JPWO2020195711A1 - Liquid separator, cooling system and gas-liquid separation method - Google Patents

Liquid separator, cooling system and gas-liquid separation method Download PDF

Info

Publication number
JPWO2020195711A1
JPWO2020195711A1 JP2021508941A JP2021508941A JPWO2020195711A1 JP WO2020195711 A1 JPWO2020195711 A1 JP WO2020195711A1 JP 2021508941 A JP2021508941 A JP 2021508941A JP 2021508941 A JP2021508941 A JP 2021508941A JP WO2020195711 A1 JPWO2020195711 A1 JP WO2020195711A1
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
closed container
liquid separator
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021508941A
Other languages
Japanese (ja)
Other versions
JP7188563B2 (en
Inventor
貴文 棗田
正樹 千葉
孔一 轟
吉川 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2020195711A1 publication Critical patent/JPWO2020195711A1/en
Application granted granted Critical
Publication of JP7188563B2 publication Critical patent/JP7188563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本発明は、密閉容器の上部に圧縮機を安定した状態で配置することができる液分離器、冷却システム及び気液分離方法を提供する。
冷媒が貯留される筒状の密閉容器と、この密閉空間に冷媒を流入させる冷媒流入管と、この密閉容器内の空間中の気相冷媒を外部に流出させる冷媒流出管とを有し、これら冷媒流入管及び冷媒流出管は、密閉容器の上部からその内部へ向けてそれぞれ接続されており、この密閉容器は径に対して高さが相対的に小さい短筒状に構成される。
The present invention provides a liquid separator, a cooling system and a gas-liquid separation method capable of stably arranging a compressor on an upper part of a closed container.
It has a tubular closed container in which the refrigerant is stored, a refrigerant inflow pipe that allows the refrigerant to flow into the closed space, and a refrigerant outflow pipe that allows the gas phase refrigerant in the space inside the closed container to flow out to the outside. The refrigerant inflow pipe and the refrigerant outflow pipe are connected from the upper part of the closed container toward the inside thereof, and the closed container is formed in a short cylinder shape whose height is relatively small with respect to the diameter.

Description

本発明は、主に冷却システムに使用され、蒸発器から圧縮機に流れ込む液体を分離する液分離器、冷却システム及び気液分離方法に関する。 The present invention relates to a liquid separator, a cooling system and a gas-liquid separation method, which are mainly used in a cooling system and separate a liquid flowing from an evaporator to a compressor.

蒸発器、圧縮機、凝縮器及び膨張弁からなる冷却システムにおいて、圧縮機の吸入口前に液分離器となるアキュムレータが設置される場合がある。
例えば、特許文献1に示される冷却システムは、冷媒流路に沿って、蒸発器と、圧縮機と、凝縮器と、減圧膨張弁とを備える。蒸発器は、液相冷媒を蒸発させることで周囲の熱を吸収する。圧縮機は、蒸発器から送り出された気相冷媒を圧縮する。凝縮器は、圧縮機によって高圧となった冷媒の熱を放出し気相冷媒を凝縮させる。減圧膨張弁は、凝縮器によって冷やされた液相冷媒を減圧膨張させる。
特許文献1に示されるこの冷却システムには、圧縮機の上流側において、蒸発器を経由した後の冷媒を気液分離する液分離器が設けられている。
In a cooling system consisting of an evaporator, a compressor, a condenser and an expansion valve, an accumulator serving as a liquid separator may be installed in front of the suction port of the compressor.
For example, the cooling system shown in Patent Document 1 includes an evaporator, a compressor, a condenser, and a pressure reducing expansion valve along the refrigerant flow path. The evaporator absorbs ambient heat by evaporating the liquid phase refrigerant. The compressor compresses the vapor phase refrigerant delivered from the evaporator. The condenser releases the heat of the refrigerant whose high pressure is increased by the compressor to condense the vapor phase refrigerant. The decompression expansion valve decompresses and expands the liquid phase refrigerant cooled by the condenser.
In this cooling system shown in Patent Document 1, a liquid separator for gas-liquid separation of the refrigerant after passing through the evaporator is provided on the upstream side of the compressor.

この液分離器は、全体として縦長に形成された分離容器を有する。この分離容器の上部には冷媒流入管及び気相冷媒流出管が設置される。また、この分離容器の下部には液相冷媒流出管が設置される。
この液分離器においては、冷媒流入管を経由して内部に流入した冷媒が、分離容器の液分離器の内壁に沿うようにして円周方向に回転しながら、液相冷媒と気相冷媒とに遠心分離される。
その後、分離容器内の気相冷媒は上部の気相冷媒流出管を経由して減圧膨張弁に案内され、分離容器内の液相冷媒は下部の液相冷媒流出管を経由して蒸発器に案内される。
This liquid separator has a vertically elongated separation container as a whole. A refrigerant inflow pipe and a gas phase refrigerant outflow pipe are installed above the separation container. In addition, a liquid phase refrigerant outflow pipe is installed at the bottom of the separation container.
In this liquid separator, the refrigerant that has flowed into the inside through the refrigerant inflow pipe rotates in the circumferential direction along the inner wall of the liquid separator of the separation container, and the liquid-phase refrigerant and the gas-phase refrigerant are mixed. Is centrifuged.
After that, the gas phase refrigerant in the separation container is guided to the pressure reducing expansion valve via the upper gas phase refrigerant outflow pipe, and the liquid phase refrigerant in the separation container is guided to the evaporator via the lower liquid phase refrigerant outflow pipe. You will be guided.

一方、特許文献2にも同様の液分離器が示される。
この特許文献2に開示された液分離器は、特許文献1と同様、全体として縦長に形成された密閉容器を有する。この密閉容器の下部には、気液二相流体を密閉容器の内部へ流入させる第1配管、密閉容器内のガスを外部に排出する第2配管、密閉容器内の液を外部に排出する第3配管が接続される。
On the other hand, Patent Document 2 also shows a similar liquid separator.
Similar to Patent Document 1, the liquid separator disclosed in Patent Document 2 has a closed container formed vertically as a whole. At the bottom of the closed container, there is a first pipe that allows the gas-liquid two-phase fluid to flow into the closed container, a second pipe that discharges the gas in the closed container to the outside, and a second pipe that discharges the liquid in the closed container to the outside. 3 pipes are connected.

日本国特開2015−172469号公報Japanese Patent Application Laid-Open No. 2015-172469 日本国特開2013−120028号公報Japanese Patent Application Laid-Open No. 2013-120028

特許文献1および2に示される冷却システムでは、圧縮機がアキュムレータより上方に位置し、重力により液相冷媒がアキュムレータへ戻る構成とされる。
このため、アキュムレータが上下に長く、このアキュムレータの上部に圧縮機を配置した場合には、液分離器の上部が重く重心が高くなる。そのため、液分離器が不安定な状態になり、この点を改良するための新たな技術提供が期待されていた。
In the cooling system shown in Patent Documents 1 and 2, the compressor is located above the accumulator, and the liquid phase refrigerant returns to the accumulator by gravity.
Therefore, the accumulator is long in the vertical direction, and when the compressor is arranged on the upper part of the accumulator, the upper part of the liquid separator is heavy and the center of gravity is high. As a result, the liquid separator becomes unstable, and it has been expected to provide new technology to improve this point.

この発明は、上述した事情に鑑みてなされたものである。したがって、本発明は、密閉容器の上部に圧縮機を安定した状態で配置することができる液分離器、冷却システム及び気液分離方法を提供する。 The present invention has been made in view of the above circumstances. Therefore, the present invention provides a liquid separator, a cooling system and a gas-liquid separation method capable of stably arranging a compressor on the upper part of a closed container.

上記課題を解決するために、この発明は以下の手段を提案している。
本発明の第1態様による液分離器は、冷媒が貯留される筒状の密閉容器と、前記密閉容器内に冷媒を流入させる冷媒流入管と、前記密閉容器内の空間中の気相冷媒を外部に流出させる冷媒流出管とを有し、前記冷媒流入管及び前記冷媒流出管は、前記密閉容器の上部から容器内部へ向けてそれぞれ配置されており、前記密閉容器は径に対して高さが相対的に小さい短筒状をなすように構成される。
In order to solve the above problems, the present invention proposes the following means.
The liquid separator according to the first aspect of the present invention comprises a tubular closed container in which the refrigerant is stored, a refrigerant inflow pipe for inflowing the refrigerant into the closed container, and a gas phase refrigerant in the space inside the closed container. It has a refrigerant outflow pipe that allows the outflow to the outside, and the refrigerant inflow pipe and the refrigerant outflow pipe are arranged from the upper part of the closed container toward the inside of the container, respectively, and the closed container is height relative to the diameter. Is configured to form a relatively small short tube.

本発明の第2態様は、冷媒流路に沿って、液相冷媒を蒸発させることで周囲の熱を吸収する蒸発器と、前記気相冷媒を圧縮する圧縮機と、前記圧縮機によって高圧となった冷媒の熱を放出し気相冷媒を凝縮させる凝縮器と、前記凝縮器によって冷やされた液相冷媒を減圧膨張させる減圧膨張弁とを備える冷却システムであって、前記圧縮機の上流側には、前記蒸発器を経由した後の冷媒を気液分離する液分離器が設けられ、前記液分離器は、冷媒が貯留される筒状の密閉容器と、前記密閉容器内の空間に冷媒を流入させる冷媒流入管と、前記密閉容器内の空間中の冷媒を外部に流出させる冷媒流出管とを有し、前記密閉容器は径に対して高さが相対的に小さい短筒状をなすように構成される。 A second aspect of the present invention is an evaporator that absorbs ambient heat by evaporating the liquid-phase refrigerant along the refrigerant flow path, a compressor that compresses the vapor-phase refrigerant, and a high pressure by the compressor. A cooling system including a condenser that releases the heat of the refrigerant to condense the gas-phase refrigerant and a decompression expansion valve that depressurizes and expands the liquid-phase refrigerant cooled by the condenser, and is on the upstream side of the compressor. Is provided with a liquid separator that separates the refrigerant after passing through the evaporator into gas and liquid, and the liquid separator has a cylindrical closed container in which the refrigerant is stored and a refrigerant in the space inside the closed container. The closed container has a refrigerant inflow pipe for inflowing the refrigerant and a refrigerant outflow pipe for flowing the refrigerant in the space inside the closed container to the outside, and the closed container has a short tubular shape whose height is relatively small with respect to the diameter. It is configured as follows.

本発明の第3態様による気液分離方法は、冷媒が貯留される筒状の密閉容器に冷媒を流入させる冷媒流入管と前記密閉容器内の空間中の冷媒を外部に流出させる冷媒流出管とを接続するとともに、前記密閉容器を径に対して高さが相対的に小さい短筒状をなすように形成する。 The gas-liquid separation method according to the third aspect of the present invention includes a refrigerant inflow pipe that allows the refrigerant to flow into a tubular closed container in which the refrigerant is stored, and a refrigerant outflow pipe that allows the refrigerant in the space inside the closed container to flow out. The closed container is formed so as to form a short tubular shape whose height is relatively small with respect to the diameter.

本発明によれば、液分離器の上部に重量を有する圧縮機を配置したとしても、液分離器を安定した状態で保持することができる。 According to the present invention, the liquid separator can be held in a stable state even if a heavy compressor is arranged above the liquid separator.

本発明の実施形態に係る液分離器を含む冷却システムを示す構成図である。It is a block diagram which shows the cooling system including the liquid separator which concerns on embodiment of this invention. 本発明の第1実施形態に係る液分離器を含む冷却システムを示す構成図である。It is a block diagram which shows the cooling system including the liquid separator which concerns on 1st Embodiment of this invention. 第1実施形態に係る液分離器を示す斜視図である。It is a perspective view which shows the liquid separator which concerns on 1st Embodiment. 図3に示された液分離器の内部構成を示す縦断面図である。It is a vertical cross-sectional view which shows the internal structure of the liquid separator shown in FIG. 図3に示された液分離器内に設けられた飛沫防止板の作用を説明するための図である。It is a figure for demonstrating the operation of the splash prevention plate provided in the liquid separator shown in FIG. 図5Aに示された飛沫防止板を示す斜視図である。It is a perspective view which shows the splash prevention plate shown in FIG. 5A. 飛沫防止板の変形例1を示す斜視図である。It is a perspective view which shows the modification 1 of the splash prevention plate. 飛沫防止板の変形例2を示す斜視図である。It is a perspective view which shows the modification 2 of the splash prevention plate. 第2実施形態に係る液分離器を示す断面図である。It is sectional drawing which shows the liquid separator which concerns on 2nd Embodiment. 第3実施形態に係る液分離器を示す斜視図である。It is a perspective view which shows the liquid separator which concerns on 3rd Embodiment. 第3実施形態に係る液分離器を含む冷却システムを示す構成図である。It is a block diagram which shows the cooling system including the liquid separator which concerns on 3rd Embodiment.

本発明の実施形態に係る液分離器10について図1を参照して説明する。
この液分離器10は、冷却システム1内にある圧縮機3の上流側に位置し、例えば蒸発器2を経由した後の冷媒を気液分離するために設けられる。
この冷却システム1は、冷媒流路1Aに沿って、蒸発器2と、圧縮機3と、凝縮器4と、減圧膨張弁5とを備える。蒸発器2は、液相冷媒を蒸発させることで周囲の熱を吸収する。圧縮機は、気相冷媒を圧縮する。凝縮器4は、この圧縮機3によって高圧となった冷媒の熱を放出し気相冷媒を凝縮(あるいは強制的に圧縮)させる。減圧膨張弁5は、この凝縮器4から供給された液相冷媒を膨張させる。
The liquid separator 10 according to the embodiment of the present invention will be described with reference to FIG.
The liquid separator 10 is located on the upstream side of the compressor 3 in the cooling system 1, and is provided for gas-liquid separation of the refrigerant after passing through the evaporator 2, for example.
The cooling system 1 includes an evaporator 2, a compressor 3, a condenser 4, and a pressure reducing expansion valve 5 along the refrigerant flow path 1A. The evaporator 2 absorbs ambient heat by evaporating the liquid phase refrigerant. The compressor compresses the gas phase refrigerant. The condenser 4 releases the heat of the refrigerant that has become high pressure by the compressor 3 to condense (or forcibly compress) the gas phase refrigerant. The pressure reducing expansion valve 5 expands the liquid phase refrigerant supplied from the condenser 4.

圧縮機3の上流側に位置する液分離器10は、冷媒Cが貯留される筒状の密閉容器11を有する。この密閉容器11内には、気相媒体又は気液二相冷媒を流入させる冷媒流入管12と、この密閉容器11内の気相冷媒を外部に排出する冷媒流出管13とが設けられる。 The liquid separator 10 located on the upstream side of the compressor 3 has a cylindrical closed container 11 in which the refrigerant C is stored. Inside the closed container 11, a refrigerant inflow pipe 12 for inflowing a gas phase medium or a gas-liquid two-phase refrigerant and a refrigerant outflow pipe 13 for discharging the gas phase refrigerant in the closed container 11 to the outside are provided.

冷媒流入管12及び冷媒流出管13は、密閉容器11の上部面11Aから容器内部11Bへ向けてそれぞれ設置される。この冷媒流入管12及び冷媒流出管13は、密閉容器11の径方向(R方向)にできるだけ大きな相互間隔をおいて配置されている。
また、液分離器10の密閉容器11はR方向に沿う径に対して高さhが相対的に小さく、全体として短筒状となるように構成されている。
このような液分離器10においては、密閉容器11が短筒状に形成されているので、密閉容器11の上部面11Aに重量の大きな圧縮機3を配置したとしても、液分離器10の上部が重くなる、いわゆるトップヘビーとなることを避けて、液分離器10を安定した状態で保持することができる。
The refrigerant inflow pipe 12 and the refrigerant outflow pipe 13 are installed from the upper surface 11A of the closed container 11 toward the inside of the container 11B, respectively. The refrigerant inflow pipe 12 and the refrigerant outflow pipe 13 are arranged at the largest possible mutual spacing in the radial direction (R direction) of the closed container 11.
Further, the closed container 11 of the liquid separator 10 has a height h relatively small with respect to a diameter along the R direction, and is configured to have a short cylindrical shape as a whole.
In such a liquid separator 10, since the closed container 11 is formed in a short cylinder shape, even if a heavy compressor 3 is arranged on the upper surface 11A of the closed container 11, the upper part of the liquid separator 10 The liquid separator 10 can be held in a stable state without becoming heavy, that is, becoming a so-called top heavy.

このような蒸気圧縮型の冷却システム1では、蒸発器2で熱源から熱H1を吸収して蒸発した気相冷媒が、液分離器10にて気液分離された後、圧縮機3で圧縮され、凝縮器4へと送られる。その後、凝縮器4で冷熱源に放熱H2して凝縮した液相冷媒は、減圧膨張弁5で所定の圧力にまで減圧され、再び蒸発器2に送られる。
ここで、液相冷媒が、熱源の負荷低下や減圧膨張弁5の故障等によって蒸発器2において十分に蒸発せず、気液混合流となって圧縮機3に供給されることがある。このように液体が圧縮機3に供給される現象は液バックと称される。液体が圧縮機3に供給されると、圧縮機3の性能低下や故障を引き起こす可能性がある。これを防止するために本発明の実施形態に係る液分離器10では、蒸発器2を経た後の気液混合流のうち、液体を分離し、気体のみを圧縮機3に供給するようにしている。
In such a steam compression type cooling system 1, the vapor phase refrigerant which has absorbed heat H1 from the heat source by the evaporator 2 and evaporated is gas-liquid separated by the liquid separator 10 and then compressed by the compressor 3. , Is sent to the condenser 4. After that, the liquid-phase refrigerant condensed by heat radiating H2 to the cold heat source in the condenser 4 is depressurized to a predetermined pressure by the decompression expansion valve 5 and sent to the evaporator 2 again.
Here, the liquid-phase refrigerant may not be sufficiently evaporated in the evaporator 2 due to a decrease in the load of the heat source, a failure of the pressure reducing expansion valve 5, or the like, and may be supplied to the compressor 3 as a gas-liquid mixed flow. The phenomenon in which the liquid is supplied to the compressor 3 in this way is called a liquid bag. When the liquid is supplied to the compressor 3, the performance of the compressor 3 may be deteriorated or a failure may be caused. In order to prevent this, in the liquid separator 10 according to the embodiment of the present invention, the liquid is separated from the gas-liquid mixed flow after passing through the evaporator 2, and only the gas is supplied to the compressor 3. There is.

以上説明したように、本発明の実施形態に係る液分離器10においては、径方向(R方向)に対して高さ(h)が相対的に小さい短筒状をなすように密閉容器11が形成されている。したがって、冷却システム全体の高さを低くすることができ、密閉容器11の上部面11Aに重い圧縮機3を配置したとしても、装置全体としてはトップヘビーにならず安定した状態で設置することができる。
また、上記液分離器10においては、密閉容器11が短筒状に形成されている。したがって、密閉容器11の上部面11Aに、冷媒流入管12及び冷媒流出管13を径方向(R方向)に十分な間隔で配置することができる。
その結果、上記液分離器10においては、冷媒流入管12から密閉容器11へ冷媒が流入することによって生じた冷媒の液面の乱れの影響が、冷媒流出管13へ流出する冷媒に及ぶことを防止することができる。したがって、密閉容器11内の液相冷媒が、巻き上げられて冷媒流出管13から流出する事態を未然に防止することができる。
As described above, in the liquid separator 10 according to the embodiment of the present invention, the closed container 11 has a short cylindrical shape whose height (h) is relatively small with respect to the radial direction (R direction). It is formed. Therefore, the height of the entire cooling system can be lowered, and even if the heavy compressor 3 is arranged on the upper surface 11A of the closed container 11, the entire device can be installed in a stable state without becoming top heavy. can.
Further, in the liquid separator 10, the closed container 11 is formed in a short cylinder shape. Therefore, the refrigerant inflow pipe 12 and the refrigerant outflow pipe 13 can be arranged on the upper surface 11A of the closed container 11 at sufficient intervals in the radial direction (R direction).
As a result, in the liquid separator 10, the influence of the turbulence of the liquid level of the refrigerant caused by the inflow of the refrigerant from the refrigerant inflow pipe 12 into the closed container 11 extends to the refrigerant flowing out to the refrigerant outflow pipe 13. Can be prevented. Therefore, it is possible to prevent the liquid phase refrigerant in the closed container 11 from being wound up and flowing out from the refrigerant outflow pipe 13.

(第1実施形態)
本発明の第1実施形態に係る液分離器200について図2〜図7を参照して説明する。
この液分離器200は、冷却システムF内に設置される。
冷却システムFは、図2に示されるように、冷媒流路610,620,630,640,および650により構成される冷媒の流通経路(具体的には管路)の途中に、蒸発器100と、液分離器200と、圧縮機300と、凝縮器400と、減圧膨張弁500とを備える。蒸発器100は、液相冷媒を蒸発させることで周囲の熱H1を吸収する。液分離器200は、冷媒を気液分離する。圧縮機300は、液分離器200から排出された気相冷媒を圧縮する。凝縮器400は、圧縮機300によって高圧となった冷媒の熱を放出し気相冷媒を凝縮させる。減圧膨張弁500は、凝縮器400によって冷やされた液相冷媒を減圧膨張させる。
(First Embodiment)
The liquid separator 200 according to the first embodiment of the present invention will be described with reference to FIGS. 2 to 7.
The liquid separator 200 is installed in the cooling system F.
As shown in FIG. 2, the cooling system F includes the evaporator 100 in the middle of the refrigerant flow path (specifically, the pipeline) composed of the refrigerant flow paths 610, 620, 630, 640, and 650. , A liquid separator 200, a compressor 300, a condenser 400, and a pressure reducing expansion valve 500. The evaporator 100 absorbs the ambient heat H1 by evaporating the liquid phase refrigerant. The liquid separator 200 separates the refrigerant into gas and liquid. The compressor 300 compresses the gas phase refrigerant discharged from the liquid separator 200. The condenser 400 releases the heat of the refrigerant whose high pressure is increased by the compressor 300 to condense the vapor phase refrigerant. The pressure reducing expansion valve 500 decompresses and expands the liquid phase refrigerant cooled by the condenser 400.

減圧膨張弁500から冷媒流路650を介して供給された冷媒は、蒸発器100で熱源から熱H1を吸収されて蒸発する。蒸発した気相冷媒は、冷媒流路610、液分離器200及び冷媒流路620を順に通過して圧縮機300に送られる。
圧縮機300で高温高圧に圧縮された気相冷媒は、冷媒流路630を経由して凝縮器400に送られ、冷熱源に放熱H2して凝縮する。
その後、凝縮器400において凝縮した液相冷媒は、冷媒流路640を通して減圧膨張弁500に移動し、所定の圧力まで減圧される。その後、液相冷媒は冷媒流路650を通して再び蒸発器100に送られる。
The refrigerant supplied from the pressure reducing expansion valve 500 via the refrigerant flow path 650 absorbs heat H1 from the heat source in the evaporator 100 and evaporates. The evaporated vapor-phase refrigerant passes through the refrigerant flow path 610, the liquid separator 200, and the refrigerant flow path 620 in this order, and is sent to the compressor 300.
The vapor-phase refrigerant compressed to high temperature and high pressure by the compressor 300 is sent to the condenser 400 via the refrigerant flow path 630, dissipates heat H2 to a cold heat source, and condenses.
After that, the liquid phase refrigerant condensed in the condenser 400 moves to the pressure reducing expansion valve 500 through the refrigerant flow path 640 and is reduced to a predetermined pressure. After that, the liquid phase refrigerant is sent to the evaporator 100 again through the refrigerant flow path 650.

ここで液分離器200は、圧縮機300の上流側に配置されてこの圧縮機300に液相冷媒が吸引されるのを防止する役割を有する。
圧縮機300は気相冷媒を圧縮するように設計されているので、液相冷媒が混入した場合には故障に繋がることが知られている(液バック現象という)。通常、冷媒は、蒸発器100において完全に蒸発して気相冷媒のみになる。しかし、蒸発器100において、熱負荷の低下等の外乱が生じると、冷媒が蒸発せずに液相冷媒が一部残ることがある。その場合には、この液相冷媒が冷媒流路610に送られる。このため、液分離器200は、冷媒に含有される液相冷媒を分離し、気相冷媒のみを下流の圧縮機300に供給する。
Here, the liquid separator 200 is arranged on the upstream side of the compressor 300 and has a role of preventing the liquid phase refrigerant from being sucked into the compressor 300.
Since the compressor 300 is designed to compress the gas phase refrigerant, it is known that if the liquid phase refrigerant is mixed in, it may lead to a failure (referred to as a liquid back phenomenon). Normally, the refrigerant completely evaporates in the evaporator 100 and becomes only a vapor phase refrigerant. However, in the evaporator 100, when a disturbance such as a decrease in heat load occurs, the refrigerant may not evaporate and a part of the liquid phase refrigerant may remain. In that case, this liquid phase refrigerant is sent to the refrigerant flow path 610. Therefore, the liquid separator 200 separates the liquid phase refrigerant contained in the refrigerant and supplies only the vapor phase refrigerant to the downstream compressor 300.

冷媒流路620は設置上の制約がない限り、重力方向に対する逆勾配となる構造やU字構造を避けて構築することが好ましい。これは、冷媒流路620内にこのような逆勾配構造やU字構造が存在すると、その部分に、冷却システムFの停止時に冷媒流路620内に凝縮した液相冷媒が滞留するからである。このように、冷媒流路620に滞留した液相冷媒は、次回の冷却システムFの起動時に気相冷媒とともに圧縮機300に吸入されるため、液分離器200を設置しているにも係わらず、圧縮機300において液バック現象を引き起こす恐れがある。 Unless there are restrictions on installation, it is preferable to construct the refrigerant flow path 620 while avoiding a structure having a reverse gradient with respect to the direction of gravity or a U-shaped structure. This is because if such a reverse gradient structure or U-shaped structure exists in the refrigerant flow path 620, the liquid phase refrigerant condensed in the refrigerant flow path 620 stays in the portion when the cooling system F is stopped. .. In this way, the liquid-phase refrigerant staying in the refrigerant flow path 620 is sucked into the compressor 300 together with the vapor-phase refrigerant when the cooling system F is started next time, so that the liquid separator 200 is installed. , There is a risk of causing a liquid back phenomenon in the compressor 300.

図3及び図4を参照すると、圧縮機300の上流側に位置する液分離器200は、冷媒が貯留される密閉容器となる筒状の筐体210を有する。この筐体210内には、気相冷媒又は気液二相冷媒を流入させる冷媒流入管220と、筐体210内の気相冷媒を外部に流出させる冷媒流出管230とが設置される。 Referring to FIGS. 3 and 4, the liquid separator 200 located on the upstream side of the compressor 300 has a cylindrical housing 210 that serves as a closed container in which the refrigerant is stored. Inside the housing 210, a refrigerant inflow pipe 220 for flowing in a gas-phase refrigerant or a gas-liquid two-phase refrigerant and a refrigerant outflow pipe 230 for flowing out the gas-phase refrigerant in the housing 210 to the outside are installed.

冷媒流入管220及び冷媒流出管230は、筐体210の上部面210Aから容器内部210Bへ向けて設置される。冷媒流入管220及び冷媒流出管230は、筐体210の径方向(R方向)に間隔をおいて配置されている。冷媒流入管220は蒸発器100からの気相冷媒又は気液二相冷媒が案内される冷媒流路610に接続される。冷媒流出管230は圧縮機300に気相冷媒を案内する冷媒流路620に接続される。
蒸発器100を経た後の気相冷媒又は気液二相冷媒は、冷媒流入管220を通して筐体210内に流入し、気液混合流の中の液相冷媒が重力によって筐体210の底部に落下して滞留する。一方で、気液混合流の中の気相冷媒は冷媒流出管230を通して圧縮機300に送られる。
The refrigerant inflow pipe 220 and the refrigerant outflow pipe 230 are installed from the upper surface 210A of the housing 210 toward the inside of the container 210B. The refrigerant inflow pipe 220 and the refrigerant outflow pipe 230 are arranged at intervals in the radial direction (R direction) of the housing 210. The refrigerant inflow pipe 220 is connected to the refrigerant flow path 610 in which the vapor phase refrigerant or the gas-liquid two-phase refrigerant from the evaporator 100 is guided. The refrigerant outflow pipe 230 is connected to a refrigerant flow path 620 that guides the vapor phase refrigerant to the compressor 300.
The gas-phase refrigerant or the gas-liquid two-phase refrigerant after passing through the evaporator 100 flows into the housing 210 through the refrigerant inflow pipe 220, and the liquid-phase refrigerant in the gas-liquid mixed flow reaches the bottom of the housing 210 by gravity. It falls and stays. On the other hand, the gas-phase refrigerant in the gas-liquid mixed flow is sent to the compressor 300 through the refrigerant outflow pipe 230.

液分離器200の筐体210は、R方向に沿う径に対して高さhが相対的に小さく、全体として短筒状となるように構成されている。
このように、液分離器200においては、その筐体210が、R方向の径に対して高さhが相対的に小さい短筒状に形成されているので、筐体210の上部面210Aに重量を有する圧縮機300を配置したとしても、圧縮機300を安定した状態で保持することができる。
The housing 210 of the liquid separator 200 is configured such that the height h is relatively small with respect to the diameter along the R direction and the housing 210 has a short cylinder shape as a whole.
As described above, in the liquid separator 200, the housing 210 is formed in the shape of a short cylinder whose height h is relatively small with respect to the diameter in the R direction, so that the housing 210 is formed on the upper surface 210A of the housing 210. Even if the heavy compressor 300 is arranged, the compressor 300 can be held in a stable state.

再び図2を参照すると、以上のような蒸気圧縮型の冷却システムFにおいては、蒸発器2で熱源から熱H1を吸収して蒸発した気相冷媒が圧縮機300で圧縮されて高温高圧になり、凝縮器400に送られる。その後、凝縮器400で冷熱源に放熱H2して凝縮した液相冷媒は減圧膨張弁500で所定の圧力にまで減圧され、再び蒸発器100に送られる。 Referring to FIG. 2 again, in the vapor compression type cooling system F as described above, the vapor phase refrigerant which has absorbed heat H1 from the heat source by the evaporator 2 and evaporated is compressed by the compressor 300 and becomes high temperature and high pressure. , Sent to condenser 400. After that, the liquid-phase refrigerant condensed by heat dissipation H2 to the cold heat source by the condenser 400 is depressurized to a predetermined pressure by the pressure reducing expansion valve 500, and is sent to the evaporator 100 again.

冷媒流入管220の流入口(液分離器200へ液が流入するための開口)220Aの下方には、図4ならびに図5Aおよび図5Bに示されるように、冷媒流入管220を通じて供給された気相冷媒C1が、筐体210内に滞留した液相冷媒C2を吹き上げるのを防止するメッシュ状の飛沫防止板240が設置されている。
筐体210内では、冷媒流入管220を通じて供給される気相冷媒C1の流速が大きい場合に、この冷媒C1に液相冷媒が混入していなくとも、気相冷媒C1の勢いによって筐体210の底面に滞留した液相冷媒C2が吹き上げられる可能性がある。この場合、吹き上げられた液相冷媒C2は、冷媒流出管230の流出口(筐体210から液が流出するための開口)230Aから流れ出る恐れがある。
このため、図5A及び図5Bに示されるように、冷媒流入管220の下方にメッシュ状の飛沫防止板240が設置される。このメッシュ状の飛沫防止板240によって、気相冷媒C1が液相冷媒C2の液面に与える衝撃を緩和することで、液相冷媒C2が吹き上げられることを未然に防止する。
Below the inlet (opening for the liquid to flow into the liquid separator 200) 220A of the refrigerant inflow pipe 220, the air supplied through the refrigerant inflow pipe 220 as shown in FIGS. 4 and 5A and 5B. A mesh-shaped splash prevention plate 240 is installed to prevent the phase refrigerant C1 from blowing up the liquid phase refrigerant C2 staying in the housing 210.
In the housing 210, when the flow velocity of the gas phase refrigerant C1 supplied through the refrigerant inflow pipe 220 is large, even if the liquid phase refrigerant is not mixed in the refrigerant C1, the momentum of the vapor phase refrigerant C1 causes the housing 210 to have a high flow velocity. The liquid phase refrigerant C2 staying on the bottom surface may be blown up. In this case, the blown-up liquid phase refrigerant C2 may flow out from the outlet (opening for the liquid to flow out from the housing 210) 230A of the refrigerant outflow pipe 230.
Therefore, as shown in FIGS. 5A and 5B, a mesh-shaped splash prevention plate 240 is installed below the refrigerant inflow pipe 220. The mesh-shaped splash prevention plate 240 mitigates the impact of the gas phase refrigerant C1 on the liquid surface of the liquid phase refrigerant C2, thereby preventing the liquid phase refrigerant C2 from being blown up.

以上説明したように第1実施形態に係る液分離器200においては、筐体210が、径方向(R方向)に対して高さhが相対的に小さい短筒状に形成されているので、この筐体210の上部面210Aに重量の大きな圧縮機300を配置したとしても、トップヘビーにならず安定した状態で圧縮機300を保持することができる。
また、上記液分離器200においては、筐体210が短筒状に形成されているので、筐体210の上部面210Aに、径方向(R方向)に一定の間隔を置いて冷媒流入管220及び冷媒流出管230を配置することができる。
その結果、上記液分離器200においては、冷媒流入管220から筐体210内への冷媒流入で生じた液相冷媒C2の液面の波打ち(乱れ)の影響が、冷媒流出管230に及ぶことを防止する。したがって、筐体210内の液相冷媒C2が吹き上げられて冷媒流出管230から流出することを防止することができる。
As described above, in the liquid separator 200 according to the first embodiment, the housing 210 is formed in a short cylinder shape in which the height h is relatively small with respect to the radial direction (R direction). Even if a heavy compressor 300 is arranged on the upper surface 210A of the housing 210, the compressor 300 can be held in a stable state without becoming top heavy.
Further, in the liquid separator 200, since the housing 210 is formed in a short cylinder shape, the refrigerant inflow pipe 220 is provided on the upper surface 210A of the housing 210 at regular intervals in the radial direction (R direction). And the refrigerant outflow pipe 230 can be arranged.
As a result, in the liquid separator 200, the influence of the undulation (turbulence) of the liquid level of the liquid phase refrigerant C2 generated by the inflow of the refrigerant from the refrigerant inflow pipe 220 into the housing 210 extends to the refrigerant outflow pipe 230. To prevent. Therefore, it is possible to prevent the liquid phase refrigerant C2 in the housing 210 from being blown up and flowing out from the refrigerant outflow pipe 230.

さらに、上記液分離器200においては、冷媒流入管220の流入口220Aの下方にメッシュ状の飛沫防止板240を設けたことにより、気相冷媒C1が液面に衝突する勢いを緩和して、液相冷媒C2の液面が波打つことを防ぐ。これによっても筐体210内の液相冷媒C2が冷媒流出管230の流出口230Aから流れ出ることを防止することができる。 Further, in the liquid separator 200, by providing a mesh-shaped splash prevention plate 240 below the inflow port 220A of the refrigerant inflow pipe 220, the momentum of the vapor phase refrigerant C1 colliding with the liquid surface is alleviated. Prevents the liquid level of the liquid phase refrigerant C2 from waving. This also makes it possible to prevent the liquid phase refrigerant C2 in the housing 210 from flowing out from the outlet 230A of the refrigerant outflow pipe 230.

また、上記液分離器200においては、冷媒流入管220から冷媒流出管230に至るまでの気相冷媒の流路に、大きな圧力損失を生むような複雑な構造が存在しない。これにより、上記液分離器200では、冷媒の気液分離時の圧力損失を抑えつつも、圧縮機300へのいわゆる液バック現象(冷媒の液滴が運動エネルギーを持って流路を流れることによる、冷却システムの管路や機器の損傷)を防止することが可能となる。 Further, in the liquid separator 200, there is no complicated structure that causes a large pressure loss in the flow path of the gas phase refrigerant from the refrigerant inflow pipe 220 to the refrigerant outflow pipe 230. As a result, in the liquid separator 200, the so-called liquid back phenomenon to the compressor 300 (due to the droplets of the refrigerant flowing through the flow path with kinetic energy) while suppressing the pressure loss during the gas-liquid separation of the refrigerant. , Damage to the conduit and equipment of the cooling system) can be prevented.

(変形例1)
上記実施形態では、飛沫防止板240としてメッシュ状の板体を使用したが、これに限定されない。すなわち、飛沫防止板240として、図6に示されるような多数の貫通孔240aを有する板体、例えば、パンチングメタルのように複数の穴の開いた板などを使用しても良い。
(Modification example 1)
In the above embodiment, a mesh-shaped plate is used as the splash prevention plate 240, but the present invention is not limited to this. That is, as the splash prevention plate 240, a plate having a large number of through holes 240a as shown in FIG. 6, for example, a plate having a plurality of holes such as punching metal may be used.

(変形例2)
さらに、飛沫防止板240として、図7に示されるような複数の繊維240bが絡み合うことで形成された網状体、例えば、金属たわしを偏平状に加工した形状のものを使用しても良い。
(Modification 2)
Further, as the splash prevention plate 240, a net-like body formed by entwining a plurality of fibers 240b as shown in FIG. 7, for example, a metal scrubbing brush processed into a flat shape may be used.

(第2実施形態)
本発明の第2実施形態に係る液分離器200’について図8を参照して説明する。
第2実施形態による液分離器200’が、第1実施形態による液分離器200と構成を異にする点は、冷媒流出管230の出口の下方に液侵入防止板250を設けた点にある。
(Second Embodiment)
The liquid separator 200'according to the second embodiment of the present invention will be described with reference to FIG.
The difference in configuration of the liquid separator 200'according to the second embodiment from the liquid separator 200 according to the first embodiment is that a liquid intrusion prevention plate 250 is provided below the outlet of the refrigerant outflow pipe 230. ..

第2の実施形態に示される液分離器200’では、気相冷媒C1の流速が大きい場合に、筐体210内に貯留された液相冷媒C2を吹き上げる力が強く、飛沫防止板240だけでは飛沫の飛散防止が不十分になる恐れがある。このため、液分離器200’では、冷媒流入管220の流入口(液分離器200’に向かう出口)220Aの下方に飛沫防止板240を設けることに加えて、冷媒流出管230の流出口(液分離器200’からの液が向かう口)230Aの下方に、液相冷媒C2の吸入を防止する液侵入防止板250を設けるている。 In the liquid separator 200'shown in the second embodiment, when the flow velocity of the gas phase refrigerant C1 is large, the force for blowing up the liquid phase refrigerant C2 stored in the housing 210 is strong, and the splash prevention plate 240 alone is sufficient. There is a risk that the prevention of splashing will be insufficient. Therefore, in the liquid separator 200', in addition to providing the splash prevention plate 240 below the inflow port (outlet toward the liquid separator 200') 220A of the refrigerant inflow pipe 220, the outlet of the refrigerant outflow pipe 230 (outlet). A liquid intrusion prevention plate 250 for preventing inhalation of the liquid phase refrigerant C2 is provided below 230A (the port through which the liquid flows from the liquid separator 200').

これにより、第2の実施形態に示される液分離器200’では、冷媒流入管220の下方に液侵入防止板240を追加することで、液相冷媒C2の飛沫が冷媒流出管230に吸引されることを防止し、その液分離機能を向上させることができる。
なお、液侵入防止板240としては、通常の板体の他、図5Bに示されるメッシュ状の板体、図6に示される多数の貫通孔を有する板体、又は図7に示される複数の繊維が絡み合うことで形成された網状体(ないしは綿状体)、なども使用可能である。
As a result, in the liquid separator 200'shown in the second embodiment, by adding the liquid intrusion prevention plate 240 below the refrigerant inflow pipe 220, the droplets of the liquid phase refrigerant C2 are sucked into the refrigerant outflow pipe 230. This can be prevented and the liquid separation function can be improved.
The liquid intrusion prevention plate 240 includes, in addition to a normal plate, a mesh-shaped plate shown in FIG. 5B, a plate having a large number of through holes shown in FIG. 6, or a plurality of plates shown in FIG. A net-like body (or cotton-like body) formed by entwining fibers can also be used.

(第3実施形態)
本発明の第3実施形態に係る液分離器200”について図9及び図10を参照して説明する。
(Third Embodiment)
The liquid separator 200 "according to the third embodiment of the present invention will be described with reference to FIGS. 9 and 10.

第3実施形態に示す液分離器200”が、第1及び第2実施形態に示す液分離器200,200’と構成を異にする点は、液面センサ260、メンテバルブ270及び制御部700を設けた点にある。 The liquid level sensor 260, the maintenance valve 270, and the control unit 700 are different in the configuration from the liquid separators 200 and 200'shown in the first and second embodiments of the liquid separator 200 "shown in the third embodiment. It is at the point where.

通常の冷却システムの運転では、蒸発器100の出口から完全に気体冷媒が送られるようになっており、外乱によって不安定動作になった場合のみ、液相冷媒が蒸発器100から液分離器200に送られる。このとき、不安定動作によって筐体210内に滞留した液相冷媒C2は、その後の通常運転の最中に徐々に蒸発して気相冷媒C1となり、その滞留が解消される。 In the normal operation of the cooling system, the gaseous refrigerant is completely sent from the outlet of the evaporator 100, and the liquid phase refrigerant is transferred from the evaporator 100 to the liquid separator 200 only when the operation becomes unstable due to the disturbance. Will be sent to. At this time, the liquid phase refrigerant C2 staying in the housing 210 due to the unstable operation gradually evaporates during the subsequent normal operation to become the gas phase refrigerant C1, and the retention is eliminated.

しかしながら、継続的に不安定動作が起こった場合には、液分離器200の筐体210内に滞留する液相冷媒C2の量が徐々に増えることが予想される。
このため、第3実施形態に示す液分離器200”では、図9に示すように、筐体210内に滞留する液相冷媒C2の液量を監視するための液面センサ260をこの筐体210に取り付けている。
仮に、筐体210内に滞留する液相冷媒C2の液面が、飛沫防止板240の位置より高くなった場合には、飛沫防止板240が機能しなくなり、液分離機能が著しく低下することが予想される。
この場合には、冷媒流出管230から液相冷媒C2が流れ出て液バックを引き起こす恐れがあるので、圧縮機300を停止させる必要がある。
However, if unstable operation occurs continuously, it is expected that the amount of the liquid phase refrigerant C2 staying in the housing 210 of the liquid separator 200 will gradually increase.
Therefore, in the liquid separator 200 ”shown in the third embodiment, as shown in FIG. 9, the liquid level sensor 260 for monitoring the amount of liquid of the liquid phase refrigerant C2 staying in the housing 210 is mounted on the housing. It is attached to 210.
If the liquid level of the liquid phase refrigerant C2 staying in the housing 210 is higher than the position of the splash prevention plate 240, the splash prevention plate 240 will not function and the liquid separation function may be significantly reduced. is expected.
In this case, the liquid phase refrigerant C2 may flow out from the refrigerant outflow pipe 230 and cause liquid back, so it is necessary to stop the compressor 300.

このため、第3実施形態の液分離器200”では、図10に示すように、液分離器200の液面センサ260の値を監視し、液相冷媒C2の液面が限界値を超えた場合に、圧縮機300を含む冷却システムF’全体を停止させる制御部700を設けるようにしている。
そして、第3実施形態の液分離器200”では、冷却システムF’の停止後に、筐体210の下部のメンテバルブ270を開として、滞留した液相冷媒C2を放出することによって正常状態に復帰することができる。
なお、このメンテバルブ270は作業員が手動で開閉しても良いし、別途設けた制御部700により動作される駆動手段により開閉しても良い。
Therefore, in the liquid separator 200 of the third embodiment, as shown in FIG. 10, the value of the liquid level sensor 260 of the liquid separator 200 is monitored, and the liquid level of the liquid phase refrigerant C2 exceeds the limit value. In this case, a control unit 700 for stopping the entire cooling system F'including the compressor 300 is provided.
Then, in the liquid separator 200 "of the third embodiment, after the cooling system F'is stopped, the maintenance valve 270 at the lower part of the housing 210 is opened and the retained liquid phase refrigerant C2 is discharged to return to the normal state. can do.
The maintenance valve 270 may be opened and closed manually by an operator, or may be opened and closed by a drive means operated by a separately provided control unit 700.

以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes and the like within a range not deviating from the gist of the present invention are also included.

本願は、2019年3月22日に、日本に出願された特願2019−55600号に基づき優先権を主張し、その内容をここに援用する。 The present application claims priority based on Japanese Patent Application No. 2019-55600 filed in Japan on March 22, 2019, the contents of which are incorporated herein by reference.

本発明は、主に冷却システムに使用され、蒸発器から圧縮機に流れ込む液体を分離する液分離器、冷却システム及び気液分離方法に適用でき、液分離器の上部に重量を有する圧縮機を配置したとしても、液分離器を安定した状態で保持することができる。。 The present invention is mainly used in a cooling system and can be applied to a liquid separator for separating a liquid flowing from an evaporator into a compressor, a cooling system and a gas-liquid separation method, and a compressor having a weight on the upper part of the liquid separator. Even if it is arranged, the liquid separator can be held in a stable state. ..

1 冷却システム
1A 冷媒流路
2 蒸発器
3 圧縮機
4 凝縮器
5 減圧膨張弁
10 液分離器
11 密閉容器
12 冷媒流入管
13 冷媒流出管
100 蒸発器
200 液分離器
200’ 液分離器
200” 液分離器
210 筐体
240 飛沫防止板
250 液侵入防止板
260 液面センサ
270 メンテバルブ
300 圧縮機
400 凝縮器
500 減圧膨張弁
610 冷媒流路
620 冷媒流路
630 冷媒流路
640 液管
650 液管
700 制御部
C 冷媒
C1 気相冷媒
C2 液相冷媒
F 冷却サイクル
F’ 冷却サイクル
R 径方向
1 Cooling system 1A Refrigerant flow path 2 Evaporator 3 Compressor 4 Condenser 5 Decompression expansion valve 10 Liquid separator 11 Closed container 12 Refrigerant inflow pipe 13 Refrigerant outflow pipe 100 Evaporator 200 Liquid separator 200'Liquid separator 200 "Liquid Separator 210 Housing 240 Splash prevention plate 250 Liquid intrusion prevention plate 260 Liquid level sensor 270 Maintenance valve 300 Compressor 400 Condenser 500 Decompression expansion valve 610 Refrigerant flow path 620 Refrigerant flow path 630 Refrigerant flow path 640 Liquid tube 650 Liquid tube 700 Control unit C Refrigerant C1 Gas phase refrigerant C2 Liquid phase refrigerant F Cooling cycle F'Cooling cycle R Radial direction

Claims (10)

冷媒が貯留される筒状の密閉容器と、前記密閉容器内に冷媒を流入させる冷媒流入管と、前記密閉容器内の空間に流入した冷媒を外部に流出させる冷媒流出管とを有し、
前記冷媒流入管及び前記冷媒流出管は、前記密閉容器の上部から容器内部へ向けてそれぞれ配置されており、
前記密閉容器は径に対して高さが相対的に小さい短筒状である液分離器。
It has a tubular closed container in which the refrigerant is stored, a refrigerant inflow pipe that allows the refrigerant to flow into the closed container, and a refrigerant outflow pipe that allows the refrigerant that has flowed into the space inside the closed container to flow out to the outside.
The refrigerant inflow pipe and the refrigerant outflow pipe are arranged from the upper part of the closed container toward the inside of the container, respectively.
The closed container is a liquid separator having a short cylinder shape whose height is relatively small with respect to its diameter.
前記密閉容器内に位置する前記冷媒流入管の出口付近には、前記冷媒の飛沫が散乱することを防止する飛沫防止板が設置されている請求項1に記載の液分離器。 The liquid separator according to claim 1, wherein a splash prevention plate for preventing splashes of the refrigerant is installed near the outlet of the refrigerant inflow pipe located in the closed container. 前記飛沫防止板はメッシュ状の板体により構成される請求項2に記載の液分離器。 The liquid separator according to claim 2, wherein the splash prevention plate is composed of a mesh-shaped plate body. 前記飛沫防止板は多数の貫通孔を有する板体で構成される請求項2に記載の液分離器。 The liquid separator according to claim 2, wherein the splash prevention plate is composed of a plate having a large number of through holes. 前記飛沫防止板は複数の繊維が絡み合うことで形成された網状体により構成される請求項2に記載の液分離器。 The liquid separator according to claim 2, wherein the splash prevention plate is composed of a net-like body formed by entwining a plurality of fibers. 前記冷媒流出管の入口付近には、前記密閉容器内の液相冷媒の侵入を防止する液侵入防止板がさらに設けられる請求項1〜5のいずれか1項に記載の液分離器。 The liquid separator according to any one of claims 1 to 5, further provided with a liquid intrusion prevention plate for preventing the intrusion of the liquid phase refrigerant in the closed container near the inlet of the refrigerant outflow pipe. 前記密閉容器には液相冷媒の液面高さを検出する液面センサと、前記液面センサの検出値が予め定めた限界値を越えた場合に装置全体を停止する制御部とが設けられる請求項1〜6のいずれか1項に記載の液分離器。 The closed container is provided with a liquid level sensor that detects the liquid level of the liquid phase refrigerant and a control unit that stops the entire apparatus when the detected value of the liquid level sensor exceeds a predetermined limit value. The liquid separator according to any one of claims 1 to 6. 前記密閉容器の下部には液相冷媒を排出する排出バルブが設けられる請求項1〜7のいずれか1項に記載の液分離器。 The liquid separator according to any one of claims 1 to 7, wherein a discharge valve for discharging the liquid phase refrigerant is provided in the lower part of the closed container. 冷媒流路に沿って、液相冷媒を蒸発させることで周囲の熱を吸収する蒸発器と、前記気相冷媒を圧縮する圧縮機と、前記圧縮機によって高圧となった冷媒の熱を放出し気相冷媒を凝縮させる凝縮器と、前記凝縮器によって冷やされた液相冷媒を減圧膨張させる減圧膨張弁とを備える冷却システムであって、
前記圧縮機の上流側には、前記蒸発器を経由した後の冷媒を気液分離する液分離器が設けられ、
前記液分離器は、冷媒が貯留される筒状の密閉容器と、前記密閉空間に冷媒を流入させる冷媒流入管と、前記密閉容器内の空間中の冷媒を外部に流出させる冷媒流出管とを有し、前記密閉容器は径に対して高さが相対的に小さい短筒状をなすように構成される冷却システム。
Along the refrigerant flow path, an evaporator that absorbs ambient heat by evaporating the liquid-phase refrigerant, a compressor that compresses the vapor-phase refrigerant, and a compressor that releases the heat of the refrigerant that has become high pressure by the compressor. A cooling system including a condenser that condenses a gas-phase refrigerant and a decompression expansion valve that depressurizes and expands the liquid-phase refrigerant cooled by the condenser.
On the upstream side of the compressor, a liquid separator for gas-liquid separation of the refrigerant after passing through the evaporator is provided.
The liquid separator includes a tubular closed container in which the refrigerant is stored, a refrigerant inflow pipe for flowing the refrigerant into the closed space, and a refrigerant outflow pipe for causing the refrigerant in the space in the closed container to flow out to the outside. A cooling system that has a closed container and is configured to form a short cylinder whose height is relatively small with respect to its diameter.
冷媒が貯留される筒状の密閉容器に、冷媒を流入させる冷媒流入管と、前記密閉容器内の空間中の冷媒を外部に流出させる冷媒流出管とを接続し、
前記密閉容器を、径に対して高さが相対的に小さい短筒状に形成する
気液分離方法。
A refrigerant inflow pipe that allows the refrigerant to flow in and a refrigerant outflow pipe that allows the refrigerant in the space inside the closed container to flow out to the outside are connected to a tubular closed container in which the refrigerant is stored.
A gas-liquid separation method in which the closed container is formed into a short cylinder whose height is relatively small with respect to its diameter.
JP2021508941A 2019-03-22 2020-03-06 cooling system Active JP7188563B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019055600 2019-03-22
JP2019055600 2019-03-22
PCT/JP2020/009696 WO2020195711A1 (en) 2019-03-22 2020-03-06 Liquid separator, cooling system, and gas-liquid separation method

Publications (2)

Publication Number Publication Date
JPWO2020195711A1 true JPWO2020195711A1 (en) 2021-10-21
JP7188563B2 JP7188563B2 (en) 2022-12-13

Family

ID=72610063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021508941A Active JP7188563B2 (en) 2019-03-22 2020-03-06 cooling system

Country Status (5)

Country Link
US (1) US20220154988A1 (en)
EP (1) EP3943839A4 (en)
JP (1) JP7188563B2 (en)
AU (1) AU2020248049B2 (en)
WO (1) WO2020195711A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023166705A1 (en) * 2022-03-04 2023-09-07 三菱電機株式会社 Refrigerant storage container and refrigeration cycle device provided with said refrigerant storage container

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS477170Y1 (en) * 1969-11-13 1972-03-15
JPH0719667A (en) * 1993-07-06 1995-01-20 Mitsubishi Electric Corp Air conditioner
JPH08271093A (en) * 1995-03-30 1996-10-18 Sanyo Electric Co Ltd Refrigeration machine
JPH10111047A (en) * 1996-10-03 1998-04-28 Hitachi Ltd Air conditioner
JP2002156274A (en) * 2000-11-17 2002-05-31 Mitsubishi Electric Corp Liquid level position detection mechanism of tank for freezing cycle apparatus
JP2004037050A (en) * 2002-07-08 2004-02-05 Zexel Valeo Climate Control Corp Horizontal type accumulator
EP2659143A1 (en) * 2010-12-29 2013-11-06 LG Electronics Inc. Compressor
JP2015017720A (en) * 2013-07-09 2015-01-29 日立アプライアンス株式会社 Air conditioning equipment

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2868315A (en) * 1957-05-24 1959-01-13 Black Sivalls & Bryson Inc Apparatus for separating fluids
US3070977A (en) * 1961-03-31 1963-01-01 Heat X Inc Refrigeration system, including oil separator and muffler unit and oil return arrangement
US3163998A (en) * 1962-09-06 1965-01-05 Recold Corp Refrigerant flow control apparatus
US3255574A (en) * 1965-08-23 1966-06-14 Nat Tank Co Methods and means for treating oil well emulsions
JPS477170U (en) * 1971-02-17 1972-09-26
AT323311B (en) * 1972-07-14 1975-07-10 Bauer Heinz DEVICE FOR DRAINING OIL FROM OIL SEPARATOR CARTRIDGES
US4308136A (en) * 1978-04-21 1981-12-29 Conoco Inc. Internally baffled, horizontal flow, vertical oil skimmer
JPS563372U (en) * 1979-06-21 1981-01-13
DE3014148C2 (en) * 1980-04-12 1985-11-28 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Oil separator for compressors in heat pumps and chillers
US4566288A (en) * 1984-08-09 1986-01-28 Neal Andrew W O Energy saving head pressure control system
US5214937A (en) * 1991-10-28 1993-06-01 Carrier Corporation Integral oil separator and muffler
JP3439178B2 (en) * 1993-12-28 2003-08-25 三菱電機株式会社 Refrigeration cycle device
CN1204948C (en) * 1999-03-05 2005-06-08 国际壳牌研究有限公司 Three-phase separator
US6941769B1 (en) * 2004-04-08 2005-09-13 York International Corporation Flash tank economizer refrigeration systems
CN101738034B (en) * 2009-12-11 2012-07-25 上海环球制冷设备有限公司 High-efficiency vertical oil separator device and using method
CN103003640B (en) * 2010-07-23 2016-02-24 开利公司 Ejector cycle refrigerant separator
JP2013120028A (en) 2011-12-08 2013-06-17 Panasonic Corp Gas-liquid separator and refrigerating cycle device
CN104741066A (en) * 2013-12-27 2015-07-01 超重力有限公司 Mass transfer device with liquid seal device
JP2015172469A (en) 2014-03-12 2015-10-01 カルソニックカンセイ株式会社 gas-liquid separator
JP2019055600A (en) 2014-06-23 2019-04-11 セイコーエプソン株式会社 Liquid storage container

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS477170Y1 (en) * 1969-11-13 1972-03-15
JPH0719667A (en) * 1993-07-06 1995-01-20 Mitsubishi Electric Corp Air conditioner
JPH08271093A (en) * 1995-03-30 1996-10-18 Sanyo Electric Co Ltd Refrigeration machine
JPH10111047A (en) * 1996-10-03 1998-04-28 Hitachi Ltd Air conditioner
JP2002156274A (en) * 2000-11-17 2002-05-31 Mitsubishi Electric Corp Liquid level position detection mechanism of tank for freezing cycle apparatus
JP2004037050A (en) * 2002-07-08 2004-02-05 Zexel Valeo Climate Control Corp Horizontal type accumulator
EP2659143A1 (en) * 2010-12-29 2013-11-06 LG Electronics Inc. Compressor
JP2015017720A (en) * 2013-07-09 2015-01-29 日立アプライアンス株式会社 Air conditioning equipment

Also Published As

Publication number Publication date
JP7188563B2 (en) 2022-12-13
AU2020248049A1 (en) 2021-11-11
WO2020195711A1 (en) 2020-10-01
EP3943839A1 (en) 2022-01-26
AU2020248049B2 (en) 2023-06-01
US20220154988A1 (en) 2022-05-19
EP3943839A4 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
JP5395358B2 (en) A gas-liquid separator and a refrigeration apparatus including the gas-liquid separator.
JP4404148B2 (en) Economizer
US7131292B2 (en) Gas-liquid separator
DK2676085T3 (en) LIQUID / DAMPFASESEPARERINGSAPPARAT
JP5632963B2 (en) Refrigeration compressor suction mechanism
JP2008196721A (en) Gas-liquid separator
JP2013148308A (en) Oil separator
WO2020195711A1 (en) Liquid separator, cooling system, and gas-liquid separation method
JP5977952B2 (en) Economizer and refrigerator
KR100766249B1 (en) Accumulator of air conditioner
KR20220158796A (en) evaporator
JP5601764B2 (en) Gas-liquid separator and air compressor and air conditioner equipped with the same
JP2008275211A (en) Vapor compression-type refrigerating cycle
JP5634549B2 (en) A gas-liquid separator and a refrigeration apparatus including the gas-liquid separator.
JP5498715B2 (en) Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator
JP6131621B2 (en) Oil separator
US9970695B2 (en) Oil compensation in a refrigeration circuit
JP2022173565A (en) Accumulator and refrigeration cycle
JP2005233470A (en) Gas-liquid separator
JP2010145011A (en) Evaporator and refrigerating machine
JP2015001367A (en) Gas-liquid separator, and air conditioner having the same mounted thereon
JP6945202B2 (en) Cyclone type freezer and heat pump system equipped with the cyclone type freezer
WO2021229649A1 (en) Accumulator and refrigeration cycle device
JP6459235B2 (en) Gas-liquid separator
KR100920819B1 (en) Accumulator for air-conditioning apparatus and air-conditioning apparatus comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220915

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220915

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221013

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221114

R151 Written notification of patent or utility model registration

Ref document number: 7188563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151