KR100330025B1 - Copper based filler metal &joining process for brazing WC/SM45C - Google Patents
Copper based filler metal &joining process for brazing WC/SM45C Download PDFInfo
- Publication number
- KR100330025B1 KR100330025B1 KR1019990035745A KR19990035745A KR100330025B1 KR 100330025 B1 KR100330025 B1 KR 100330025B1 KR 1019990035745 A KR1019990035745 A KR 1019990035745A KR 19990035745 A KR19990035745 A KR 19990035745A KR 100330025 B1 KR100330025 B1 KR 100330025B1
- Authority
- KR
- South Korea
- Prior art keywords
- joining
- cemented carbide
- structural steel
- copper
- metal
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/302—Cu as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/008—Soldering within a furnace
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/001—Interlayers, transition pieces for metallurgical bonding of workpieces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/18—Dissimilar materials
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
본 발명은 아연(Zn)과 실리콘(Si)이 각각 5% 이하 첨가되고 소정 두께로 니켈(Ni)이 도금된 구리박판(Cu plate)을 이용하여 코발트(Co)가 4∼13% 함유된 초경합금(WC)과 구조용강(SM45C)을 접합하기 위한 초경합금(WC)과 구조용강(SM45C)의 접합용 동(銅)계 삽입금속에 관한 것이다.In the present invention, a cemented carbide containing 4 to 13% of cobalt (Co) using a copper plate in which zinc (Zn) and silicon (Si) are added at 5% or less and nickel (Ni) is plated to a predetermined thickness is used. The present invention relates to a copper-based insert metal for joining cemented carbide (WC) and structural steel (SM45C) for joining (WC) and structural steel (SM45C).
또한, 본 발명은 1000 - 1150℃의 온도에서 10분 내지 60분 동안 진공 또는 소정의 불활성가스분위기(Ar가스, Ne가스 등)중에서 상기 삽입금속을 이용하여 코발트를 4∼13% 함유한 초경합금과 구조용강을 접합시키고, 이를 40℃/s 이하의 속도로 냉각시키거나 100 내지 800℃로 가열된 오일 중에서 냉각시키는 것을 특징으로 하는 초경합금과 구조용강의 접합방법에 관한 것이다.In addition, the present invention is a cemented carbide containing 4 to 13% of cobalt by using the insert metal in a vacuum or a predetermined inert gas atmosphere (Ar gas, Ne gas, etc.) for 10 to 60 minutes at a temperature of 1000-1150 ℃ Bonding structural steel, and cooling it at a rate of 40 ℃ / s or less or cooling in oil heated to 100 to 800 ℃ relates to a cemented carbide and a method for joining structural steel.
본 발명의 방법에 따르는 상기 접합용 동계 삽입금속을 이용하여 세라믹스인 초경합금과 철계금속인 구조용강을 접합하면 접합체가 정밀하게 됨은 물론, 접합강도가 현저히 향상되고, 그 비용을 절감할 수 있게 된다.By joining the cemented carbide, which is ceramics, and the structural steel, which is an iron-based metal, by using the copper-based intercalating metal for joining according to the method of the present invention, the joint is not only precise but also the joining strength is remarkably improved, and the cost can be reduced.
Description
본 발명은 코발트를 4∼13% 포함한 초경합금과 구조용강의 접합체의 우수한 접합강도를 얻기 위하여 사용되는 접합용 삽입금속에 관한 것이다. 더욱 상세하게는, 본 발명은 아연(Zn)과 실리콘(Si)이 각각 5% 이하 함유된 구리 박판(Cu plate)에 니켈(Ni)이 소정 두께로 도금된 접합용 동계삽입금속에 관한 것이다.The present invention relates to a joining metal for joining, which is used to obtain excellent bonding strength between cemented carbide containing 4 to 13% cobalt and structural steel. More specifically, the present invention relates to a copper insertion metal for joining in which nickel (Ni) is plated to a predetermined thickness on a copper plate containing 5% or less of zinc (Zn) and silicon (Si).
또한, 본 발명은 1000 - 1150℃의 온도에서 10분 내지 60분 동안 진공 또는 불활성가스분위기(Ar, Ne 등)중에서 상기 접합용 동계 삽입금속을 이용하여 상기 초경합금과 상기 구조용강을 접합시키고, 이를 40℃/s 이하의 속도로 냉각시키거나 100 내지 800℃로 가열된 오일 중에서 냉각시키는 것을 특징으로 하는, 초경합금과 구조용강의 접합방법에 관한 것이다.In addition, the present invention is bonded to the cemented carbide and the structural steel using the copper-based insertion metal for bonding in a vacuum or inert gas atmosphere (Ar, Ne, etc.) for 10 to 60 minutes at a temperature of 1000-1150 ℃, this A method of joining cemented carbide and structural steel, characterized in that it is cooled at a rate of 40 ° C./s or less or in an oil heated to 100 to 800 ° C.
종래에는 초경합금과 같은 세라믹스와 금속재료를 접합할 때 사용되는 접합용 삽입금속으로서, 접합계면에서 젖음성을 향상시키는 인(P), 구리 삽입금속의 융점을 낮추기 위한 아연, 실리콘, 알루미늄(Al), 은(Ag), 주석(Sn) 등의 원소가 구리 중에 첨가된 인동계 삽입금속이 널리 사용되어 왔다.Conventionally, as a joining insert metal used to join ceramics and metal materials such as cemented carbide, phosphorus (P) to improve wettability at the joining interface, zinc, silicon, aluminum (Al), to lower the melting point of the copper insert metal, Phosphorus-based intercalating metals in which elements such as silver (Ag) and tin (Sn) are added to copper have been widely used.
그러나, 종래의 인동계 삽입금속이 사용된 초경합금과 구조용강의 접합체는 접합계면에 발생하는 응력감소, 접합계면의 면적 등이 불충분하여 그 접합강도가 높지 않을 뿐만아니라, 상기 인(P)의 첨가로 인해 접합계면의 취성이 발생하기 쉬운 단점이 있다.However, conventional cemented carbide and structural steel joints using phosphorus-based intermetallic metals are insufficient in stress reduction, area of joint interface, etc. due to insufficient bonding strength, and the addition of phosphorus (P) is not sufficient. Due to this, there is a disadvantage that brittleness of the bonding interface is likely to occur.
둘째, 상기 인동계 삽입금속은 독성이 강한 카드늄(Cd)이 첨가되어 인체에 유해한 영향을 미치는 단점이 있다.Second, the phosphorus insertion metal has a disadvantage that harmful toxic effects are added to cadmium (Cd).
셋째, 상기 인동계 삽입금속은 제조하기가 쉽지 않을 뿐만아니라, 은(Ag) 등이 첨가되어 상당히 값이 비싼 단점이 있다.Third, the phosphor-based insertion metal is not only easy to manufacture, but also has a disadvantage that silver (Ag) is added and is quite expensive.
넷째, 상기 인동계 삽입금속을 이용하여 접합하면 그 접합체가 정밀하지 못한 단점이 있다.Fourth, there is a disadvantage in that the bonded body is not precise when bonded using the phosphor-based insertion metal.
전술한 문제를 해소하고자 하는 본 발명의 목적은 상기 초경합금과 구조용강이 접합된 접합체의 접합계면에서의 응력감소와 취성발생을 억제하고, 접합체가 정밀하게 되며, 접합강도를 크게 향상시킬 수 있는 초경합금과 구조용강의 접합용 동계삽입금속을 제공함에 있다. 더불어 본 발명의 접합용 동계삽입금속은 인체에 유해한 원소가 첨가되지 않도록 하고, 제조하기 용이하며, 값이 싼 특징이 있도록 한다.An object of the present invention to solve the above problems is to suppress the stress reduction and brittleness in the joint interface of the cemented cemented carbide and structural steel bonded, the cemented carbide is precise, the cemented carbide can greatly improve the bonding strength To provide a copper intercalating metal for joining and structural steel. In addition, the copper insertion metal for joining of the present invention is to prevent the addition of harmful elements to the human body, easy to manufacture, and to have a low-cost feature.
또한, 본 발명의 다른 목적은 작업공정이 간단하고, 이를 통해 공정비 또는 생산비를 절감할 수 있는 초경합금과 구조용강의 접합방법을 제공함에 있다.In addition, another object of the present invention is to provide a joining method of cemented carbide and structural steel that can simplify the work process, thereby reducing the process cost or production cost.
도 1은 본 발명에 따르는 초경합금(WC) 중에 첨가된 코발트(Co)의 함량(4∼13%)별 초경합급(WC)/구조용강(SM45C)의 접합시 접합계면에 생성되는 수지상정(Dendrite)의 폭(두께)의 접합시간에 따른 변화를 나타낸 도이고,1 is a resin assumption generated at the bonding interface when joining cemented carbide (WC) / structural steel (SM45C) according to the content (4 to 13%) of cobalt (Co) added in the cemented carbide (WC) according to the present invention ( Is a diagram showing the change of the width (thickness) of the Dendrite according to the bonding time
도 2는 본 발명에 따르는 초경합금/구조용강 접합체를 22℃/s의 속도로 공냉한 후 전단시험을 행하였을 때, 초경합금 중에 포함된 코발트의 함량(4∼13%)과 접합시간에 따른 전단강도(Shear strength)를 나타내는 도이고,2 is a shear test according to the present invention when the cemented carbide / structural steel joint according to the present invention after air cooling at a rate of 22 ℃ / s, the cobalt content (4 ~ 13%) contained in the cemented carbide and the joining time Is a degree representing the shear strength,
도 3은 본 발명에 따르는 초경합금/구조용강 접합체를 4℃/s의 속도로 로냉한 후 전단시험을 행하였을 때, 초경합금 중에 포함된 코발트의 함량(4∼13%)과 접합시간에 따른 전단강도를 나타내는 도이고,3 is a shear test according to the present invention when the cemented carbide / structural steel assembly according to the present invention after cooling the furnace at a rate of 4 ℃ / s, the cobalt content (4 ~ 13%) contained in the cemented carbide and the shear strength according to the joining time Is a degree representing
도 4는 본 발명에 따르는 초경합금/구조용강 접합체를 200℃의 오일에서 냉각한 후 전단시험을 행하였을 때, 초경합금 중에 포함된 코발트의 함량(4∼13%)과 접합시간에 따른 전단강도를 나타내는 도이다.Figure 4 shows the shear strength according to the content (4 ~ 13%) and the bonding time of the cobalt contained in the cemented carbide when the shear test after cooling the cemented carbide / structural steel assembly according to the invention in 200 ℃ oil It is also.
전술한 목적을 달성하고자 하는 본 발명은 아연(Zn)과 실리콘(Si)이 각각 5%이하로 첨가되고 니켈(Ni)이 도금된 구리(Cu)박판으로 된 초경합금(WC)과 구조용강(SM45C)의 접합용 동계삽입금속으로써 달성된다.In order to achieve the above object, the present invention provides a cemented carbide (WC) and structural steel (SM45C) made of copper (Cu) plated with zinc (Zn) and silicon (Si) of 5% or less and nickel (Ni) plated. Is achieved as a copper intercalation metal for joining.
이 때 상기 구리박판은 그 두께를 10 내지 300㎛으로 하고, 상기 니켈도금은 정질 또는 비정질 상태의 니켈로써 10∼100㎛의 두께로 도금하는 것이 바람직하다.At this time, the thickness of the copper plate is 10 to 300㎛, the nickel plating is preferably plated to a thickness of 10 to 100㎛ with nickel in the crystalline or amorphous state.
본 발명의 다른 목적은 아연과 실리콘이 각각 5% 이하 첨가되고 니켈이 소정두께로 도금된 구리박판을 접합용 삽입금속으로 하여 상기 초경합금과 구조용강을 진공 중에서 온도 1000∼1150℃로 10∼60분 동안 접합하는 단계, 및 상기 접합된 초경합금과 구조용강의 접합체를 40℃/s 이하의 속도로 냉각시키는 단계를 포함하는 초경합금과 구조용강의 접합방법으로써 달성된다.Another object of the present invention is to use a copper sheet plated with a predetermined thickness of zinc and silicon 5% or less, respectively, as a joining metal for joining the cemented carbide and structural steel at a temperature of 1000 to 1150 ℃ in a vacuum for 10 to 60 minutes And a method of joining the cemented carbide and the structural steel, comprising the step of joining and cooling the bonded cemented carbide and the structural steel at a rate of 40 ° C./s or less.
이 때 상기 접합단계는 진공 대신 Ar가스, Ne가스 등의 불활성가스분위기중에서 수행하여도 무방하다.In this case, the bonding step may be performed in an inert gas atmosphere such as Ar gas and Ne gas instead of vacuum.
또한, 상기 냉각단계에서 냉각방식은 100 - 800℃로 가열된 오일을 이용한 유냉방식으로 수행되는 것이 바람직하고, 그 이외 공냉(空冷) 또는 로냉(爐冷)방식으로 하여도 좋다.In the cooling step, the cooling method is preferably carried out by an oil cooling method using oil heated to 100-800 ° C, and may be other than air cooling or furnace cooling.
한편, 본 발명의 접합용 동계삽입금속에 있어서, 상기 구리박판에 도금된 니켈은 초경합금의 소결특성을 향상시키기 위하여 첨가된 코발트와 전율고용체 합금을 이루어, 초경합금과 구조용강의 접합계면에서 접합강도를 감소시킬 수 있는 금속간 화합물이 형성되지 않는 장점이 있다. 또한, 니켈은 경도가 낮은 삽입금속이므로 접합 가열시 초경합금과 구조용강의 열팽창계수의 차이에 의해 접합계면에 발생하는 응력을 감소시키는 완충작용을 할 수 있다.On the other hand, in the copper insertion metal for joining of the present invention, the nickel plated on the copper foil is made of a cobalt and an electrified solid alloy added to improve the sintering characteristics of the cemented carbide, reducing the bonding strength at the bonding interface between the cemented carbide and structural steel There is an advantage that no intermetallic compound can be formed. In addition, since nickel is an insert metal having a low hardness, the nickel may have a buffering effect of reducing stress generated at the joint interface due to the difference in thermal expansion coefficient between the cemented carbide and the structural steel.
본 발명에 따른 삽입 금속의 구리와 니켈은 초경합금에 포함된 코발트와 전율고용체를 형성하므로, 접합 온도에서 일정한 시간동안 가열하게 되면, 접합계면에서 초경합금 방향으로 상호 확산과 입계확산에 의해 이동하게 되고, 아울러 구조용강의 방향으로도 확산이동하여 접합이 이루어진다.Copper and nickel of the insertion metal according to the present invention forms a cobalt and a tremor solid solution contained in the cemented carbide, and when heated for a certain time at the junction temperature, it is moved by mutual diffusion and grain boundary diffusion in the cemented carbide direction at the junction interface, In addition, the joining is made by diffusion movement in the direction of the structural steel.
이때, 구조용강 측의 접합계면은 접합시간의 증가와 더불어 직선형에서 요철모양의 형상으로 변화되어 접합계면의 면적이 증가하는 방향으로 진행되므로 도 2 내지 도 4에서 나타난 바와 같이, 접합계면 면적의 증가로 인한 접합강도의 향상을 보인다. 접합계면에 발생한 요철모양의 접합계면 면적은 접합시간, 온도 및 냉각조건에 따라서 다르지만, 대체적으로 5분 내지 20분의 접합시간일 때 가장 큰 것으로 관찰되었다.At this time, the joining interface on the structural steel side changes from straight to concave-convex shape with the increase of joining time and proceeds in the direction of increasing the joining interface area. As shown in FIGS. 2 to 4, the joining interface area is increased. It shows the improvement of joint strength. The concave-convex surface area of the concave-convex shape that occurred at the joint interface was large depending on the joining time, temperature and cooling conditions, but was generally observed to be the largest at the joining time of 5 to 20 minutes.
특히, 초경합금 중의 코발트의 양이 증가하면 증가할수록 같은 접합시간일지라도 접합계면의 면적은 증가하는 경향이 있다.In particular, as the amount of cobalt in the cemented carbide increases, the area of the bonding interface tends to increase even at the same bonding time.
초경합금과 구조용강은 열팽창계수의 차이가 매우 크기 때문에 그 접합계면에 발생하는 응력을 최소화시키기 위하여 공냉, 로냉, 유냉의 방법을 이용하여 40℃/s 이하의 속도로 냉각시키는 것이 바람직하다.Since cemented carbide and structural steel have a very large difference in coefficient of thermal expansion, it is preferable to cool at a rate of 40 ° C./s or less using air cooling, furnace cooling, or oil cooling to minimize stress generated at the joint interface.
본 발명의 방법에 따라 초경합금과 구조용강을 1000 내지 1150℃의 온도범위에서 10분 내지 60분 동안 진공 중 혹은 불활성가스분위기(Ar, Ne 등)중에서 접합한 후 냉각시에 접합계면에서 발생하는 응력의 크기가 접합강도에 미치는 영향을 조사한 실험결과의 예를 도 1 내지 도 4를 참고하여 다음에 상세히 설명한다.According to the method of the present invention, the cemented carbide and structural steel are bonded in a vacuum or inert gas atmosphere (Ar, Ne, etc.) for 10 to 60 minutes in the temperature range of 1000 to 1150 ° C. An example of the experimental results of examining the effect of the size of the bond strength will be described in detail with reference to FIGS. 1 to 4.
본 발명의 하나의 바람직한 구현예로서, 1.0%의 아연과 0.7%의 실리콘을 함유하는 두께 100㎛의 구리 박판을 비정질 니켈을 이용하여 50㎛두께로 도금한 초경합금/구조용강 브레이징용 동계 삽입금속을 제조하였다. 상기 도면 도 1은 본 발명에 따른 삽입금속을 이용하여 초경합금과 구조용강을 1050℃(0.1323K)에서 접합했을 때 접합계면에 발생하는 수지상정의 폭을 시간과 함께 나타낸 것이다. 상기 삽입금속을 이용하여 초경합금과 구조용강의 접합을 1050℃의 온도에서 5∼60분간 수행하고, 22℃/s의 속도로 공냉(도 2), 4℃/s의 속도로 로냉(도 3), 또는 200℃의 오일에서 유냉(도 4)시켜 접합시간에 따른 전단강도의 변화를 관찰하였다.As one preferred embodiment of the present invention, a copper alloy alloy for brazing cemented carbide / structural steel which is plated with a thickness of 50 μm using an amorphous nickel plated copper thin plate containing 1.0% zinc and 0.7% silicon is used. Prepared. 1 is a view showing the width of the dendrite generated in the bonding interface when the cemented carbide and the structural steel at 1050 ℃ (0.1323K) using the insertion metal according to the present invention with time. Joining the cemented carbide and structural steel using the insertion metal at 5 to 60 minutes at a temperature of 1050 ℃, air-cooled at 22 ℃ / s (Fig. 2), furnace cooling at a rate of 4 ℃ / s (Fig. 3), Or oil-cooled (Fig. 4) in the oil of 200 ℃ to observe the change in shear strength according to the bonding time.
온도 1050℃에서 5∼60분간 접합한 뒤 초경합금과 구조용강 접합계면에 발생한 수지상의 폭을 나타낸 상기 첨부 도면 도 1에서 보여지는 바와 같이 상기 수지상정은 접합시간의 증가와 더불어 증가하고 있음을 확인할 수 있다.As shown in FIG. 1, the dendrite width of the cemented carbide and the structural steel joint interface after 5 to 60 minutes at the temperature of 1050 ° C. can be confirmed that the dendrite increases with the increase of the bonding time. have.
도 2는 접합 후 공냉한 뒤의 전단 강도를 나타낸 것으로, 초경합금에 13% Co를 첨가한 접합체에서 가장 높은 94MPa의 전단강도 값으로 나타났다. 이것은 초경합금 중의 코발트가 열팽창계수의 차이로서 발생하는 응력의 감소를 위한 완충제의 역할을 하고, 또한 같은 접합시간에서도 초경합금에 13%의 코발트가 포함된 접합체의 접합계면 면적이 가장 크기 때문일 것으로 추정된다.Figure 2 shows the shear strength after air cooling after bonding, the highest shear strength value of 94MPa in the cemented carbide added 13% Co. This is presumably because cobalt in the cemented carbide serves as a buffer for the reduction of stress caused by the difference in the coefficient of thermal expansion, and the joint interface area of the cemented carbide containing 13% cobalt is the largest even at the same bonding time.
도 3은 접합한 뒤 로냉했을 때의 전단강도 값을 나타낸 것으로, 접합시간이 같은 WC-8%Co/SM45C와 WC-4%Co/SM45C의 전단강도 값은 각각 110MPa, 99MPa로 나타났다. 초경합금 중 코발트의 첨가량에 관계없이 3종류의 접합체의 전단강도 값은 접합시간이 증가하면 할수록 급격하게 감소하고 있으나 전체적으로 공냉했을 때에 비하여 높은 전단강도 값을 가진다.Figure 3 shows the shear strength values when quenched after bonding, the shear strength values of WC-8% Co / SM45C and WC-4% Co / SM45C with the same bonding time were 110MPa and 99MPa, respectively. Regardless of the amount of cobalt added in the cemented carbide, the shear strength of the three kinds of joints decreases rapidly as the joining time increases, but the shear strength of the cemented carbides is higher than that of air cooled.
도 4는 접합 후 유냉했을 때의 전단강도 값의 변화를 나타낸 것으로, 공냉, 로냉과 마찬가지로 접합시간이 증가할수록 전단 강도 값은 급격히 감소하였다. 초경합금 중에 코발트가 많이 첨가된 것일수록 접합 강도가 증가된 것은 코발트가 열충격 완화제로서의 역할을 하고, 삽입금속의 구리, 니켈과 서로 고용합금화됨은 물론 접합계면의 형상이 요철모양으로 되게 하는 촉매로서의 역할을 하기 때문인 것으로 생각된다.Figure 4 shows the change in shear strength value when oil-cooled after joining, the shear strength value rapidly decreases as the joining time increases like air cooling and furnace cooling. The more cobalt was added to the cemented carbide, the higher the bond strength, the cobalt acted as a thermal shock mitigator, the solid solution alloyed with copper and nickel of the intercalating metal, as well as the catalyst for the concave-convex shape. It seems to be because
상기 도면에서 나타나듯이, 냉각속도가 빠르면 빠를수록 전단강도 값은 감소하고 있고, 이때 접합계면에 나타난 수지상정의 폭은 상기 첨부 도면 도 1에서 확인할 수 있듯이 20∼80㎛로 유지되었을 때 접합강도가 가장 크게 된다. 일정한 두께의 수지상정폭은 접합계면의 응력집중을 상쇄시키는 역할을 기대할 수 있으므로, 상쇄되는 응력의 정도가 접합강도의 감소를 최소화시키는 작용을 하게 된다. 즉, 냉각속도가 느릴수록, 또한 접합계면에 일정한 두께의 수지상정의 폭이 유지되었을 때 가장 높은 접합강도를 나타낸다.As shown in the figure, the faster the cooling rate, the lower the shear strength value, and the width of the dendrite at the junction interface is the highest when the bond strength is maintained at 20 to 80 μm, as shown in FIG. It becomes big. Since the dendrite width of a certain thickness can be expected to cancel the stress concentration of the bonding interface, the degree of the canceled stress serves to minimize the decrease in the bonding strength. In other words, the slower the cooling rate, the higher the bonding strength is when the width of the resin bed of constant thickness is maintained on the bonding interface.
상술한 바와 같이 본 발명에 따르는 접합용 동계삽입금속은 상기 초경합금과 구조용강 접합체 접합계면에서의 응력감소와 취성발생을 억제하고, 접합체가 정밀하게 하며, 접합강도를 크게 향상시킬 수 있는 잇점이 있다. 또한, 인체에 유해한 원소의 첨가됨이 없고, 제조하기 용이하며, 값이 싼 잇점이 있다.As described above, the copper insertion metal for joining according to the present invention has the advantage of suppressing stress reduction and brittleness at the joint surface of cemented carbide and structural steel joints, precisely joining, and greatly improving joining strength. . In addition, there is an advantage that there is no addition of an element harmful to the human body, it is easy to manufacture and inexpensive.
또한, 본 발명에 따르는 초경합금과 구조용강의 접합방법은 이종재질의 접합시 그 작업공정을 간소화시킬 수 있도록 하고, 이를 통해 공정비 또는 생산비를 절감시키는 효과를 제공한다.In addition, the joining method of cemented carbide and structural steel according to the present invention can simplify the work process when joining dissimilar materials, thereby providing an effect of reducing the process cost or production cost.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990035745A KR100330025B1 (en) | 1999-08-26 | 1999-08-26 | Copper based filler metal &joining process for brazing WC/SM45C |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990035745A KR100330025B1 (en) | 1999-08-26 | 1999-08-26 | Copper based filler metal &joining process for brazing WC/SM45C |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010019385A KR20010019385A (en) | 2001-03-15 |
KR100330025B1 true KR100330025B1 (en) | 2002-03-27 |
Family
ID=19608865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990035745A KR100330025B1 (en) | 1999-08-26 | 1999-08-26 | Copper based filler metal &joining process for brazing WC/SM45C |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100330025B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100587495B1 (en) | 2006-02-16 | 2006-06-12 | 주식회사알로이틱 | Wear resistant wc-co-steel or fe-tic-steel joining body and the manufacturing method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100347085B1 (en) * | 1999-12-22 | 2002-08-03 | 인곡산업 주식회사 | Clad insert metal and bonding process for the joint WC containing cobalt and STD11 tool steel |
KR100985172B1 (en) * | 2009-08-24 | 2010-10-05 | 현대건설주식회사 | Local scour induction type aggradation prevention work for river |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59209473A (en) * | 1983-05-13 | 1984-11-28 | Sumitomo Electric Ind Ltd | Production of bonding member for sintered hard alloy and sintered steel |
JPS62259696A (en) * | 1986-05-07 | 1987-11-12 | Mitsubishi Metal Corp | Cu alloy brazing filler metal for brazing of sintered head alloy and steel member |
JPS63313699A (en) * | 1987-06-17 | 1988-12-21 | Kawasaki Steel Corp | Ni base metal foil for brazing |
JPH04210869A (en) * | 1990-11-30 | 1992-07-31 | Kobe Steel Ltd | Method for joining sintered hard alloy to steel |
KR970009980A (en) * | 1995-08-24 | 1997-03-27 | 김광호 | Work area control method of machine tool |
-
1999
- 1999-08-26 KR KR1019990035745A patent/KR100330025B1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59209473A (en) * | 1983-05-13 | 1984-11-28 | Sumitomo Electric Ind Ltd | Production of bonding member for sintered hard alloy and sintered steel |
JPS62259696A (en) * | 1986-05-07 | 1987-11-12 | Mitsubishi Metal Corp | Cu alloy brazing filler metal for brazing of sintered head alloy and steel member |
JPS63313699A (en) * | 1987-06-17 | 1988-12-21 | Kawasaki Steel Corp | Ni base metal foil for brazing |
JPH04210869A (en) * | 1990-11-30 | 1992-07-31 | Kobe Steel Ltd | Method for joining sintered hard alloy to steel |
KR970009980A (en) * | 1995-08-24 | 1997-03-27 | 김광호 | Work area control method of machine tool |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100587495B1 (en) | 2006-02-16 | 2006-06-12 | 주식회사알로이틱 | Wear resistant wc-co-steel or fe-tic-steel joining body and the manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20010019385A (en) | 2001-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2599890B2 (en) | Lead-free solder material | |
US4854495A (en) | Sealing structure, method of soldering and process for preparing sealing structure | |
EP1231015B1 (en) | Lead-free solder and solder joint | |
KR940007216A (en) | Diffusion bonded sputtering target assembly and method for manufacturing same | |
GB2182054A (en) | Copper alloy and method of manufacturing the same | |
JPH11310837A (en) | Copper alloy excellent in wear resistance | |
JP3857987B2 (en) | Brazing material | |
US4732733A (en) | Copper-base alloys for leadframes | |
KR100330025B1 (en) | Copper based filler metal &joining process for brazing WC/SM45C | |
JPS62212095A (en) | Brazing filler metal | |
JP4043118B2 (en) | High strength and high conductivity Cu-Fe alloy plate for electric and electronic parts with excellent heat resistance | |
JPH07126079A (en) | Soldering material for bonding ceramic material | |
JP2701419B2 (en) | Gold alloy fine wire for semiconductor element and bonding method thereof | |
JPH07223090A (en) | Brazing filler metal for joining aluminum alloy with copper, and composite material joined thereby | |
WO2006038907A2 (en) | Lead-free solder composition for substrates | |
CN113528884B (en) | Copper-based interlayer alloy and preparation method thereof, ceramic and oxygen-free copper composite connecting piece and welding method thereof | |
JP2004358539A (en) | High-temperature brazing filler metal | |
JPS63239166A (en) | Ceramic joined body | |
KR100347085B1 (en) | Clad insert metal and bonding process for the joint WC containing cobalt and STD11 tool steel | |
JP3057662B2 (en) | Wax material | |
KR100399338B1 (en) | Compositions and Preparation Methods of Solder Alloys for Surface Mount Technology Applications | |
JPH0449630A (en) | Alloy brazing material for semiconductor device assembly | |
EP3252807A1 (en) | Cover material for hermetic sealing and electronic component-containing package | |
JPH0314897B2 (en) | ||
JP4123467B2 (en) | Free-cutting low thermal expansion material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20060314 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |