KR0180791B1 - 6-치환-5,8-디옥시-1,4-나프토퀴논 유도체, 그의 제조방법 및 그의 항암제로서의 용도 - Google Patents

6-치환-5,8-디옥시-1,4-나프토퀴논 유도체, 그의 제조방법 및 그의 항암제로서의 용도 Download PDF

Info

Publication number
KR0180791B1
KR0180791B1 KR1019950021956A KR19950021956A KR0180791B1 KR 0180791 B1 KR0180791 B1 KR 0180791B1 KR 1019950021956 A KR1019950021956 A KR 1019950021956A KR 19950021956 A KR19950021956 A KR 19950021956A KR 0180791 B1 KR0180791 B1 KR 0180791B1
Authority
KR
South Korea
Prior art keywords
naphthoquinone
dimethoxy
compound
formula
alkyl
Prior art date
Application number
KR1019950021956A
Other languages
English (en)
Other versions
KR970006264A (ko
Inventor
안병준
김용
백경업
Original Assignee
김용옥
건일약품주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김용옥, 건일약품주식회사 filed Critical 김용옥
Priority to KR1019950021956A priority Critical patent/KR0180791B1/ko
Priority to PCT/KR1996/000113 priority patent/WO1997003940A1/en
Priority to AU65326/96A priority patent/AU6532696A/en
Publication of KR970006264A publication Critical patent/KR970006264A/ko
Application granted granted Critical
Publication of KR0180791B1 publication Critical patent/KR0180791B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/007Esters of unsaturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/29Saturated compounds containing keto groups bound to rings
    • C07C49/313Saturated compounds containing keto groups bound to rings polycyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/202Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a naphthalene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • C07C46/02Preparation of quinones by oxidation giving rise to quinoid structures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C46/00Preparation of quinones
    • C07C46/02Preparation of quinones by oxidation giving rise to quinoid structures
    • C07C46/06Preparation of quinones by oxidation giving rise to quinoid structures of at least one hydroxy group on a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/26Quinones containing groups having oxygen atoms singly bound to carbon atoms
    • C07C50/32Quinones containing groups having oxygen atoms singly bound to carbon atoms the quinoid structure being part of a condensed ring system having two rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 항암제로서 유용한 하기 일반식(Ⅰ)의 6-치환-5,8-디옥시-1,4-나프토퀴논 유도체, 그의 제조방법 및 그의 항암제로서의 용도에 관한 것이다.
상기식에서, R1은 알킬을 나타내고, R2는 수소, 알킬 또는 아실을 나타내며, R3는 수소 또는 알킬을 나타낸다.

Description

6-치환-5,8-디옥시-1,4-나프토퀴논 유도체, 그의 제조방법 및 그의 항암제로서의 용도
본 발명은 항암작용이 우수한 하기 일반식(Ⅰ)의 신규한 6-치환-5,8-디옥시-1,4-나프토퀴논 유도체, 그의 제조방법 및 그의 항암제로서의 용도에 관한 것이다.
상기식에서, R1은 알킬을 나타내고, R2는 수소, 알킬 또는 아실을 나타내며, R3는 수소 또는 알킬을 나타낸다.
현대의 불치명의 하나인 암을 치료하기 위한 연구는 암의 발병기전 및 진행기전에 관한 연구와 병행하여 화학요법, 물리적 요법 및 유전공학적 방법을 통하여 활발하게 진행되고 있다. 이와 같은 다양한 암의 치료방법중의 하나인 화학요범에서는 항암성 약물을 이용하여 암의 치료를 시도하고 있으나, 아직까지도 효과적으로 암을 치유할 수 있는 항암제는 드문 실정이다. 따라서 새로운 작용기전과 높은 항암성을 갖는 약물을 개발하고자 하는 시도는 끊임없이 이루어 지고 있는데, 이러한 항암제 개발의 시도는 순수한 유기화학적 합성분야 뿐만 아니라 생약으로 부터의 항암물질을 검색하는 연구, 더 나타가 자연물로부터 분리해낸 성분을 유기화학적 방법에 의해 변환시켜 항암성을 갖는 유사체를 합성해내는데 까지 발전하여 왔다.
이러한 일련의 연구발전 과정의 하나로 하기 구조식(A)의 쉬코닌[=2-(1-하이드록시-4-메틸-3-펜테닐)-5,8-디하이드록시-1,4-나프토퀴논] 및 그의 유도체가 포함된다.
쉬코닌은 1936년에 브로크만[H. Brockmann:Ann. Chem. 521, 1-47(1936)]에 의하여 알카나 팅토리아(Alkanna tinctoria)에서 최초로 분리되었고 그후 지치과에 속하는 여러 식물에서도 분리된 항암작용을 갖는 화합물이다. 그러나, 쉬코닌 자체는 시험관내에서의 암세포에 대한 세포독성은 강하나 동물체내에서의 작용은 매우 약하다. 이는 동물체내에서의 대사속도가 약효의 발현보다 빠르기 때문인 것으로 이해되는데, 생체내에서 쉬코닌의 대사경로는 다음가 같은 3가지 경로에 의해 이루어지는 것으로 추정된다. 첫째는 산화반응으로 쉬코닌의 구조중에서 페놀성 하이드록시기와 3'탄소상의 이중결합이 산화에 민감하다. 둘째는 환원반응으로서 퀴논 구조가 전자쌍 또는 전자 래디칼을 받아들여 세메퀴논 또는 하이드로퀴논 형태로 환원됨으로써 약물학적 작용을 상실한다. 셋째로는 쉬코닌의 1' 탄소상의 하이드록시기에서의 페이스(pahse) Ⅱ 대사로, 이 대사과정에 의해 하이드록시기는 글루쿠로나이드(glucuronide)나 설페이트(sulfate) 형태로 신속히 배설됨으로써 약물의 작용시간을 단축시킨다. 이와 같은 요인들에 의해 쉬코닌은 생체내에서 약화된 항암성을 나타내는 것으로 생각된다.
이와 같은 쉬코닌(A)의 생체내 대사상의 문제점을 보완하여 보다 나은 약물학적 작용을 갖는 항암성 화합물을 개발하기 위하여 쉬코닌(A)의 구조에 다양한 치환체를 도입시킴으로써 동물체내에서 보다 나은 안정성을 갖는 구조의 물질을 제조하고자 하는 연구가 수행되었다. 이러한 연구는 인체에 투여한 후에 안전하게 병소까지 운반된 다음에 쉬코닌(A)와 유사한 작용물질로 변환될 수 있는 구조를 갖는 물질을 설계하는 것에 중점을 두고 이루어졌다. 이러한 연구의 결과로 상기 정의한 바와 같은 일반식(Ⅰ)의 구조를 갖는 화합물이 상기한 바와 같은 목적에 부합되는 이상적인 화합물임을 확인할 수 있었다.
따라서, 본 발명은 다음 일반식(Ⅰ)로 표시되는 6-치환-5,8-디옥시-1,4-나프토퀴논 유도체에 관한 것이다.
상기식에서, R1은 알킬을 나타내고, R2는 수소, 알킬 또는 아실을 나타내며, R3는 수소 또는 알킬을 나타낸다.
상기 일반식(Ⅰ)의 치환체의 정의중에서 용어 알킬은 직쇄 또는 측쇄의 포화 탄화수소 래디칼, 특히 바람직하게는 메틸, 에틸, n- 또는 이소프로필, n-, 이소-, 2급- 또는 3급-부틸, 펜틸, 이소펜틸, 헥실, 헵틸, 옥틸, 노닐, 데실, 도데실 등과 같은 탄소수 1 내지 12의 직쇄 또는 측쇄 포화 탄화수소 래디칼을 의미하며; 용어 아실은 포화되거나 불포화된 지방족 탄화수소로 부터 유도된 그룹으로서, 예를들면 포르밀, 아세틸, 프로파노일, 부타노일, 헥사노일, 헵타노일, 옥타노일, 노나노일 등과 같은 탄소수 1 내지 20, 특히는 탄소수 1 내지 10의 알카노일, 또는 아크릴로일, 메타크릴로일, 크로토노일, 펜테노일, 헥세노일 등과 같이 한 개의 이중결합을 포함하는 탄소수 2 내지 20, 특히는 탄소수 2 내지 10의 알케노일을 포함한다.
본 발명에 따르는 일반식(Ⅰ)의 화합물은 하기 반응식 1에서 보는 바와 같이 생체내에서 탈알킬화, 토토메리즘 등의 반응을 일으켜 생체내 대사속도가 감소하고 그로 인하여 암세포까지 운반되는 약물의 농도가 증가하며 궁극적으로 증강된 항암효력을 나타낼 수 있는 것이다. 즉 예를들어 R1이 이소펜틸이고 R2가 수소이며 R3가 메틸인 일반식(Ⅰ)의 화합물인 6-(1-하이드록시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논(Ⅰ')은 생체내에서 알콕시페놀의 대사과정상 필수적으로 일어나는 페이스 Ⅰ 대사과정에 의해 탈메틸화되어 2-(1-하이드록시-4-메틸펜틸)-5,8-디하이드록시-1,4-나프토퀴논(B)를 형성하는데, 이 생생물(B)는 쉬코닌(A)의 이중결합이 포화된 디하이드로쉬코닌에 해당한다. 이러한 과정에 의해 약물학적으로 활성인 화합물(Ⅰ)의 대사속도는 감소될 것이며, 그로 인하여 암세포까지 운반되는 약물의 농도가 증가하고, 궁극적으로는 항암력이 증강되는 것이다.
본 발명에 따르는 일반식(Ⅰ)의 화합물중에서 약물학적효과면에서 바람직한 화합물은 R1이 C1-C5알킬이고, R2가 수소, C1-C5알킬 또는 C2-C10알카노일이며, R3가 C1-C3알킬인 화합물이며, 특히 바람직한 것은 R1이 이소펜닐이고, R2가 C1-C5알킬 또는 C2-C6알카노일이며, R3가 메틸인 화합물이다.
본 발명은 또한 상기 일반식(Ⅰ)의 신규한 6-치환-5,8-디옥시-1,4-나프토퀴논 유도체의 제조방법에 관한 것이다. 본 발명에 따르면 일반식(Ⅰ)의 나프토퀴논 유도체는 다음 방법 A, B 및 C에 의해 제조할 수 있다.
상기 반응도식에서, R1은 알킬 그룹을 나타내고, R2a는 아실 그룹을 나타내며, R2b는 알킬 그룹을 나타내며, R3은 수소 또는 알킬 그룹을 나타내고, Bz는 벤질 그룹을 의미한다.
이하에서는 본 발명에 따르는 일반식(Ⅰ) 화합물의제조방법을 더욱 구체적으로 설명한다.
[방법 A]
방법 A에 따르면, R2가 수소(H)인 일반식(Ⅰ)의 화합물, 즉 일반식 (Ⅰa)의 화합물은 일반식(Ⅱ)의 나프탈렌 유도체를 탈벤질화시켜 일반식(Ⅲ')의 화합물을 수득하고, 수득된 일반식(Ⅲ')의 화합물을 산화시킴으로써 수득된다.
방법 A의 제1단계 반응, 즉 일반식(Ⅱ)의 화합물로부터 일반식(Ⅲ)의 화합물을 제조하는반응은 공지의 접촉환원방법에 의한 탈벤질화반응이다. 이러한 목적을 위해 사용될 수 있는 수소화 촉매로는 백금 촉매(예를들면 백금 플레이트, 스폰지상 백금, 백금 블랙, 콜로이드상 백금, 산화백금, 백금와이어 등), 니켈 촉매(예를들면 환원 니켈, 산화니켈, 라니 닉켈 등), 팔라듐 촉매(예를들면 스폰지상 팔라듐, 팔라듐 블랙, 콜로이드상 팔라듐, 산화팔라듐, 탄소상 팔라듐, 탄소상 수산화팔라듐, 황산바륨상 팔라듐, 탄산바륨상 팔라듐 등) 등의 금속촉매가 있으며, 이중에서 팔라듐 촉매를 사용하는 것이 가장 바람직하다. 반응은 바람직하게는 용매의 존재하에서 수행하며, 이러한 목적을 위한 용매로 바람직하게는 에테르 용매, 예를들면 테트라하이드로푸란, 디에틸에테르, 아세토니트릴 등이 사용될 수 있으며, 특히 테트라하이드로푸란이 가장 바람직하게 사용된다.
반응은 일반적으로 대기압하에서 10 내지 24 시간 동안 수행하는 것이 바람직하다.
이러한 제1단계 반응에 의해 수득된 일반식(Ⅲ)의 2-(1-하이드록시알킬)-1,4-디알콕시-5,8-디하이드록시나프탈렌은 제2단계 반응에서 산화시켜 R2가 수소인 목적하는 일반식(Ⅰa)의 화합물을 제조한다. 제1단계 반응에서 생성된 일반식(Ⅲ')의 화합물은 불안정한 물질이므로 제조후에 즉시 제2단계 반응을 수행하는 것이 바람직하다. 제2단계 반응은 유리하게는 제1단계 반응의 반응액으로부터 생성된 일반식(Ⅲ')의 화합물을 분리하지 않고 그 반응용액을 여과하여 직접 다음 반응에 사용할 수 있으나, 필요에 따라 용매를 바꾸어 수행할 수도 있다.
제2단계 반응에서 사용할 수 있는 산화제로는 PbO2, MnO2, 납 테트라아세테이트, 세륨암모늄나이트레이트(CAN) 등이 언급될 수 있으나, 특히 납 테트라아세테이트 및 세륨암모늄나이트레이트가 가장 바람직하게 사용된다. 이러한 산화제는 일반식(Ⅱ)의 출발물질 1몰에 대해 1 내지 5몰, 바람직하게는 1 내지 1.5몰의 양으로 사용한다.
이렇게 하여 수득된 R2가 H인 일반식(Ⅰ)의 화합물, 즉 일반식(Ⅰa)의 화합물은 통상의 정체방법, 예를들면 재결정, 증류, 크로마토그라피 등의 방법에 의해 정제할 수 있다.
방법 A에 따라 합성된 R2가 H인 본 발명의 일반식(Ⅰ)의 화합물의 대표적인 예로는 다음과 같은 화합물이 있다: 6-(1-하이드록시에틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-하이드록시프로필)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-하이드록시부틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-하이드록시펜틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-하이드록시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-하이드록시-2급-펜틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-하이드록시헥실)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-하이드록시-5-메틸헥실)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-하이드록시헵틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-하이드록시옥틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-하이드록시노닐)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-하이드록시데실)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-하이드록시운데실)-5,8-디메톡시-1,4-나프토퀴논; 및 6-(1-하이드록시트리데실)-5,8-디메톡시-1,4-나프토퀴논;
[방법 B]
방법 B에 따르면 R2가 수소인 일반식(I)의 화합물, 즉 방법 A에 따라 수득될 수 있는 일반식(Ia)의 화합물을 아실화제와 반응시켜 R2가 아실 그룹을 나타내는 일반식(I)의 화합물, 즉 일반식(Ib)의 화합물을 제조할 수 있다.
방법 B에서 아실화제로는 일반식(Ib)의 화합물에서 목적하는 아실 그룹을 제공할 수 있는 통상적인 아실화제가 사용될 수 있으며, 바람직하게는 유기산 또는 그의 염 또는 반응성 유도체, 예를들면 산 할라이드, 산 무수물 등이 포함된다.
방법 B의 아실화반응은 일반적으로 반응에 악영향을 미치지 않는 용매 중에서 수행하는데, 이러한 목적으로 바람직하게 사용될 수 있는 용매로는 할로알칸 용매, 벤젠양 용매, 니트릴 용매, 아미드 용매, 에테르 용매 등, 예를들면 디클로로메탄, 디클로로에탄, 아세톤, 디옥산, 아세토니트릴, 클로로포름, 헥사메틸포스포르아미드, 테트라하이드로푸란, 에틸아세테이트, 디메틸설폭사이드, N,N-디메틸포름아미드, 피리딘 등의 용매, 또는 이들의 혼합물이 포함될 수 있다. 이들 중에서 특히 바람직한 것은 디클로로메탄과 같은 할로알칸 용매이며, 본 반응에서 용매는 무수물의 형태로 사용하는 것이 바람직하다.
아실화 반응은 또한 통상적인 축합제의 존재하에서 수행하는 것이 바람직하며, 이러한 목적으로 사용될 수 있는 축합제의 대표적인 예로는 N,N-디에틸카보디이미드, N,N'-디이소프로필카보디이미드, N,N'-디사이클로헥실카보디이미드, N-사이클로헥실-N'-모르폴리노에틸카보디이미드 등과 같은 카보디이미드 화합물이 언급될 수 있다. 본 발명의 방법 B에서 가장 바람직하게 사용될 수 있는 축합제는 N,N'-디사이클로헥실카보디이드이다. 또한 본 반응은 무기 또는 유기염기의 존재하에서 수행할 수도 있다. 바람직하게 사용될 수 있는 무기 또는 유기염기의 예로는 중탄산나트륨, 중탄산칼륨 등과 같은 알칼리 금속 중탄산염, 탄산나트륨, 탄산칼륨, 탄산마그네슘, 탄산칼슘 등과 같은 알칼리 금속 또는 알칼리 토금속 탄산염, 트리메틸아민, 트리에틸아민, N,N-디이소프로필-N-에틸아민 등과 같은 트리알킬아민, 피리딘, 피콜린, 4-디메틸아미노피리딘 등과 같은 피리딘 화합물 등이 있다. 특히 바람직하게 사용될 수 있는 염기는 4-디메틸아미노피리딘과 같은 피리딘 화합물이다.
본 발명이 방법 B의 아실화 반응을 수행하는 반응온도는 광범하게 변할 수 있으며, 일반적으로는 냉각 내지 가온하에서 수행한다.
이렇게 하여 수득된 R2가 아실 그룹인 일반식(I)의 화합물, 즉 일반식(Ib)의 화합물은 통상의 정제방법, 예를들면 재결정, 증류, 크로마토그라피 등이 방법에 의해 정제할 수 있다.
방법 B에 의해 제조된 R2가 아실 그룹인 일반식(I)의 화합물의 대표적인 예로는 다음과 같은 화합물이 있다: 6-(1-아세틸옥시에틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-프로파노일옥시에틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-부타노일옥시에틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-헥사노일옥시에틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-헵타노일옥시에틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-아세틸옥시프로필)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-프로파노일옥시프로필)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-부타노일옥시프로필)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-헥사노일옥시프로필)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-헵타노일옥시프로필)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-아세틸옥시펜틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-프로파노일옥시펜틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-부타노일옥시펜틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-헥사노일옥시펜틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-헵타노일옥시펜틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-아세틸옥시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-프로파노일옥시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-부타노일옥시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-헥사노일옥시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논; 6-[1-(트란스-1-펜테노일옥시)-4-메틸펜틸]-5,8-디메톡시-1,4-나프토퀴논; 6-[1-(트란스-2-펜테노일옥시)-4-메틸펜틸]-5,8-디메톡시-1,4-나프토퀴논; 6-1-(옥타노일옥시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논; 및 6-(1-데카노일옥시-4-메틸펜틸)-4-메틸펜틸]-5,8-디메톡시-1,4-나프토퀴논;
[방법 C]
본 발명의 방법 C에 따르면 일반식(Ⅲ)의 나프탈렌 유도체를 알킬화제와 반응시켜 일반식(Ⅳ)의 화합물을 수득하고, 이 화합물(Ⅳ)를 산화시킴으로써 R2가 알킬 그룹을 나타내는 일반식(I)의 화합물, 즉 일반식(Ic)의 화합물을 제조할 수 있다.
본 방법 C에서 우선 제1단계 반응으로 일반식 (Ⅲ)의 나프탈렌 유도체를 알킬화시켜 일반식(Ⅳ)의 화합물을 수득한다. 이 반응에서 알킬화제로는 일반식 (I) 화합물의 R2에 목적하는 알킬 그룹을 도입시킬 수 있는 알킬화제이면 어느 것이나 사용될 수 있으며, 일반적으로 요오도알칸, 브로모알칸 또는 클로로알칸 등의 할로알칸이 사용된다. 알킬화제는 일반식 (Ⅲ) 화합물의 몰당 1 내지 5몰, 바람직하게는 1 내지 2몰의 비로 사용한다.
제1단계의 알킬화반응은 바람직하게는 염기의 존재하에서 수행할 수 있으며, 이러한 목적으로 사용될 수 있는 염기는 수소화나트륨, 수소화칼륨 등의 알칼리 금속 수소화물, 나트륨아미드, 칼륨아미드 등의 알칼리 금속 아미드와 같은 무기염기이다.
본 반응을 수행하는 반응온도는 광범하게 변화할 수 있으며, 일반적으로는 실온내지 가온하에서 수행한다.
이러한 제1단계 반응에 의해 수득된 일반식(Ⅳ)의 화합물은 제2단계 반응에서 산화시켜 목적하는 일반식(Ic)의 화합물을 제조한다. 제2단계 반응에서 사용할 수 있는 산화제로는 PbO2, MnP2, 납 테트라아세테이트, 세륨암모늄나이트레이트(CAN) 등이 언급될 수 있으나, 특히 납 테트라아세테이트 및 세륨암모늄나이트레이트가 가장 바람직하게 사용된다. 이러한 산화제는 일반식(Ⅳ)의 화합물 1몰에 대해 1 내지 5몰, 바람직하게는 1 내지 1.5몰의 비로 사용한다.
이렇게 하여 수득된 R2가 알킬 그룹을 나타내는 일반식(I)의 화합물, 즉 일반식(Ic)의 화합물은 통상의 정제방법, 예를들면 재결정, 증류, 크로마토그라피 등의 방법에 의해 정제할 수 있다.
방법 C에 의해 제조될 수 있는 R2가 알킬 그룹인 일반식(I) 화합물의 대표적인 예로는 다음과 같은 화합물이 언급될 수 있다: 6-(1-메톡시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-에톡시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-이소펜틸옥시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-펜틸옥시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-헵틸옥시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논; 6-(1-도데실옥시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논;
본 발명에 따르는 일반식(I)의 화합물은 강력한 항암효과를 나타낸다. 특히 본 발명의 일반식(I)의 화합물은 후술하는 실허미예에 입증되는 바와 같이 L1210, K562, A549 세포등의 암세포에 대하여 강력한 세포독성을 나타내고 S-180 암에 걸린 마우스에서 현저한 수명연장효과를 나타낸다.
따라서, 본 발명은 또한 약제학적으로 하용되는 담체와 함께 활성성분으로서 일반식(I)의 화합물을 함유하는 항암제 조성물을 제공하는 것을 목적으로 한다.
본 발명에 따른 조성물은 통상적인 약제학적 방법에 따라 통상적인 제제, 예를들면 정제, 캅셀제, 트로치제, 액제, 현탁제 등의 경구투여용 제제, 주사용 용액 또는 현탁액, 또는 주사시에 주사용증류수로 재조제하여 사용할 수 있는 즉시 사용형 주사용 건조분말 등의 형태인 주사용 제제, 연고제, 크림제, 액제 등의 국소적용형 제제 등의 다양한 제제로 제형화시킬 수 있다.
본 발명의 조성물에서 사용될 수 있는 담체는 약제학적 분야에서 통상적인 것으로, 예를들어 경구투여용 제제의 경우에는 결합제, 활탁제, 붕해제, 부형제, 가용화제, 분산제, 안정화제, 현탁화제, 색소, 향료 등이 있으며, 주사제의 경우에는 보존제, 무통화제, 가용화제, 안정화제 등이 있고, 국소투여용 제제이 경우에는 기제, 부형제, 윤활제, 보존제 등이 있다. 이렇게 제조된 약제학적 제제는 경구적으로 투여하거나, 비경구적으로, 예를들면 정맥내, 피하, 복강내 투여 또는 국소적용할 수 있다. 또한 경구투여시에 약제가 위산에 분해되는 것을 방지하기 위하여 제산제를 병용하거나, 정제등의 경구투여용 고형제제를 장용피로 피복된 제제로 제형화하여 투여할 수도 있다.
본 발명에 따른 일반식(I) 화합물의 인체에 대한 투여량은 체내에서의 활성성분의 흡수도, 불활성화율 및 배설속도, 화자의 연령, 성별 및 상태, 치료할 암의 종류 및 중증도 등에 따라 적절히 선택되나, 일반적으로는 성인에게 1일에 10내지 600mg, 바람직하게는 50 내지 400mg의 양이 투여되도록 한다. 물론 매우 중증의 암이나 특정한 종류의 암인 경우에는 약제의 투여를 감시하거나 관찰하는 전문가의 판단과 개인의 요구에 따라 전문화된 투약법을 사용하거나, 일정시간 간격으로 수회, 바람직하게는 2 내지 4회 분할 투여할 수 있다.
본 발명은 이하 실시예에 의해 더욱 상세히 설명되나 본 발명이 이들에 의해 어떤 식으로든 제한되는 것은 아니다. 이하에서 NMR 측정시에 사용되는 용매는1H-NMR의 경우에는 CDCl3,13C-NMR의 경우에는 CHCl3였다.
[실시예 1]
[6-(1-하이드록시에틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
2-(1-하이드록시에틸)-1,4-디메톡시-5,8-디벤질옥시나프탈렌 1g(2.05 밀리몰)을 무수 테트라하이드로푸란 20㎖에 용해시킨 후에 5%-PD/C 0.05g을 가하여 24시간 동안 대기압에서 수소화시켰다. 반응혼합물을 여과하여 감압하에서 농축시켰다. 잔류물을 즉시 아세토니트릴 20㎖에 용해시킨 후 세륨암모늄나이트 레이트(CAN) 1.12g(2.05 밀리몰)을 가해 10분 동안 교반하였다. 반응혼합물에 증류수 200㎖를 가하여 교반한 다음 디클로로메탄 200㎖씩으로 2회 추출하고, 추출용액에 무수 황산나트륨 10g을 가하고 교반한 다음 여과하였다. 여액을 감압하여서 농축하여 적갈색의 반응생성물을 얻었다. 이 물질을 헥산:에틸아세테이트(2:1) 5㎖에 용해시킨 후 1.5×15cm 크기의 실리카겔컬럼에 가하고 동일 용매계를 용출제로 사용하여 크로마토그라피하였다. 적자색 밴드의 용출부분을 모은 후에 농축하여 적색 유상물질로서 표제화합물 490mg을 수득하였다.
[실시예 2]
[6-(1-하이드록시프로필)-5,8-디메톡시-1,4-나프토퀴논의 합성]
2-(1-하이드록시프로필)-1,4-디메톡시-5,8-디벤질옥시나프탈렌을 출발물질로 사용하여 실시예 1과 동일한 방법에 따라 표제화합물 460mg을 수득하였다.
[실시예 3]
[6-(1-하이드록시부틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
2-(1-하이드록시부틸)-1,4-디메톡시-5,8-디벤질옥시나프탈렌을 출발물질로 사용하여 실시예 1과 동일한 방법에 따라 표제화합물 450mg을 수득하였다.
[실시예 4]
[6-(1-하이드록시펜틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
2-(1-하이드록시펜틸)-1,4-디메톡시-5,8-디벤질옥시나프탈렌을 출발물질로 사용하여 실시예 1과 동일한 방법에 따라 표재화합물을 수득하였다.
[실시예 5]
[6-(1-하이드록시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
2-(1-하이드록시-4-메틸펜틸)-1,4-디메톡시-5,8-디벤질옥시나프탈렌을 출발물질로 사용하여 실시예 1과 동일한 방법에 따라 적자색 유상물질로서 표제화합물을 수득하였다.
[실시예 6]
[6-(1-하이드록시헥실)-5,8-디메톡시-1,4-나프토퀴논의 합성]
마그네슘 0.336g(14.01 밀리몰)과 1-브로모헵탄 1.33㎖(14.01 밀리몰)를 무수 테트라하이드로푸란 30㎖에 가하고 상온에서 2시간 동안 교반하여 그리나드시약을 제조하였다. 여기에 1,4-디메톡시-3포르밀-5,8-디벤질옥시나프탈렌 2g(4.7밀리몰)을 무수 테트라하이드로푸란에 용해시킨 용액을 20분에 걸쳐 적가한후 상온에서 3시간 동안 더 교반하였다. 반응혼합물에 10% 암모늄클로라이드 80㎖를 가하고 디클로로메탄 용매로 추출한 다음 무수 황산나트륨으로 건조시키고 감압하에 농축하여 생성되는 조생성물을 n-헥산:에틸아세테이트=3:1의 혼합용매를 용출제로 사용하는 실리카겔(1.5×15cm) 칼럼에 적용시켜 미황색 유상물질로 표제화합물 1.9g을 수득하였다.
[실시예 7]
[6-(1-하이드록시옥틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
2-(1-하이드록시옥틸)-1,4-디메톡시-5,8-디벤질옥시나프탈렌 1g(2.05 밀리몰)을 무수 테트라하이드로푸란 20㎖에 용해시킨 후, 여기에 5%-Pb/C 0.05g을 가하고 24시간 동안 대기압하여서 수소화시켰다. 반응혼합물을 여과하여 감압하여 농축시키고, 잔류물을 즉시 아세토니트릴 20㎖에 용해시킨 후에 CAN 1.12g(2.05 밀리몰)을 가해 10분 동안 교반하였다. 반응물질을 디클로로메탄으로 추출하여 무수 황산나트륨으로 건조시키고 감압하에 농축하여 생성되는 조생성물을 n-헥산:에틸아세테이트=2:1의 혼합용매를 용출제로 사용하여 실리카겔(1.5×15cm)커럼에 적용시켜 항적색 유상물로 표제화합물 480mg을 수득하였다,
[실시예 8]
[6-(1-하이드록시데실)-5,8-디메톡시-1,4-나프토퀴논의 합성]
2-(1-하이드록시데실)-1,4-디메톡시-5,8-디벤질옥시나프탈렌을 출발물질로 사용하여 실시예 7과 동일한 방법에 따라 표제화합물 470mg을 수득하였다.
[실시예 9]
[6-(1-하이드록시트리데실)-5,8-디메톡시-1,4-나프토퀴논의 합성]
2-(1-하이드록시트리데실)-1,4-디메톡시-5,8-디벤질옥시나프탈렌을 출발물질로 사용하여 실시예 7과 동일한 방법에 따라 표제화합물 470mg을 수득하였다.
[실시예 10]
[6-(1-아세톡시에틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
6-(1-하이드록시에틸)-5,8-디메톡시-1,4-나프토퀴논 304mg(1 밀리몰), 4-디메틸아미노피리딘 61.11mg(0.5 밀리몰), N,N'-디사이클로헥실카보디이미드 206mg(1 밀리몰)을 2 두 플라스크에 넣고 무수 디클로로메탄 8㎖에 용해시켰다. 냉욕하에 질소가스의 존재하에서 아세트산 60.3mg(1 밀리몰)을 가하여 30분간 교반한 후 상온에서 3시간 동안 더 교반하였다. 반응혼합물에 헥산 30㎖를 가하고 상온에서 10분동안 교반한 후에 방치하여 생성되는 불용성 물질을 여과하여 제거하였다. 여액을 합하고, 여기에 무수 황산마그네슘 10g을 가하고 교반한 후에 여과하였다. 여액을 감압하에 농축시켜 조생성물을 수득하였다. 수득된 조생성물을 헥산:에틸아세테이트(1:3) 5㎖에 용해시킨 다음, 1.5×15cm 크기의 실리카겔 칼럼에 가하고 동일 용매를 용출제로 사용하여 크로마토그라피하였다. 적색 밴드로부터 얻은 분획을 모은 후에 농축하여 적색 유상물질로 표제화합물을 수득하였다.
[실시예 11]
[6-(1-프로파노일옥시에틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시에틸)-5,8-디메톡시-1,4-나프토퀴논을 프로피온산과 반응시켜 적색 유상물질로 표제화합물을 수득하였다.
[실시예 12]
[6-(1-헥사노일옥시에틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시에틸)-5,8-디메톡시-1,4-나프토퀴논을 부타노인산과 반응시켜 적색 유상물질로 표제화합물을 수득하였다.
[실시예 13]
[6-(1-헥사노일옥시에틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시에틸)-5,8-디메톡시-1,4-나프토퀴논을 헥사노인산과 반응시켜 적색 유상물질로 표제화합물을 수득하였다.
[실시예 14]
[6-(1-아세톡시프로필)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시프로필)-5,8-디메톡시-1,4-나프토퀴논을 아세트산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 15]
[6-(1-프로파노일옥시프로필)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시프로필)-5,8-디메톡시-1,4-나프토퀴논을 프로피온산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 16]
[6-(1-부타노일옥시프로필)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시프로필)-5,8-디메톡시-1,4-나프토퀴논을 부타노인산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 17]
[6-(1-헥사노일옥시프로필)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시프로필)-5,8-디메톡시-1,4-나프토퀴논을 헥사노인산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 18]
[6-(1-헵타노일옥시프로필)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시프로필)-5,8-디메톡시-1,4-나프토퀴논을 헵타노인산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 19]
[6-(1-아세톡시부틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시부틸)-5,8-디메톡시-1,4-나프토퀴논을 아세트산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 20]
[6-(1-프로파노일옥시부틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시부틸)-5,8-디메톡시-1,4-나프토퀴논을 프로피온산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 21]
[6-(1-부타노일옥시부틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시부틸)-5,8-디메톡시-1,4-나프토퀴논을 부타노인산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 22]
[6-(1-헥사노일옥시부틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시부틸)-5,8-디메톡시-1,4-나프토퀴논을 헥사노인산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 23]
[6-(1-헵타노일옥시부틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시부틸)-5,8-디메톡시-1,4-나프토퀴논을 헵타노인산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 24]
[6-(1-아세톡시펜틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시펜틸)-5,8-디메톡시-1,4-나프토퀴논을 아세트산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 25]
[6-(1-프로파노일옥시펜틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시펜틸)-5,8-디메톡시-1,4-나프토퀴논을 프로피온산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 26]
[6-(1-부타노일옥시펜틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시펜틸)-5,8-디메톡시-1,4-나프토퀴논을 부타노인산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 27]
[6-(1-헥사노일옥시펜틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시펜틸)-5,8-디메톡시-1,4-나프토퀴논을 헥사노인산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 28]
[6-(1-헵타노일옥펜틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시펜틸)-5,8-디메톡시-1,4-나프토퀴논을 부타노인산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 29]
[6-(1-아세톡시헥실)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시헥실)-5,8-디메톡시-1,4-나프토퀴논을 아세트산과 반응시켜 표제화합물을 수득하였다.
[실시예 30]
[6-(1-프로파노일옥시헥실)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시헥실)-5,8-디메톡시-1,4-나프토퀴논을 프로피온산과 반응시켜 황색 유상 물질로 표제화합물을 수득하였다.
[실시예 31]
[6-(1-부타노일옥시헥실)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시헥실)-5,8-디메톡시-1,4-나프토퀴논을 부타노인산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 32]
[6-(1-헥사노일옥시헥실)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시헥실)-5,8-디메톡시-1,4-나프토퀴논을 헥사노인산과 반응시켜 황색 유상뮬질로 표제화합물을 수득하였다.
[실시예 33]
[6-(1-헵타노일옥시헥실)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시헥실)-5,8-디메톡시-1,4-나프토퀴논을 헵타노인산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 34]
[6-(1-아세톡시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논을 아세트산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 35]
[6-(1-부타노일옥시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논을 부타노인산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 36]
[6-(1-헥사노일옥시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논을 헥사노인산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 37]
[6-[1-(트란스-2-펜테노일옥시)-4-메틸펜틸]-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논을 트란스-2-펜테노산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 38]
[6-[1-(트란스-3-헥사노일옥시)-4-메틸펜틸]-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시-4-메틸펜 틸)-5,8-디메톡시-1,4-나프토퀴논을 트란스-3-헥세노인산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 39]
[6-(1-옥타노일옥시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
실시예 10과 동일한 방법에 따라 6-(1-하이드록시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논을 옥타노인산과 반응시켜 황색 유상물질로 표제화합물을 수득하였다.
[실시예 40]
[2-(1-메톡시-4-메틸펜틸)-1,4,5,8-데트라메톡시나프탈렌의 합성]
2-(1-하이드록시-4-메틸펜틸)-1,4,5,8-테트라메톡시나프탈렌 390mg(1.12 밀리몰)과 수소화나트륨(오일중 55%, 234mg, 5.6 밀리몰)을 무수 테트라하이드로푸란 10㎖에 용해시키고 질소가스의 존재하에서 요오드메탄 350㎕(5.6 밀리몰)을 가하여 3시간 동안 환류시켰다. 반응혼합물에 빙수 20㎖를 가하고 디클로로메탄으로 추출하여, 무수 황산마그네슘으로 건조시키고, 감압하에 농축시켰다. 잔류물을 실리카겔 칼럼으로 정제하여 미황색 유상물질로 표제화합물 350mg을 수득하였다.
[실시예 41]
[2-(1-에톡시-4-메틸펜틸)-1,4,5,8-테트라메톡시나프탈렌의 합성]
실시예 40과 동일한 방법에 따라 2-(1-하이드록시-4-메틸펜틸)-1,4,5,8-테트라메톡시나프탈렌을 요오도에탄과 반응시켜 미황색 유상물질로 표제화합물을 수득하였다.
[실시예 42]
[2-(1-이소펜톡시-4-메틸펜틸)-1,4,5,8-테트라메톡시나프탈렌의 합성]
실시예 40과 동일한 방법에 따라 2-(1-하이드록시-4-메틸펜틸)-1,4,5,8-테트라메톡시나프탈렌을 이소펜틸브로마이드와 반응시켜 미황색 유상물질로 표제화합물을 수득하였다.
[실시예 43]
[2-(1-펜톡시-4-메틸펜틸)-1,4,5,8-테트라메톡시나프탈란의 합성]
실시예 40과 동일한 방법에 따라 2-(1-하이드록시-4-메틸펜틸)-1,4,5,8-테트라메톡시나프탈렌을 펜틸브로마이드와 반응시켜 미황색 유상물질로 표제화합물을 수득하였다.
[실시예 44]
[2-(1-헵틸옥시-4-메틸펜틸)-1,4,5,8-테트라메톡시나프탈렌의 합성]
실시예 40과 동일한 방법에 따라 2-(1-하이드록시-4-메틸펜틸)-1,4,5,8-테트라메톡시나프탈렌을 헵틸브로마이드와 반응시켜 미황색 유상물질로 표제화합물을 수득하였다.
[실시예 45]
[2-(1-도데실옥시-4-메틸펜틸)-1,4,5,8-테트라메톡시나프탈렌의 합성]
실시예 40과 동일한 방법에 따라 2-(1-하이드록시-4-메틸펜틸)-1,4,5,8-테트라메톡시나프탈렌을 도데실브로마이드와 반응시켜 미황색 유상물질로 표제화합물을 수득하였다.
[실시예 46]
[6-(1-메톡시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
6-(1-메톡시-4-메틸펜틸)-1,4,5,8-테트라메톡시나프탈렌 260mg을 아세토니트릴5㎖에 용해히시고 냉욕상에서 세륨암모늄나이트레이트(Ⅳ) 983mg(1.79 밀리몰)을 증류수 5㎖에 용해시킨 용액을 30분간에 걸쳐 적가한 후 상온에서 2시간동안 교반하였다. 반응혼합물에 증류수 10㎖를 가하고 디클로로메탄 용매로 추출하고, 감압하에서 농축시킨 후에 잔류물을 실리카겔 칼럼에 적용시켜 정제하여 황색 유상물질로 표제화합물 85mg을 수득하였다.
[실시예 47]
[6-(1-에톡시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
6-(1-에톡시-4-메틸펜틸)-1,4,5,8-테트라메톡시나프탈렌을 출발물질로 사용하여 실시예 46과 동일한 방법에 따라 유상물질로 표제화합물을 수득하였다.
[실시예 48]
[6-[1-(3-메틸부톡시)-4-메틸펜틸]-5,8-디메톡시-1,4-나프토퀴논의 합성]
6-[1-(3-메틸부톡시)-4-4메틸펜틸]-1,4,5,8-테트라메톡시나프탈렌을 출발물질로 사용하여 실시예 46과 동일한 방법에 따라 황색 유상물질로 표제화합물을 수득하였다.
[실시예 49]
[6-(1-펜톡시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
6-(1-펜톡시-4-메틸펜틸)-1,4,5,8-테트라메톡시나프탈렌을 출발물질로 사용하여 실시예 46과 동일한 방법에 따라 황색 유상물질로 표제화합물을 수득하였다.
[실시예 50]
[6-(1-헵트옥시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
6-(1-헵트옥시-4-메틸펜틸)-1,4,5,8-테트라메톡시나프탈렌을 출발물질로 사용하여 실시예 46과 동일한 방법에 따라 황색 유상물질로 표제화합물을 수득하였다.
[실시예 51]
[6-(1-n-도데실옥시-4-메틸펜틸)-5,8-디메톡시-1,4-나프토퀴논의 합성]
6-(1-n-도데실옥시-4-메틸펜틸)-1,4,5,8-테트라메톡시나프탈렌을 출발물질로 사용하여 실시예 46과 동일한 방법에 따라 황색 유상물질로 표제화합물을 수득하였다.
[실험 1]
[세포독성 실험]
[A. L1210 세포에 대한 세포독성 실험]
세포독성 실험에 사용되는 대수기(logarithmic phase)에 도달한 L1210 세포를 얻기 위하여 실험 24시간 전에 36 내지 37℃로 가온한 피셔(Fisher) 배지를 넣은 회전마개가 달린 250㎖ 에를렌메이어(Erlenmeyer) 플라스크에 L1210 세포를 2-3×105세포/㎖의 농독 되도록 조정한 후에 배양하였다. 이렇게 배양한 배양액의 농도는 약 0.8-1.0×106세포/㎖의 농도가 되도록 L1210 세포현탁액을 만들었다. 시료는 실험하기 바로 전에 일정 농도의 에탄올 또는 디메틸설폭사이드에 용해시켰고, 이 시료용액 0.1㎖에 신선한 배지 0.9㎖를 가해 10배 희석하였다. 희석마개가 달린 시험관에 시료 희석액을 각각 100, 50, 25㎖의 양으로 가하고 상기에서 조제한 세포현탁액(5×104세포/㎖)을 5㎖씩 넣어 실험군으로 하였고, 대조군 시험관(=시료수)에는 5㎖의 세포현탁액만을 넣어 37℃의 CO2인큐베이터에서 48시간 동안 배양한 후, 혈구계(haemacytometer)를 사용하여 세포수를 계산하였다.
[B. K-562 세포에 대한 세포독설실험]
상기의 L1210 세포에 대한 세포독성실험과 마찬가지로 시료를 일정농도가 되도록 에탄올 또는 디메틸설폭사이드에 용해시키고, 시료용액 0.1㎖와 신선한 배지 0.9㎖를 넣어 희석액을 만들었다. 이 시료 희석액을 각각 100, 50, 250㎕씩 마이크로피펫으로 취하여 각각 2개씩의 회전마개가 달린 시험관에 가하였다. 실험군 배양시험간 및 대조군 시험관(=시료수)에 실험 24시간 전에 배양하여 활성화시킨 K-562 세포를 1×105세포/㎖로 희석하여 5㎖의 양으로 가한 후에 CO2인큐베이터에서 37℃에서 48시간 동안 배양한 후에 혈구계를 사용하여 세포수를 계산하였다.
ED50값은 대조군의 50% 수준으로 암세포의 성장을 억제하는 시료의 농도(㎕/㎖)로 주어지며, 미국국립암연구소(NIC:National Cancer Institute, USA) 매뉴얼의 방법에 의해 결정하였다. 실험군의 각 농도에 대한 성장률 Y(%)는 다음과 같이 계산하였다.
이때 T는 48시간 배양후 실험군의 각 농도에 대한 ㎖당 평균세포수, C는 48시간 배양후 대조군의 ㎖당 평균세포수, Co는 배양시작시 대조군의 ㎖당 평균세포수이다. 각 농도에서의 Y(%)값 및 각 농도의 로그(log)값을 구하여 도식화하여 다음과 같은 식에 의해 회귀선을 구하였다. 이때 각 농도에 대하여 계산한 Y(%) 값이 모두 55%보다 크거나, 45%보다 작으면 재실험을 실시하였다.
회귀선 Y=A+BX를 구하기 위해 다음식을 이용하여 A 및 B를 구한다.
이때 N은 선택된 포이트수로서 2보다는 크고 시료농도의 수보다는 작거나 같으며, Xi는 log(농도)i이고, Yi는 (농도)i에서의 성장률이다. 이 회귀선의 기울기와 절편으로부터 ED50값을 계산한다.
[C. A549 암세포에 대한 세포독성실험]
A549 암세포에 대한 세포독성은 1989년 미국 국립암연구소에서 약물의 시험관내 항암활성도를 측정하기 위하여 개발된 설포로다민(sulforhodamin) B(SRB)측정법을 사용하였다. 계대배양중인 세포들을 실험에 사용하기 위하여 트립신-CDTA용액으로 부착면으로부터 분리시키고, 24-웰의 평면바닥의 마이크로 플레이트(Falcon)에 웨당 세포수가 8×104(A549)개가 되도록 분주하였다. 분주된 세포들은 CO2인큐베이터내에서 24시간 배양하여 바닥면에 부착시킨 후, 아스피레이터로 배지를 제거하고 배지에 6농도의 로그-용량으로 희석된 화합물 용액들을 세포가 들어 있는 웰에 각각 100㎕씩 3배수로 넣어 주고 48시간 동안 더 배양하였다. 또한 이렇게 희석한 화합물 용액들은 세포에 가하기 전에 0.22㎕필터로 여과하여 실험의 무균상태를 유지하였다. 약물과 함께 48시간 동안 배양한 후에 각 웰의 배지를 제거하고 10% 트리클로아세트산(TCA)을 웰당 100㎕씩 가하여 4℃에서 1시간 동안 방치하여 세포들을 플레이트의 바닥면에 고정시켰다. 세포의 고정이 끝난 후에 플레이트를 물로 5 내지 6회 세척하여 남아 있는 TCA용액을 완전히 제거하고 실온에서 남은 물기가 없도록 건조시켰다. 완전히 건조된 플레이트는 웰당 250㎕의 1% 아세트산 용액에 0.4% SRB를 용해시킨 염색용액을 가하여 30분 동안 세포를 염색하고 다시 1% 아세트산 용액으로 5 내지 6회 세척하에 세포에 결합하지 않은 SRB를 제거하였다. 이렇게 염색된 세포 플레이트들은 다시 실온에서 건조시킨 후에 대조군의 O.D. 값이 520nm에서 0.8-1.0Å(흡광도)값이 되도록 일정량의 10mM트리스로서 염색액을 잘 녹여 낸 다음에 520nm에서 0.8-1.0Å(흡광도)값을 구하여 ED50값을 얻었다. 암세포들에 대한 약물의 효과를 계산하기 위하여 세포수이 측정은 약물을 가할 때에 세포수(Tz), 약물이 들어 있지 않은 배지를 가하여 48시간 배양하였을 때의 세포수(C) 및 각 농도의 약물과 함께 48시간 배양했을 때의 세포수(T)등을 측정하였다.
다음 수식에 의하여 화합물들의 항암활성도를 측정하였다. 즉 Tz≥T인 경우에는 (T-Tz)/(C-Tz)×100의 수식으로 계산하였고, Tz≤T인 경우에는 (T-Tz)/TzX100의 수식으로 계산하였으며, 이렇게 계산된 값들로부터 로투스(LOTUS)프로그램의 데이터 희귀기능을 이용하여 암세포의 성장을 50% 억제하는 약물의 농도인 IC50값을 계산하여 각 약물의 세포독성 정도를 비교하였다.
실험1의 결과는 하기 표 1에 종합적으로 나타내었다. 상기의 실험에서 비교화합물로는 기존의 우수한 항암제로 알려져 있는 5-플루오로우라실을 이용하였다.
상기 실험결과로부터 알 수 있는 바와 같이 본 발명의 일반식(Ⅰ)의 나프토퀴논 유도체는 L1210, K562 및 A549와 같은 암세포에 대하여 기존에 우수한 항암제로서 알려져 있는 5-플루오로우라실과 비교하여 동등 내지 더 우수한 강력한 세포독성을 나타내므로 임상적으로 유용한 항암제로서 이용할 수 있음이 명백하다.
[실험 2]
[S-180 암에 걸린 ICR마우스의 수명연장효과]
실험에 사용한 마우스 종은 체중 20 내지 25g의 건강한 수컷 ICR마우스이며, 23 내지 24℃로 온도조절이 된 곳에서 물과 먹이를 제한없이 공급하여 사육하고 사료는 항생제 무첨가 마우스용 사료를 사용하였다.
ICR 마우스의 복강내에서 7일간 배양한 S-180 세포를 복수와 함께 취하여 멸균된 냉 생리식염수를 가한 후 400xg로 2분 동안 원심분리하여 세포침전물을 분리하였다. 분리된 세푀침전물을 다시 냉 멸균생리식염수에 부유시키고 원심분리하여 상등액을 제거한 후 혼재된 적혈구를 배제하고 S-180 세포만을 취하였다. 동일한 방법으로 3회 세척한 후 혈구계로 세어 10 세포/㎖농도로 세포부유액을 만들고 이 부유액을 0.1㎖씩 복강이식하였다.
이식 24시간 후에 각군을 8내지 9마리로 분류하였다. 시료는 계산된 양의 디메틸설폭사이드에 용해시켜 보존용액을 만든 후에 4℃에서 보존하며, 보존용액 30㎕를 취하여 생리식염수 1.5㎖와 혼합시키고, 실험동물의 복강내에 0.1㎖씩 주사하였으며, 대조군에는 2% 디메틸설폭사이드-생리식염수 용액을 주사하였다. 주사일정은 암세포 이식후부터 매일 0.1㎖씩 2 내지 4일동안 투여한 후에 1일 휴약하는 방식으로 총 7 내지 8회 복강내 주사하였다. 대조 1군이 사망하는 날짜(대략 18 내지 20일)을 기준으로 하여 생존비를 계산하였다. 생존비(T/C, %)는 미국국립암연구소 프로토콜에 언급된 식에 따라 다음과 같이 계산하였다.
이렇게 하여 수득된 결과는 다음 표 2에 기재하였다.
상기 시험의 결과로부터 본 발명의 화합물은 암세포에 대한 강력한 세포독성을 나타낼 뿐만이 아니라 S-180 육종암에 걸린 마우스에게서 탁월한 수명연장효과를 나타내므로 임상적으로 우수한 항암제로 사용할 수 있음이 명백하다.

Claims (7)

  1. 하기 일반식(Ⅰ)의 6-치환-5,8-디옥시-1,4-나프토퀴논 유도체:
    상기식에서, R1은 알킬을 나타내고, R2는 수소, 알킬 또는 아실을 나타내며, R3는 수소 또는 알킬을 나타낸다.
  2. 제1항에 있어서, R1이 C1-C5알킬이고, R2가 수소 C1-C5알킬 또는 C2-C10알카노일이며, R3이 C1-C3알킬인 일반식(Ⅰ)의 화합물.
  3. 제2항에 있어서, R1이 이소펜틸이고, R2가 C1-C5알킬 또는 C2-C6알카 노일이며, R3이 메틸인 일반식(Ⅰ)의 화합물.
  4. 하기 일반식(Ⅲ)의 나프탈렌 유도체를 탈벤질화시켜 일반식(Ⅲ')의 화합물을 수득하고, 수득된 일반식(Ⅲ')의 화합물을 산화시킴을 특징으로 하는 하기 일반식(Ia)의 화합물을 제조하는 방법.
    상기 각 식에서, R1은 알킬을 나타내고, R3는 수소 또는 알킬을 나타내고, Bz는 벤질 그룹을 의미한다.
  5. 활성성분으로서 제1항에 따르는 일반식(Ⅰ)의 6-치환-5,8-디옥시-1,4-나프토퀴논 유도체와 약제학적으로 허용되는 담체를 함유하는 항암제 조성물.
  6. 하기 일반식(Ia)의 화합물을 아실화제와 반응시킴을 특징으로 하는 하기 일반식(Ⅰb)의 화합물을 제조하는 방법.
    상기 각 식에서, R1은 알킬을 나타내고, R3은 수소 또는 알킬을 나타내며, R2a는 아실을 나타낸다.
  7. 하기 일반식(Ⅲ)의 나프탈렌 유도체를 알킬화제와 반응시켜 일반식(Ⅳ)의 화합물을 수득하고, 수득된 일반식(Ⅳ)의 화합물을 산화시킴을 특징으로 하는 하기 일반식 (Ic)의 화합물을 제조하는 방법.
    상기 각 식에서, R1은 알킬을 나타내고, R3는 수소 또는 알킬을 나타내고, R2b는 알킬을 나타낸다.
KR1019950021956A 1995-07-24 1995-07-24 6-치환-5,8-디옥시-1,4-나프토퀴논 유도체, 그의 제조방법 및 그의 항암제로서의 용도 KR0180791B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019950021956A KR0180791B1 (ko) 1995-07-24 1995-07-24 6-치환-5,8-디옥시-1,4-나프토퀴논 유도체, 그의 제조방법 및 그의 항암제로서의 용도
PCT/KR1996/000113 WO1997003940A1 (en) 1995-07-24 1996-07-23 Novel 6-substituted-5,8-dioxy-1,4-naphthoquinone derivatives
AU65326/96A AU6532696A (en) 1995-07-24 1996-07-23 Novel 6-substituted-5,8-dioxy-1,4-naphthoquinone derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950021956A KR0180791B1 (ko) 1995-07-24 1995-07-24 6-치환-5,8-디옥시-1,4-나프토퀴논 유도체, 그의 제조방법 및 그의 항암제로서의 용도

Publications (2)

Publication Number Publication Date
KR970006264A KR970006264A (ko) 1997-02-19
KR0180791B1 true KR0180791B1 (ko) 1999-05-15

Family

ID=19421470

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950021956A KR0180791B1 (ko) 1995-07-24 1995-07-24 6-치환-5,8-디옥시-1,4-나프토퀴논 유도체, 그의 제조방법 및 그의 항암제로서의 용도

Country Status (3)

Country Link
KR (1) KR0180791B1 (ko)
AU (1) AU6532696A (ko)
WO (1) WO1997003940A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040198716A1 (en) * 2001-02-05 2004-10-07 Dorit Arad Cysteine protease inhimbitors
GB0117326D0 (en) * 2001-07-16 2001-09-05 Univ Aberdeen Napthoquinone-type inhibitors of protein aggregation
CN100354253C (zh) * 2004-04-23 2007-12-12 中国科学院上海药物研究所 一类5,8-二氢萘醌衍生物、其制备方法和用途
CN101139287B (zh) * 2007-10-11 2010-05-19 上海交通大学 紫草素二甲醚衍生物的合成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175449A (ja) * 1983-03-26 1984-10-04 Kyushu Kogyo Daigaku シコニンの製造法
JPS61143334A (ja) * 1984-12-18 1986-07-01 Mitsui Petrochem Ind Ltd 5,8−ジヒドロキシ−1,4−ナフトキノン誘導体
JPS62289543A (ja) * 1986-06-09 1987-12-16 Nichirei:Kk 抗腫瘍剤およびその製造法

Also Published As

Publication number Publication date
AU6532696A (en) 1997-02-18
KR970006264A (ko) 1997-02-19
WO1997003940A1 (en) 1997-02-06

Similar Documents

Publication Publication Date Title
US5696276A (en) Process for preparing 5,8-dihydroxynaphthoquinone derivatives, novel 5,8-dihydroxynaphthoquinone derivatives and their use as anticancer agent
KR100379991B1 (ko) 콜히친유도체,그의용도및그를함유한제제
MXPA97003634A (en) Derivatives of antibacterial benzymidazole
US5206230A (en) Fluorine-containing vitamin D3 analogues and pharmaceutical composition containing the same
FI78677C (fi) Foerfarande foer framstaellning av terapeutiskt anvaendbara naftokinoner, och vid foerfarandet anvaendbara mellanprodukter.
JPH11513040A (ja) モルホリニルアントラサイクリン誘導体
EP0185740A1 (en) GLUCOSIDE DERIVATIVES OF EPIPODOPHYLLOTOXINQUINONE, PROCESS FOR PRODUCTION AND USE.
KR0180791B1 (ko) 6-치환-5,8-디옥시-1,4-나프토퀴논 유도체, 그의 제조방법 및 그의 항암제로서의 용도
US5166208A (en) Fredericamycin A derivatives
US4835158A (en) Isoquinoline derivatives
KR19980044054A (ko) 신규한 트리테르펜 글리코사이드 화합물, 그의 제조방법 및 그를 함유하는 항암제 조성물
KR900006235B1 (ko) 4'-데스히드록시에피포도필로톡신 배당체 및 그 합성방법 및 그 용도
EP3699184B1 (en) Triptolide derivative and preparation method therefor and use thereof
US5525611A (en) Lavendamycin analogs and methods of making and using them
EP0104631B1 (en) Clavulone derivatives, process for preparing the same, and use of said compounds
WO2000008495A2 (en) Antiproliferative naphthoquinones, derivatives, compositions, and uses thereof
Polonsky et al. 15-deacetylsergeolide, a potent antileukemic quassinoid from Picrolemma pseudocoffea
EP1057825A1 (en) Isoflavane derivatives and immunopotentiating compositions containing the same
EP0207336B1 (en) Nitro derivatives of vinblastine-type bis-indoles, a process for preparing same and pharmaceutical compositions containing them
JP3942422B2 (ja) 抗腫瘍・抗炎症作用を有する新規物質
CA2429539A1 (en) Dibenzosberanyl piperazine derivatives and drug-resistance overcoming agents containing the derivatives
HU208019B (en) Process for producing alkoxy-methyliden-epi-podofillotoxin-glucosides and pharmaceutical compositions containing them
CN110183471B (zh) 一种哌嗪类衍生物及制备方法及应用
KR100239876B1 (ko) 2-치환된-9,10-안트라퀴논 유도체
KR0182244B1 (ko) 디아릴 헵타노이드 유도체 및 그 염을 주성분으로 함유하는 항암제 조성물

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20041130

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee