KR100314741B1 - Method for forming metal line in semiconductor device - Google Patents

Method for forming metal line in semiconductor device Download PDF

Info

Publication number
KR100314741B1
KR100314741B1 KR1019950048762A KR19950048762A KR100314741B1 KR 100314741 B1 KR100314741 B1 KR 100314741B1 KR 1019950048762 A KR1019950048762 A KR 1019950048762A KR 19950048762 A KR19950048762 A KR 19950048762A KR 100314741 B1 KR100314741 B1 KR 100314741B1
Authority
KR
South Korea
Prior art keywords
film
layer
contact hole
tungsten
titanium
Prior art date
Application number
KR1019950048762A
Other languages
Korean (ko)
Other versions
KR970053524A (en
Inventor
백인혁
신강섭
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1019950048762A priority Critical patent/KR100314741B1/en
Publication of KR970053524A publication Critical patent/KR970053524A/en
Application granted granted Critical
Publication of KR100314741B1 publication Critical patent/KR100314741B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE: A method for forming a metal line in a semiconductor device is provided to improve contact resistance and yield by performing tungsten etch-back processing irrespective of the area of a contact hole. CONSTITUTION: An interlayer dielectric(12) having the first contact hole(20A) with a relatively small size and the second contact hole(20B) with a relatively big size, is formed on a silicon substrate(11). A titanium film(13), a TiN film(14) and a tungsten film(15) are sequentially formed on the resultant structure. The tungsten film(15) is then etched by using an etch target with the range of 50-90 % against the total thickness of the titanium film, the TiN film and the tungsten film. After sequentially forming and patterning an aluminum alloy and an anti-reflective coating on the resultant structure, a metal line is then formed by sequentially etching the exposed tungsten, TiN and titanium film(15,14,13) until the surface of the interlayer dielectric(12) is sufficiently exposed.

Description

반도체 소자의 금속배선 형성 방법Metal wiring formation method of semiconductor device

본 발명은 반도체 소자의 금속배선 형성방법에 관한 것으로, 특히 하나의 웨이퍼상에 콘택홀 면적이 큰것과 작은것이 공존할 경우, 콘택홀 매립방법을 개선함에 의해 면적이 큰 콘택홀의 저면에 식각 손상되는 것을 방지할 수 있는 반도체 소자의 금속배선 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a metal wiring of a semiconductor device. In particular, when a large contact hole area and a small one coexist on one wafer, the etching hole is damaged on the bottom surface of the large contact hole by improving the contact hole filling method. The present invention relates to a method for forming metal wiring of a semiconductor device that can be prevented.

일반적으로, 반도체 소자가 고집적화되어감에 따라 콘택홀의 면적은 작아진다. 이에따라 소자간을 전기적으로 연결하는 금속배선 형성공정시 주 금속배선재료인 알루미늄 또는 알루미늄합금이 콘택홀에서 스텝커버리지가 불량해지고, 또한 콘택면적이 줄어듦에 따라 콘택저항이 증대된다. 이를 해결하기 위하여, 콘택홀을 텅스텐으로 먼저 매립한 후, 알루미늄합금층을 형성하였다. 이와같이 면적이 작은 콘택홀을 텅스텐으로 매립하여 콘택저항을 낮출수 있지만, 콘택홀의 면적이 더욱 작아질 경우 텅스텐 매립방법을 적용한다 하더라도 콘택저항값을 작게 제어할 수 없고, 따라서 콘택홀수를 늘리는 방법으로 콘택저항값을 보상시켜야하므로, 이로인하여 소자의 고집적화에 한계가 있게된다. 그런데 반도체 소자를 제조함에 있어, 하나의 웨이퍼에는 콘택홀 면적이 큰것과 작은 것이 공존하는 경우가 있다. 이와같은 경우 면적이 작은 콘택홀에서 알루미늄합금충의 스텝커버리지를 향상시키기 위하여, 콘택홀의 면적이 큰것과 작은 것을 동시에 텅스텐으로 매립하여야 하는데, 이 경우 큰 면적의 콘택홀에서 문제가 발생되는데, 이를 종래의 금속배선 형성 방법을 설명하기 위해 도시한 제 1a 및 1b 도를 참조하여 설명하기로 한다.In general, the area of the contact hole decreases as the semiconductor device becomes more integrated. Accordingly, in the metal wiring forming process of electrically connecting the elements, step coverage is poor in the contact hole of aluminum or aluminum alloy, which is the main metal wiring material, and the contact resistance is increased as the contact area is reduced. In order to solve this problem, the contact hole was first buried in tungsten, and then an aluminum alloy layer was formed. Although the contact resistance can be lowered by embedding a small contact hole with tungsten as described above, if the contact hole becomes smaller, even if the tungsten embedding method is applied, the contact resistance value cannot be controlled small, thus increasing the number of contact holes. Since the contact resistance value must be compensated, there is a limit to the high integration of the device. However, in manufacturing a semiconductor device, one contact wafer may have a large contact hole area and a small one coexist. In this case, in order to improve the step coverage of the aluminum alloy in the small contact hole, the contact hole having a large area and a small area should be buried in tungsten at the same time. In this case, a problem occurs in the large area of the contact hole. A method of forming metal wirings will be described with reference to FIGS. 1A and 1B.

제 1a 도를 참조하면, 층간 절연막(2)이 실리콘 기판(1)상에 형성되고, 콘택홀 마스크를 사용한 식각공정으로 층간 절연막(2)의 일부분을 식각하여 면적이 작은 제 1 콘택홀(10A)과 면적이 큰 제 2콘택홀(10B)이 동시에 형성된다. 제 1 및 2 콘택홀(10A 및 10B)을 포함한 층간 절연막(2)상에 티타늄막(3), 티타늄나이트라이드막(4) 및 텅스텐층(5)이 순차적으로 형성된다.Referring to FIG. 1A, an interlayer insulating film 2 is formed on a silicon substrate 1 and a portion of the first contact hole 10A having a small area is etched by etching a portion of the interlayer insulating film 2 by an etching process using a contact hole mask. ) And a large second contact hole 10B are formed at the same time. The titanium film 3, the titanium nitride film 4 and the tungsten layer 5 are sequentially formed on the interlayer insulating film 2 including the first and second contact holes 10A and 10B.

제 1b 도를 참조하면, 전면식각공정을 통해 층간 절연막(2)의 표면이 충분히 노출될 때까지 텅스텐층(5), 티타늄나이트라이드막(4) 및 티타늄막(3)이 순차적으로 식각되므로, 이로인하여 제 1 콘택홀(10A)내에는 텅스텐층(5), 티타늄나이트라이드막(4) 및 티타늄막(3)으로 완전히 매립되고, 제 2 콘택홀(10B)내에는 그 측벽에 텅스텐층(5), 티타늄나이트라이드막(4) 및 티타늄막(3)이 스페이서 형태로 남아있게된다. 따라서, 제 1 콘택홀(10A)에서는 콘택저항이 개선됨과 동시에 추후 형성되는 알루미늄합금층의 스텝커버리지를 향상시킬 수 있다. 그런데, 제 1 콘택홀(10A)내를 텅스텐층(5), 티타늄나이트라이드막(4) 및 티타늄막(3)으로 매립시키기 위해서는 과도식각공정이 이루어지는데, 과도식각공정으로 인하여 제 2 콘택홀(10B)의 저면에 식각 손상부(10C)가 생길 우려가 높으며, 식각 손상부(10C)가 생길 경우 소자 동작시 이부분에서 누설전류가 발생되어 소자의 신뢰성을 저하시키게 된다.Referring to FIG. 1B, since the tungsten layer 5, the titanium nitride film 4, and the titanium film 3 are sequentially etched until the surface of the interlayer insulating film 2 is sufficiently exposed through the entire surface etching process, This completely fills the tungsten layer 5, the titanium nitride film 4 and the titanium film 3 in the first contact hole 10A, and the tungsten layer (2) on the sidewall of the second contact hole 10B. 5), the titanium nitride film 4 and the titanium film 3 remain in the form of spacers. Therefore, in the first contact hole 10A, the contact resistance may be improved and the step coverage of the aluminum alloy layer formed later may be improved. However, a transient etching process is performed to fill the first contact hole 10A with the tungsten layer 5, the titanium nitride film 4, and the titanium film 3, but the second contact hole is caused by the transient etching process. There is a high possibility that the etching damage portion 10C may be formed on the bottom surface of 10B. If the etching damage portion 10C is generated, a leakage current is generated at this portion during operation of the device, thereby degrading the reliability of the device.

따라서, 본 발명은 하나의 웨이퍼상에 콘택홀 면적이 큰것과 작은것이 공존할 경우, 콘택홀 매립 방법을 개선함에 의해 면적이 큰 콘택홀의 저면에 식각 손상되는 것을 방지할 수 있는 반도체 소자의 금속배선 형성 방법을 제공함에 그 목적이 있다.Accordingly, in the present invention, when a large contact hole area and a small one coexist on one wafer, the metal wiring of the semiconductor device can be prevented from being etched on the bottom surface of the large contact hole by improving the contact hole filling method. The purpose is to provide a forming method.

이러한 목적을 달성하기 위한 본 발명의 금속배선 형성 방법은 면적이 작은 제 1 콘택홀과 면적이 큰 제 2 콘택홀이 형성된 충간 절연막이 실리콘 시판상에 제공되는 단계; 상기 제 1 및 2 콘택홀을 포함한 상기 층간 절연막상에 티타늄막, 티타늄나이트라이드막 및 텅스텐층이 순차적으로 형성되는 단계; 상기 티타늄막, 상기 티타늄나이트라이드막 및 상기 텅스텐층의 두께를 합한것에 대하여 50 내지 90%범위의 석각 타겟으로 상기 텅스텐층을 식각하는 단계; 및 상기 식각된 텅스텐층상에 알루미늄합금층 및 난반사막을 순차적으로 형성한 후 패턴닝하고, 상기 알루미늄합금층 및 상기 난반사막이 패턴닝됨에 의해 노출되는 부분을 상기 층간 절연막의 표면이 충분히 노출될 때까지 상기 텅스텐층, 상기 티타늄나이트라이드막 및 상기 티타늄막을 순차적으로 식각하여 금속배선을 형성시키는 단계로 이루어지는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a metal interconnection forming method comprising: providing an interlayer insulating film having a first contact hole having a small area and a second contact hole having a large area on a silicon commercially available; Sequentially forming a titanium film, a titanium nitride film and a tungsten layer on the interlayer insulating film including the first and second contact holes; Etching the tungsten layer with an incidence target in the range of 50 to 90% relative to the sum of the thicknesses of the titanium film, the titanium nitride film and the tungsten layer; And sequentially patterning an aluminum alloy layer and a diffuse reflection layer on the etched tungsten layer, and patterning the portion of the aluminum alloy layer and the diffuse reflection layer until the surface of the interlayer insulating layer is sufficiently exposed. Forming a metal wiring by sequentially etching the tungsten layer, the titanium nitride film and the titanium film.

이하, 본 발명을 첨부된 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

제 2a 내지 2d 도는 본 발명의 실시예에 의한 반도체 소자의 금속배선 형성방법을 설명하기 위해 도시한 소자의 단면도이다.2A through 2D are cross-sectional views of a device for explaining a method for forming metal wirings of a semiconductor device according to an embodiment of the present invention.

제 2a 도를 참조하면, 층간 절연막(12)이 실리콘 기판(11)상에 형성되고, 콘택홀 마스크를 사용한 식각공정으로 층간 절연막(12)의 일부분을 식각하여 면적이 작은 제 1 콘택홀(20A)과 면적이 큰 제 2 콘택홀(20B)이 동시에 형성된다. 제 1 및 2 콘택홀(20A 및 20B)을 포함한 층간 절연막(12)상에 티타늄막(13), 티타늄나이트라이드막(14) 및 텅스텐층(15)이 순차적으로 형성된다.Referring to FIG. 2A, an interlayer insulating film 12 is formed on the silicon substrate 11, and a portion of the interlayer insulating film 12 is etched by an etching process using a contact hole mask to reduce the area of the first contact hole 20A. ) And a large second contact hole 20B are formed at the same time. Titanium film 13, titanium nitride film 14 and tungsten layer 15 are sequentially formed on interlayer insulating film 12 including first and second contact holes 20A and 20B.

상기에서, 티타늄막(13)은 300Å의 두께로 형성되고, 티타늄나이트 라이드막(14)은 1000Å의 두께로 형성되며, 텅스텐층(15)은 5000Å의 두께로 형성된다.In the above description, the titanium film 13 is formed to a thickness of 300 kPa, the titanium nitride film 14 is formed to a thickness of 1000 kPa, and the tungsten layer 15 is formed to a thickness of 5000 kPa.

제 2b 도를 참조하면, 제 2 콘택홀(20A) 저면이 식각손상되는 것을 방지하기위하여, 티타늄막(13), 티타늄나이트라이드막(14) 및 텅스텐층(15)을 SF6와 Ar이 1 : 2~5 의 비율로 혼합된 가스를 사용한 플라즈마 식각공정으로 식각하며, 이때 식각 타겟은 티타늄막(13), 티타늄나이트라이드막(14) 및 텅스텐층(15)의 두께를 합한것에 대하여 50 내지 90% 범위로 한다. 본 발명의 도면에서는 텅스텐층(15)이 어느정도 잔류된 상태가 도시된다.Referring to FIG. 2B, in order to prevent the bottom surface of the second contact hole 20A from being etched, the titanium film 13, the titanium nitride film 14, and the tungsten layer 15 may have SF 6 and Ar 1. : Etch by a plasma etching process using a gas mixed in a ratio of 2 to 5, wherein the etching target is 50 to the total thickness of the titanium film 13, titanium nitride film 14 and tungsten layer 15 90% range. In the drawing of the present invention, the state in which the tungsten layer 15 remains to some extent is shown.

제 2c 도를 참조하면, 1차 식각된 텅스텐층(5)상에 알루미늄합금층 (16) 및 난반사막(17)이 순차적으로 형성된다. 알루미늄합금층(16) 및 난반사막(17)은 금속배선 마스크공정과 Cl2와 BCl2이 1 : 0.1∼1 의 비율로 혼합된 가스를 사용한 플라즈마 식각공정에 의해 패턴닝된다.Referring to FIG. 2C, the aluminum alloy layer 16 and the diffuse reflection film 17 are sequentially formed on the first etched tungsten layer 5. The aluminum alloy layer 16 and the diffuse reflection film 17 are patterned by a metal wiring mask process and a plasma etching process using a gas in which Cl 2 and BCl 2 are mixed at a ratio of 1: 0.1 to 1.

제 2d 도를 참조하면, 알루미늄합금층(16) 및 난반사막(17)이 패턴닝됨에 의해 노출되는 부분을 50 내지 100SCCM의 SF6가스를 사용한 플라즈마 식각공정으로 층간 절연막(12)의 표면이 충분히 노출될 때까지 텅스텐층(15), 티타늄나이트라이드막(14) 및 티타늄막(13)을 순차적으로 식각하여 금속배선을 형성시킨다. 플라즈마 식각공정시 전력값은 50 내지 300W를 사용하며, 압력은 10 내지 100mTorr로 한다.Referring to FIG. 2D, the surface of the interlayer insulating film 12 is sufficiently formed by a plasma etching process using 50 to 100 SCCM of SF 6 gas to expose the portions exposed by the patterning of the aluminum alloy layer 16 and the diffuse reflection film 17. The tungsten layer 15, the titanium nitride film 14 and the titanium film 13 are sequentially etched until they are exposed to form metal wiring. In the plasma etching process, the power value is 50 to 300 W and the pressure is 10 to 100 mTorr.

본 발명의 실시예에 의하면, 하나의 웨이퍼상에 콘택홀 면적이 큰것과 작은것이 공존할 경우, 면적이 작은 콘택홀에서 알루미늄합금층의 스텝커버리지를 향상시키고, 콘택저항을 낮추기 위하여, 면적이 큰것과 작은 콘택홀을 포함한 웨이퍼상에 텅스텐층을 형성하고, 면적이 큰 콘택홀의 저면이 식각 손상되는 것이 방지되도록 식각 타겟을 맞추어 텅스텐층을 식각한다.According to an embodiment of the present invention, when a large contact hole area and a small one coexist on one wafer, in order to improve the step coverage of the aluminum alloy layer in the small contact hole and to lower the contact resistance, the area is large. And a tungsten layer are formed on the wafer including the small contact hole, and the tungsten layer is etched by aligning the etch target to prevent the bottom surface of the large contact hole from being etched.

따라서, 본 발명은 웨이퍼에 형성되는 콘택홀의 면적 크기에 관계없이 텅스텐 에치백공정을 실시할 수 있어, 콘택저항을 개선할 수 있고, 소자의 수율을 증대시킬 수 있다.Therefore, the present invention can perform a tungsten etch back process irrespective of the area size of the contact hole formed in the wafer, thereby improving the contact resistance and increasing the yield of the device.

제 1a 및 1b 도는 종래의 금속배선 형성방법을 설명하기 위해 도시한 소자의 단면도.1A and 1B are cross-sectional views of a device shown for explaining a conventional metal wiring forming method.

제 2a 내지 2d 도는 본 발명의 실시예에 의한 반도체 소자의 금속배선 형성방법을 설명하기 위해 도시한 소자의 단면도.2A through 2D are cross-sectional views of a device for explaining a method for forming metal wirings of a semiconductor device according to an embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1, 11: 실리콘 기판 2,12: 층간 절연충1, 11: Silicon Substrate 2,12: Interlayer Insulation

3, 13: 티타늄막 4, 14: 티타늄나이트라이드막3, 13: titanium film 4, 14: titanium nitride film

5, 15: 텅스텐층 16: 알루미늄합금층5, 15: tungsten layer 16: aluminum alloy layer

17: 난반사막 10A, 20A: 제 1 콘택홀17: diffuse reflection film 10A, 20A: 1st contact hole

10B, 20B: 제 2 콘택홀 10C: 식각 손상부10B and 20B: second contact hole 10C: etching damaged part

Claims (6)

반도체 소자의 금속배선 형성방법에 있어서,In the metal wiring formation method of a semiconductor element, 면적이 작은 제 1 콘택홀과 면적이 큰 제 2 콘택홀이 형성된 층간 절연막이 실리콘 기판상에 제공되는 단계;Providing an interlayer insulating film on which a first contact hole having a small area and a second contact hole having a large area are formed on a silicon substrate; 상기 제 1 및 2 콘택홀을 포함한 상기 층간 절연막상에 티타늄막, 티타늄나이트라이드막 및 텅스텐층이 순차적으로 형성되는 단계;Sequentially forming a titanium film, a titanium nitride film and a tungsten layer on the interlayer insulating film including the first and second contact holes; 상기 티타늄막, 상기 티타늄나이트라이드막 및 상기 텅스텐층의 두께를 합한것에 대하여 50 내지 90%범위의 식각 타겟으로 상기 텅스텐층을 식각하는 단계; 및Etching the tungsten layer with an etching target in a range of 50 to 90% with respect to the sum of the thicknesses of the titanium film, the titanium nitride film and the tungsten layer; And 상기 식각된 텅스텐층상에 알루미늄합금층 및 난반사막을 순차적으로 형성한 후 패턴닝하고, 상기 알루미늄합금층 및 상기 난반사막이 패턴닝됨에 의해 노출되는 부분을 상기 층간 절연막의 표면이 충분히 노출될 때까지 상기 텅스텐층, 상기 티타늄나이트라이드막 및 상기 티타늄막을 순차적으로 식각하여 금속배선을 형성시키는 단계로 이루어지는 것을 특징으로 하는 반도체 소자의 금속배선 형성방법.The aluminum alloy layer and the diffuse reflection layer are sequentially formed on the etched tungsten layer, and then patterned, and the portion exposed by the patterning of the aluminum alloy layer and the diffuse reflection layer is exposed until the surface of the interlayer insulating layer is sufficiently exposed. Forming a metal wiring by sequentially etching the layer, the titanium nitride film and the titanium film. 제 1 항에 있어서,The method of claim 1, 상기 티타늄막은 300Å의 두께로 형성되고, 상기 티타늄나이트라이드막은 1000Å의 두께로 형성되며, 상기 텅스텐층은 5000Å의 두께로 형성되는 것을 특징으로 하는 반도체 소자의 금속배선 형성 방법.Wherein the titanium film is formed to a thickness of 300 kPa, the titanium nitride film is formed to a thickness of 1000 kPa, and the tungsten layer is formed to a thickness of 5000 kPa. 제 1 항에 있어서,The method of claim 1, 상기 텅스텐층은 SF6와 Ar이 1 : 2∼5 의 비율로 혼합된 가스를 사용한 플라즈마 식각공정으로 식각되는 것을 특징으로 하는 반도체 소자의 금속배선 형성방법.The tungsten layer is etched by a plasma etching process using a gas mixed with SF 6 and Ar in a ratio of 1: 2 to 5, the metal wiring forming method of a semiconductor device. 제 1 항에 있어서,The method of claim 1, 상기 알루미늄합금층 및 상기 난반사막은 금속배선 마스크공정과 Cl2와 BCl2이 1 : 0.1~1 의 비율로 혼합된 가스를 사용한 플라즈마 식각공정에 의해 패턴닝되는 것을 특징으로 하는 반도체 소자의 금속배선 형성 방법.The aluminum alloy layer and the diffuse reflection layer are patterned by a metallization mask process and a plasma etching process using a gas in which Cl 2 and BCl 2 are mixed at a ratio of 1: 0.1 to 1. Way. 제 1 항에 있어서,The method of claim 1, 상기 텅스텐층, 상기 티타늄나이트라이드막 및 상기 티타늄막은 50 내지 100SCCM의 SF6가스를 사용한 플라즈마 식각공정으로 식각하는 것을 특징으로 하는 반도체 소자의 금속배선 형성방법.The tungsten layer, the titanium nitride film and the titanium film are etched by a plasma etching process using a SF 6 gas of 50 to 100SCCM. 제 5 항에 있어서,The method of claim 5, 상기 플라즈마식각공정은 50 내지 300W의 전력과 10 내지 100mTorr의 압력하에서 실시되는 것을 특징으로 하는 반도체 소자의 금속배선 형성방법.The plasma etching process is a metal wiring forming method of a semiconductor device, characterized in that carried out under a power of 50 to 300W and a pressure of 10 to 100mTorr.
KR1019950048762A 1995-12-12 1995-12-12 Method for forming metal line in semiconductor device KR100314741B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950048762A KR100314741B1 (en) 1995-12-12 1995-12-12 Method for forming metal line in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950048762A KR100314741B1 (en) 1995-12-12 1995-12-12 Method for forming metal line in semiconductor device

Publications (2)

Publication Number Publication Date
KR970053524A KR970053524A (en) 1997-07-31
KR100314741B1 true KR100314741B1 (en) 2002-11-07

Family

ID=37531483

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950048762A KR100314741B1 (en) 1995-12-12 1995-12-12 Method for forming metal line in semiconductor device

Country Status (1)

Country Link
KR (1) KR100314741B1 (en)

Also Published As

Publication number Publication date
KR970053524A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
EP0506426B1 (en) Integrated circuit metallization with zero contact enclosure requirements and method of making the same
KR100338941B1 (en) Contact forming method for semiconductor device
KR20020076810A (en) Method of fabricating Copper line of semiconductor device
KR100314741B1 (en) Method for forming metal line in semiconductor device
KR20020076458A (en) Method for forming a metal line
US5970377A (en) Method of forming a metal interconnection line for semiconductor device
KR100191708B1 (en) Forming method for metal wiring in semiconductor device
KR100307827B1 (en) Metal wiring contact formation method of semiconductor device
KR20000045482A (en) Etching method of semiconductor device
KR100321141B1 (en) Method for fabricating semiconductor device
KR100835506B1 (en) Manufacturing method of semiconductor device
KR100421278B1 (en) Fabricating method for semiconductor device
KR100458078B1 (en) Method for forming metal interconnection of semiconductor device to reduce em phenomenon and leakage current
KR100390996B1 (en) Method for forming a metal line
KR100458476B1 (en) Method for forming metal interconnection of semiconductor device to improve filling characteristic of metal thin film and avoid generation of void
KR100642908B1 (en) Method of forming a metal wiring in a semiconductor device
KR100268899B1 (en) Method for forming metal line of semiconductor device the same
KR100552835B1 (en) Method of forming metal plug of semiconductor device
KR100560292B1 (en) Metal wiring formation method of semiconductor device
KR100412145B1 (en) A method for forming via hole of semiconductor device
KR100304967B1 (en) Metal line of semiconductor device and method for fabricating the same
KR100532981B1 (en) Etching method of semiconductor device
KR100237743B1 (en) Method for forming metal interconnector in semiconductor device
KR20000042855A (en) Method for forming metal line of semiconductor device
KR20010004728A (en) Method of forming a metal wiring in a semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20051021

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee