JPS59209473A - Production of bonding member for sintered hard alloy and sintered steel - Google Patents

Production of bonding member for sintered hard alloy and sintered steel

Info

Publication number
JPS59209473A
JPS59209473A JP8377683A JP8377683A JPS59209473A JP S59209473 A JPS59209473 A JP S59209473A JP 8377683 A JP8377683 A JP 8377683A JP 8377683 A JP8377683 A JP 8377683A JP S59209473 A JPS59209473 A JP S59209473A
Authority
JP
Japan
Prior art keywords
sintered
steel
sintered steel
cemented carbide
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8377683A
Other languages
Japanese (ja)
Other versions
JPH0243579B2 (en
Inventor
Masaya Miyake
雅也 三宅
Riyouji Kameda
亀田 諒二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8377683A priority Critical patent/JPS59209473A/en
Publication of JPS59209473A publication Critical patent/JPS59209473A/en
Publication of JPH0243579B2 publication Critical patent/JPH0243579B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To prevent peeling between a sintered hard alloy and a steel on account of a heat treatment, etc. in the stage of brazing the two members by using a molding of raw material powder for a sintered steel for the steel member, bringing powder of a specifically composed brazing material into contact with said molding and the sintered hard alloy and brazing the two members. CONSTITUTION:A sintered hard alloy is used for the sliding part alone and other parts are constituted of an inexpensive steel material to reduce the cost of production in the stage of producing a wear-resistant sliding part. A brazing material C of an alloy consisting of 35-45wt% Cu, 40-45wt% Ni, and 15-20wt% Mn is disposed in contact with both of a sintered hard alloy part A and a steel part B and the two parts are brazed. A molding of the raw material powder of the sintered steel is used for the part B and is heated in a reducing gaseous atmosphere of cracked gaseous ammonia, etc. Sintering of the powder molding of the sintered steel and brazing by the brazing material are simultaneously accomplished. An infiltrating material consisting of the molding of the alloy element powder may be used to increase the strength of the sintered steel and may be infiltrated into the sintered steel.

Description

【発明の詳細な説明】 〔従来技術〕 本発明は、金型素材等の精密部品の打抜き加工に使用す
るダイス、パンチや、シールリング、ロッカーアームバ
ット材、ポリシングディスク等の耐摩摺動部品の製造に
関する。か\る部品は、必要部分のみに超硬合金を用い
、他の部分は超硬合金を支持する材料として鋼材を用い
両者をろう付けによって結合した複合材が使用されてい
る。この複合材は金型用のような広い面積をろう付けし
た場合、超硬合金と鋼の熱膨張差によって冷却時に超硬
合金と鋼との間に引張応力が働きろう付けが外れたり、
超硬合金に亀裂が生じるなどの問題が多かった。
[Detailed Description of the Invention] [Prior Art] The present invention provides a method for manufacturing wear-resistant sliding parts such as dies, punches, seal rings, rocker arm butt materials, and polishing discs used for punching precision parts such as mold materials. Regarding manufacturing. For such parts, a composite material is used in which cemented carbide is used only in the necessary parts, and steel is used as a supporting material for the cemented carbide in other parts, and both parts are joined by brazing. When this composite material is brazed over a large area, such as for a mold, the difference in thermal expansion between the cemented carbide and steel causes tensile stress to be generated between the cemented carbide and the steel during cooling, causing the brazing to come off.
There were many problems such as cracks forming in the cemented carbide.

〔発明の目的〕[Purpose of the invention]

本発明は超硬合金にろう付けされた網部分を熱処理やワ
イヤーカット等の加工処理を施しても超硬合金と鋼とが
外れたり、超硬合金に亀裂を生じたりすることのない超
硬合金と鋼との結合部材を得るための方法を供せんとす
るものである。
The present invention is a cemented carbide that does not separate the cemented carbide from the steel or cause cracks in the cemented carbide even if the net portion brazed to the cemented carbide is subjected to processing treatments such as heat treatment and wire cutting. It is an object of the present invention to provide a method for obtaining a bonded member of alloy and steel.

〔発明の開示〕[Disclosure of the invention]

本発明はこの目的を達するために超硬合金部材と焼結鋼
の原料粉末成型体とを接し、この両者に接してろう材を
配置し還元性雰囲気中で加熱してわ′ム結鋼の原料粉末
を焼結鋼とすると同時に、焼結2ifflと超硬合金部
材とを前記のろう材で結合するものである。
In order to achieve this object, the present invention brings a cemented carbide member and a sintered steel raw powder molded body into contact with each other, places a brazing filler metal in contact with both, and heats it in a reducing atmosphere to form a wafer-formed steel. The raw material powder is sintered steel, and at the same time, the sintered 2iffl and the cemented carbide member are bonded using the brazing filler metal.

本発明には、焼結鋼の原料粉末成型体が焼結される際、
該原料中の鉄と反応し、合金化すると同時に融点が上昇
し凝固するという性質のOu 33〜り汐重量%、N1
グ0〜1l−5重量%、Mn /3〜ス0重量%組成か
らなるろう拐が用いられる。
In the present invention, when a raw material powder molded body of sintered steel is sintered,
Ou 33 to 1% by weight, N1, which has the property of reacting with iron in the raw material, alloying, and at the same time raising the melting point and solidifying.
A wax having a composition of 0 to 1 l-5% by weight of Mn/3 to 0% by weight of Mn is used.

焼結鋼同志又は焼結鋼と焼結鋼以外の材料とをろう+1
すするためのろう材として、集ろう、銅ろ合・ろう材の
溶融時にろう材が焼結鋼の空°孔内に吸収され接合材と
しての用をなさない。本発明は前記組成のろう利を使用
することにより、このような問題を解決したものである
Brazing sintered steel or sintered steel and materials other than sintered steel +1
As a brazing material for sintering, the brazing material is absorbed into the pores of the sintered steel when the brazing material gathers and melts, making it useless as a bonding material. The present invention solves these problems by using a wax having the above composition.

一般的に金属の性質の一つとして、融点の異なる金属同
士を合金させるとその合金の融点は元のそれぞれの金属
の融点とは違ったものになり、両者の融点の間の値を示
す場合が多い。
Generally, one of the properties of metals is that when metals with different melting points are alloyed, the melting point of the alloy will be different from the melting point of each original metal, and if it shows a value between the two melting points. There are many.

本発明のろう利はこの現象を応用したものである。The wax of the present invention is an application of this phenomenon.

その/は、ろう材の融点を焼結銅の焼結温度に近い値(
但し焼結温度より低い)に調整することで、これにより
焼結鋼の焼結と、結合を同時に行なわせることができる
/ is the melting point of the filler metal close to the sintering temperature of sintered copper (
However, by adjusting the temperature to a temperature lower than the sintering temperature, sintering and bonding of the sintered steel can be performed simultaneously.

そのスは、この合金を一つの金属と考えた場合、これが
溶融して焼結鋼のFeと合金反応を起した時にFeの融
点の方が高いので、ろう材の融点が上昇して凝固し焼結
鋼の空孔内への拡散が抑制される。
The reason is that when this alloy is considered as a metal, when it melts and causes an alloy reaction with Fe in the sintered steel, the melting point of Fe is higher, so the melting point of the filler metal rises and solidifies. Diffusion of sintered steel into the pores is suppressed.

すなわちろう材の組成をOu 33〜ゲタ重伍%、Ni
70〜ダタ重け%、Mn /s〜、20重量%とじたの
は、先づこのような組成の範囲であれば、ろう材の融点
が7000〜/100’Cの間となり、焼結温度直下の
温度に設定できることによる。
In other words, the composition of the brazing filler metal is Ou 33~Geta 5%, Ni
70~data weight%, Mn/s~, 20% by weight. Firstly, if the composition is in this range, the melting point of the brazing filler metal will be between 7000~/100'C, and the sintering temperature will be lower. This is due to the fact that the temperature can be set directly below.

またCu、、Ni、MnはそれぞれFeと高温域におい
て単純な合金反応を示すため、それらの合金であるろう
利ともスムーズに反応し安定して融点上昇−凝固が行な
われる。
In addition, since Cu, Ni, and Mn each exhibit a simple alloying reaction with Fe in a high temperature range, they react smoothly with the wax which is their alloy, and the melting point rises and solidification occurs stably.

このような条件を満たすことによって焼結鋼の焼結と超
硬合金との結合が可能となる。
By satisfying these conditions, sintering of sintered steel and bonding with cemented carbide become possible.

もしろう拐の組成が」二記の範囲を外れた場合は適正な
融点が得られなくなり、目的を達することはできない。
If the composition of the wax is outside the range specified in section 2, an appropriate melting point will not be obtained and the purpose will not be achieved.

いて合金層を形成する。従って焼結鋼と超硬合金の双方
において合金層を形成するため、また超硬合金の支持材
である焼結鋼が多孔質であるため超硬合金との熱膨張差
により接合面に発生する応力の緩衝材の役目をなし、接
合工程、熱処理工程における超硬合金の剥離や亀裂発生
の阻止にも役立っている。
to form an alloy layer. Therefore, since an alloy layer is formed in both sintered steel and cemented carbide, and since the sintered steel, which is the support material for cemented carbide, is porous, thermal expansion differences between the cemented carbide and the cemented carbide occur at the joint surface. It acts as a stress buffer and also helps prevent peeling and cracking of cemented carbide during bonding and heat treatment processes.

本発明方法で製作した素材は超硬合金部材に焼結鋼が結
合されたものであるから、使用条件によっては、そのま
\機械加工を施して使用することができる。しかし超硬
合金の支持材としての焼結鋼に機械的強度が更に必要な
場合には・焼入れ・焼戻しの熱処理を行なうことにより
機械的強度を向上させることができる。
Since the material produced by the method of the present invention is made by bonding sintered steel to a cemented carbide member, it can be used as is or machined depending on the usage conditions. However, if the sintered steel used as a support material for the cemented carbide requires higher mechanical strength, the mechanical strength can be improved by subjecting it to heat treatment such as quenching and tempering.

焼結鋼の原料粉末中には、焼結鋼の機械的強度を向上す
るため合金元素粉末を添加することもでき、原料鉄粉を
合金としてもよい。また焼結鋼の原料粉末成型体に焼結
鋼の機械的強度を向上するための合金元素粉末成型体を
重ねて焼結と同時に溶浸させることもできる。
In order to improve the mechanical strength of sintered steel, alloying element powder may be added to the raw material powder of sintered steel, and the raw material iron powder may be used as an alloy. Further, an alloying element powder molded body for improving the mechanical strength of the sintered steel may be superimposed on the raw material powder molded body of the sintered steel and infiltrated at the same time as sintering.

実施例/ 粒径/μmのwe粉末go重量%、粒径/μmのc。Example/ Particle size/μm we powder go wt%, particle size/μm c.

粉末、20重量%の組成の外径1.Qmm、内径3Qm
m、厚さ/Q muの超硬合金部材Aと、o0g重量%
の炭素微粉末を混合した鉄粉を外径1.Qmm・内径り
Q mm・厚さ3Qmmに圧粉成型した焼結鋼の原料粉
末成型体Bと、C!u ’70重i % 、Ni ’1
2重i%、Mn 7g重量%の組成からなるろう材粉末
を外径39 mm 、内径り011Lffl 、厚さ2
賭に型押成型したろう材Cとを作り、第1図に示すよう
にAの内側にCを嵌合し、これをBの上に同心円状に重
ねた。これをアンモニア分解ガス中で//乙0Cで2時
間加熱して焼結鋼の原料粉末成型体を焼結して焼結鋼に
すると同時にろう拐を焼結鋼と超硬合金の境界面に浸透
せしめて一体となした結合部材を得た。
Powder, outer diameter of 20% by weight composition 1. Qmm, inner diameter 3Qm
m, thickness/Q mu cemented carbide member A, o0g weight%
Iron powder mixed with carbon fine powder of 1. A sintered steel raw material powder molded body B compacted to a size of Qmm, inner diameter Qmm, and thickness 3Qmm, and C! u'70 weight i%, Ni'1
A brazing filler metal powder having a composition of 2% by weight and 7g% by weight of Mn was prepared with an outer diameter of 39 mm, an inner diameter of 011 Lffl, and a thickness of 2.
A brazing filler metal C was made by embossment molding, and as shown in FIG. 1, C was fitted inside A, and this was superimposed on B in a concentric circle. This is heated in ammonia decomposition gas at 0C for 2 hours to sinter the sintered steel raw powder compact to make sintered steel, and at the same time apply wax to the interface between the sintered steel and the cemented carbide. A bonding member which was impregnated and made into one piece was obtained.

この結合部材の超硬合金部材と焼結鋼との結合強度は、
:13 kg/4nmであった。この結合部材の内外周
を研摩し、ポンプ軸受けのシールリングとして使用した
処、耐摩耗性よく、従来の鉄系シールリングの70倍の
寿命を示した。
The bonding strength between the cemented carbide member and sintered steel of this bonding member is
:13 kg/4 nm. When the inner and outer circumferences of this coupling member were polished and used as a seal ring for a pump bearing, it exhibited good wear resistance and a lifespan 70 times longer than conventional iron-based seal rings.

実施例λ WO39重量%、0020重量%の組成の縦100mm
Example λ 100 mm long with composition of WO39% by weight and 0020% by weight
.

横gQmm、厚ざλmmの四角形板状の超硬合金部材A
と、o、g重量%の炭素微粉末を含有する鉄粉を縦、横
100mm5厚さ17(7ffll11の直方体に圧粉
成型した焼結鋼の原料粉末成型体Bと、Ou 3g重量
%、Niり3重量%・Mn/9重量%の組成からなるろ
う材粉末を幅IO”m’、長さ100mm、厚さ3mm
の細長に型押成型したろう材02個とを作った。これを
第2図に示すように、Bの上にBの上面両端が均等に残
る゛ようにAを重ね、Aの両側のBの上にAに接してB
の上面の残った部分を丁度覆うようにOを重ねた。
Rectangular plate-shaped cemented carbide member A with width gQmm and thickness λmm
A sintered steel raw powder powder molded body B is made by compacting iron powder containing fine carbon powder of o, g wt % into a rectangular parallelepiped measuring 100 mm long and 17 mm thick (7 ffll11), O 3 g wt %, Ni A brazing filler metal powder having a composition of 3% by weight and 9% by weight of Mn was prepared into a piece with a width of IO"m', a length of 100mm, and a thickness of 3mm.
Two pieces of brazing filler metal were made by pressing and molding into a long and narrow shape. As shown in Figure 2, stack A on top of B so that both ends of the upper surface of B remain evenly,
I overlapped the O so that it just covered the remaining part of the top surface.

これをアンモニア分解ガス中にて//30Cに7時間加
熱した。加熱後、ろう材は超硬合金部材と焼結された焼
結鋼との接合面にも浸透しており、超硬合金部材と焼結
鋼とは完全に結合されていた。
This was heated to //30C for 7 hours in ammonia decomposition gas. After heating, the brazing filler metal penetrated into the joint surface between the cemented carbide member and the sintered steel, and the cemented carbide member and the sintered steel were completely bonded.

この結合部材をgllo ’cで7時間加熱後焼入れし
、/gOCで/、3時間加熱して焼き戻しを行なった後
の焼結鋼の硬度はHRBI>0程度であった。熱処理に
よって超硬合金の剥離や亀裂は発生しなかった。
The hardness of the sintered steel was approximately HRBI>0 after heating and tempering this bonding member for 7 hours with GLLO'C and 3 hours with /gOC/. The heat treatment did not cause peeling or cracking of the cemented carbide.

この部材をワイヤーカットによって切り出し、珪素鋼板
打抜き用パンチを製作し、打抜きテストを行なったとこ
ろ、ダイス鋼の約70倍の寿命を示した。また打抜き製
品のパリが少なく、製品の精度の高いものが得られた。
This member was cut out by wire cutting, a punch for punching a silicon steel plate was manufactured, and a punching test was conducted, which showed that the punch had a lifespan approximately 70 times longer than that of die steel. In addition, the punched products had fewer cracks and were highly accurate.

実施例3 Cu−3重俵%−り重量%Feの組成にこれら元素粉末
を混合し型押しして縦横100 mm、厚さ79mmの
型ill溶浸拐りを作った。この上に実施例−の焼結鋼
の原料粉末成型体Bを重ね、更にその上に実施例λの超
硬合金部材A及びろう拐Cとを実施例コと同様に第3図
に示すように重ねてアンモニア分解ガス中にて//乙0
Cで2時間加熱した。焼結された焼結鋼上超硬合金部材
とはろう材の溶浸により完全に結合しており、結合強度
も充分であった。
Example 3 These elemental powders were mixed with a composition of Cu-3 heavy bale % - weight % Fe and pressed to make a die infiltration mold having a length and width of 100 mm and a thickness of 79 mm. On top of this, the sintered steel raw material powder molded body B of Example 1 is superimposed, and on top of this, the cemented carbide member A and solder C of Example λ are placed as shown in FIG. in ammonia decomposition gas //Otsu0
The mixture was heated at C for 2 hours. The sintered cemented carbide member on the sintered steel was completely bonded by infiltration of the brazing filler metal, and the bonding strength was sufficient.

この結合部材をgりθCで7時間加熱後焼入れし、7g
0cで7.3時間加熱して焼戻しを行なった。この焼結
鋼の硬さはHRO’IO程度で熱処理による超硬合金の
剥離、亀裂は全くなかった。
This joining member was heated at g θC for 7 hours and then quenched.
Tempering was performed by heating at 0C for 7.3 hours. The hardness of this sintered steel was on the order of HRO'IO, and there was no peeling or cracking of the cemented carbide due to heat treatment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例/の、第、2図は実施例−の、第3図は
実施例3の製造法を示す断面図である。 A・・超硬合金部材、B・焼結鋼の原料粉末成型体、C
ろう材、D・・型押溶浸材。 4 第1図 乙 第2図 第3図
FIG. 1 is a sectional view showing a manufacturing method of Example 1, FIG. 2 is a sectional view of Example 2, and FIG. 3 is a sectional view showing a manufacturing method of Example 3. A: Cemented carbide member, B: Sintered steel raw material powder compact, C
Brazing filler metal, D...embossed infiltration material. 4 Figure 1 Figure B Figure 2 Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)超硬合金部材と焼結鋼の原料粉末成型体との両者
に接してろう利を配置し、これを還元性雰囲気中で加熱
して原料粉末成型体を焼結して焼結鋼とすると同時に超
硬合金部材と焼結鋼とを結合することを特徴とする超硬
合金と焼結鋼との結合部材の製造法。
(1) A braze is placed in contact with both the cemented carbide member and the raw material powder molded body of sintered steel, and this is heated in a reducing atmosphere to sinter the raw material powder molded body to produce sintered steel. A method for producing a joining member of cemented carbide and sintered steel, characterized by simultaneously joining the cemented carbide member and sintered steel.
(2)  該ろう材がろう材粉末の成型体であることを
特徴とする特許請求の範囲(1)項記載の超硬合金と焼
結鋼との結合部材の製造法。
(2) A method for manufacturing a joining member of cemented carbide and sintered steel according to claim (1), wherein the brazing material is a molded body of brazing material powder.
(3)  ろう材組成が、Ou : 3.!;〜’l!
;重量%、Niニゲ0〜/l汐重量%、Mn : 75
〜20重量%と不可避的不純物からなることを特徴とす
る特許請求の範囲(1)項又は(2)項記載の超硬合金
と焼結鋼との結合部材の製造法。
(3) The brazing filler metal composition is Ou: 3. ! ;~'l!
; Weight %, Ni Nige 0~/l Shio weight %, Mn: 75
A method for producing a bonding member of cemented carbide and sintered steel according to claim (1) or (2), characterized in that the amount of unavoidable impurities is 20% by weight.
(4) 超硬合金部材と焼結鋼の主原料粉末成型体との
両者に接してろう材を配置し、更に該成型体に接して焼
結鋼への溶浸材の成型体を配置した状態で還元性雰囲気
中で加熱して、成型体に溶浸材を溶浸することによって
焼結すると同時に該超硬合金部材と焼結鋼とを結合する
ことを特徴とする超硬合金と焼結鋼との結合部材の製造
法。
(4) A brazing material was placed in contact with both the cemented carbide member and the sintered steel main raw material powder molded body, and a molded body of an infiltration material for the sintered steel was further placed in contact with the molded body. Cemented carbide and sintered steel, characterized in that the cemented carbide member and the sintered steel are sintered by heating in a reducing atmosphere and infiltrating the molded body with an infiltrating material. A method of manufacturing a joining member with steel.
JP8377683A 1983-05-13 1983-05-13 Production of bonding member for sintered hard alloy and sintered steel Granted JPS59209473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8377683A JPS59209473A (en) 1983-05-13 1983-05-13 Production of bonding member for sintered hard alloy and sintered steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8377683A JPS59209473A (en) 1983-05-13 1983-05-13 Production of bonding member for sintered hard alloy and sintered steel

Publications (2)

Publication Number Publication Date
JPS59209473A true JPS59209473A (en) 1984-11-28
JPH0243579B2 JPH0243579B2 (en) 1990-09-28

Family

ID=13812008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8377683A Granted JPS59209473A (en) 1983-05-13 1983-05-13 Production of bonding member for sintered hard alloy and sintered steel

Country Status (1)

Country Link
JP (1) JPS59209473A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247303A (en) * 1989-03-20 1990-10-03 Hitachi Powdered Metals Co Ltd Method for infiltration-joining sintered member
KR100330025B1 (en) * 1999-08-26 2002-03-27 한중석 Copper based filler metal &joining process for brazing WC/SM45C
EP1475178A1 (en) * 2003-05-07 2004-11-10 Mitsubishi Materials Corporation Brazed sintered compact
US6902825B2 (en) 2002-02-27 2005-06-07 Mitsubishi Materials Corporation Brazed sintered compact
JP2009233720A (en) * 2008-03-28 2009-10-15 Hitachi Powdered Metals Co Ltd Brazing filler metal for joining of iron-based sintered member and joining method of the iron based sintered member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122246A (en) * 1976-04-06 1977-10-14 Sumitomo Electric Industries Joining method of super alloy
JPS5443446A (en) * 1977-09-12 1979-04-06 Mitsubishi Electric Corp Antenna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122246A (en) * 1976-04-06 1977-10-14 Sumitomo Electric Industries Joining method of super alloy
JPS5443446A (en) * 1977-09-12 1979-04-06 Mitsubishi Electric Corp Antenna

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247303A (en) * 1989-03-20 1990-10-03 Hitachi Powdered Metals Co Ltd Method for infiltration-joining sintered member
KR100330025B1 (en) * 1999-08-26 2002-03-27 한중석 Copper based filler metal &joining process for brazing WC/SM45C
US6902825B2 (en) 2002-02-27 2005-06-07 Mitsubishi Materials Corporation Brazed sintered compact
EP1475178A1 (en) * 2003-05-07 2004-11-10 Mitsubishi Materials Corporation Brazed sintered compact
JP2009233720A (en) * 2008-03-28 2009-10-15 Hitachi Powdered Metals Co Ltd Brazing filler metal for joining of iron-based sintered member and joining method of the iron based sintered member

Also Published As

Publication number Publication date
JPH0243579B2 (en) 1990-09-28

Similar Documents

Publication Publication Date Title
US4029476A (en) Brazing alloy compositions
JP5411334B2 (en) Powder metal friction stir welding tool and manufacturing method thereof
JP2010215951A (en) Sintered composite sliding component and manufacturing method therefor
JPS5996250A (en) Wear resistant sintered alloy
US4456577A (en) Methods for producing composite rotary dresser
EP0604625B1 (en) Sintered brake pad for disc brakes
JPS60174805A (en) Manufacture of metal composite matter
JPS59209473A (en) Production of bonding member for sintered hard alloy and sintered steel
US3672881A (en) Method of making powder composites
US4386959A (en) Method for compound sintering
JP4177467B2 (en) High toughness hard alloy and manufacturing method thereof
JPS5943676B2 (en) Carbide mechanical seal and its manufacturing method
JP3634376B2 (en) Manufacturing method of powder metal sintered product
US6534191B2 (en) Sintered alloy and method for the hardening treatment thereof
JPS61136605A (en) Joining method of sintered hard material and metallic material
JPS6119705A (en) Formation of hard metal layer onto surface of metal
JPS62188707A (en) Hard facing method for integrally forming sintered hard layer on surface of ferrous metallic sheet
US20080107558A1 (en) Sheet Material Infiltration of Powder Metal Parts
KR100422092B1 (en) Sliding parts and manufacturing method thereof
JPS5842702A (en) Production of composite sintered parts
KR100448465B1 (en) Fabrication of diamond wheel for precision cutting using bronze powder-base metal bonder
JPH0499805A (en) Complex hard sintered material having excellent wear resistance and melt-welding resistance and manufacture thereof
JP2765512B2 (en) Method for manufacturing sliding member and method for manufacturing two-layer member
JPH10130701A (en) Intermetallic compound composite material and its production
KR0176294B1 (en) Binding metal of an industrial diamond