JPWO2021041021A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021041021A5
JPWO2021041021A5 JP2022511232A JP2022511232A JPWO2021041021A5 JP WO2021041021 A5 JPWO2021041021 A5 JP WO2021041021A5 JP 2022511232 A JP2022511232 A JP 2022511232A JP 2022511232 A JP2022511232 A JP 2022511232A JP WO2021041021 A5 JPWO2021041021 A5 JP WO2021041021A5
Authority
JP
Japan
Prior art keywords
isomerization
molecular hydrogen
reactor
ppm
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022511232A
Other languages
English (en)
Other versions
JP7451684B2 (ja
JP2022545883A (ja
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/045725 external-priority patent/WO2021041021A1/en
Publication of JP2022545883A publication Critical patent/JP2022545883A/ja
Publication of JPWO2021041021A5 publication Critical patent/JPWO2021041021A5/ja
Application granted granted Critical
Publication of JP7451684B2 publication Critical patent/JP7451684B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

LPIプロセスにおいて、C8芳香族炭化水素フィードの液相と共に、少なくとも100ppmという高い供給割合で分子状水素を同時供給することによって、少なくとも5時間-1、および少なくとも20時間-1の高いWHSVでさえも、異性化触媒の失活をかなり低減することができることが見出されている。
したがって、本開示の第1の態様は、その中に配設されている異性化触媒を有する異性化反応器に、分子状水素、およびC8芳香族炭化水素を含む液相異性化炭化水素フィードを供給するステップであって、分子状水素が、異性化炭化水素フィードの総質量に対して、100質量ppm~5000質量ppmの供給割合で供給される、ステップと、異性化反応器中、異性化条件下で、分子状水素およびC8芳香族炭化水素に異性化触媒を接触させて、異性化排出液を生成するステップであって、異性化条件が、C8芳香族炭化水素が異性化反応器中で実質的に液相中に存在するよう、異性化反応器において1,700kPa-ゲージ~3,500kPa-ゲージの反応圧力および反応温度、ならびに5時間-1~20時間-1の時間あたりの質量空間速度を含む、ステップと、を含む、方法に関する。
本開示の第2の態様は、その中に配設されている異性化触媒を有する異性化反応器に、分子状水素、およびC8芳香族炭化水素を含む液相異性化炭化水素フィードを供給するステップであって、分子状水素が、異性化炭化水素フィードの総質量に対して、100質量ppm~5000質量ppmの供給割合で供給される、ステップと、異性化反応器中、異性化条件下で、分子状水素およびC8芳香族炭化水素に異性化触媒を接触させて、異性化排出液を生成するステップであって、異性化条件が、C8芳香族炭化水素が異性化反応器中で実質的に液相中に存在するよう、1,700kPa-ゲージ~3,500kPa-ゲージの反応圧力および200~300℃の反応温度、ならびに5時間-1~20時間-1の時間あたりの質量空間速度を含み、異性化排出液が、p-キシレンを異性化炭化水素フィードよりも高い濃度で含む、ステップと、異性化排出液からp-キシレンの少なくとも一部を回収するステップと、を含む、p-キシレンを生成する方法に関する。
本開示のシミュレートされたLPIプロセスにおける、様々なWHSVでの、反応温度の関数としてのp-キシレン/キシレンを示すグラフである。 本開示のシミュレートされたLPIプロセスにおける、様々なWHSVでの、反応温度の関数としてのキシレン損失を示すグラフである。 本開示のシミュレートされたLPIプロセスにおける、2.5時-1のWHSVでの反応温度の関数としての異性化触媒の相対活性損失を示すグラフである。 本開示のシミュレートされたLPIプロセスにおける、様々な温度でのp-キシレン/キシレンの関数としての異性化触媒の活性低下を示すグラフである。 ナフサの改質からp-キシレン生成物を生成する芳香族生産複合施設の概略図である。 様々な異性化条件下で稼働したLPIプロセスの異性化触媒のグラムあたりのフィードの累積グラム数(「CGpGC」)の関数としての異性化排出液中のp-キシレン濃度を示すグラフであり、特に、分子状水素の様々な供給割合および様々なWHSV下で様々な触媒失活速度となることを実証している。 異性化炭化水素フィードに9ppmで分子状水素を吹き込むことおよび約1質量%の低濃度でエチルベンゼンを含むC8芳香族炭化水素フィードを供給することを含む異性化条件下で稼働した、WHSVの関数としての、同等なLPIプロセスの異性化排出液中のp-キシレン濃度を示しており、異性化炭化水素フィード中に低い濃度の分子状水素の存在下では、触媒失活が速いことを実証している。 異性化炭化水素フィードが、9質量%という高い濃度でp-キシレンを含む場合の、4時間-1のWHSV下であるが、LPI反応器への同時供給を行わずに稼働した、ストリームに対する時間の関数としての別の同等なLPIプロセスの異性化排出液中のp-キシレン濃度(質量%)を示すグラフであり、異性化炭化水素フィードが、触媒失活を引き起こす可能性がより低いと推定される場合でさえも、分子状水素の同時供給の非存在下では、触媒失活が速いことを実証している。
分子状水素の同時供給
先行技術のある種のLPIプロセスは、分子状水素を同時供給しないで、異性化ゾーンで行われる。本発明者らは、反応器に分子状水素をなんら同時供給しない場合、異性化触媒は、とりわけ≧5時間-1の高いWHSVにおいて、比較的速いペースで経時的に失活する恐れがあることを見出した。分子状水素が、異性化反応器に入る芳香族炭化水素フィードの総質量に対して、低い供給割合で、例えば≦10質量ppmで、該反応器に供給される場合、異性化触媒は、分子状水素が全く同時供給されない場合と比べて、一層低いペースでしか失活し得ないが、それでもやはり、かなりの量になり得る。異性化炭化水素フィードが、比較的容易に異性化される場合、例えば、異性化フィードが、p-キシレンを高濃度(キシレンの総質量に対して、例えば、≧5質量%、≧8質量%、≧10質量%)で含む場合、および/または異性化フィードが、エチルベンゼンを低濃度(例えば、≦8質量%、≦6質量%、≦5質量%、≦4質量%、≦2質量%)で含む場合でさえも、低供給割合の分子状水素では、または分子状水素を同時供給しないと、かなりのペースで異性化触媒の失活が観察され得る。
分子状水素が、本開示に準拠して、C8芳香族炭化水素フィードを含む異性化炭化水素フィードの総質量に対して、≧100質量ppmという高い供給割合で同時供給されると、異性化触媒の失活速度は、(i)分子状水素を全く同時供給しない場合と(ii)低い割合で、例えば、≦10質量ppmで分子状水素を同時供給した場合の両方に比べて、かなり低下し得る。全く予期せぬことに、≧100ppmで分子状水素を同時供給した場合の失活速度の低さが、≧5時間-1、≧7.5時間-1、≧10時間-1、≧12.5時間-1、≧15時間-1、≧17.5時間-1、および≧20時間-1の高いWHSVでさえも観察された。
ある種の実施形態では、異性化反応器またはその一部に同時供給される分子状水素は、加圧ガスとして、入口を介して異性化反応器に注入され得る。さらにまたは代替的に、分子状水素またはそれらの一部は、供給ライン、容器、またはC8芳香族炭化水素を含む異性化炭化水素フィードの保管槽に供給され得、ここで、分子状水素またはそれらの一部は、異性化炭化水素フィードとの混合物を形成し、次に、異性化反応器に供給される。同時供給される分子状水素の一部、好ましくは大部分(例えば、≧50%、≧60%、≧70%、≧80%、≧90%、≧95%、≧98%)、より好ましくは実質的に全部(≧99%)が、異性化反応器において、液相に溶解することが非常に望ましい。異性化炭化水素フィードの液相中に溶解した分子状水素が一層高い濃度となることを実現するため、より高い圧力が適用され得る。異性化反応器において、分子状水素のかなりの部分を液相に溶解した状態に維持するため、異性化反応器への分子状水素の供給割合は、異性化炭化水素フィードの総質量に対して、5000質量ppm以下であることが非常に望ましい。25℃、様々な圧力において、C8芳香族炭化水素の総質量に対して、質量ppmでの液相のC8芳香族炭化水素中の分子状水素の溶解度の概数を、以下の表Iに示す:
したがって、分子状水素は、異性化炭化水素フィードの総質量に対して、r(H2)1~r(H2)2質量ppmの供給割合で異性化反応器に供給することができ、この場合、r(H2)1およびr(H2)2は、r(H2)1<r(H2)2である限り、独立して、例えば、100、150、200、250、300、350、400、450、500、550、600、650、700、750、800、850、950、1000、1500、2000、2500、3000、3500、4000、4500、5000とすることができる。好ましくは、r(H2)2=3000である。好ましくは、r(H2)2=2000である。好ましくは、r(H2)2=1000である。好ましくは、r(H2)2=800である。好ましくは、r(H2)2=600である。好ましくは、r(H2)2=500である。
分子状水素は、異性化炭化水素フィードと事前混合されている場合、上で議論した入口温度で異性化反応器に供給される。分子状水素が、異性化炭化水素フィードとは別に供給される場合、分子状水素は、好ましくは異性化炭化水素フィードの入口温度に近い入口温度で、異性化反応器中で液相中に異性化炭化水素フィードが溶解して、異性化反応器においてLPIを行うことが可能なほど十分な圧力で、ストリームガスとして異性化反応器に供給されてもよい。
本開示の方法におけるLPI条件は、w1~w2時間-1の範囲の高いWHSVを特に有利に含むことができ、ここで、w1およびw2は、w1<w2である限り、例えば、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10、11、12、12.5、13、14、15、16、17、17.5、18、19、20とすることができる。上で示されている通り、および以下の比較例で実証されている通り、分子状水素を同時供給しない、または低い供給割合で分子状水素を同時供給するLPIプロセスは、4時間-1のWHSVでさえも、高い速度で触媒失活を受け得る。本開示の方法のこのような高いWHSVにより、新規LPIに対して所与の容量を有する小型のLPI反応器の設計、所与の触媒搭載量を含む既存のLPI反応器のための容量の増加、および所与の量のp-キシレン生成物の生成のための触媒消費量の低下が可能となる。
本開示の方法のある種の他の実施形態では、触媒サイクルの開始期に、第1の割合で、次に続いて、異性化反応器の通常の稼働の間に、第2の割合で分子状水素を供給することができ、この場合、第1の割合は、第2の割合よりも低い。触媒サイクルの開始期は、触媒が、副反応および副生物の過剰生成をもたらす恐れがある、非常に高い活性があることを実証する場合の触媒サイクルの期間を意味する。例えば、開始期では、分子状水素は、0~500または0~300または0~200または0~150ppmの割合で反応器に供給することができる。分子状水素の第1の低い供給割合では、異性化触媒は、比較的高い速度で失活し(「脱エッジ(de-edge)」)、副反応および副生物の生成が低減する。異性化触媒の脱エッジが完了する開始期の終了時に、分子状水素の供給割合を一層高いレベルにまで向上させて、異性化触媒の失活を所望のレベルにまで低下させることができる。
異性化排出液
反応器中の異性化反応の結果として、異性化排出液は、異性化炭化水素フィード中よりも高い濃度でp-キシレンを、ならびに異性化炭化水素フィード中よりも低い合計濃度でm-キシレンおよびo-キシレンを望ましくは含む。異性化排出液は、異性化排出液中のキシレンの総質量に対して、c(pX)1~c(pX)2質量%の濃度でp-キシレンを含んでもよく、この場合、c(pX)1およびc(pX)2は、c(pX)1<c(pX)2である限り、独立して、例えば、15、16、17、18、19、20、21、22、23とすることができる。好ましくは、c(pX)1=18である。好ましくは、c(pX)1=20である。好ましくは、c(pX)1=21である。好ましくは、c(pX)1=22である。好ましくは、c(pX)は、異性化温度において、平衡キシレン混合物でのその濃度に近い。本開示の方法では、異性化炭化水素フィードの総質量に対して、≧100質量ppmの供給割合で分子状水素を同時供給することによって、異性化触媒の高い活性を実現することができ、≧5時間-1、≧7.5時間-1、≧10時間-1、≧12.5時間-1、≧15時間-1、≧17.5時間-1および≧20時間-1の高いWHSVでさえも、長い期間、c(pX)1≧20質量%となることができ、かつこれを持続することができ、これは、非常に驚くべきことである。
事例3:所与の反応器または一連の反応器に関する相対活性損失の決定
温度、供給割合、WHSVおよび/またはフィード濃度の関数として、様々な性能パラメータをモニタリングすることによって、単一触媒システムまたは複数の触媒システムの相対活性損失を推定することができ、これらには、以下に限定されないが、生成物中のp-キシレン/キシレン比、反応器にかかるp-キシレン/キシレン比のデルタ、キシレン損失、生成物中のトルエン、生成物中のベンゼン、生成物中のトリメチルベンゼン、生成物中のメチルエチルベンゼン、生成物中の全C9芳香族(「A9」)、生成物中の全C10芳香族(「A10」)、生成物中の全C9+芳香族(「A9+」)、反応器にわたるトルエンのデルタ、反応器にわたるベンゼンのデルタ、反応器にわたるトリメチルベンゼンのデルタ、反応器にわたるメチルエチルベンゼンのデルタ、反応器にわたる全A9のデルタ、反応器にわたる全A10のデルタ、反応器にわたる全A9+のデルタ、反応器にわたるエチルベンゼンの変換率、反応器にわたる非芳香族変換率(個々の化学種、化学種の部分群または全非芳香族)、C5-生成物(個々の化学種、化学種の部分群または全C5-)、反応器にわたるC5-のデルタ(個々の化学種、化学種の部分群または全C5-)、またはこれらのパラメータの任意の組合せを含むことができる。
Figure 2021041021000001
に従って、キシレン(C(pX/X)、%)の総量に対するp-キシレン濃度を計算した。これらの実施例の説明では、「CGpGC」は、異性化触媒の回分によって処理された、異性化触媒のグラムあたりのC8芳香族炭化水素フィードの累積質量(グラム)を意味する。C8芳香族炭化水素フィードの供給割合が一定に維持される仮定の場合では、CGpGCは、触媒のストリームに対する供給割合と時間との積に相当すると思われる。
(例1)
この例では、C8芳香族炭化水素フィードストリームは、3.4質量%のp-キシレン、64.1質量%のm-キシレン、18.3質量%のo-キシレン、12.3質量%のエチルベンゼンおよび1.3質量%の他の炭化水素を含んだ。異性化法では、分子状水素のWHSVおよび供給割合などの異性化条件を変えた。異性化反応器に様々な供給割合で同時供給した分子状水素を液相C8芳香族炭化水素に実質的に全体的に溶解した状態を維持するため、反応器圧を変えた。異性化反応器中の反応温度を約280℃に維持した。本方法における、CGpGCの関数としての異性化排出液中のp-キシレン濃度が図6に示されている。図6に示されている様々なCGpGC範囲の間に、分子状水素のWHSV(時間-1)および供給割合(C(H2)、C8芳香族炭化水素フィードストリームの質量に対する分子状水素の質量ppm)を以下の表IIに提示する。図6において、CGpGC範囲201は、2本の垂線L-1およびL-2によって定義され、範囲203は、垂線L-2およびL-3によって定義され、範囲205は、垂線L-3およびL-4によって定義され、範囲207は、垂線L-5およびL-6によって定義され、範囲209は、垂線L-7およびL-8によって定義され、範囲211は、垂線L-8およびL-9によって定義される。
Figure 2021041021000002

図6において分かる通り、CGpGC範囲201において、10時間-1のWHSVおよび7ppmの分子状水素の供給割合では、異性化排出液中のp-キシレンの濃度(C(pX)、質量%)が着実に低下し、触媒の活性化が着実に低下したことを示している。範囲203全体にわたり、10時間-1のWHSVおよび異性化反応器に分子状水素を同時供給しない場合、C(pX)は、範囲201における場合と類似する低下が続き、同時供給される分子状水素の非存在下では、異性化触媒と類似した失活速度となることを示している。範囲201および203におけるデータは、10時間-1という高いWHSVでは、分子状水素が同時供給されなかった場合、および分子状水素が、7ppmという低い割合で同時供給された場合、異性化触媒は比較的、速く失活したことを実証している。
CGpGC範囲203の終了時、および範囲205の開始時には、分子状水素の供給割合は、WHSVが10時間-1に維持されている間、255ppmまで向上し、次に、範囲205全体で維持された。範囲205の開始時には、C(pX)は、範囲203および201におけるいずれのCGpGC時の場合と比較しても実質的に向上しており、反応器中で実質的に向上した分子状水素濃度の存在下で、異性化触媒の実質的な活性向上があることを示している。範囲205の全体わたり、C(pX)は実質的に安定しており、255ppmの分子状水素の存在下、10時間-1の高いWHSVでは、異性化触媒の失活はほとんどないことを示す。
CGpGC範囲205の終了時に、分子状水素の供給割合を255ppmに維持しながら、WHSVを向上させた。範囲207の間に、分子状水素のWHSVおよび供給割合を、それぞれ、20時間-1および255ppmに維持した。C(pX)は、範囲205よりも範囲207において低く、このことは、範囲207においてWHSVが2倍高いことによると理解することができる。それでもなお、範囲207におけるWHSVが、範囲201および203における場合よりも2倍、大きい場合でさえも、範囲207全体のC(pX)は、範囲201および203の終了時よりもかなり高く、このことは、範囲201および203よりも範囲207において、異性化触媒の活性がかなり高いこと、および触媒の活性に対して異性化反応器中の分子状水素の濃度が高いことが影響していることを実証している。さらに、範囲207の間に、C(pX)が一旦、安定化すると、それは、非常に小さく低下し、このことは、20時間-1の非常に高いWHSVでさえも、異性化触媒の失活速度は非常に低いことを示しており、異性化反応器において、高濃度の分子状水素によって大きな効果が付与されることを示している。
範囲207の終了時には、分子状水素の供給割合を低下させた。範囲209の間に、分子状水素を反応器に供給せず、WHSVを20時間-1に維持した。異性化反応器中に分子状水素が存在しない結果、C(pX)は、範囲207に比べて、範囲209において実質的に低下し、異性化触媒の活性化に及ぼす異性化反応器中の分子状水素の存在の効果をやはり実証している。範囲209のC(pX)は、範囲203の終了時に類似しており、この場合、分子状水素は、やはり反応器に供給しなかった。
範囲209の終了時に、触媒失活剤を反応器に注入して、異性化触媒の失活を促進させた。この後、範囲211の間、分子状水素を反応器に同時供給しないと同時に、WHSVを20時間-1に維持した。範囲211におけるC(pX)は、触媒の失活、20時間-1の高いWHSVおよび反応器に同時供給する分子状水素がないことの結果として低かった。
この例1は、C8芳香族炭化水素異性化フィードの総質量に対して≧100ppmの供給割合で分子状水素を同時供給することによる液相LPIプロセスでは、異性化触媒の活性が増大し、低い供給割合で分子状水素を供給する場合、または分子状水素を同時供給しない場合と比べて、触媒の失活が実質的に低下したことを明確に実証している。異性化触媒の高い活性およびその非常に低い失活速度が高い分子状水素の濃度時に示されることを考慮すると、例えば、≧10時間-1、≧15時間-1、≧17.5時間-1および≧20時間-1の非常に高いWHSVでのLPIプロセスは、異性化反応器に≧100ppmで分子状水素を同時供給することによって可能となり得る。
(例2)(比較例)
この例では、C8芳香族炭化水素フィードストリームは、1.1質量%のp-キシレン、67.7質量%のm-キシレン、29.8質量%のo-キシレン、1質量%のエチルベンゼンおよび0.5質量%の他の炭化水素を含んだ。異性化プロセスにおいて、WHSVを変えて、分子状水素の供給割合を、C8芳香族炭化水素フィードストリームの質量に対して9質量ppmに維持した。異性化反応器における反応温度を約239℃に維持した。異性化反応器に同時供給した分子状水素を液相C8芳香族炭化水素に実質的に全体的に溶解した状態を維持するための反応器圧は十分であった。この方法における、WHSV(時間-1)の関数としての、キシレンの総量に対する異性化排出液中のp-キシレン濃度(C(pX/X)、質量%)が図7に示されている。
この例に使用したフィードストリームは、その中のエチルベンゼンの濃度が低いために、比較的容易に異性化すると考えられる。したがって、高いWHSVでは、類似した触媒性能があると認識されると思われる。それにもかかわらず、図7が明確に示す通り、WHSVが2.5時間-1から6時間-1まで向上すると、C(pX/X)は有意に低下し、このことは、WHSVが低下すると、2.5~6時間-1の範囲の比較的低いWHSVでさえも、触媒は失活したことを示している。この例は、9ppmという低い供給割合で分子状水素を同時供給しても、低濃度のエチルベンゼンを含む良好なフィードを使用した場合でさえも、異性化触媒の失活に対して大きな利点をもたらさないことを示している。
この例を考慮に入れると、異性化触媒の失活を低減する際に、例1における≧100ppmという高い供給割合で分子状水素を同時供給する陽性効果がさらに実証される。
本発明のまた別の態様は、以下のとおりであってもよい。
〔1〕その中に配設されている異性化触媒を有する異性化反応器に、分子状水素、およびC8芳香族炭化水素を含む液相異性化炭化水素フィードを供給するステップであって、分子状水素が、異性化炭化水素フィードの総質量に対して、100質量ppm~5000質量ppmの供給割合で供給される、ステップと、
異性化反応器中、異性化条件下で、分子状水素およびC8芳香族炭化水素に異性化触媒を接触させて、異性化排出液を生成するステップであって、異性化条件が、C8芳香族炭化水素が異性化反応器中で実質的に液相中に存在するよう、異性化反応器において1,700kPa-ゲージ~3,500kPa-ゲージの反応圧力および反応温度、ならびに5~20時間-1の時間あたりの質量空間速度を含む、ステップと、
を含む、方法。
〔2〕分子状水素が、異性化炭化水素フィードの総質量に対して、100質量ppm~1000質量ppmの供給割合で異性化反応器に供給される、前記〔1〕に記載の方法。
〔3〕C8芳香族炭化水素が、異性化反応器中で実質的に全体的に液相中に存在する、前記〔1〕または前記〔2〕に記載の方法。
〔4〕分子状水素の少なくとも一部が、異性化反応器への供給前に、異性化炭化水素フィードの液相に溶解している、前記〔1〕~〔3〕のいずれかに記載の方法。
〔5〕異性化条件が、5~20時間-1の時間あたりの質量空間速度を含む、前記〔1〕~〔4〕のいずれかに記載の方法。
〔6〕異性化条件が、異性化反応器において、200~300℃の反応温度を含む、前記〔1〕~〔5〕のいずれかに記載の方法。
〔7〕異性化条件が、異性化反応器において、240~300℃の反応温度を含む、前記〔6〕に記載の方法。
〔8〕異性化条件が、異性化反応器において、260~300℃の反応温度、および10~20時間-1の時間あたりの質量空間速度を含む、前記〔7〕に記載の方法。
〔9〕異性化炭化水素フィードが、異性化炭化水素フィードの総質量に対して、20質量%以下の濃度のエチルベンゼンを含む、前記〔1〕~〔8〕のいずれかに記載の方法。
〔10〕異性化炭化水素フィードが、10質量%以下の濃度のp-キシレンを含む、前記〔1〕~〔9〕のいずれかに記載の方法。
〔11〕異性化触媒が貴金属を含まない、前記〔1〕~〔10〕のいずれかに記載の方法。
〔12〕異性化触媒が、Fe、Co、Ni、Ru、Rh、Pd、Re、Os、Ir、Ptおよびそれらの組合せから選択される第1の金属元素を含み、および、任意にSn、Zn、Agおよびそれらの組合せから選択される第2の金属元素を含んでもよい、前記〔1〕~〔9〕のいずれかに記載の方法。
〔13〕異性化排出液中のp-キシレン/キシレン質量比を実質的に低下させることなく、反応温度および/または時間あたりの質量空間速度を増大させるステップ
をさらに含む、前記〔1〕~〔12〕のいずれかに記載の方法。
〔14〕キシレン損失を実質的に増大させることなく、反応温度および/または時間あたりの質量空間速度を増大させるステップ
をさらに含む、前記〔1〕~〔13〕のいずれかに記載の方法。
〔15〕触媒サイクルの開始期の後に、分子状水素の供給割合を増大させるステップをさらに含む、前記〔1〕~〔14〕のいずれかに記載の方法。
〔16〕その中に配設されている異性化触媒を有する異性化反応器に、分子状水素、およびC8芳香族炭化水素を含む液相異性化炭化水素フィードを供給するステップであって、分子状水素が、異性化炭化水素フィードの総質量に対して、100質量ppm~5000質量ppmの供給割合で供給されるステップと、
異性化反応器中、異性化条件下で、分子状水素およびC8芳香族炭化水素に異性化触媒を接触させて、異性化排出液を生成するステップであって、異性化条件が、C8芳香族炭化水素が異性化反応器中で実質的に液相中に存在するよう、1,700kPa-ゲージ~3,500kPa-ゲージの反応圧力および200~300℃の反応温度、ならびに5~20時間-1の時間あたりの質量空間速度を含み、異性化排出液が、p-キシレンを異性化炭化水素フィードよりも高い濃度で含む、ステップと、
異性化排出液からp-キシレンの少なくとも一部を回収するステップと、
を含む、p-キシレンを生成する方法。
〔17〕分子状水素が、異性化炭化水素フィードの総質量に対して、100質量ppm~1000質量ppmの供給割合で異性化反応器に供給される、前記〔16〕に記載の方法。
〔18〕C8芳香族炭化水素が、異性化反応器中で実質的に全体的に液相中に存在する、前記〔16〕または前記〔17〕に記載の方法。
〔19〕C8芳香族炭化水素の少なくとも98%が、異性化反応器中で液相中に存在する、前記〔18〕に記載の方法。
〔20〕分子状水素の少なくとも98%が、異性化反応器中、C8芳香族炭化水素の液相に溶解している、前記〔18〕に記載の方法。
〔21〕異性化条件が、5~20時間-1の時間あたりの質量空間速度を含む、前記〔16〕~〔20〕のいずれかに記載の方法。
〔22〕異性化触媒が貴金属を含まない、前記〔16〕~〔21〕のいずれかに記載の方法。
〔23〕異性化触媒が、Fe、Co、Ni、Ru、Rh、Pd、Re、Os、Ir、Ptおよびそれらの組合せから選択される第1の金属元素を含み、および、任意にSn、Zn、Agおよびそれらの組合せから選択される第2の金属元素を含んでもよい、前記〔16〕~〔22〕のいずれかに記載の方法。
〔24〕異性化排出液中のp-キシレン/キシレン質量比を実質的に低下させることなく、反応温度および/または時間あたりの質量空間速度を増大させるステップ
をさらに含む、前記〔1〕~〔23〕のいずれかに記載の方法。
〔25〕触媒サイクルの開始期の後に、分子状水素の供給割合を増大させるステップをさらに含む、前記〔1〕~〔24〕のいずれかに記載の方法。

Claims (8)

  1. その中に配設されている異性化触媒を有する異性化反応器に、分子状水素、およびC8芳香族炭化水素を含む液相異性化炭化水素フィードを供給するステップであって、分子状水素が、異性化炭化水素フィードの総質量に対して、100質量ppm~5000質量ppmの供給割合で供給される、ステップと、
    異性化反応器中、異性化条件下で、分子状水素およびC8芳香族炭化水素に異性化触媒を接触させて、異性化排出液を生成するステップであって、異性化条件が、C8芳香族炭化水素が異性化反応器中で実質的に液相中に存在するよう、異性化反応器において1,700kPa-ゲージ~3,500kPa-ゲージの反応圧力および200~300℃の反応温度、ならびに5~20時間-1の時間あたりの質量空間速度を含む、ステップと、
    を含む、p-キシレンの製造方法。
  2. 分子状水素が、異性化炭化水素フィードの総質量に対して、100質量ppm~1000質量ppmの供給割合で異性化反応器に供給される、請求項1に記載の方法。
  3. C8芳香族炭化水素が、異性化反応器中で実質的に全体的に液相中に存在する、請求項1または請求項2に記載の方法。
  4. 異性化条件が、異性化反応器において、260~300℃の反応温度、および10~20時間-1の時間あたりの質量空間速度を含む、請求項に記載の方法。
  5. 異性化炭化水素フィードが、異性化炭化水素フィードの総質量に対して、20質量%以下の濃度のエチルベンゼンを含む、請求項1~のいずれかに記載の方法。
  6. 異性化触媒が貴金属を含まない、請求項1~のいずれかに記載の方法。
  7. 異性化触媒が、Fe、Co、Ni、Ru、Rh、Pd、Re、Os、Ir、Ptおよびそれらの組合せから選択される第1の金属元素を含み、および、任意にSn、Zn、Agおよびそれらの組合せから選択される第2の金属元素を含んでもよい、請求項1~のいずれかに記載の方法。
  8. 触媒サイクルの開始期の後に、分子状水素の供給割合を増大させるステップをさらに含む、請求項1~のいずれかに記載の方法。
JP2022511232A 2019-08-23 2020-08-11 C8芳香族炭化水素の異性化法 Active JP7451684B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962890935P 2019-08-23 2019-08-23
US62/890,935 2019-08-23
EP19209114.8 2019-11-14
EP19209114 2019-11-14
PCT/US2020/045725 WO2021041021A1 (en) 2019-08-23 2020-08-11 Processes for isomerizing c8 aromatic hydrocarbons

Publications (3)

Publication Number Publication Date
JP2022545883A JP2022545883A (ja) 2022-11-01
JPWO2021041021A5 true JPWO2021041021A5 (ja) 2023-04-25
JP7451684B2 JP7451684B2 (ja) 2024-03-18

Family

ID=72139758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022511232A Active JP7451684B2 (ja) 2019-08-23 2020-08-11 C8芳香族炭化水素の異性化法

Country Status (5)

Country Link
US (1) US20220274900A1 (ja)
JP (1) JP7451684B2 (ja)
KR (1) KR20220038124A (ja)
CN (1) CN114286808A (ja)
WO (1) WO2021041021A1 (ja)

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3040777A (en) 1959-04-10 1962-06-26 Universal Oil Prod Co Rotary valve
US3201491A (en) 1962-09-05 1965-08-17 Universal Oil Prod Co Continuous sorption process with emphasis on product purity
US3422848A (en) 1966-06-09 1969-01-21 Universal Oil Prod Co Multiport rotary disc valve with liner protection means
US3651162A (en) 1969-02-27 1972-03-21 Standard Oil Co Isomerization and disproportionation of alkyl aromatics
US3662013A (en) 1970-02-03 1972-05-09 Mobil Oil Corp Single stage crystallization process for separating high purity paraxylene
US3761533A (en) 1970-07-23 1973-09-25 Toray Industries Separation process of components of feed mixture utilizing solid sorbent
US3856872A (en) 1973-09-13 1974-12-24 Mobil Oil Corp Xylene isomerization
US3919339A (en) 1974-03-18 1975-11-11 Chevron Res Hydrogenolysis/isomerization process
US4029717A (en) 1974-04-01 1977-06-14 Exxon Research And Engineering Company Simulated moving bed adsorption-desorption process for paraxylene recovery
US4098836A (en) 1977-03-09 1978-07-04 Mobil Oil Corporation Vapor-phase isomerization process
DE3261680D1 (en) * 1981-05-20 1985-02-07 Ici Plc Process for the isomerization of alkylbenzenes
US5329061A (en) 1993-06-01 1994-07-12 Uop Crystallization process for para-xylene recovery using two-stage recovery section
US5498822A (en) 1994-04-04 1996-03-12 Mobil Oil Corporation Single temperature stage crystallization of paraxylene
FR2728894A1 (fr) 1994-12-29 1996-07-05 Inst Francais Du Petrole Procede de separation de paraxylene comportant au moins deux etages de cristallisation a haute temperature
FR2750886B1 (fr) 1996-07-11 1998-09-25 Inst Francais Du Petrole Dispositif de rincage dans une unite d'adsorption en lit mobile simule et son utilisation
US6180550B1 (en) 1998-12-22 2001-01-30 Mobile Oil Corporation Small crystal ZSM-5, its synthesis and use
FR2792632B1 (fr) 1999-04-22 2004-02-13 Inst Francais Du Petrole Procede de production de paraxylene comprenant une etape d'adsorption, une etape d'isomerisation en phase liquide et une etape d'isomerisation en phase gazeuse avec une zeolithe de type eu0
DE19951781A1 (de) 1999-10-27 2001-05-03 Sued Chemie Ag Verfahren zur Herstellung von synthetischen Zeolithen mit MFI-Struktur
TWI240716B (en) 2000-07-10 2005-10-01 Bp Corp North America Inc Pressure swing adsorption process for separating paraxylene and ethylbenzene from mixed C8 aromatics
FR2844790B1 (fr) 2002-09-20 2004-10-22 Inst Francais Du Petrole Procede de coproduction de paraxylene et de styrene
US6660896B1 (en) 2003-04-16 2003-12-09 Exxonmobil Chemical Patents Inc. Isomerization of ethylbenzene and xylenes
US6872866B1 (en) 2003-12-15 2005-03-29 Uop Llc Liquid phase process for C8 alkylaromatic isomerization
US7368620B2 (en) 2005-06-30 2008-05-06 Uop Llc Two-stage aromatics isomerization process
US7371913B2 (en) 2005-06-30 2008-05-13 Uop Llc Selective aromatics isomerization process
US7932426B2 (en) 2007-12-12 2011-04-26 Uop Llc Process for isomerizing a non-equilibrium alkylaromatic feed mixture and an aromatic production facility
US8273934B2 (en) 2008-12-15 2012-09-25 Exxonmobil Chemical Patents Inc. Process for producing para-xylene
SG184074A1 (en) 2010-03-30 2012-10-30 Exxonmobil Chem Patents Inc Separation system
US8697929B2 (en) 2010-04-21 2014-04-15 Exxonmobil Chemical Patents Inc. Xylene isomerization process and catalyst therefor
US8569559B2 (en) 2010-06-25 2013-10-29 Exxonmobil Chemical Patents Inc. Paraxylene production process and apparatus
WO2013085681A1 (en) * 2011-12-06 2013-06-13 Exxonmobil Chemical Patents Inc. Production process of para -xylene and apparatus thereof
US9193645B2 (en) 2012-08-31 2015-11-24 Exxonmobil Chemical Patents Inc. Xylene isomerization process and catalyst therefor
MX2015012209A (es) 2013-03-15 2015-12-01 Bp Corp North America Inc Tamices moleculares de aluminosilicato de mfi y metodos para su uso para isomerizacion de xileno.
US9598332B2 (en) * 2013-12-20 2017-03-21 Exxonmobil Chemical Patents Inc. Production of para-xylene
US9890094B2 (en) 2015-03-03 2018-02-13 Uop Llc High meso-surface area and high acid site density pentasil zeolite for use in xylene conversion
US10336665B2 (en) 2015-03-03 2019-07-02 Uop Llc Yields in xylene isomerization using layer MFI zeolites
CN107531590B (zh) * 2015-04-30 2020-11-06 埃克森美孚化学专利公司 用于生产对二甲苯的方法和装置
SG11201805226QA (en) 2016-04-14 2018-07-30 Uop Llc Liquid phase xylene isomerization in the absence of hydrogen

Similar Documents

Publication Publication Date Title
AU609575B2 (en) Process for isomerization of c4 to c6 hydrocarbons with once-through hydrogen
AU2153192A (en) Catalyst treatment
CA2608675A1 (en) Process for the manufacture of fluorinated alkanes
JPS62223133A (ja) トルエンの不均化方法
JP2002371018A (ja) 重質芳香族の転化法
US6498280B1 (en) Catalyst comprising an element from groups 8, 9 or 10 with good accessibility, and its use in a paraffin dehydrogenation process
US5387732A (en) Start-up process for improved selectivity in toluene disproportionation
JPH08511776A (ja) シクロヘキサンジカルボン酸エステルの低圧製造方法
US20140171706A1 (en) Methods and apparatuses for forming low-aromatic high-octane product streams
JP3086962B2 (ja) 芳香族アセチレン化合物の選択的水素化方法
US5969202A (en) Method for producing cycloolefin and cycloalkane under controlled pressure
JP5225026B2 (ja) 銅触媒の再生方法
JPWO2021041021A5 (ja)
EP0462094B1 (en) Process for dehydrogenation of paraffin
US2944097A (en) Process for isomerizing light straight chain paraffins
JPS5946212B2 (ja) グリオキザ−ルの製造方法
US4877919A (en) Butane isomerization in the presence of C5 and C6 hydrocarbons
US8293959B2 (en) Purification of an aromatic fraction containing acetylenes by selective hydrogenation of the acetylenes
JP2003160515A (ja) ナフタレンから2段水素化反応によりデカリンを製造する方法
JP4041189B2 (ja) 2−メチルナフタレンの製造方法
JP7451684B2 (ja) C8芳香族炭化水素の異性化法
EP0538229B1 (en) A start-up process for improved selectivity in toluene disproportionation
WO2023241872A1 (en) Process for activation of a hydrogenolysis catalyst
CN112570005B (zh) 一种调控反应体系中金属加氢活性的方法及其应用
TW201627260A (zh) 帶有硫化作用之二甲苯異構化方法