회수용 열교환기(HEX1), 저열조(13) 및 펌프(P1)는 열교환매체를 순환시키는 1차 열교환매체 순환회로를 구성하는 1차 열교환매체 배관(25)에 의하여 접속되어 있다. 또한, 물 가열용 열교환기(HEX2)는 플레이트형 열교환기로서, 저열조(13), 및 물 공급원인 수돗물을 급탕전(15)에 공급하는 물 배관(28)에 접속되어 있다. 그리고, 물 배관(28)에서의 물의 공급압은 물 공급원 쪽에 부여되어 있다.
물 가열용 열교환기(HEX2)의 물 도출 후의 배관과 가스 급탕기(14)의 물 도출 후 배관과 합류된 직후의 물 배관(28)에는 가열 후의 물 온도를 검출하는 온도 센서(TC3)가 설치되어 있다. 그리고, 이 온도 센서(TC3)는 급탕 온도의 확인용으로서 사용된다.
또한, 물 배관(28)에는 물 가열용 열교환기(HEX2)에 도입되는 물을 물 가열용 열교환기(HEX2)의 전후로 우회시키는 3방향 전환밸브(V10) 및 바이패스 배관(45)이 설치되고, 바이패스 배관(45)의 도중에 상술한 가스 급탕기(14)가 설치되어 있다. 또한, 가스 급탕기(14)에는 별도로 구축된 가스 공급회로로부터의 가스 공급을 받도록 가스 배관(46)이 접속되어 있으며, 가스 배관(46)에는 가스 급탕기(14)로의 가스 도입을 단속하는 가스 도입밸브(V11)가 설치되어 있다. 그리고, 3방향 전환밸브(V10)는 상술한 온도 센서(TC2)의 검출 결과에 근거하여 제어되고, 필요에 따라 물을 물 가열용 열교환기(HEX2)의 전후로 우회시켜 가스 급탕기(14)에 도입한다. 가스 급탕기(14)는 3방향 전환밸브(V10)가 가스 급탕기(14) 쪽으로 열리면 물의 도입을 검지하여 작동하며 도입된 물을 가열하게 되어 있다. 또한, 본 발명의 보조 가열 수단은 가스 급탕기(14)와 3방향 전환밸브(V10)를 포함하여 구성된다.
다음에, 상기와 같이 구성된 배기열 회수 시스템에 의한 배기열 회수의 구조를 설명한다.
우선, 가스 터빈(MT)으로부터 배출된 배기가스는 배기가스 도입관(20)을 통해 배기열 회수용 열교환기(HEX1)로 도입되고, 1차 열교환매체 순환회로를 흐르는 열교환매체와 열교환을 행하며 그 열교환매체를 가열하고 그 후 배기탑(21)으로부터 배출된다.
배기열 회수용 열교환기(HEX1)에서 가열된 열교환매체는 펌프(P1)의 작용에 의하여 1차 열교환매체 순환회로를 흐름과 동시에, 저열조(13)에서 일시적으로 저장된다. 또한, 1차 열교환매체 순환회로를 흐르는 열교환매체는 물 가열용 열교환기(HEX2)에 도입되며 물 배관(28)을 흐르는 물과 열교환을 하여 그 물을 가열하고, 다시 저열조(13)에 저장된다. 그리고, 물 가열용 열교환기(HEX2)에서 가열된 물(온수)은 물 공급원의 공급압에 의해 물 배관(28)을 흘러 급탕전(15)이 열리면 회로 밖으로 유출하여 이용된다.
다음에, 상기 배기열 회수 시스템을 가동시킬 때의 처리 흐름에 대해서 도 7 및 도 8에 나타내는 흐름도를 참조하여 설명한다.
가동 전의 배기열 회수 시스템의 각부 초기 상태는 제어 밸브(V1): 배기가스를 우회, 3방향 전환 밸브(V2): 열교환매체를 우회, 3방향 전환밸브(V10): 물 가열용 열교환기(HEX2)에 물 도입, 가스 도입밸브(V11): 닫힘, 펌프(P1): 정지로 되어 있다.
이 상태에서 배기열 회수 시스템을 가동하면, 스텝1에서 온도 센서(TC1)의 검출 결과로부터 배기가스 온도가 200℃보다 높은지 아닌지의 여부가 판별된다. 그리고, 배기가스 온도가 200℃보다 낮은 경우, 가스 터빈(MT)이 정지 중으로 간주되고, 배기열 회수 시스템 각부의 상태가 스텝2에서 “물 급탕기 단독 운전”으로 전환되어 제어 밸브(V1): 배기가스를 우회, 3방향 전환 밸브(V2): 열교환매체를 우회, 3방향 전환밸브(V10): 가스 급탕기(14)에 물 도입, 가스 도입밸브(V11): 열림, 펌프(P1): 정지로 된다.
또한, 스텝1에서 배기가스 온도가 200℃ 이상인 경우, 가스 터빈(MT)이 가동 중으로 간주되고, 배기열 회수 시스템의 각부 상태가 스텝3에서 “가스 터빈/가스 급탕기 운전”으로 전환되어 제어 밸브(V1): 비례 제어, 3방향 전환 밸브(V2): 배기열 회수용 열교환기(HEX1)에 열교환매체 도입, 3방향 전환밸브(V10): 물 가열용 열교환기 (HEX2)에 물 도입, 가스 도입밸브(V11): 열림, 펌프(P1): 운전으로 되며, 이후 배기열 회수회로의 제어 프로세스와 급탕 온도 제어 프로세스가 실행된다.
배기열 회수회로 제어 프로세스에서는, 우선 스텝10에서 온도 센서(TC2)의 검출 결과에 근거하여 배기열 회수 직후의 열교환매체 온도가 원하는 설정 온도, 예컨대 90℃에 달하면 제어 밸브(V1)가 비례 제어된다. 이 제어 밸브(V1)의 비례 제어는 온도 센서(TC1)의 검출 결과로부터 배기가스의 온도가 200℃ 이상이고 또한 온도 센서(TC2)의 검출 결과로부터 열교환매체 온도가 98℃보다 낮은 경우에 연속적으로 제어된다. 그리고, 스텝11에서 온도 센서(TC1)의 검출 결과로부터 배기가스의 온도가 200℃보다 낮아지면 스텝1로 돌아가 “물 급탕기 단독 운전”으로 전환된다.
또한, 스텝12에서 온도 센서(TC2)의 검출 결과로부터 열교환매체 온도가 98℃ 이상인 경우, 스텝13으로 진행되어 제어 밸브(V1): 배기가스를 우회, 3방향 전환 밸브(V2): 열교환매체를 우회로 전환되며, 스텝14에서 열교환매체 온도가 200℃ 이상이면, 스텝15에서 열교환매체 온도가 고온인 것이 표시된다. 또한, 스텝16에서 열교환매체 온도가 100℃ 이상의 상태를 60초 이상 유지한 것이 확인되면, 스텝17에서 상술한 “물 급탕기 단독 운전”과 같은 상태로 전환되고, 스텝18에서 “제어 밸브(V1) 동작 불량/열회수 정지”의 경보가 통보된다.
또한, 스텝16에서 열교환매체 온도가 100℃ 이상의 상태를 60초 이상 유지하지 않는 경우, 스텝19에서 열교환매체 온도가 98℃보다 낮은지 아닌지의 여부가 판별되고, 98℃보다 낮은 경우 스텝20에서 제어 밸브(V1): 비례 제어, 3방향 전환 밸브(V2): 배기열 회수용 열교환기(HEX1)에 열교환매체 도입으로 전환되어 스텝10에 돌아간다. 또한, 스텝19에서 열교환매체 온도가 98℃보다 높은 경우, 스텝13으로 돌아가 스텝13∼스텝19가 반복된다. 그리고, 이 배기열 회수 제어 프로세스에서 상술한 각 온도 및 시간은 소정의 범위 내에서 임의로 설정 변경된다.
도 8은 급탕 온도 제어 프로세스의 흐름도이다. 급탕 온도 제어 프로세스에서는, 우선 스텝30에서 온도 센서(TC2)의 검출 결과로부터 열교환매체 온도가 원하는 소정 온도, 예컨대 90℃에 달하면 3방향 전환밸브(V10)가 온/오프 제어된다. 즉, 스텝31에서 온도 센서(TC1)의 검출 결과로부터 배기가스의 온도가 200℃ 이상인 것이 확인되고 또한 스텝32에서 온도 센서(TC2)의 검출 결과로부터 열교환매체 온도가 98℃보다 낮은 것이 확인되면, 스텝33에서 3방향 전환밸브(V10)가 가스 급탕기(14) 쪽으로 전환되며 가스 급탕기(14)가 점화되어 물이 가열된다. 또한, 스텝32에서 열교환매체 온도가 98℃를 초월한 것이 확인되면, 스텝34에서 3방향 전환밸브(V10)가 물 가열용 열교환기(HEX2) 쪽으로 전환되어 배기가스와의 열교환에 의해 물이 가열된다. 그리고, 이 급탕 온도 제어 프로세스에서 상술한 각 온도는 소정의 범위 내에서 임의로 설정 변경된다.
본 실시예의 배기열 회수 시스템에서는, 제1실시예와 같이 이른바 무압 구조를 채용함으로써 열교환매체를 비등점에 가까운 고온으로 가열함과 동시에, 그 고온 상태를 안정적으로 유지할 수 있고, 이에 따라 급탕용의 물을 고온으로 가열함과 동시에 그 고온 상태를 안정적으로 유지할 수 있다. 또한, 탱크가 대기 개방형이므로 고비용의 내압 구조를 사용하지 않아도 되므로 저비용화를 꾀할 수 있다.
또한, 본 실시예의 배기열 회수 시스템에서는 물 가열용 열교환기(HEX2)가 플레이트형 열교환기이므로 완전 대향류 등에 의하여 높은 열전달율로 효율적인 열교환이 실시된다. 이 때문에, 물 가열용 열교환기(HEX2)로의 물의 도입 경로가 순환회로가 아니고도 수돗물로부터 비교적 저온의 물이 열교환매체에 가까운 온도에까지 가열된다. 이에 의해, 물의 순환 경로가 불필요하게 되어 저비용화를 꾀할 수 있다. 또한, 경로의 단축에 따라서 열에너지의 손실이 적어져 시스템 전체의 에너지 효율의 향상이 도모된다.
또한, 본 실시예의 배기열 회수 시스템에서는 온도 센서(TC2)의 검출 결과에 근거하여 배기열 회수용 열교환기(HEX1)에서 가열된 열교환매체의 온도가 원하는 온도에 도달하지 않는 경우에는, 물 가열용 열교환기(HEX2)에 도입되는 물을 3방향 전환밸브 (V10)를 통해서 우회시켜 우회한 물을 가스 급탕기(14)로 가열한다. 이 때문에, 급탕용 물의 온도를 고온 상태로 안정적으로 유지할 수 있다.
다음에, 본 발명의 배기열 회수 시스템의 제3실시예를 도 9 및 도 10을 참조하여 설명한다. 본 실시예의 배기열 회수 시스템(10)은, 발전기에서 발생하는 배기가스의 열을 이용하여 공조 등의 소정 설비로 순환 사용되는 열교환매체를 가열하는 것이다. 그리고, 상기 제1 및 제2실시예에서 이미 설명한 것과 동일한 기능을 가지는 구성 요소에는 동일 부호를 부여하여 그 설명을 생략 또는 간략화한다.
본 실시예의 배기열 회수 시스템에서는, 상기 제1 및 제2실시예와 달리 소정의 설비에 순환 사용되는 열교환매체를 직접적으로 배기열 회수용 열교환기(HEX1)에서 가열하게 되어 있다.
도 9에서, 배기열 회수용 열교환기(HEX1), 저열조(13) 및 펌프(P1)는 열교환매체를 수송하는 열교환매체 수송회로를 구성하는 열교환매체 배관(23)에 의해 접속되어 있다. 열교환매체 배관(23)에는 배기열 회수용 열교환기(HEX1)에 도입되는 열교환매체를 배기열 회수용 열교환기 (HEX1)의 전후에서 우회시키는 3방향 전환 밸브(V2) 및 바이패스 배관(40)이 설치되어 있다. 또한, 저열조(13)로의 열교환매체 도입 전의 열교환매체 배관(23)에는 펌프(P1)와 동기하여 열교환매체의 수송을 제어하는 전자(電磁) 밸브(V3)가 설치되어 있다.
배기열 회수용 열교환기(HEX1)로부터 열교환매체 도출 후의 열교환매체 배관(23)에는 열교환매체의 온도를 검출하는 온도 검출 수단으로서 온도 센서(TC2)가 설치되어 있다. 또한, 온도 센서(TC2)가 마련된 개소에서 더 앞쪽에 있는 열교환매체 배관(23)에는 공조 등 소정의 설비(12)로부터 배기열 회수용 열교환기(HEX1)로의 열교환매체 역류를 방지하는 역류방지 밸브(V4)가 설치되어 있다.
다음에, 상기와 같이 구성된 배기열 회수 시스템에 의한 배기열 회수의 구조를 설명한다.
우선, 가스 터빈(MT)으로부터 배출된 배기가스는 배기가스 도입관(20)을 통해 배기열 회수용 열교환기(HEX1)로 도입되고, 열교환매체 수송회로를 흐르는 열교환매체와 열교환을 하여 그 열교환매체를 가열하며, 그 후 배기탑(21)으로부터 배출된다.
배기열 회수용 열교환기(HEX1)에서 가열된 열교환매체는 펌프(P1)의 작용에 의하여 열교환매체 수송회로를 흐르고 공조 등 소정의 설비(12)의 열교환매체로서 순환 사용된다. 또한, 설비(12)로부터 돌아온 열교환매체는 저열조(13)에 일시적으로 저장된 후, 다시 배기열 회수용 열교환기(HEX1)로 도입된다.
또한, 저열조(13) 내에는 단열재를 포함하는 뚜껑체(43)가 열교환매체 액면을 덮으며 떠있으므로 보온 효과가 작동하고, 대기 개방된 저열조(13)라도 대기 중에 빠지는 열에너지량이 억제되어 배기열로부터 회수한 열에너지가 효율적으로 이용된다.
또한, 저열조(13)에 접속된 대기 개방관(41)에 응축기(42)가 설치되어 있으므로 저열조(13)로부터 증발한 열교환매체의 증기가 그 응축기(42)에 응축되어 탱크로 되돌려진다. 이 때문에, 열교환매체의 용량 저하가 억제된다.
다음에, 상기 배기열 회수 시스템을 가동시킬 때의 처리 흐름에 대해서 도 10을 참조하여 설명한다.
가동 전의 배기열 회수 시스템의 각부 초기 상태는 제어 밸브(V1): 배기가스를 우회, 3방향 전환 밸브(V2): 열교환매체를 우회, 전자 밸브(V3): 닫힘으로 되어 있다.
이 상태에서 배기열 회수 시스템을 가동하면, 스텝100에서 온도 센서(TC1)의 검출 결과로부터 배기가스 온도가 200℃보다 높은지 아닌지의 여부가 판별되고, 배기가스 온도가 200℃ 이상이 되면 배기열 회수 시스템 각부의 상태가 스텝101로 전환되어 제어 밸브(V1): 비례 제어, 3방향 전환 밸브(V2): 배기열 회수용 열교환기 (HEX1)에 열교환매체 도입, 전자 밸브(V3): 열림, 펌프(P1): 운전으로 되고, 이후 배기열 회수회로의 제어 프로세스가 실행된다.
배기열 회수회로 제어 프로세스에서는, 우선 스텝110에서 온도 센서(TC2)의 검출 결과에 근거하여 배기열 회수 직후의 열교환매체 온도가 원하는 설정 온도, 예컨대 90℃에 달하면 제어 밸브(V1)가 비례 제어된다. 이 제어 밸브(V1)의 비례 제어는 온도 센서(TC2)의 검출 결과로부터 열교환매체 온도가 98℃보다 낮은 경우에 연속적으로 제어된다.
또한, 스텝111에서 온도 센서(TC2)의 검출 결과로부터 열교환매체 온도가 98℃ 이상인 경우, 스텝112로 진행되어 제어 밸브(V1): 배기가스를 우회, 3방향 전환 밸브(V2): 열교환매체를 우회로 전환되고, 스텝113에서 열교환매체 온도가 100℃ 이상의 상태를 2분 이상 유지한 것이 확인되면, 스텝114에서 배기열 회수 시스템의 각부 상태가 상술한 초기 상태와 같은 상태로 전환되어 스텝115에서 “제어 밸브(V1) 동작 불량/열회수 정지”의 경보가 통보된다.
또한, 스텝113에서 열교환매체 온도가 100℃ 이상의 상태를 2분 이상 유지하지 않는 경우, 스텝116에서 열교환매체 온도가 98℃보다 낮은지 아닌지의 여부가 판별되고, 98℃보다 낮은 경우 스텝117에서 제어 밸브(V1): 비례 제어, 3방향 전환 밸브(V2): 배기열 회수용 열교환기(HEX1)에 열교환매체 도입으로 전환되어 스텝110으로 돌아간다. 또한, 스텝116에서 열교환매체 온도가 98℃보다 높은 경우, 스텝112로 돌아가 스텝112∼스텝116이 반복된다. 그리고, 이 배기열 회수 제어 프로세스에서 상술한 각 온도 및 시간은 소정의 범위 내에서 임의로 설정 변경된다.
이와 같이, 본 실시예의 배기열 회수 시스템에서는 소정의 설비에 순환 사용되는 열교환매체를 직접적으로 배기열 회수용 열교환기(HEX1)에서 가열한다. 이 때, 배기열 회수용 열교환기(HEX1)에서 가열된 열교환매체의 온도를 온도 센서(TC2)로 항시 검출해 놓고, 그 검출 결과에 근거하여 배기열 회수용 열교환기(HEX1)로의 배기가스의 도입량을 제어 밸브(V1)로 제어한다. 그리고, 열교환매체가 소정의 온도를 상회하면 배기열 회수용 열교환기(HEX1)에 도입해야 하는 배기가스를 도입 전에 바이패스 유로(35)에 우회시켜 대기 중에 배출한다. 이에 의해, 배기열 회수용 열교환기(HEX1)에서 필요한 만큼의 열에너지만이 회수되며 필요 없는 열에너지는 배기열 회수용 열교환기(HEX1)에 도입되지 않고 대기 중으로 배출된다. 이 때문에, 종래와 같은 냉각 설비가 불필요하게 되어 저비용화를 꾀할 수 있다. 또한, 이 배기열 회수 시스템에서는 소정의 설비에 순환 사용되는 열교환매체를 직접적으로 배기열 회수용 열교환기(HEX1)에서 가열하기 때문에, 복수 단(段)의 열교환기를 구비하는 종래에 비해 열에너지의 손실이 적다. 이 때문에, 시스템 전체의 에너지 효율의 향상이 도모된다.
또한, 본 실시예의 배기열 회수 시스템에서는 열교환매체를 일시적으로 저장하는 저열조(13)를 가지고 있으므로, 열교환매체를 비등점에 가까운 고온으로 가열함과 동시에 그 고온 상태를 안정적으로 유지할 수 있다. 이 때문에, 이 열교환매체를 순환 사용하는 소정의 설비에서 연료량의 절감 등 여러 가지 이점을 얻을 수 있다. 또한, 탱크가 대기 개방형이므로 고비용인 내압 구조를 사용하지 않아도 되므로 저비용화를 꾀할 수 있다.
또한, 본 실시예의 배기열 회수 시스템에서는 순환회로 내를 대기 개방형의 탱크를 구비하고 있으므로 열교환매체가 역류하기 쉽지만, 역류방지 밸브(V4)에 의하여 소정의 설비로부터 배기열 회수용 열교환기(HEX1)로의 열교환매체의 역류가 방지됨으로써 열교환매체의 역류에 따른 문제발생을 피할 수 있다.
다음에, 본 발명의 배기열 회수 시스템의 제4실시예를 도 11 및 도 12를 참조하여 설명한다. 본 실시예의 배기열 회수 시스템(10)도 상기 제3실시예와 같이 발전기에서 발생하는 배기가스의 열을 이용하여 공조 등 소정의 설비로 순환 사용되는 열교환매체를 가열하는 것이다. 그리고, 상기 각 실시예에서 이미 설명한 것과 동일한 기능을 가지는 구성 요소에는 동일 부호를 부여하여 그 설명을 생략 또는 간략화한다.
본 실시예의 배기열 회수 시스템에서는 상기 각 실시예와 달리 가스터빈(MT)(도 1참조)으로부터 나오는 배기가스와는 별도로 배기열 회수용 열교환기(HEX1)에 연소가스를 도입하는 보조 연소가스 도입수단으로서 보조 연소 장치(50) 및 3방향 전환밸브(V0)를 가진다.
보조 연소 장치(50)는 가스 터빈(MT)으로부터 나오는 배기가스와 같은 정도의 온도 및 분량의 연소가스를 발생시키는 것이 가능하고, 예컨대 대기압 가스 연소기가 사용된다. 또한, 3방향 전환밸브(V0)는 배기열 회수용 열교환기(HEX1)에 대하여 가스 터빈(MT)으로부터 배기가스를 도입하든지 또는 보조 연소 장치(50)로부터 연소가스를 도입하든지 하는 것을 전환하는 것으로, 가스 터빈(MT)과 배기열 회수용 열교환기(HEX1) 사이의 배기가스 도입관(20)에 설치되어 있다.
다음에, 상기와 같이 구성된 배기열 회수 시스템에 의한 배기열 회수의 구조를 설명한다.
우선, 가스 터빈(MT)으로부터 배출된 배기가스는 배기가스 도입관(20)을 통해 배기열 회수용 열교환기(HEX1)로 도입되며, 열교환매체 수송회로를 흐르는 열교환매체와 열교환을 하여 그 열교환매체를 가열하고, 그 후 배기탑(21)으로부터 배출된다.
또한, 발전기에 문제가 생긴 경우나 발전기의 정지 시 등 소정의 타이밍으로 보조 연소 장치(50)를 운전한다. 보조 연소 장치(50)에서 발생한 연소가스는 가스 터빈(MT)으로부터 나오는 배기가스와는 별도로 3방향 전환밸브(V0)를 통해 배기열 회수용 열교환기(HEX1)에 도입된다. 이 때, 예컨대 발전기로부터의 배기가스에 더하여 또는 그 배기가스 대신에 보조 연소가스를 배기열 회수용 열교환기(HEX1)에 도입하며 열교환매체를 가열함으로써 열교환매체의 온도가 안정적으로 유지된다.
배기열 회수용 열교환기(HEX1)에서 가열된 열교환매체는 펌프(P1)의 작용에 의하여 열교환매체 수송회로를 흐르고, 공조 등 소정의 설비(12)의 열교환매체로서 순환 사용된다. 또한, 설비(12)로부터 돌아온 열교환매체는 저열조(13)에서 일시적으로 저장된 후 다시 배기열 회수용 열교환기(HEX1)로 도입된다.
다음에, 상기 배기열 회수 시스템을 가동시킬 때의 처리 흐름에 대해서 도 12를 참조하여 설명한다.
가동 전의 배기열 회수 시스템의 각부 초기 상태는 제어 밸브(V1): 배기가스를 우회, 3방향 전환 밸브(V2): 열교환매체를 우회, 전자 밸브(V3): 닫힘으로 되어 있다.
이 상태에서 배기열 회수 시스템을 가동하면, 스텝200에서 온도 센서(TC1)의 검출 결과로부터 배기가스 온도가 200℃보다 높은지 아닌지의 여부가 판별된다. 그리고, 배기가스 온도가 200℃보다 낮은 경우 가스 터빈(MT)이 정지 중으로 간주되어 스텝201에서 보조 연소 장치가 운전되고, 3방향 전환밸브(V0)가 보조 연소 장치(50) 쪽으로 열려 가스 터빈(MT)의 배기가스 대신에 보조 연소 장치(50)의 연소가스가 배기열 회수용 열교환기(HEX1)에 도입된다.
또한, 스텝200에서 배기가스 온도가 200℃ 이상인 경우, 가스 터빈(MT)이 가동 중으로 간주되어 스텝202에서 보조 연소 장치(50)가 정지되며, 3방향 전환밸브 (V0)가 배기열 회수용 열교환기(HEX1) 쪽으로 열려 가스 터빈(MT)의 배기가스가 배기열 회수용 열교환기(HEX1)에 도입된다. 그리고, 스텝203에서 배기열 회수 시스템의 각부 상태가 제어 밸브(V1): 비례 제어, 3방향 전환 밸브(V2): 배기열 회수용 열교환기 (HEX1)에 열교환매체 도입, 전자 밸브(V3): 열림, 펌프(P1)운전으로 되고, 이후 배기열 회수회로의 제어 프로세스가 실행된다.
배기열 회수회로 제어 프로세스에서는, 상술한 제1실시예와 같은 스텝이 실행된다. 즉, 우선 스텝210에서 온도 센서(TC2)의 검출 결과에 근거하여 배기열 회수 직후의 열교환매체 온도가 원하는 설정 온도, 예컨대 90℃에 달하면 제어 밸브(V1)가 비례 제어된다. 이 제어 밸브(V1)의 비례 제어는 온도 센서(TC2)의 검출 결과로부터 열교환매체 온도가 98℃보다 낮은 경우에 연속적으로 제어된다.
또한, 스텝211에서 온도 센서(TC2)의 검출 결과로부터 열교환매체 온도가 98℃ 이상인 경우, 스텝212로 진행되어 제어 밸브(V1): 배기가스 또는 연소가스를 우회, 3방향 전환 밸브(V2): 열교환매체를 우회로 전환되고, 스텝213에서 열교환매체 온도가 100℃ 이상인 상태를 2분 이상 유지한 것이 확인되면, 스텝214에서 배기열 회수 시스템의 각부 상태가 상술한 초기 상태와 같은 상태로 전환되며, 스텝215에서 “제어 밸브 (V1) 동작 불량/열회수 정지”의 경보가 통보된다.
또한, 스텝213에서 열교환매체 온도가 100℃ 이상의 상태를 2분 이상 유지하지 않는 경우, 스텝216에서 열교환매체 온도가 98℃보다 낮은지 아닌지의 여부가 판별되고, 98℃보다 낮은 경우 스텝217에서 제어 밸브(V1): 비례 제어, 3방향 전환 밸브(V2): 배기열 회수용 열교환기(HEX1)에 열교환매체 도입으로 전환되어 스텝210으로 돌아간다. 또한, 스텝216에서 열교환매체 온도가 98℃보다 높은 경우, 스텝212에 돌아가 스텝212∼스텝216이 반복된다. 그리고, 이 배기열 회수 제어 프로세스에서, 상술한 각 온도 및 시간은 소정의 범위 내에서 임의로 설정 변경된다.
이와 같이, 본 실시예의 배기열 회수 시스템에서는 가스 터빈(MT)(발전기)의 정지 시에 가스 터빈(MT)에서 발생하는 배기가스 대신에 배기열 회수용 열교환기(HEX1)에 연소가스가 도입되어 열교환매체를 가열한다. 이 때문에, 예컨대 전력 요금이 싼 시간대 등에 발전기를 정지시킨 경우에도 이 배기열 회수 시스템을 사용해서 소정의 설비를 운전하는 것이 가능하게 된다. 즉, 비용 효율이 좋은 연속운전이 가능하게 된다.
또한, 본 발명의 배기열 회수 시스템에는 열교환매체를 순환 사용하는 소정의 설비로서 흡수식 냉동 사이클에 의해 냉동을 하는 흡수식 냉동기(제네링크)가 바람직하게 사용된다. 상술한 바와 같이, 본 발명의 배기열 회수 시스템은 열교환매체를 비등점에 가까운 고온으로 가열함과 동시에, 그 고온 상태를 안정적으로 유지할 수 있다. 게다가, 비용 효율이 좋은 연속 운전을 가능하게 한다. 이 때문에, 흡수식 냉동기에서는 본 발명의 배기열 회수 시스템으로부터 열교환매체를 순환 사용하는 것에 의하여 연료 비용을 대폭적으로 삭감하는 것이 가능하게 됨과 동시에, 그 열에너지의 종합적인 이용 효율을 향상시키는 것이 가능하게 된다.
이상, 첨부 도면을 참조하면서 본 발명에 관련된 바람직한 실시예에 대해서 설명했지만, 본 발명은 관련된 실시예에 한정되지 않는 것은 말할 필요도 없다. 상술한 실시예에서 나타낸 각 구성 부재의 여러 형상이나 조합 등은 일례로서, 본 발명의 주지를 일탈하지 않는 범위에서 설계 요구 등에 근거하여 여러가지로 변경이 가능하다.
본 발명에 관련된 배기열 회수 시스템에서는 대기 개방형의 탱크를 구비함으로써 열교환매체를 고온으로 가열함과 동시에, 그 고온 상태를 안정적으로 유지할 수 있다. 이 때문에, 저비용화와 함께 에너지 효율의 향상을 도모할 수 있다.

Claims (9)

  1. 발전기에서 발생하는 배기가스와 소정의 설비에서 순환사용되는 열교환매체를 받아들이고 이 배기가스 및 열교환매체를 열교환시켜서 상기 열교환매체를 가열하는 배기열 회수용 열교환기와,
    상기 배기열 회수용 열교환기로부터 보내져 온 상기 열교환매체를 일시적으로 저장하는 탱크와,
    상기 탱크에 설치되어 그 탱크 내를 대기 중에 개방하는 대기 개방관을 구비하는 것을 특징으로 하는 배기열 회수 시스템.
  2. 제1항에 있어서,
    상기 탱크는 상기 배기열 회수용 열교환기보다 아래쪽에 배치되는 것을 특징으로 하는 배기열 회수 시스템.
  3. 제1항에 있어서,
    상기 대기 개방관은 일단이 상기 탱크에 접속되며 타단이 상기 배기가스의 유로에 접속되어 있는 것을 특징으로 하는 배기열 회수 시스템.
  4. 제1항에 있어서,
    상기 대기 개방관에는 상기 탱크로부터 증발한 상기 열교환매체의 증기를 응축하는 응축기가 설치되어 있는 것을 특징으로 하는 배기열 회수 시스템.
  5. 제4항에 있어서,
    상기 응축기는 탱크 쪽의 유로에 대하여 대기 쪽의 유로가 위에 배치되어 있는 것을 특징으로 하는 배기열 회수 시스템.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 탱크 내의 상기 열교환매체에는 단열재를 포함하는 뚜껑체가 떠있는 것을 특징으로 하는 배기열 회수 시스템.
  7. 제6항에 있어서,
    상기 뚜껑체의 상면에는 그 뚜껑체의 이동에 따른 상기 대기 개방관의 폐쇄를 방지하는 폐쇄방지부재가 설치되어 있는 것을 특징으로 하는 배기열 회수 시스템.
  8. 제6항에 있어서,
    상기 뚜껑체의 하면에는 그 뚜껑체의 전도 및 반전을 방지하는 전도방지부재가 설치되어 있는 것을 특징으로 하는 배기열 회수 시스템.
  9. 제6항에 있어서,
    상기 탱크 내벽과 상기 뚜껑체 사이에는 상기 열교환매체의 증기 방출에 따른 상기 박스의 심한 움직임을 억제하기 위한 간극이 설치되어 있는 것을 특징으로 하는 배기열 회수 시스템.
KR1020037010247A 2001-12-03 2002-11-29 배기열 회수 시스템 KR100550112B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2001-00369357 2001-12-03
JP2001369357 2001-12-03
PCT/JP2002/012539 WO2003048651A1 (fr) 2001-12-03 2002-11-29 Systeme de recuperation de la chaleur d'echappement

Publications (2)

Publication Number Publication Date
KR20040023588A KR20040023588A (ko) 2004-03-18
KR100550112B1 true KR100550112B1 (ko) 2006-02-08

Family

ID=19178760

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020037010247A KR100550112B1 (ko) 2001-12-03 2002-11-29 배기열 회수 시스템

Country Status (10)

Country Link
US (1) US7021056B2 (ko)
EP (1) EP1452806B1 (ko)
JP (1) JP3929977B2 (ko)
KR (1) KR100550112B1 (ko)
CN (1) CN1239822C (ko)
AU (1) AU2002354314A1 (ko)
CA (1) CA2437032C (ko)
DE (1) DE60209936T2 (ko)
ES (1) ES2259109T3 (ko)
WO (1) WO2003048651A1 (ko)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT414156B (de) * 2002-10-11 2006-09-15 Dirk Peter Dipl Ing Claassen Verfahren und einrichtung zur rückgewinnung von energie
ITDP20040005A1 (it) * 2004-12-20 2005-03-20 Stefano Bandini Modulo condensante per caldaia
KR101317222B1 (ko) * 2007-03-22 2013-10-15 누터/에릭슨 인코퍼레이티드 고효율 급수 가열기
EP2290202A1 (en) * 2009-07-13 2011-03-02 Siemens Aktiengesellschaft Cogeneration plant and cogeneration method
US9435534B2 (en) * 2009-08-31 2016-09-06 Holistic Engineering Inc Energy-recovery system for a production plant
JP2011231636A (ja) * 2010-04-26 2011-11-17 Mitsubishi Heavy Ind Ltd 排熱回収発電装置およびこれを備えた船舶
DE102010053835A1 (de) * 2010-12-08 2012-06-14 Daimler Ag Verfahren und Vorrichtung zur Entlüftung eines Abwärmenutzungskreislaufs in einem Fahrzeug
WO2013160993A1 (ja) * 2012-04-23 2013-10-31 トヨタ自動車株式会社 熱輸送装置
KR101886080B1 (ko) * 2012-10-30 2018-08-07 현대자동차 주식회사 차량의 폐열 회수시스템
CN103291492A (zh) * 2013-06-21 2013-09-11 高志男 汽车冷却水及机油的余热回收利用装置
JP6320228B2 (ja) * 2014-07-31 2018-05-09 三菱日立パワーシステムズ株式会社 太陽熱空気タービン発電システム
JP6485688B2 (ja) * 2014-12-25 2019-03-20 パナソニックIpマネジメント株式会社 熱発電装置
CN105370436A (zh) * 2015-12-03 2016-03-02 北京机械设备研究所 一种基于斯特林发动机的汽车尾气余热回收系统
CN105484835A (zh) * 2016-01-09 2016-04-13 中航长沙设计研究院有限公司 一种航空发动机地面试验尾气热回收消音塔
CN109028599B (zh) * 2018-07-10 2021-09-10 萍乡市慧成精密机电有限公司 增压燃气热水器及其控制方法
CN110918610B (zh) * 2019-12-09 2021-05-04 中城绿建科技有限公司 循环利用裂解可燃气发电余热进行生物干化曝气的方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1260667A (en) * 1968-08-27 1972-01-19 Charles Michael Dansey Peters Improvements in or relating to energy supply apparatus for a building
US3979913A (en) * 1975-01-20 1976-09-14 Yates Harold P Method and system for utilizing waste energy from internal combustion engines as ancillary power
GB2092724B (en) * 1981-02-12 1984-09-12 Applegate G Energy convertors
JPS58135334A (ja) 1982-02-05 1983-08-11 Toyota Motor Corp デイ−ゼルエンジンの吸気絞り装置
JPS58135334U (ja) * 1982-03-08 1983-09-12 日産自動車株式会社 乗物用湯沸かし装置
JPH081408Y2 (ja) * 1987-12-10 1996-01-17 住友重機械工業株式会社 高含じん排ガス廃熱回収装置
US4976100A (en) * 1989-06-01 1990-12-11 Westinghouse Electric Corp. System and method for heat recovery in a combined cycle power plant
JP2817227B2 (ja) 1989-07-20 1998-10-30 株式会社デンソー 車両用交流発電機
JPH0352545U (ko) * 1989-09-27 1991-05-22
JPH0490450A (ja) 1990-08-06 1992-03-24 Mitsubishi Electric Corp 熱電併給装置
US5241817A (en) * 1991-04-09 1993-09-07 George Jr Leslie C Screw engine with regenerative braking
JP3266626B2 (ja) * 1991-09-03 2002-03-18 株式会社ヒラカワガイダム 排熱回収装置を設けたコーゼネレイション又は複合発電システム
JPH0886509A (ja) 1991-12-05 1996-04-02 Tokyo Gas Co Ltd 熱回収給湯装置
JPH063227A (ja) 1992-06-18 1994-01-11 Nippon Steel Corp 水素分析用純TiおよびTi合金標準試料の製造方法
JPH063227U (ja) * 1992-06-25 1994-01-18 株式会社エフ・エム・アイ コーヒー保温貯蔵容器
JPH06300362A (ja) 1993-04-16 1994-10-28 Nobuo Matsuo 貯湯タンク装置
JP3230372B2 (ja) 1994-06-15 2001-11-19 三菱マテリアル株式会社 硬質被覆層がすぐれた層間密着性および耐欠損性を有する表面被覆炭化タングステン基超硬合金製切削工具
US5719990A (en) * 1996-03-19 1998-02-17 Yang; Tsai Hui Hot water and electricity generator
JPH10186609A (ja) 1996-12-20 1998-07-14 Fuji Photo Film Co Ltd 現像処理装置及び現像処理方法
JP4115079B2 (ja) 2000-10-06 2008-07-09 株式会社デンソー 給湯器
JP3574611B2 (ja) 2000-07-07 2004-10-06 東京電力株式会社 排熱回収システム

Also Published As

Publication number Publication date
US20040068989A1 (en) 2004-04-15
EP1452806A4 (en) 2004-12-08
US7021056B2 (en) 2006-04-04
CA2437032A1 (en) 2003-06-12
DE60209936D1 (de) 2006-05-11
CN1239822C (zh) 2006-02-01
WO2003048651A1 (fr) 2003-06-12
JP3929977B2 (ja) 2007-06-13
JPWO2003048651A1 (ja) 2005-04-14
CN1491336A (zh) 2004-04-21
KR20040023588A (ko) 2004-03-18
DE60209936T2 (de) 2006-12-14
CA2437032C (en) 2007-05-15
EP1452806A1 (en) 2004-09-01
AU2002354314A1 (en) 2003-06-17
EP1452806B1 (en) 2006-03-15
ES2259109T3 (es) 2006-09-16

Similar Documents

Publication Publication Date Title
KR100550111B1 (ko) 배기열 회수 시스템
KR100550112B1 (ko) 배기열 회수 시스템
EP1403598B1 (en) Heat pump
DK159739B (da) Anlaeg til luftkonditionering og varmtvandsforsyning
CN102483243A (zh) 用于向主系统中循环排水的热泵的对称中间蓄水箱
KR20120094212A (ko) 냉열 온열 통합생산 및 운영시스템
KR20130115123A (ko) 난방 시스템
WO2006074572A1 (en) Hot and cold water dispenser and method of controlling same
KR200396543Y1 (ko) 목욕탕용 히트펌프 장치
KR100809023B1 (ko) 목욕탕용 열교환 장치
JP2008082692A (ja) 大気開放型蓄熱装置
KR20070007644A (ko) 목욕탕용 히트펌프 장치
JP3574611B2 (ja) 排熱回収システム
JP2003222397A (ja) 多機能給湯装置
JP2007192540A (ja) ヒートポンプシステム
JP2004361046A (ja) ヒートポンプ式給湯装置
JP2003172587A (ja) 排熱回収システム
JP4515883B2 (ja) 貯湯式給湯装置
JP2009186116A (ja) ヒートポンプ式給湯装置
JP2019039596A (ja) ヒートポンプ熱源機
JP2004170060A (ja) 真空冷却装置の制御方法および真空冷却装置
KR102303138B1 (ko) 지열히트펌프의 열원 잔열 제거형 지열시스템
JP4072140B2 (ja) 貯湯式給湯装置
JP3594426B2 (ja) 空調装置
JP2005164207A (ja) ヒートポンプ給湯エアコン

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee