JPWO2020213081A1 - ロータ、モータ、圧縮機、及び空気調和機 - Google Patents

ロータ、モータ、圧縮機、及び空気調和機 Download PDF

Info

Publication number
JPWO2020213081A1
JPWO2020213081A1 JP2021514709A JP2021514709A JPWO2020213081A1 JP WO2020213081 A1 JPWO2020213081 A1 JP WO2020213081A1 JP 2021514709 A JP2021514709 A JP 2021514709A JP 2021514709 A JP2021514709 A JP 2021514709A JP WO2020213081 A1 JPWO2020213081 A1 JP WO2020213081A1
Authority
JP
Japan
Prior art keywords
rotor
flux barrier
end slit
barrier portion
boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021514709A
Other languages
English (en)
Other versions
JP7204897B2 (ja
Inventor
恵実 塚本
昌弘 仁吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020213081A1 publication Critical patent/JPWO2020213081A1/ja
Application granted granted Critical
Publication of JP7204897B2 publication Critical patent/JP7204897B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

ロータ(2)は、P個(Pは2以上の整数)の磁極を持つ。ロータ(2)は、第1の内辺(221a)と第1の外側湾曲部(221b)との間の境界(B1)及びロータ(2)の回転中心を通る直線をL1とし、第2の内辺(222a)と第2の外側湾曲部(222b)との間の境界(B2)及びロータ(2)の回転中心を通る直線をL2とし、直線L1と直線L2との間の角度をθ[度]としたとき、251.7/P≦θ≦255/Pを満たす。

Description

本発明は、モータのロータに関する。
フラックスバリア及びスリットが設けられたロータコアを持つロータが一般に知られている。このロータにおいて、フラックスバリアは、漏れ磁束を低減させ、スリットは、ロータを通る磁束の量を調整する(例えば、特許文献1参照)。
特開2012−217250号公報
しかしながら、従来の技術では、フラックスバリアとスリットとの間においてステータからの磁束が通りにくい。例えば、ステータからの磁束がフラックスバリア又はスリットに当たると、磁束の屈曲が生じる。磁束の屈曲の増加は、コギングトルクの増加につながる。コギングトルクが増加すると、モータの駆動中におけるトルクリップルが増加し、その結果としてモータにおける振動及び騒音が増加する。
本発明は、以上に述べた課題を解決し、モータにおける振動及び騒音を低減することを目的とする。
本発明の一態様に係るロータは、
P個(Pは2以上の整数)の磁極を持つロータであって、
永久磁石と、
前記永久磁石が配置された磁石配置部、前記磁石配置部に連通している第1のフラックスバリア部、及び前記磁石配置部に連通している第2のフラックスバリア部を持つ磁石挿入孔と、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第1のフラックスバリア部に対向する第1の端スリットと、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第2のフラックスバリア部に対向する第2の端スリットとを有するロータコアと
を備え、
前記ロータコアは、
前記第1のフラックスバリア部を定めており前記第1の端スリットに対向する第1の内辺と、
前記第1のフラックスバリア部を定めており、前記第1の内辺に隣接しており、且つ前記第1の内辺と前記ロータコアの外周面との間に位置している第1の外側湾曲部と、
前記第2のフラックスバリア部を定めており前記第2の端スリットに対向する第2の内辺と、
前記第2のフラックスバリア部を定めており、前記第2の内辺に隣接しており、且つ前記第2の内辺と前記ロータコアの外周面との間に位置している第2の外側湾曲部と
を有し、
前記ロータの軸方向と直交する平面において、前記第1の内辺と前記第1の外側湾曲部との間の第1の境界及び前記ロータの回転中心を通る直線をL1とし、前記第2の内辺と前記第2の外側湾曲部との間の第2の境界及び前記ロータの前記回転中心を通る直線をL2とし、前記直線L1と前記直線L2との間の角度をθ[度]としたとき、
251.7/P≦θ≦255/P
を満たす。
本発明の他の態様に係るロータは、
P個(Pは2以上の整数)の磁極を持つロータであって、
永久磁石と、
前記永久磁石が配置された磁石配置部、前記磁石配置部に連通している第1のフラックスバリア部、及び前記磁石配置部に連通している第2のフラックスバリア部を持つ磁石挿入孔と、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第1のフラックスバリア部に対向する第1の端スリットと、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第2のフラックスバリア部に対向する第2の端スリットとを有するロータコアと
を備え、
前記ロータコアは、
前記第1のフラックスバリア部を定めており前記第1の端スリットに対向する第1の内辺と、
前記第1のフラックスバリア部を定めており、前記第1の内辺に隣接しており、且つ前記第1の内辺と前記ロータコアの外周面との間に位置している第1の外側湾曲部と、
前記第2のフラックスバリア部を定めており前記第2の端スリットに対向する第2の内辺と、
前記第2のフラックスバリア部を定めており、前記第2の内辺に隣接しており、且つ前記第2の内辺と前記ロータコアの外周面との間に位置している第2の外側湾曲部と
を有し、
前記第1の端スリットから前記磁石挿入孔までの最短距離をD1[mm]としたとき、
0.365≦D1≦0.865
を満たす。
本発明の他の態様に係るモータは、
ステータと、
前記ステータの内側に配置された、前記本発明の一態様に係るロータ又は前記本発明の他の態様に係るロータと
を備える。
本発明の他の態様に係る圧縮機は、
密閉容器と、
前記密閉容器内に配置された圧縮装置と、
前記圧縮装置を駆動する前記モータと
を備える。
本発明の他の態様に係る空気調和機は、
前記圧縮機と、
熱交換器と
を備える。
本発明によれば、モータにおける振動及び騒音を低減することができる。
本発明の実施の形態1に係るモータの構造を概略的に示す断面図である。 ロータの構造を示す平面図である。 図2に示されるロータの一部の構造を示す拡大図である。 ロータの一部の構造を示す拡大図である。 ロータの一部の構造を示す拡大図である。 ロータの一部の構造を示す拡大図である。 ロータの一部の構造を示す拡大図である。 ステータからロータに流れ込む磁束を示す図である。 モータに生じるコギングトルクを示すグラフである。 ロータの他の例を示す図である。 ロータの一部の構造を示す拡大図である。 ロータの一部の構造を示す拡大図である。 ステータから、図11に示されるロータに流れ込む磁束を示す図である。 ロータの他の例を示す図である。 ロータの一部の構造を示す拡大図である。 ロータの一部の構造を示す拡大図である。 ステータから、図15に示されるロータに流れ込む磁束を示す図である。 ロータの他の例を示す図である。 ロータの一部の構造を示す拡大図である。 ロータの一部の構造を示す拡大図である。 第1の端スリットから第1のフラックスバリア部までの距離とモータに生じるコギングトルクとの関係を示すグラフである。 第1の端スリットから磁石挿入孔までの距離とモータに生じるコギングトルクとの関係を示すグラフである。 本発明の実施の形態2に係る圧縮機の構造を概略的に示す断面図である。 本発明の実施の形態3に係る冷凍空調装置の構成を概略的に示す図である。
実施の形態1.
各図に示されるxyz直交座標系において、z軸方向(z軸)は、モータ1の軸線Axと平行な方向を示し、x軸方向(x軸)は、z軸方向(z軸)に直交する方向を示し、y軸方向(y軸)は、z軸方向及びx軸方向の両方に直交する方向を示す。軸線Axは、ロータ2の回転中心である。軸線Axと平行な方向は、「ロータ2の軸方向」又は単に「軸方向」とも称する。径方向は、ロータ2又はステータ3の半径方向であり、軸線Axと直交する方向である。xy平面は、軸方向と直交する平面である。矢印A1は、軸線Axを中心とする周方向を示す。ロータ2又はステータ3の周方向を、単に「周方向」とも称する。
図1は、本発明の実施の形態1に係るモータ1の構造を概略的に示す断面図である。
モータ1は、P個(Pは2以上の整数)の磁極を持つロータ2と、ステータ3とを有する。モータ1は、例えば、永久磁石埋込型電動機などの永久磁石同期電動機(ブラシレスDCモータとも称する)である。モータ1は、さらに、ステータ3を覆うモータフレーム4(単に「フレーム」とも称する)を有してもよい。
モータ1は、例えば、インバータ制御で駆動する。これにより、モータ1に生じるコギングトルクを考慮したモータ制御が可能になる。その結果、モータ1の駆動中に生じるトルクリップルの変動を抑えることができ、モータ1における振動及び騒音を低減することができる。
図2は、ロータ2の構造を示す平面図である。
ロータ2は、ステータ3の内側に回転可能に配置されている。ロータ2は、ロータコア21と、少なくとも1つの永久磁石22と、シャフト23とを有する。本実施の形態では、ロータ2は、永久磁石埋込型ロータである。
ロータ2(具体的には、ロータコア21の外周面21a)とステータ3との間には、エアギャップが存在する。ロータ2とステータ3との間のエアギャップは、例えば、0.3mmから1mmである。指令回転数に同期した周波数の電流がステータ3の巻線32に供給されると、ステータ3に回転磁界が発生し、ロータ2が回転する。
ロータコア21は、焼き嵌め、圧入などの固定方法でシャフト23に固定されている。ロータ2が回転すると、回転エネルギーがロータコア21からシャフト23に伝達される。
ステータ3は、ステータコア31と、少なくとも1つの巻線32と、巻線32が配置される少なくとも1つのスロット33とを有する。ステータコア31は、円環状のヨーク311と、複数のティース312とを有する。図1に示される例では、ステータコア31は、9個のティース312と、9個のスロット33とを有する。各スロット33は、互いに隣接するティース312間の空間である。
ただし、ティース312の数は9個に限定されない。同様に、スロット33の数は、9個に限定されない。
複数のティース312は、放射状に位置している。言い換えると、複数のティース312は、ステータコア31の周方向に等間隔に配列されている。各ティース312は、ヨーク311からロータ2の回転中心に向けて延びている。
各ティース312は、例えば、径方向に延在する本体部と、本体部の先端に位置しており周方向に延在するティース先端部とを有する。
複数のティース312及び複数のスロット33は、ステータコア31の周方向に交互に等間隔で配列されている。
ステータコア31は、環状の鉄心である。ステータコア31は、軸方向に積層された複数の電磁鋼板を持つ。これらの電磁鋼板はカシメで互いに固定される。複数の電磁鋼板の各々は、予め定められた形状を持つように打ち抜かれている。複数の電磁鋼板の各々の厚さは、例えば、0.1mmから0.7mmである。本実施の形態では、複数の電磁鋼板の各々の厚さは、0.35mmである。
各ティース312には、巻線32が巻かれており、これにより、各スロット33には、巻線32が配置されている。例えば、集中巻で巻線32が各ティース312に巻かれている。巻線32と各ティース312との間に、インシュレータが配置されていることが望ましい。
巻線32は、回転磁界を発生させるコイルを形成する。コイルは、例えば、3相コイルである。この場合、結線方式は、例えば、Y結線である。巻線32は、例えば、直径1mmのマグネットワイヤーである。巻線32に電流が流れると、回転磁界が発生する。巻線32の巻回数及び直径は、巻線32に印加される電圧、モータ1の回転数又はスロット33の断面積などに応じて設定される。巻線32の巻回数は、例えば、80である。
ロータ2の構造を具体的に説明する。
図3は、図2に示されるロータ2の一部の構造を示す拡大図である。
ロータ2は、複数の磁極中心及び複数の極間部を持つ。図2に示される例では、各磁極中心は磁極中心線C1で示されており、各極間部は、極間線C2で示されている。すなわち、各磁極中心線C1は、ロータ2の磁極中心を通っており、各極間線C2は、ロータ2の極間部を通っている。
各磁極中心部は、ロータ2の各磁極(すなわち、ロータ2のN極又はS極)の中心に位置する。ロータ2の各磁極(単に「各磁極」又は「磁極」とも称する)とは、ロータ2のN極又はS極の役目をする領域を意味する。
各極間部は、周方向において隣接する2つの磁極(すなわち、ロータ2のN極及びS極)の境界である。
ロータコア21は、軸方向に積層された複数の電磁鋼板を持つ。これらの電磁鋼板はカシメで互いに固定されている。複数の電磁鋼板の各々は、予め定められた形状を持つように打ち抜かれている。複数の電磁鋼板の各々の厚さは、例えば、0.1mmから0.7mmである。本実施の形態では、複数の電磁鋼板210の各々の厚さは、0.35mmである。
ロータコア21は、少なくとも1つの磁石挿入孔211と、シャフト孔212と、少なくとも1つの端スリット213とを持っている。
本実施の形態では、ロータコア21は、複数の磁石挿入孔211(具体的には、6個の磁石挿入孔211)を有する。xy平面において、複数の磁石挿入孔211は、周方向に配列されている。ロータ2の磁極数Pは、2以上である。磁極数Pの範囲は、望ましくは、4から10の偶数、すなわち、4,6,8,又は10である。
各磁石挿入孔211は、ロータ2の各磁極に対応する。したがって、本実施の形態では、ロータ2の磁極数は、6極である。各磁石挿入孔211には、少なくとも1つの永久磁石22が配置されている。
xy平面において、磁石挿入孔211の中央部は、軸線Axに向けて突出している。すなわち、xy平面において、各磁石挿入孔211はV字形状を持っている。各磁石挿入孔211の形状は、V字形状に限定されるものではなく、例えばストレート形状であってもよい。
本実施の形態では、1つの磁石挿入孔211内には、2つの永久磁石22が配置されている。すなわち、1つの磁石挿入孔211内の2つの永久磁石22がロータ2の1磁極を形成する。xy平面において、1組の永久磁石22は、V字形状を持つように1つの磁石挿入孔211内に配置されている。本実施の形態では、ロータ2は、12個の永久磁石22を有する。
シャフト23は、焼き嵌め、圧入などの方法で、シャフト孔212に固定されている。
各永久磁石22は、軸方向に長い平板状の磁石である。各永久磁石22は、xy平面において永久磁石22の長手方向と直交する方向に磁化されている。すなわち、xy平面において、各永久磁石22は、各永久磁石22の短手方向に磁化されている。各永久磁石22は、例えば、ネオジウム(Nd)、鉄(Fe)、及びボロン(B)を含む希土類磁石である。
1つの磁石挿入孔211内に配置された、2つの永久磁石22のN極又はS極は、ロータ2の径方向における外側又は内側に面している。これにより、1つの磁石挿入孔211内に配置された、1組の永久磁石22(具体的には、2つの永久磁石22)は、ロータ2の1つの磁極の役目をする。すなわち、ロータ2の1つの磁極において、1組の永久磁石22(具体的には、2つの永久磁石22)は、ステータ3に対してN極又はS極として機能する。
図2に示されるように、ロータコア21は、複数の内側スリット214をさらに有してもよい。複数の内側スリット214は、2つの端スリット213の間に位置する。
各磁石挿入孔211は、少なくとも1つの永久磁石22が配置された磁石配置部2110と、磁石配置部2110に連通している第1のフラックスバリア部2111と、磁石配置部2110に連通している第2のフラックスバリア部2112とを有する。
xy平面において、磁石挿入孔211の両側に第1のフラックスバリア部2111及び第2のフラックスバリア部2112がそれぞれ位置している。すなわち、磁石配置部2110は、第1のフラックスバリア部2111と第2のフラックスバリア部2112との間に位置する。
第1のフラックスバリア部2111は、ロータ2の軸方向に貫通している貫通孔である。これにより、第1のフラックスバリア部2111は、漏れ磁束を低減する。同様に、第2のフラックスバリア部2112は、ロータ2の軸方向に貫通している貫通孔である。これにより、第2のフラックスバリア部2112は、漏れ磁束を低減する。
本実施の形態では、ロータコア21は、複数の端スリット213を持っている。具体的には、ロータ2の各磁極において、2つの端スリット213がロータコア21に設けられている。
第1のフラックスバリア部2111と第2のフラックスバリア部2112との間において、2つの端スリット213のうちの1つは、磁石挿入孔211の一端側に設けられており、もう1つの端スリット213は、磁石挿入孔211の他端側に設けられている。言い換えると、第1のフラックスバリア部2111と第2のフラックスバリア部2112との間において、2つの端スリット213のうちの1つは、磁石挿入孔211の一端に対向しており、もう1つの端スリット213は、磁石挿入孔211の他端に対向している。これにより、各端スリット213は、ロータ2における磁束の向きを調整する。
複数の端スリット213は、少なくとも1つの第1の端スリット2131及び少なくとも1つの第2の端スリット2132を含む。図2及び図3に示される例では、ロータ2の各磁極において、1つの第1の端スリット2131及び1つの第2の端スリット2132が各磁石挿入孔211とロータコア21の外周面21aとの間に設けられている。
図2及び図3に示されるように、1つの磁極について2つの端スリット213(すなわち、第1の端スリット2131及び第2の端スリット2132)が磁石挿入孔211とロータコア21の外周面21aとの間に設けられている。したがって、本実施の形態では、ロータコア21は、12個の端スリット213を持っている。
図4は、ロータ2の一部の構造を示す拡大図である。具体的には、図4は、図3において破線で囲まれた領域E1の構造を示す拡大図である。
図3及び図4に示されるように、第1の端スリット2131は、第1のフラックスバリア部2111と第2のフラックスバリア部2112との間に位置しており、第1のフラックスバリア部2111に対向している。第1の端スリット2131は、第1のフラックスバリア部2111と第2のフラックスバリア部2112との間に設けられた複数のスリット(すなわち、端スリット213及び複数の内側スリット214)のうち第1のフラックスバリア部2111に最も近いスリットである。
図5は、ロータ2の一部の構造を示す拡大図である。具体的には、図5は、図3において破線で囲まれた領域E2の構造を示す拡大図である。
図3及び図5に示されるように、第2の端スリット2132は、第1のフラックスバリア部2111と第2のフラックスバリア部2112との間に位置しており、第2のフラックスバリア部2112に対向している。第2の端スリット2132は、第1のフラックスバリア部2111と第2のフラックスバリア部2112との間に設けられた複数のスリット(すなわち、端スリット213及び複数の内側スリット214)のうち第2のフラックスバリア部2112に最も近いスリットである。
径方向における第1のフラックスバリア部2111の外側に存在するロータコア21の一部、すなわち、ロータコア21の外周面21aと第1のフラックスバリア部2111との間の領域は、漏れ磁束を低減する薄肉部である。この薄肉部の径方向における幅は、例えば、ロータコア21の各電磁鋼板の厚み以上である。ただし、薄肉部の径方向における幅は、例えば、ロータコア21の各電磁鋼板の厚みと同様の幅を持つことが望ましい。これにより、漏れ磁束の増加を効果的に抑えることができる。
同様に、径方向における第2のフラックスバリア部2112の外側に存在するロータコア21の一部、すなわち、ロータコア21の外周面21aと第2のフラックスバリア部2112との間の領域は、漏れ磁束を低減する薄肉部である。この薄肉部の径方向における幅は、例えば、ロータコア21の各電磁鋼板の厚み以上である。ただし、薄肉部の径方向における幅は、例えば、ロータコア21の各電磁鋼板の厚みと同様の幅を持つことが望ましい。これにより、漏れ磁束の増加を効果的に抑えることができる。
ロータコア21は、第1の内辺221aと、第1の外側湾曲部221bと、第1の外辺221cとを有する。
第1の内辺221aは、第1のフラックスバリア部2111を定めており第1の端スリット2131に対向する。
第1の外側湾曲部221bは、第1のフラックスバリア部2111を定めており、第1の内辺221aに隣接しており、第1の内辺221aと第1の外辺221cとの間に設けられており、且つ第1の内辺221aとロータコア21の外周面21aとの間に位置している。第1の外側湾曲部221bは、湾曲した辺である。
第1の外辺221cは、第1のフラックスバリア部2111を定めておりロータコア21の周方向に延びている。
距離D1は、第1の端スリット2131から磁石挿入孔211までの最短距離である。
ロータコア21は、第1の内辺221a、第1の外側湾曲部221b、及び第1の外辺221cに加えて、第1のフラックスバリア部2111を定める1以上の辺又は湾曲部を有してもよい。
ロータコア21は、第2の内辺222aと、第2の外側湾曲部222bと、第2の外辺222cとを有する。
第2の内辺222aは、第2のフラックスバリア部2112を定めており第2の端スリット2132に対向する。
第2の外側湾曲部222bは、第2のフラックスバリア部2112を定めており、第2の内辺222aに隣接しており、第2の内辺222aと第2の外辺222cとの間に設けられており、且つ第2の内辺222aとロータコア21の外周面21aとの間に位置している。第2の外側湾曲部222bは、湾曲した辺である。
第2の外辺222cは、第2のフラックスバリア部2112を定めておりロータコア21の周方向に延びている。
距離D2は、第2の端スリット2132から磁石挿入孔211までの最短距離である。
ロータコア21は、第2の内辺222a、第2の外側湾曲部222b、及び第2の外辺222cに加えて、第2のフラックスバリア部2112を定める1以上の辺又は湾曲部を有してもよい。
図3に示されるように、ロータ2の軸方向と直交する平面において、第1の内辺221aと第1の外側湾曲部221bとの間の境界B1(第1の境界とも称する)及びロータ2の回転中心を通る直線をL1とし、第2の内辺222aと第2の外側湾曲部222bとの間の境界B2(第2の境界とも称する)及びロータ2の回転中心を通る直線をL2とし、直線L1と直線L2との間の角度をθ[度]としたとき、ロータ2は、251.7/P≦θ≦255/Pを満たす。
境界B1及び境界B2は、磁極中心線C1に関して対称的である。
図6は、ロータ2の一部の構造を示す拡大図である。具体的には、図6は、図3において破線で囲まれた領域E1の構造を示す拡大図である。
ロータコア21は、第1の端スリット辺231aと、第1の端スリット湾曲部231bと、辺231c(第3の端スリット辺とも称する)と、辺211aとを有する。
第1の端スリット辺231aは、第1の端スリット2131を定めており第1のフラックスバリア部2111に対向する。
第1の端スリット湾曲部231bは、第1の端スリット2131を定めており、第1の端スリット辺231aに隣接しており、第1の端スリット辺231aと辺231cとの間に設けられており、且つ第1の端スリット辺231aと磁石挿入孔211との間に位置している。
辺231cは、第1の端スリット2131を定めており、第1の端スリット湾曲部231bに隣接しており、磁石挿入孔211(具体的には、辺211a)に対向している。
辺211aは、磁石挿入孔211を定めており、辺231cに対向している。
ロータコア21は、第1の端スリット辺231a、第1の端スリット湾曲部231b、及び辺231cに加えて、第1の端スリット2131を定める1以上の辺又は湾曲部を有してもよい。
図7は、ロータ2の一部の構造を示す拡大図である。具体的には、図7は、図3において破線で囲まれた領域E2の構造を示す拡大図である。
ロータコア21は、第2の端スリット辺232aと、第2の端スリット湾曲部232bと、辺232c(第4の端スリット辺とも称する)と、辺211bとを有する。
第2の端スリット辺232aは、第2の端スリット2132を定めており第2のフラックスバリア部2112に対向する。
第2の端スリット湾曲部232bは、第2の端スリット2132を定めており、第2の端スリット辺232aに隣接しており、第2の端スリット辺232aと辺232cとの間に設けられており、且つ第2の端スリット辺232aと磁石挿入孔211との間に位置している。
辺232cは、第2の端スリット2132を定めており、第2の端スリット湾曲部232bに隣接しており、磁石挿入孔211(具体的には、辺211b)に対向している。
辺211bは、磁石挿入孔211を定めており、辺232cに対向している。
ロータコア21は、第2の端スリット辺232a、第2の端スリット湾曲部232b、及び辺232cに加えて、第2の端スリット2132を定める1以上の辺又は湾曲部を有してもよい。
図6において、ロータ2において、距離d11と距離d12との関係は、d11≧d12を満たす。図6に示される例では、距離d11と距離d12との関係は、d11>d12を満たす。
距離d11は、ロータ2の軸方向と直交する平面において、境界B1から点F1(第1の点とも称する)までの距離である。点F1は、ロータ2の軸方向と直交する平面において、直線L3が第1の端スリット辺231aと交わる点である。直線L3は、ロータ2の軸方向と直交する平面において、磁極中心線C1と直交する直線であり、且つ境界B1を通る直線である。
距離d12は、ロータ2の軸方向と直交する平面において、境界B3(第3の境界とも称する)から点F2(第2の点とも称する)までの距離である。境界B3は、第1の端スリット辺231aと第1の端スリット湾曲部231bとの間の境界である。点F2は、ロータ2の軸方向と直交する平面において、直線L4が第1の内辺221aと交わる点である。直線L4は、ロータ2の軸方向と直交する平面において、磁極中心線C1と直交する直線であり、且つ境界B3を通る直線である。
図7において、ロータ2において、距離d21と距離d22との関係は、d21≧d22を満たすことが望ましい。図7に示される例では、距離d21と距離d22との関係は、d21>d22を満たす。
距離d21は、ロータ2の軸方向と直交する平面において、境界B2から点F3(第3の点とも称する)までの距離である。点F3は、ロータ2の軸方向と直交する平面において、直線L5が第2の端スリット辺232aと交わる点である。直線L5は、ロータ2の軸方向と直交する平面において、磁極中心線C1と直交する直線であり、且つ境界B2を通る直線である。
距離d22は、ロータ2の軸方向と直交する平面において、境界B4(第4の境界とも称する)から点F4(第4の点とも称する)までの距離である。境界B4は、第2の端スリット辺232aと第2の端スリット湾曲部232bとの間の境界である。点F4は、ロータ2の軸方向と直交する平面において、直線L6が第2の内辺222aと交わる点である。直線L6は、ロータ2の軸方向と直交する平面において、磁極中心線C1と直交する直線であり、且つ境界B4を通る直線である。
図8は、ステータ3からロータ2に流れ込む磁束を示す図である。
モータ1が251.7≦P×θ≦255、すなわち、251.7/P≦θ≦255/Pを満たすとき、ステータ3からの磁束が、第1の端スリット2131と第1のフラックスバリア部2111との間を通過しやすい。これにより、第1の端スリット2131と第1のフラックスバリア部2111との間における磁束の屈曲を低減することができる。その結果、コギングトルクを低減することができる。
さらに、ロータ2において、距離d11と距離d12との関係が、d11>d12を満たすとき、ステータ3からの磁束が、第1の端スリット2131と第1のフラックスバリア部2111との間を通過しやすい。これにより、第1の端スリット2131と第1のフラックスバリア部2111との間における磁束の屈曲を効果的に低減することができる。その結果、コギングトルクを効果的に低減することができる。
図9は、モータ1の磁極数P×角度θとモータ1に生じるコギングトルクとの関係を示すグラフである。
図9に示されるように、モータ1が251.7≦P×θ≦255、すなわち、251.7/P≦θ≦255/Pを満たすとき、モータ1に生じる磁気吸引力が抑制され、コギングトルクを低減することができる。その結果、モータ1における振動及び騒音を低減することができる。
モータ1が251.7≦P×θ≦254.1、すなわち、251.7/P≦θ≦254.1/Pを満たすとき、コギングトルクを0.1[Nm]以下に低減することができる。これにより、モータ1に生じる磁気吸引力がさらに抑制され、コギングトルクをさらに低減することができる。その結果、モータ1における振動及び騒音をさらに低減することができる。
モータ1が253.3=P×θ、すなわち、253.3/P=θを満たすとき、コギングトルクが最小になる。これにより、モータ1に生じる磁気吸引力がさらに抑制され、コギングトルクをさらに低減することができる。その結果、モータ1における振動及び騒音をさらに低減することができる。
変形例1.
図10は、ロータ2の他の例を示す図である。図10では、ロータ2の一部の構造が示されている。
図11は、ロータ2の一部の構造を示す拡大図である。具体的には、図11は、図10において破線で囲まれた領域E1の構造を示す拡大図である。
図12は、ロータ2の一部の構造を示す拡大図である。具体的には、図12は、図10において破線で囲まれた領域E2の構造を示す拡大図である。
図10に示される第1の端スリット2131の形状は、図2に示される各第1の端スリット2131の形状と異なっており、図10に示される第2の端スリット2132の形状は、図2に示される各第2の端スリット2132の形状と異なっている。
図11に示されるように、ロータ2において、距離d11と距離d12との関係は、d11=d12を満たす。すなわち、距離d11は距離d12に等しい。図11に示される例では、第1の端スリット辺231aは、磁極中心線C1及び第1の内辺221aに平行である。
図12に示される例では、ロータ2において、距離d21と距離d22との関係は、d21=d22を満たす。すなわち、図12に示される例では、距離d21は距離d22に等しい。図12に示される例では、第2の端スリット辺232aは、磁極中心線C1及び第2の内辺222aに平行である。
図2に示されるロータ2と同様に、図10から図12に示されるロータ2は、251.7/P≦θ≦255/Pを満たす。図10から図12に示されるロータ2は、図9に示されるコギングトルクの特性を持つ。
図10から図12に示されるロータ2は、図9に示されるコギングトルクの特性を持つので、図10から図12に示されるロータ2は、図2に示されるロータ2と同じ利点を持つ。
図13は、ステータ3から、図11に示されるロータ2に流れ込む磁束を示す図である。
モータ1が251.7≦P×θ≦255、すなわち、251.7/P≦θ≦255/Pを満たすとき、ステータ3からの磁束が、第1の端スリット2131と第1のフラックスバリア部2111との間を通過しやすい。これにより、第1の端スリット2131と第1のフラックスバリア部2111との間における磁束の屈曲を低減することができる。その結果、コギングトルクを低減することができる。
さらに、ロータ2において、距離d11と距離d12との関係は、d11=d12を満たすとき、ステータ3からの磁束が、第1の端スリット2131と第1のフラックスバリア部2111との間を通過しやすい。これにより、第1の端スリット2131と第1のフラックスバリア部2111との間における磁束の屈曲を効果的に低減することができる。その結果、コギングトルクを効果的に低減することができる。
変形例2.
図14は、ロータ2の他の例を示す図である。図14では、ロータ2の一部の構造が示されている。
図15は、ロータ2の一部の構造を示す拡大図である。具体的には、図15は、図14において破線で囲まれた領域E1の構造を示す拡大図である。
図16は、ロータ2の一部の構造を示す拡大図である。具体的には、図16は、図14において破線で囲まれた領域E2の構造を示す拡大図である。
図14に示される第1の端スリット2131の形状は、図2に示される各第1の端スリット2131の形状と異なっており、図14に示される第2の端スリット2132の形状は、図2に示される各第2の端スリット2132の形状と異なっている。
図15に示されるように、ロータ2において、距離d11と距離d12との関係は、d11=d12を満たす。すなわち、距離d11は距離d12に等しい。図15に示される例では、第1の端スリット辺231aは、第1の内辺221aに平行である。
第1の端スリット辺231a及び第1の内辺221aは、磁極中心線C1の方に傾いている。例えば、ロータ2の軸方向と直交する平面において、第1の端スリット辺231a及び第1の内辺221aは、第1の端スリット2131と対向している永久磁石22の短手方向と平行である。言い換えると、ロータ2の軸方向と直交する平面において、第1の端スリット辺231a及び第1の内辺221aは、第1の端スリット2131と対向している永久磁石22の長手方向に対して直交している。
図16に示される例では、ロータ2において、距離d21と距離d22との関係は、d21=d22を満たす。すなわち、図16に示される例では、距離d21は距離d22に等しい。図16に示される例では、第2の端スリット辺232aは、第2の内辺222aに平行である。第2の端スリット辺232a及び第2の内辺222aは、磁極中心線C1の方に傾いている。例えば、ロータ2の軸方向と直交する平面において、第2の端スリット辺232a及び第2の内辺222aは、第2の端スリット2132と対向している永久磁石22の短手方向と平行である。言い換えると、ロータ2の軸方向と直交する平面において、第2の端スリット辺232a及び第2の内辺222aは、第2の端スリット2132と対向している永久磁石22の長手方向に対して直交している。
図2に示されるロータ2と同様に、図14から図16に示されるロータ2は、251.7/P≦θ≦255/Pを満たす。図14から図16に示されるロータ2は、図9に示されるコギングトルクの特性を持つ。具体的に、図14から図16に示される例では、ロータ2は、θ=253.3/Pを満たす。
図14から図16に示されるロータ2は、図9に示されるコギングトルクの特性を持つので、図14から図16に示されるロータ2は、図2に示されるロータ2と同じ利点を持つ。
図17は、ステータ3から、図15に示されるロータ2に流れ込む磁束を示す図である。
モータ1が251.7≦P×θ≦255、すなわち、251.7/P≦θ≦255/Pを満たすとき、ステータ3からの磁束が、第1の端スリット2131と第1のフラックスバリア部2111との間を通過しやすい。これにより、第1の端スリット2131と第1のフラックスバリア部2111との間における磁束の屈曲を低減することができる。その結果、コギングトルクを低減することができる。
第1の端スリット辺231aが、磁極中心線C1の方に傾いているとき、ステータ3からの磁束が、第1の端スリット2131と第1のフラックスバリア部2111との間を通過しやすい。さらに、第1の端スリット辺231a及び第1の内辺221aの両方が、磁極中心線C1の方に傾いているとき、ステータ3からの磁束が、第1の端スリット2131と第1のフラックスバリア部2111との間を通過しやすい。
図17に示される例では、ステータ3からの磁束の向きと永久磁石22の長手方向との間の角度が、直角又は直角に近い。例えば、図13に示される例に比べて、ステータ3からの磁束の向きと永久磁石22の長手方向との間の角度が直角に近づく。これにより、第1の端スリット2131と第1のフラックスバリア部2111との間における磁束の屈曲を効果的に低減することができる。その結果、コギングトルクを効果的に低減することができる。
変形例3.
図18は、ロータ2の他の例を示す図である。図18では、ロータ2の一部の構造が示されている。
図19は、ロータ2の一部の構造を示す拡大図である。具体的には、図19は、図18において破線で囲まれた領域E1の構造を示す拡大図である。
図20は、ロータ2の一部の構造を示す拡大図である。具体的には、図20は、図18において破線で囲まれた領域E2の構造を示す拡大図である。
図18に示される第1の端スリット2131の形状は、図2に示される各第1の端スリット2131の形状と異なっており、図18に示される第2の端スリット2132の形状は、図2に示される各第2の端スリット2132の形状と異なっている。
図19において、距離d13は、第1の端スリット2131から第1のフラックスバリア部2111までの最短距離である。図19に示される例では、距離d13は、第1の端スリット辺231aから第1の内辺221aまでの最短距離である。
図19に示される例では、第1の端スリット辺231aは、第1の内辺221aに平行である。第1の端スリット辺231a及び第1の内辺221aは、磁極中心線C1の方に傾いている。例えば、ロータ2の軸方向と直交する平面において、第1の端スリット辺231a及び第1の内辺221aは、第1の端スリット2131と対向している永久磁石22の短手方向と平行である。
図20において、距離d23は、第2の端スリット2132から第2のフラックスバリア部2112までの最短距離である。図20に示される例では、距離d23は、第2の端スリット辺232aから第2の内辺222aまでの最短距離である。
図20に示される例では、第2の端スリット辺232aは、第2の内辺222aに平行である。第2の端スリット辺232a及び第2の内辺222aは、磁極中心線C1の方に傾いている。例えば、ロータ2の軸方向と直交する平面において、第2の端スリット辺232a及び第2の内辺222aは、第2の端スリット2132と対向している永久磁石22の短手方向と平行である。
図2に示されるロータ2と同様に、図18から図20に示されるロータ2は、251.7/P≦θ≦255/Pを満たす。図18から図20に示されるロータ2は、図9に示されるコギングトルクの特性を持つ。
図18から図20に示されるロータ2は、図9に示されるコギングトルクの特性を持つので、図18から図20に示されるロータ2は、図2に示されるロータ2と同じ利点を持つ。
距離d13の最小値は、ロータコア21を形成する各電磁鋼板の厚み以上であることが望ましい。これにより、第1のフラックスバリア部2111及び第1の端スリット2131を、打ち抜き処理などのプレス加工で容易に形成することができる。本実施の形態では、ロータコア21を形成する各電磁鋼板の厚みは、0.365[mm]である。したがって、距離d13は、0.365[mm]以上である。
距離d13は、0.55[mm]以下であることが望ましい。距離d13が0.55[mm]を超えると、第1の端スリット2131と第1のフラックスバリア部2111との間を通る磁束が多方向に広がり、第1の端スリット2131と第1のフラックスバリア部2111との間における磁束の屈曲が増加する。その結果、コギングトルクが大きくなる。
図21は、第1の端スリット2131から第1のフラックスバリア部2111までの距離d13とモータ1に生じるコギングトルクとの関係を示す図である。
図21に示されるように、モータ1が0.365[mm]≦d13≦0.55[mm]を満たすとき、第1のフラックスバリア部2111及び第1の端スリット2131を容易に形成することができ、第1の端スリット2131と第1のフラックスバリア部2111との間における磁束の屈曲を低減することができる。その結果、コギングトルクを低減することができ、モータ1における振動及び騒音を低減することができる。
モータ1が0.365[mm]≦d13≦0.4[mm]を満たすとき、コギングトルクを0.1[Nm]以下に低減することができる。これにより、モータ1に生じる磁気吸引力が抑制され、コギングトルクをさらに低減することができる。その結果、モータ1における振動及び騒音をさらに低減することができる。
距離D1の最小値は、ロータコア21を形成する各電磁鋼板の厚み以上であることが望ましい。これにより、第1のフラックスバリア部2111及び磁石挿入孔211を、打ち抜き処理などのプレス加工で容易に形成することができる。本実施の形態では、ロータコア21を形成する各電磁鋼板の厚みは、0.365[mm]である。したがって、距離D1は、0.365[mm]以上である。
距離D1は、0.865[mm]以下であることが望ましい。距離D1が0.865[mm]を超えると、第1の端スリット2131と磁石挿入孔211との間を通る磁束が多方向に広がり、第1の端スリット2131と磁石挿入孔211との間における磁束の屈曲が増加する。その結果、コギングトルクが大きくなる。
同様に、距離D2の最小値は、ロータコア21を形成する各電磁鋼板の厚み以上であることが望ましい。これにより、第2のフラックスバリア部2112及び磁石挿入孔211を、打ち抜き処理などのプレス加工で容易に形成することができる。本実施の形態では、ロータコア21を形成する各電磁鋼板の厚みは、0.365[mm]である。したがって、距離D2は、0.365[mm]以上である。
距離D2は、0.865[mm]以下であることが望ましい。距離D2が0.865[mm]を超えると、第2の端スリット2132と磁石挿入孔211との間を通る磁束が多方向に広がり、第2の端スリット2132と磁石挿入孔211との間における磁束の屈曲が増加する。その結果、コギングトルクが大きくなる。
図22は、第1の端スリット2131から磁石挿入孔211までの距離D1とモータ1に生じるコギングトルクとの関係を示すグラフである。
図22に示されるように、モータ1が0.365[mm]≦D1≦0.865[mm]を満たすとき、第1のフラックスバリア部2111及び磁石挿入孔211を容易に形成することができ、第1の端スリット2131と磁石挿入孔211との間における磁束の屈曲を低減することができる。その結果、コギングトルクを低減することができ、モータ1における振動及び騒音を低減することができる。
モータ1が0.365[mm]≦D1≦0.765[mm]を満たすとき、コギングトルクを0.1[Nm]以下に低減することができる。これにより、モータ1に生じる磁気吸引力が抑制され、コギングトルクをさらに低減することができる。その結果、モータ1における振動及び騒音をさらに低減することができる。
同様に、モータ1が0.365[mm]≦D2≦0.865[mm]を満たすとき、第1のフラックスバリア部2111及び磁石挿入孔211を容易に形成することができ、第1の端スリット2131と磁石挿入孔211との間における磁束の屈曲を低減することができる。その結果、コギングトルクを低減することができ、モータ1における振動及び騒音を低減することができる。
モータ1が0.365[mm]≦D2≦0.765[mm]を満たすとき、モータ1に生じるコギングトルクをさらに低減することができる。その結果、モータ1における振動及び騒音をさらに低減することができる。
実施の形態2.
本発明の実施の形態2に係る圧縮機6について説明する。
図23は、実施の形態2に係る圧縮機6の構造を概略的に示す断面図である。
圧縮機6は、電動要素としてのモータ1と、ハウジングとしての密閉容器61と、圧縮要素(圧縮装置とも称する)としての圧縮機構62とを有する。本実施の形態では、圧縮機6は、ロータリー圧縮機である。ただし、圧縮機6は、ロータリー圧縮機に限定されない。
圧縮機6内のモータ1は、実施の形態1で説明したモータ1である。モータ1は、圧縮機構62を駆動する。
密閉容器61は、モータ1及び圧縮機構62を覆う。密閉容器61は、円筒状の容器である。密閉容器61の底部には、圧縮機構62の摺動部分を潤滑する冷凍機油が貯留されている。
圧縮機6は、さらに、密閉容器61に固定されたガラス端子63と、アキュムレータ64と、吸入パイプ65と、吐出パイプ66とを有する。
圧縮機構62は、シリンダ62aと、ピストン62bと、上部フレーム62c(第1のフレームとも称する)と、下部フレーム62d(第2のフレームとも称する)と、上部フレーム62c及び下部フレーム62dに取り付けられた複数のマフラ62eとを有する。圧縮機構62は、さらに、シリンダ62a内を吸入側と圧縮側とに分けるベーンを有する。圧縮機構62は、密閉容器61内に配置されている。圧縮機構62は、モータ1によって駆動される。
モータ1は、圧入又は焼き嵌めで密閉容器61内に固定されている。圧入及び焼き嵌めの代わりに溶接でモータ1を密閉容器61に直接取り付けてもよい。
モータ1のコイル(例えば、実施の形態1で説明した巻線32)には、ガラス端子63を通して電力が供給される。
モータ1のロータ2(具体的には、シャフト23の片側)は、上部フレーム62c及び下部フレーム62dの各々に備えられた軸受けによって回転自在に支持されている。
ピストン62bには、シャフト23が挿通されている。上部フレーム62c及び下部フレーム62dには、シャフト23が回転自在に挿通されている。上部フレーム62c及び下部フレーム62dは、シリンダ62aの端面を閉塞する。アキュムレータ64は、吸入パイプ65を通して冷媒(例えば、冷媒ガス)をシリンダ62aに供給する。
次に、圧縮機6の動作について説明する。アキュムレータ64から供給された冷媒は、密閉容器61に固定された吸入パイプ65からシリンダ62a内へ吸入される。モータ1が回転することにより、シャフト23に嵌合されたピストン62bがシリンダ62a内で回転する。これにより、シリンダ62a内で冷媒が圧縮される。
圧縮された冷媒は、マフラ62eを通り、密閉容器61内を上昇する。このようにして、圧縮された冷媒が、吐出パイプ66を通って冷凍サイクルの高圧側へ供給される。
圧縮機6の冷媒として、R410A、R407C、又はR22等を用いることができる。ただし、圧縮機6の冷媒は、これらの種類に限られない。圧縮機6の冷媒として、GWP(地球温暖化係数)が小さい冷媒、例えば、下記の冷媒を用いることができる。
(1)組成中に炭素の二重結合を有するハロゲン化炭化水素、例えばHFO(Hydro−Fluoro−Orefin)−1234yf(CF3CF=CH2)を用いることができる。HFO−1234yfのGWPは4である。
(2)組成中に炭素の二重結合を有する炭化水素、例えばR1270(プロピレン)を用いてもよい。R1270のGWPは3であり、HFO−1234yfより低いが、可燃性はHFO−1234yfより高い。
(3)組成中に炭素の二重結合を有するハロゲン化炭化水素又は組成中に炭素の二重結合を有する炭化水素の少なくとも何れかを含む混合物、例えばHFO−1234yfとR32との混合物を用いてもよい。上述したHFO−1234yfは低圧冷媒のため圧損が大きくなる傾向があり、冷凍サイクル(特に蒸発器)の性能低下を招く可能性がある。そのため、HFO−1234yfよりも高圧冷媒であるR32又はR41との混合物を用いることが実用上は望ましい。
実施の形態2に係る圧縮機6は、実施の形態1で説明した利点を持つ。
さらに、実施の形態2に係る圧縮機6は、実施の形態1に係るモータ1を有するので、圧縮機6における振動及び騒音を低減することができる。
実施の形態3.
実施の形態2に係る圧縮機6を有する、空気調和機としての冷凍空調装置7について説明する。
図24は、本発明の実施の形態3に係る冷凍空調装置7の構成を概略的に示す図である。
冷凍空調装置7は、例えば、冷暖房運転が可能である。図24に示される冷媒回路図は、冷房運転が可能な空気調和機の冷媒回路図の一例である。
実施の形態3に係る冷凍空調装置7は、室外機71と、室内機72と、室外機71及び室内機72を接続する冷媒配管73とを有する。
室外機71は、圧縮機6と、熱交換器としての凝縮器74と、絞り装置75と、室外送風機76(第1の送風機)とを有する。凝縮器74は、圧縮機6によって圧縮された冷媒を凝縮する。絞り装置75は、凝縮器74によって凝縮された冷媒を減圧し、冷媒の流量を調節する。絞り装置75は、減圧装置とも言う。
室内機72は、熱交換器としての蒸発器77と、室内送風機78(第2の送風機)とを有する。蒸発器77は、絞り装置75によって減圧された冷媒を蒸発させ、室内空気を冷却する。
冷凍空調装置7における冷房運転の基本的な動作について以下に説明する。冷房運転では、冷媒は、圧縮機6によって圧縮され、凝縮器74に流入する。凝縮器74によって冷媒が凝縮され、凝縮された冷媒が絞り装置75に流入する。絞り装置75によって冷媒が減圧され、減圧された冷媒が蒸発器77に流入する。蒸発器77において冷媒は蒸発し、冷媒(具体的には、冷媒ガス)が再び室外機71の圧縮機6へ流入する。室外送風機76によって空気が凝縮器74に送られると冷媒と空気との間で熱が移動し、同様に、室内送風機78によって空気が蒸発器77に送られると冷媒と空気との間で熱が移動する。
以上に説明した冷凍空調装置7の構成及び動作は、一例であり、上述した例に限定されない。
実施の形態3に係る冷凍空調装置7によれば、実施の形態1から2で説明した利点を持つ。
さらに、実施の形態3に係る冷凍空調装置7は、実施の形態2に係る圧縮機6を有するので、冷凍空調装置7における振動及び騒音を低減することができる。
以上に説明したように、好ましい実施の形態を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。
以上に説明した各実施の形態における特徴及び各変形例における特徴は、互いに適宜組み合わせることができる。
1 モータ、 2 ロータ、 3 ステータ、 4 モータフレーム、 6 圧縮機、 7 冷凍空調装置、 21 ロータコア、 22 永久磁石、 23 シャフト、 32 巻線、 33 スロット、 61 密閉容器、 211 磁石挿入孔、 212 シャフト孔、 213 端スリット、 214 内側スリット、 221a 第1の内辺、 221b 第1の外側湾曲部、 221c 第1の外辺、 222a 第2の内辺、 222b 第2の外側湾曲部、 222c 第2の外辺、 2110 磁石配置部、 2111 第1のフラックスバリア部、 2112 第2のフラックスバリア部、 2131 第1の端スリット、 2132 第2の端スリット。
本発明の一態様に係るロータは、
P個(Pは2以上の整数)の磁極を持つロータであって、
永久磁石と、
前記永久磁石が配置された磁石配置部、前記磁石配置部に連通している第1のフラックスバリア部、及び前記磁石配置部に連通している第2のフラックスバリア部を持つ磁石挿入孔と、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第1のフラックスバリア部に対向する第1の端スリットと、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第2のフラックスバリア部に対向する第2の端スリットとを有するロータコアと
を備え、
前記ロータの軸方向と直交する平面において、前記磁石挿入孔は、V字形状を持っており、
前記ロータコアは、
前記第1のフラックスバリア部を定めており前記第1の端スリットに対向する第1の内辺と、
前記第1のフラックスバリア部を定めており、前記第1の内辺に隣接しており、且つ前記第1の内辺と前記ロータコアの外周面との間に位置している第1の外側湾曲部と、
前記第2のフラックスバリア部を定めており前記第2の端スリットに対向する第2の内辺と、
前記第2のフラックスバリア部を定めており、前記第2の内辺に隣接しており、且つ前記第2の内辺と前記ロータコアの外周面との間に位置している第2の外側湾曲部と
を有し、
前記ロータの軸方向と直交する前記平面において、前記第1の内辺と前記第1の外側湾曲部との間の第1の境界及び前記ロータの回転中心を通る直線をL1とし、前記第2の内辺と前記第2の外側湾曲部との間の第2の境界及び前記ロータの前記回転中心を通る直線をL2とし、前記直線L1と前記直線L2との間の角度をθ[度]としたとき、
251.7/P≦θ≦255/P
を満たす。
本発明の他の態様に係るロータは、
P個(Pは2以上の整数)の磁極を持つロータであって、
永久磁石と、
前記永久磁石が配置された磁石配置部、前記磁石配置部に連通している第1のフラックスバリア部、及び前記磁石配置部に連通している第2のフラックスバリア部を持つ磁石挿入孔と、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第1のフラックスバリア部に対向する第1の端スリットと、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第2のフラックスバリア部に対向する第2の端スリットとを有するロータコアと
を備え、
前記ロータの軸方向と直交する平面において、前記磁石挿入孔は、V字形状を持っており、
前記ロータコアは、
前記第1のフラックスバリア部を定めており前記第1の端スリットに対向する第1の内辺と、
前記第1のフラックスバリア部を定めており、前記第1の内辺に隣接しており、且つ前記第1の内辺と前記ロータコアの外周面との間に位置している第1の外側湾曲部と、
前記第2のフラックスバリア部を定めており前記第2の端スリットに対向する第2の内辺と、
前記第2のフラックスバリア部を定めており、前記第2の内辺に隣接しており、且つ前記第2の内辺と前記ロータコアの外周面との間に位置している第2の外側湾曲部と
を有し、
前記第1の端スリットから前記磁石挿入孔までの最短距離をD1[mm]としたとき、
0.365≦D1≦0.865
を満たす。
本発明の他の態様に係るモータは、
ステータと、
前記ステータの内側に配置された、前記本発明の一態様に係るロータ又は前記本発明の他の態様に係るロータと
を備える。
本発明の他の態様に係る圧縮機は、
密閉容器と、
前記密閉容器内に配置された圧縮装置と、
前記圧縮装置を駆動する前記モータと
を備える。
本発明の他の態様に係る空気調和機は、
前記圧縮機と、
熱交換器と
を備える。

Claims (16)

  1. P個(Pは2以上の整数)の磁極を持つロータであって、
    永久磁石と、
    前記永久磁石が配置された磁石配置部、前記磁石配置部に連通している第1のフラックスバリア部、及び前記磁石配置部に連通している第2のフラックスバリア部を持つ磁石挿入孔と、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第1のフラックスバリア部に対向する第1の端スリットと、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第2のフラックスバリア部に対向する第2の端スリットとを有するロータコアと
    を備え、
    前記ロータコアは、
    前記第1のフラックスバリア部を定めており前記第1の端スリットに対向する第1の内辺と、
    前記第1のフラックスバリア部を定めており、前記第1の内辺に隣接しており、且つ前記第1の内辺と前記ロータコアの外周面との間に位置している第1の外側湾曲部と、
    前記第2のフラックスバリア部を定めており前記第2の端スリットに対向する第2の内辺と、
    前記第2のフラックスバリア部を定めており、前記第2の内辺に隣接しており、且つ前記第2の内辺と前記ロータコアの外周面との間に位置している第2の外側湾曲部と
    を有し、
    前記ロータの軸方向と直交する平面において、前記第1の内辺と前記第1の外側湾曲部との間の第1の境界及び前記ロータの回転中心を通る直線をL1とし、前記第2の内辺と前記第2の外側湾曲部との間の第2の境界及び前記ロータの前記回転中心を通る直線をL2とし、前記直線L1と前記直線L2との間の角度をθ[度]としたとき、
    251.7/P≦θ≦255/P
    を満たすロータ。
  2. P個(Pは2以上の整数)の磁極を持つロータであって、
    永久磁石と、
    前記永久磁石が配置された磁石配置部、前記磁石配置部に連通している第1のフラックスバリア部、及び前記磁石配置部に連通している第2のフラックスバリア部を持つ磁石挿入孔と、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第1のフラックスバリア部に対向する第1の端スリットと、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第2のフラックスバリア部に対向する第2の端スリットとを有するロータコアと
    を備え、
    前記ロータコアは、
    前記第1のフラックスバリア部を定めており前記第1の端スリットに対向する第1の内辺と、
    前記第1のフラックスバリア部を定めており、前記第1の内辺に隣接しており、且つ前記第1の内辺と前記ロータコアの外周面との間に位置している第1の外側湾曲部と、
    前記第2のフラックスバリア部を定めており前記第2の端スリットに対向する第2の内辺と、
    前記第2のフラックスバリア部を定めており、前記第2の内辺に隣接しており、且つ前記第2の内辺と前記ロータコアの外周面との間に位置している第2の外側湾曲部と
    を有し、
    前記第1の端スリットから前記磁石挿入孔までの最短距離をD1[mm]としたとき、
    0.365≦D1≦0.865
    を満たすロータ。
  3. 前記ロータの軸方向と直交する平面において、前記第1の内辺と前記第1の外側湾曲部との間の第1の境界及び前記ロータの回転中心を通る直線をL1とし、前記第2の内辺と前記第2の外側湾曲部との間の第2の境界及び前記ロータの前記回転中心を通る直線をL2とし、前記直線L1と前記直線L2との間の角度をθ[度]としたとき、
    251.7/P≦θ≦255/P
    を満たす請求項2に記載のロータ。
  4. 0.365≦D1≦0.765を満たす請求項2又は3に記載のロータ。
  5. 前記第2の端スリットから前記磁石挿入孔までの最短距離をD2[mm]としたとき、
    0.365≦D2≦0.865
    を満たす請求項2から4のいずれか1項に記載のロータ。
  6. 前記第2の端スリットから前記磁石挿入孔までの最短距離をD2[mm]としたとき、
    0.365≦D2≦0.765を満たす請求項2から4のいずれか1項に記載のロータ。
  7. 前記ロータコアは、
    前記第1の端スリットを定めており前記第1のフラックスバリア部に対向する第1の端スリット辺と、
    前記第1の端スリットを定めており、前記第1の端スリット辺に隣接しており、且つ前記第1の端スリット辺と前記磁石挿入孔との間に位置している第1の端スリット湾曲部と
    を有し、
    前記ロータの軸方向と直交する平面において、前記ロータの磁極中心を通る磁極中心線と直交する直線が、前記第1の内辺と前記第1の外側湾曲部との間の第1の境界を通り且つ前記第1の端スリット辺と交わる点を第1の点とし、前記第1の境界から前記第1の点までの距離をd11とし、前記第1の端スリット辺と前記第1の端スリット湾曲部との間の境界を第3の境界とし、前記磁極中心線と直交する直線が、前記第3の境界を通り且つ前記第1の内辺と交わる点を第2の点とし、前記第3の境界から前記第2の点までの距離をd12としたとき、
    d11≧d12
    を満たす請求項1から6のいずれか1項に記載のロータ。
  8. 前記ロータコアは、
    前記第2の端スリットを定めており前記第2のフラックスバリア部に対向する第2の端スリット辺と、
    前記第2の端スリットを定めており、前記第2の端スリット辺に隣接しており、且つ前記第2の端スリット辺と前記磁石挿入孔との間に位置している第2の端スリット湾曲部と
    を有し、
    前記ロータの前記軸方向と直交する前記平面において、前記磁極中心線と直交する直線が、前記第2の内辺と前記第2の外側湾曲部との間の第2の境界を通り且つ前記第2の端スリット辺と交わる点を第3の点とし、前記第2の境界から前記第3の点までの距離をd21とし、前記第2の端スリット辺と前記第2の端スリット湾曲部との間の境界を第4の境界とし、前記磁極中心線と直交する直線が、前記第4の境界を通り且つ前記第2の内辺と交わる点を第4の点とし、前記第4の境界から前記第4の点までの距離をd22としたとき、
    d21≧d22
    を満たす請求項7に記載のロータ。
  9. d11=d12
    を満たす請求項7又は8に記載のロータ。
  10. 前記第1の端スリットから前記第1のフラックスバリア部までの最短距離をd13[mm]としたとき、
    0.365≦d13≦0.55
    を満たす請求項9に記載のロータ。
  11. 前記第1の端スリットから前記第1のフラックスバリア部までの最短距離をd13[mm]としたとき、
    0.365≦d13≦0.4
    を満たす請求項9に記載のロータ。
  12. θ=253.3/Pを満たす請求項1から11のいずれか1項に記載のロータ。
  13. ステータと、
    前記ステータの内側に配置された請求項1から12のいずれか1項に記載のロータと
    を備えたモータ。
  14. インバータ制御で駆動する請求項13に記載のモータ。
  15. 密閉容器と、
    前記密閉容器内に配置された圧縮装置と、
    前記圧縮装置を駆動する請求項13又は14に記載のモータと
    を備える圧縮機。
  16. 請求項15に記載の圧縮機と、
    熱交換器と
    を備える空気調和機。
JP2021514709A 2019-04-17 2019-04-17 ロータ、モータ、圧縮機、及び空気調和機 Active JP7204897B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016422 WO2020213081A1 (ja) 2019-04-17 2019-04-17 ロータ、モータ、圧縮機、及び空気調和機

Publications (2)

Publication Number Publication Date
JPWO2020213081A1 true JPWO2020213081A1 (ja) 2021-10-14
JP7204897B2 JP7204897B2 (ja) 2023-01-16

Family

ID=72838170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021514709A Active JP7204897B2 (ja) 2019-04-17 2019-04-17 ロータ、モータ、圧縮機、及び空気調和機

Country Status (2)

Country Link
JP (1) JP7204897B2 (ja)
WO (1) WO2020213081A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022086386A (ja) * 2020-11-30 2022-06-09 三菱重工サーマルシステムズ株式会社 電動機
CN116191726A (zh) * 2022-10-14 2023-05-30 广东美芝制冷设备有限公司 具有磁障的电机转子、电机及压缩机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278896A (ja) * 1999-03-26 2000-10-06 Nissan Motor Co Ltd 電動機のロータ
JP2012217250A (ja) * 2011-03-31 2012-11-08 Fujitsu General Ltd 回転子および永久磁石電動機
JP2013126291A (ja) * 2011-12-14 2013-06-24 Mitsuba Corp ブラシレスモータおよび電動パワーステアリング装置
WO2015083274A1 (ja) * 2013-12-05 2015-06-11 三菱電機株式会社 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
JP2017085821A (ja) * 2015-10-29 2017-05-18 株式会社富士通ゼネラル 回転子および永久磁石電動機
WO2017138142A1 (ja) * 2016-02-12 2017-08-17 三菱電機株式会社 電動機、圧縮機及び冷凍空調装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278896A (ja) * 1999-03-26 2000-10-06 Nissan Motor Co Ltd 電動機のロータ
JP2012217250A (ja) * 2011-03-31 2012-11-08 Fujitsu General Ltd 回転子および永久磁石電動機
JP2013126291A (ja) * 2011-12-14 2013-06-24 Mitsuba Corp ブラシレスモータおよび電動パワーステアリング装置
WO2015083274A1 (ja) * 2013-12-05 2015-06-11 三菱電機株式会社 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
JP2017085821A (ja) * 2015-10-29 2017-05-18 株式会社富士通ゼネラル 回転子および永久磁石電動機
WO2017138142A1 (ja) * 2016-02-12 2017-08-17 三菱電機株式会社 電動機、圧縮機及び冷凍空調装置

Also Published As

Publication number Publication date
WO2020213081A1 (ja) 2020-10-22
JP7204897B2 (ja) 2023-01-16

Similar Documents

Publication Publication Date Title
WO2017077590A1 (ja) ステータ、電動機、圧縮機、及び冷凍空調装置
JPWO2020021692A1 (ja) 電動機、圧縮機および空気調和装置
JP7195408B2 (ja) ロータ、モータ、圧縮機、及び空気調和機
JP7204897B2 (ja) ロータ、モータ、圧縮機、及び空気調和機
JP7237178B2 (ja) ロータ、電動機、圧縮機、及び空気調和機
JP2023168510A (ja) 電動機、圧縮機、送風機、及び冷凍空調装置
JP6956881B2 (ja) 電動機、圧縮機、及び空気調和機
JP7150181B2 (ja) モータ、圧縮機、及び空気調和機
JP7034328B2 (ja) ロータ、モータ、圧縮機、及び冷凍空調装置
JP7154373B2 (ja) 電動機、圧縮機、及び空気調和機
JP7130051B2 (ja) 回転子、電動機、圧縮機、及び冷凍空調装置
JP7094369B2 (ja) ステータ、モータ、圧縮機、及び冷凍空調装置
JP7345562B2 (ja) ステータ、モータ、圧縮機、及び空気調和機
WO2019186682A1 (ja) 電動機、圧縮機、送風機、及び冷凍空調装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221228

R150 Certificate of patent or registration of utility model

Ref document number: 7204897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150