JP7188563B2 - cooling system - Google Patents

cooling system Download PDF

Info

Publication number
JP7188563B2
JP7188563B2 JP2021508941A JP2021508941A JP7188563B2 JP 7188563 B2 JP7188563 B2 JP 7188563B2 JP 2021508941 A JP2021508941 A JP 2021508941A JP 2021508941 A JP2021508941 A JP 2021508941A JP 7188563 B2 JP7188563 B2 JP 7188563B2
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
closed container
compressor
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021508941A
Other languages
Japanese (ja)
Other versions
JPWO2020195711A1 (en
Inventor
貴文 棗田
正樹 千葉
孔一 轟
実 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2020195711A1 publication Critical patent/JPWO2020195711A1/en
Application granted granted Critical
Publication of JP7188563B2 publication Critical patent/JP7188563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

本発明は、主に冷却システムに使用され、蒸発器から圧縮機に流れ込む液体を分離する液分離器、冷却システム及び気液分離方法に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid separator, a cooling system, and a gas-liquid separation method, which are mainly used in cooling systems and separate liquid flowing from an evaporator into a compressor.

蒸発器、圧縮機、凝縮器及び膨張弁からなる冷却システムにおいて、圧縮機の吸入口前に液分離器となるアキュムレータが設置される場合がある。
例えば、特許文献1に示される冷却システムは、冷媒流路に沿って、蒸発器と、圧縮機と、凝縮器と、減圧膨張弁とを備える。蒸発器は、液相冷媒を蒸発させることで周囲の熱を吸収する。圧縮機は、蒸発器から送り出された気相冷媒を圧縮する。凝縮器は、圧縮機によって高圧となった冷媒の熱を放出し気相冷媒を凝縮させる。減圧膨張弁は、凝縮器によって冷やされた液相冷媒を減圧膨張させる。
特許文献1に示されるこの冷却システムには、圧縮機の上流側において、蒸発器を経由した後の冷媒を気液分離する液分離器が設けられている。
In a cooling system consisting of an evaporator, a compressor, a condenser and an expansion valve, an accumulator serving as a liquid separator may be installed in front of the suction port of the compressor.
For example, the cooling system shown in Patent Document 1 includes an evaporator, a compressor, a condenser, and a pressure reducing expansion valve along a refrigerant flow path. The evaporator absorbs ambient heat by evaporating liquid-phase refrigerant. A compressor compresses the vapor-phase refrigerant delivered from the evaporator. The condenser releases the heat of the refrigerant pressurized by the compressor to condense the vapor phase refrigerant. The decompression expansion valve decompresses and expands the liquid-phase refrigerant cooled by the condenser.
This cooling system disclosed in Patent Literature 1 is provided with a liquid separator that separates the refrigerant from gas and liquid after passing through the evaporator on the upstream side of the compressor.

この液分離器は、全体として縦長に形成された分離容器を有する。この分離容器の上部には冷媒流入管及び気相冷媒流出管が設置される。また、この分離容器の下部には液相冷媒流出管が設置される。
この液分離器においては、冷媒流入管を経由して内部に流入した冷媒が、分離容器の液分離器の内壁に沿うようにして円周方向に回転しながら、液相冷媒と気相冷媒とに遠心分離される。
その後、分離容器内の気相冷媒は上部の気相冷媒流出管を経由して減圧膨張弁に案内され、分離容器内の液相冷媒は下部の液相冷媒流出管を経由して蒸発器に案内される。
This liquid separator has a separation container formed vertically as a whole. A refrigerant inlet pipe and a vapor refrigerant outlet pipe are installed on the upper part of the separation container. Also, a liquid-phase refrigerant outflow pipe is installed at the bottom of the separation container.
In this liquid separator, the refrigerant flowing into the inside via the refrigerant inflow pipe rotates in the circumferential direction along the inner wall of the liquid separator of the separation container, and flows into liquid-phase refrigerant and gas-phase refrigerant. centrifuged to
After that, the gas-phase refrigerant in the separation vessel is guided to the pressure reducing expansion valve through the upper gas-phase refrigerant outflow pipe, and the liquid-phase refrigerant in the separation vessel passes through the lower liquid-phase refrigerant outflow pipe to the evaporator. be guided.

一方、特許文献2にも同様の液分離器が示される。
この特許文献2に開示された液分離器は、特許文献1と同様、全体として縦長に形成された密閉容器を有する。この密閉容器の下部には、気液二相流体を密閉容器の内部へ流入させる第1配管、密閉容器内のガスを外部に排出する第2配管、密閉容器内の液を外部に排出する第3配管が接続される。
On the other hand, Patent Document 2 also discloses a similar liquid separator.
Like Patent Document 1, the liquid separator disclosed in Patent Document 2 has a closed container formed vertically as a whole. At the bottom of the closed container, there are a first pipe for flowing the gas-liquid two-phase fluid into the closed container, a second pipe for discharging the gas in the closed container to the outside, and a second pipe for discharging the liquid in the closed container to the outside. 3 pipes are connected.

日本国特開2015-172469号公報Japanese Patent Application Laid-Open No. 2015-172469 日本国特開2013-120028号公報Japanese Patent Application Laid-Open No. 2013-120028

特許文献1および2に示される冷却システムでは、圧縮機がアキュムレータより上方に位置し、重力により液相冷媒がアキュムレータへ戻る構成とされる。
このため、アキュムレータが上下に長く、このアキュムレータの上部に圧縮機を配置した場合には、液分離器の上部が重く重心が高くなる。そのため、液分離器が不安定な状態になり、この点を改良するための新たな技術提供が期待されていた。
In the cooling systems shown in Patent Documents 1 and 2, the compressor is positioned above the accumulator, and gravity causes the liquid-phase refrigerant to return to the accumulator.
Therefore, if the accumulator is vertically long and the compressor is arranged above the accumulator, the upper part of the liquid separator is heavy and the center of gravity is high. As a result, the liquid separator is in an unstable state, and there has been a desire to provide a new technique to improve this point.

この発明は、上述した事情に鑑みてなされたものである。したがって、本発明は、密閉容器の上部に圧縮機を安定した状態で配置することができる液分離器、冷却システム及び気液分離方法を提供する。 The present invention has been made in view of the circumstances described above. Accordingly, the present invention provides a liquid separator, a cooling system, and a gas-liquid separation method that can stably place a compressor on top of a closed vessel.

上記課題を解決するために、この発明は以下の手段を提案している。
本発明の第1態様による液分離器は、冷媒が貯留される筒状の密閉容器と、前記密閉容器内に冷媒を流入させる冷媒流入管と、前記密閉容器内の空間中の気相冷媒を外部に流出させる冷媒流出管とを有し、前記冷媒流入管及び前記冷媒流出管は、前記密閉容器の上部から容器内部へ向けてそれぞれ配置されており、前記密閉容器は径に対して高さが相対的に小さい短筒状をなすように構成される。
In order to solve the above problems, the present invention proposes the following means.
A liquid separator according to a first aspect of the present invention comprises a cylindrical sealed container in which a refrigerant is stored, a refrigerant inflow pipe for inflowing the refrigerant into the closed container, and a gas phase refrigerant in the space inside the closed container. and a refrigerant outflow pipe for flowing out to the outside, the refrigerant inflow pipe and the refrigerant outflow pipe are arranged from the upper part of the closed container toward the inside of the container, and the closed container has a height relative to the diameter is configured to form a relatively small short cylinder.

本発明の第2態様は、冷媒流路に沿って、液相冷媒を蒸発させることで周囲の熱を吸収する蒸発器と、前記気相冷媒を圧縮する圧縮機と、前記圧縮機によって高圧となった冷媒の熱を放出し気相冷媒を凝縮させる凝縮器と、前記凝縮器によって冷やされた液相冷媒を減圧膨張させる減圧膨張弁とを備える冷却システムであって、前記圧縮機の上流側には、前記蒸発器を経由した後の冷媒を気液分離する液分離器が設けられ、前記液分離器は、冷媒が貯留される筒状の密閉容器と、前記密閉容器内の空間に冷媒を流入させる冷媒流入管と、前記密閉容器内の空間中の冷媒を外部に流出させる冷媒流出管とを有し、前記密閉容器は径に対して高さが相対的に小さい短筒状をなすように構成される。 A second aspect of the present invention includes an evaporator that absorbs ambient heat by evaporating a liquid-phase refrigerant along a refrigerant flow path, a compressor that compresses the gas-phase refrigerant, and a high pressure by the compressor. A cooling system comprising: a condenser that releases heat from a cooled refrigerant to condense a gaseous refrigerant; and a pressure reducing expansion valve that decompresses and expands the liquid refrigerant cooled by the condenser, the cooling system being upstream of the compressor. is provided with a liquid separator for gas-liquid separation of the refrigerant after passing through the evaporator. and a refrigerant outflow pipe through which the refrigerant in the space inside the closed container flows out to the outside, and the closed container has a short cylindrical shape whose height is relatively small relative to its diameter. configured as

本発明の第3態様による気液分離方法は、冷媒が貯留される筒状の密閉容器に冷媒を流入させる冷媒流入管と前記密閉容器内の空間中の冷媒を外部に流出させる冷媒流出管とを接続するとともに、前記密閉容器を径に対して高さが相対的に小さい短筒状をなすように形成する。 A gas-liquid separation method according to a third aspect of the present invention includes a refrigerant inflow pipe for inflowing a refrigerant into a cylindrical sealed container in which the refrigerant is stored, and a refrigerant outflow pipe for flowing out the refrigerant in the space inside the sealed container to the outside. are connected to each other, and the closed container is formed into a short cylindrical shape whose height is relatively small with respect to its diameter.

本発明によれば、液分離器の上部に重量を有する圧縮機を配置したとしても、液分離器を安定した状態で保持することができる。 ADVANTAGE OF THE INVENTION According to this invention, even if it arrange|positions the compressor which has a weight above a liquid separator, a liquid separator can be hold|maintained in a stable state.

本発明の実施形態に係る液分離器を含む冷却システムを示す構成図である。1 is a configuration diagram showing a cooling system including a liquid separator according to an embodiment of the invention; FIG. 本発明の第1実施形態に係る液分離器を含む冷却システムを示す構成図である。1 is a configuration diagram showing a cooling system including a liquid separator according to a first embodiment of the present invention; FIG. 第1実施形態に係る液分離器を示す斜視図である。1 is a perspective view showing a liquid separator according to a first embodiment; FIG. 図3に示された液分離器の内部構成を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing the internal configuration of the liquid separator shown in FIG. 3; 図3に示された液分離器内に設けられた飛沫防止板の作用を説明するための図である。FIG. 4 is a diagram for explaining the action of a splash prevention plate provided in the liquid separator shown in FIG. 3; 図5Aに示された飛沫防止板を示す斜視図である。FIG. 5B is a perspective view showing the splash prevention plate shown in FIG. 5A; 飛沫防止板の変形例1を示す斜視図である。It is a perspective view which shows the modification 1 of a splash prevention board. 飛沫防止板の変形例2を示す斜視図である。It is a perspective view which shows the modification 2 of a splash prevention board. 第2実施形態に係る液分離器を示す断面図である。It is a sectional view showing a liquid separator concerning a 2nd embodiment. 第3実施形態に係る液分離器を示す斜視図である。It is a perspective view which shows the liquid separator which concerns on 3rd Embodiment. 第3実施形態に係る液分離器を含む冷却システムを示す構成図である。FIG. 11 is a configuration diagram showing a cooling system including a liquid separator according to a third embodiment;

本発明の実施形態に係る液分離器10について図1を参照して説明する。
この液分離器10は、冷却システム1内にある圧縮機3の上流側に位置し、例えば蒸発器2を経由した後の冷媒を気液分離するために設けられる。
この冷却システム1は、冷媒流路1Aに沿って、蒸発器2と、圧縮機3と、凝縮器4と、減圧膨張弁5とを備える。蒸発器2は、液相冷媒を蒸発させることで周囲の熱を吸収する。圧縮機は、気相冷媒を圧縮する。凝縮器4は、この圧縮機3によって高圧となった冷媒の熱を放出し気相冷媒を凝縮(あるいは強制的に圧縮)させる。減圧膨張弁5は、この凝縮器4から供給された液相冷媒を膨張させる。
A liquid separator 10 according to an embodiment of the present invention will be described with reference to FIG.
The liquid separator 10 is located upstream of the compressor 3 in the cooling system 1, and is provided for gas-liquid separation of the refrigerant after passing through the evaporator 2, for example.
This cooling system 1 includes an evaporator 2, a compressor 3, a condenser 4, and a pressure reducing expansion valve 5 along a refrigerant flow path 1A. The evaporator 2 absorbs surrounding heat by evaporating the liquid-phase refrigerant. The compressor compresses gas phase refrigerant. The condenser 4 releases the heat of the refrigerant that has been pressurized by the compressor 3 and condenses (or forcibly compresses) the vapor-phase refrigerant. A pressure reducing expansion valve 5 expands the liquid-phase refrigerant supplied from the condenser 4 .

圧縮機3の上流側に位置する液分離器10は、冷媒Cが貯留される筒状の密閉容器11を有する。この密閉容器11内には、気相媒体又は気液二相冷媒を流入させる冷媒流入管12と、この密閉容器11内の気相冷媒を外部に排出する冷媒流出管13とが設けられる。 A liquid separator 10 located on the upstream side of the compressor 3 has a tubular sealed container 11 in which the refrigerant C is stored. A refrigerant inflow pipe 12 into which a gaseous medium or a gas-liquid two-phase refrigerant flows, and a refrigerant outflow pipe 13 through which the gaseous refrigerant in the sealed container 11 is discharged to the outside are provided in the closed container 11 .

冷媒流入管12及び冷媒流出管13は、密閉容器11の上部面11Aから容器内部11Bへ向けてそれぞれ設置される。この冷媒流入管12及び冷媒流出管13は、密閉容器11の径方向(R方向)にできるだけ大きな相互間隔をおいて配置されている。
また、液分離器10の密閉容器11はR方向に沿う径に対して高さhが相対的に小さく、全体として短筒状となるように構成されている。
このような液分離器10においては、密閉容器11が短筒状に形成されているので、密閉容器11の上部面11Aに重量の大きな圧縮機3を配置したとしても、液分離器10の上部が重くなる、いわゆるトップヘビーとなることを避けて、液分離器10を安定した状態で保持することができる。
The refrigerant inflow pipe 12 and the refrigerant outflow pipe 13 are respectively installed from the upper surface 11A of the sealed container 11 toward the inside 11B of the container. The refrigerant inflow pipe 12 and the refrigerant outflow pipe 13 are arranged with a mutual distance as large as possible in the radial direction (R direction) of the sealed container 11 .
The closed container 11 of the liquid separator 10 has a relatively small height h relative to the diameter along the R direction, and is configured to have a short cylindrical shape as a whole.
In such a liquid separator 10, since the sealed container 11 is formed in a short cylindrical shape, even if the heavy compressor 3 is arranged on the upper surface 11A of the sealed container 11, the upper part of the liquid separator 10 can be The liquid separator 10 can be held in a stable state by avoiding the so-called top-heavy.

このような蒸気圧縮型の冷却システム1では、蒸発器2で熱源から熱H1を吸収して蒸発した気相冷媒が、液分離器10にて気液分離された後、圧縮機3で圧縮され、凝縮器4へと送られる。その後、凝縮器4で冷熱源に放熱H2して凝縮した液相冷媒は、減圧膨張弁5で所定の圧力にまで減圧され、再び蒸発器2に送られる。
ここで、液相冷媒が、熱源の負荷低下や減圧膨張弁5の故障等によって蒸発器2において十分に蒸発せず、気液混合流となって圧縮機3に供給されることがある。このように液体が圧縮機3に供給される現象は液バックと称される。液体が圧縮機3に供給されると、圧縮機3の性能低下や故障を引き起こす可能性がある。これを防止するために本発明の実施形態に係る液分離器10では、蒸発器2を経た後の気液混合流のうち、液体を分離し、気体のみを圧縮機3に供給するようにしている。
In such a vapor compression cooling system 1, the vapor-phase refrigerant evaporated by absorbing the heat H1 from the heat source in the evaporator 2 is separated into gas and liquid in the liquid separator 10, and then compressed in the compressor 3. , is sent to the condenser 4 . Thereafter, the liquid-phase refrigerant condensed by releasing heat H2 to the cold heat source in the condenser 4 is decompressed to a predetermined pressure by the decompression expansion valve 5 and sent to the evaporator 2 again.
Here, the liquid-phase refrigerant may not evaporate sufficiently in the evaporator 2 due to a decrease in the load of the heat source, a failure of the pressure reducing expansion valve 5, or the like, and may be supplied to the compressor 3 as a gas-liquid mixed flow. The phenomenon in which the liquid is supplied to the compressor 3 in this manner is called liquid backflow. If the liquid is supplied to the compressor 3, it may cause performance deterioration or failure of the compressor 3. In order to prevent this, the liquid separator 10 according to the embodiment of the present invention separates the liquid from the gas-liquid mixed flow after passing through the evaporator 2 and supplies only the gas to the compressor 3. there is

以上説明したように、本発明の実施形態に係る液分離器10においては、径方向(R方向)に対して高さ(h)が相対的に小さい短筒状をなすように密閉容器11が形成されている。したがって、冷却システム全体の高さを低くすることができ、密閉容器11の上部面11Aに重い圧縮機3を配置したとしても、装置全体としてはトップヘビーにならず安定した状態で設置することができる。
また、上記液分離器10においては、密閉容器11が短筒状に形成されている。したがって、密閉容器11の上部面11Aに、冷媒流入管12及び冷媒流出管13を径方向(R方向)に十分な間隔で配置することができる。
その結果、上記液分離器10においては、冷媒流入管12から密閉容器11へ冷媒が流入することによって生じた冷媒の液面の乱れの影響が、冷媒流出管13へ流出する冷媒に及ぶことを防止することができる。したがって、密閉容器11内の液相冷媒が、巻き上げられて冷媒流出管13から流出する事態を未然に防止することができる。
As described above, in the liquid separator 10 according to the embodiment of the present invention, the sealed container 11 is formed in a short cylindrical shape having a relatively small height (h) with respect to the radial direction (R direction). formed. Therefore, the height of the entire cooling system can be reduced, and even if the heavy compressor 3 is arranged on the upper surface 11A of the closed container 11, the entire apparatus can be installed in a stable state without becoming top-heavy. can.
Further, in the liquid separator 10, the sealed container 11 is formed in a short cylindrical shape. Therefore, the coolant inflow pipe 12 and the coolant outflow pipe 13 can be arranged on the upper surface 11A of the sealed container 11 at sufficient intervals in the radial direction (R direction).
As a result, in the liquid separator 10, the influence of the turbulence of the liquid surface of the refrigerant caused by the inflow of the refrigerant from the refrigerant inflow pipe 12 into the closed container 11 affects the refrigerant flowing out of the refrigerant outflow pipe 13. can be prevented. Therefore, it is possible to prevent the liquid-phase refrigerant in the sealed container 11 from being rolled up and flowing out of the refrigerant outflow pipe 13 .

(第1実施形態)
本発明の第1実施形態に係る液分離器200について図2~図7を参照して説明する。
この液分離器200は、冷却システムF内に設置される。
冷却システムFは、図2に示されるように、冷媒流路610,620,630,640,および650により構成される冷媒の流通経路(具体的には管路)の途中に、蒸発器100と、液分離器200と、圧縮機300と、凝縮器400と、減圧膨張弁500とを備える。蒸発器100は、液相冷媒を蒸発させることで周囲の熱H1を吸収する。液分離器200は、冷媒を気液分離する。圧縮機300は、液分離器200から排出された気相冷媒を圧縮する。凝縮器400は、圧縮機300によって高圧となった冷媒の熱を放出し気相冷媒を凝縮させる。減圧膨張弁500は、凝縮器400によって冷やされた液相冷媒を減圧膨張させる。
(First embodiment)
A liquid separator 200 according to a first embodiment of the present invention will be described with reference to FIGS. 2 to 7. FIG.
This liquid separator 200 is installed in the cooling system F.
Cooling system F, as shown in FIG. , a liquid separator 200 , a compressor 300 , a condenser 400 and a pressure reducing expansion valve 500 . The evaporator 100 absorbs ambient heat H1 by evaporating the liquid-phase refrigerant. The liquid separator 200 separates the refrigerant into gas and liquid. Compressor 300 compresses the gas-phase refrigerant discharged from liquid separator 200 . The condenser 400 releases the heat of the refrigerant pressurized by the compressor 300 to condense the vapor phase refrigerant. The decompression expansion valve 500 decompresses and expands the liquid-phase refrigerant cooled by the condenser 400 .

減圧膨張弁500から冷媒流路650を介して供給された冷媒は、蒸発器100で熱源から熱H1を吸収されて蒸発する。蒸発した気相冷媒は、冷媒流路610、液分離器200及び冷媒流路620を順に通過して圧縮機300に送られる。
圧縮機300で高温高圧に圧縮された気相冷媒は、冷媒流路630を経由して凝縮器400に送られ、冷熱源に放熱H2して凝縮する。
その後、凝縮器400において凝縮した液相冷媒は、冷媒流路640を通して減圧膨張弁500に移動し、所定の圧力まで減圧される。その後、液相冷媒は冷媒流路650を通して再び蒸発器100に送られる。
The refrigerant supplied from the pressure reducing expansion valve 500 through the refrigerant flow path 650 absorbs the heat H1 from the heat source in the evaporator 100 and evaporates. The vaporized gaseous refrigerant passes through the refrigerant channel 610 , the liquid separator 200 and the refrigerant channel 620 in order and is sent to the compressor 300 .
The gas-phase refrigerant compressed to a high temperature and high pressure by the compressor 300 is sent to the condenser 400 via the refrigerant flow path 630, where heat is released H2 to the cold heat source and condensed.
After that, the liquid-phase refrigerant condensed in the condenser 400 moves through the refrigerant passage 640 to the pressure reducing expansion valve 500 and is reduced to a predetermined pressure. After that, the liquid-phase refrigerant is sent to the evaporator 100 again through the refrigerant flow path 650 .

ここで液分離器200は、圧縮機300の上流側に配置されてこの圧縮機300に液相冷媒が吸引されるのを防止する役割を有する。
圧縮機300は気相冷媒を圧縮するように設計されているので、液相冷媒が混入した場合には故障に繋がることが知られている(液バック現象という)。通常、冷媒は、蒸発器100において完全に蒸発して気相冷媒のみになる。しかし、蒸発器100において、熱負荷の低下等の外乱が生じると、冷媒が蒸発せずに液相冷媒が一部残ることがある。その場合には、この液相冷媒が冷媒流路610に送られる。このため、液分離器200は、冷媒に含有される液相冷媒を分離し、気相冷媒のみを下流の圧縮機300に供給する。
Here, the liquid separator 200 is arranged on the upstream side of the compressor 300 and has a role of preventing the liquid phase refrigerant from being sucked into the compressor 300 .
Since the compressor 300 is designed to compress gas-phase refrigerant, it is known that if it is mixed with liquid-phase refrigerant, it will lead to failure (called liquid backflow phenomenon). Typically, the refrigerant is completely evaporated in the evaporator 100 to only vapor phase refrigerant. However, in the evaporator 100, if a disturbance such as a decrease in heat load occurs, the refrigerant may not evaporate and some of the liquid-phase refrigerant may remain. In that case, this liquid phase refrigerant is sent to the refrigerant channel 610 . Therefore, the liquid separator 200 separates the liquid-phase refrigerant contained in the refrigerant and supplies only the gas-phase refrigerant to the downstream compressor 300 .

冷媒流路620は設置上の制約がない限り、重力方向に対する逆勾配となる構造やU字構造を避けて構築することが好ましい。これは、冷媒流路620内にこのような逆勾配構造やU字構造が存在すると、その部分に、冷却システムFの停止時に冷媒流路620内に凝縮した液相冷媒が滞留するからである。このように、冷媒流路620に滞留した液相冷媒は、次回の冷却システムFの起動時に気相冷媒とともに圧縮機300に吸入されるため、液分離器200を設置しているにも係わらず、圧縮機300において液バック現象を引き起こす恐れがある。 As long as there are no restrictions on installation, it is preferable to construct the coolant channel 620 by avoiding a structure having a reverse gradient with respect to the direction of gravity or a U-shaped structure. This is because if such a reverse gradient structure or U-shaped structure exists in the refrigerant flow path 620, the condensed liquid-phase refrigerant stays in the refrigerant flow path 620 when the cooling system F is stopped. . As described above, the liquid-phase refrigerant staying in the refrigerant flow path 620 is sucked into the compressor 300 together with the gas-phase refrigerant when the cooling system F is started next time. , may cause a liquid backflow phenomenon in the compressor 300 .

図3及び図4を参照すると、圧縮機300の上流側に位置する液分離器200は、冷媒が貯留される密閉容器となる筒状の筐体210を有する。この筐体210内には、気相冷媒又は気液二相冷媒を流入させる冷媒流入管220と、筐体210内の気相冷媒を外部に流出させる冷媒流出管230とが設置される。 3 and 4, the liquid separator 200 located upstream of the compressor 300 has a cylindrical housing 210 that serves as a sealed container in which refrigerant is stored. Inside the housing 210, a refrigerant inflow pipe 220 for inflowing a gas-phase refrigerant or a two-phase gas-liquid refrigerant and a refrigerant outflow pipe 230 for flowing out the gas-phase refrigerant in the housing 210 are installed.

冷媒流入管220及び冷媒流出管230は、筐体210の上部面210Aから容器内部210Bへ向けて設置される。冷媒流入管220及び冷媒流出管230は、筐体210の径方向(R方向)に間隔をおいて配置されている。冷媒流入管220は蒸発器100からの気相冷媒又は気液二相冷媒が案内される冷媒流路610に接続される。冷媒流出管230は圧縮機300に気相冷媒を案内する冷媒流路620に接続される。
蒸発器100を経た後の気相冷媒又は気液二相冷媒は、冷媒流入管220を通して筐体210内に流入し、気液混合流の中の液相冷媒が重力によって筐体210の底部に落下して滞留する。一方で、気液混合流の中の気相冷媒は冷媒流出管230を通して圧縮機300に送られる。
Refrigerant inflow pipe 220 and refrigerant outflow pipe 230 are installed from upper surface 210A of housing 210 toward container interior 210B. The refrigerant inflow pipe 220 and the refrigerant outflow pipe 230 are arranged at intervals in the radial direction (R direction) of the housing 210 . The refrigerant inflow pipe 220 is connected to a refrigerant channel 610 through which the gas-phase refrigerant or gas-liquid two-phase refrigerant from the evaporator 100 is guided. Refrigerant outflow pipe 230 is connected to refrigerant channel 620 that guides the gaseous refrigerant to compressor 300 .
After passing through the evaporator 100, the gas-phase refrigerant or gas-liquid two-phase refrigerant flows into the housing 210 through the refrigerant inflow pipe 220, and the liquid-phase refrigerant in the gas-liquid mixture flows to the bottom of the housing 210 by gravity. fall and stay. Meanwhile, the gas-phase refrigerant in the gas-liquid mixed flow is sent to the compressor 300 through the refrigerant outflow pipe 230 .

液分離器200の筐体210は、R方向に沿う径に対して高さhが相対的に小さく、全体として短筒状となるように構成されている。
このように、液分離器200においては、その筐体210が、R方向の径に対して高さhが相対的に小さい短筒状に形成されているので、筐体210の上部面210Aに重量を有する圧縮機300を配置したとしても、圧縮機300を安定した状態で保持することができる。
The housing 210 of the liquid separator 200 has a relatively small height h relative to the diameter along the R direction, and is configured to have a short cylindrical shape as a whole.
As described above, in the liquid separator 200, the housing 210 is formed in a short cylindrical shape in which the height h is relatively small with respect to the diameter in the R direction. Even if a heavy compressor 300 is arranged, the compressor 300 can be held in a stable state.

再び図2を参照すると、以上のような蒸気圧縮型の冷却システムFにおいては、蒸発器2で熱源から熱H1を吸収して蒸発した気相冷媒が圧縮機300で圧縮されて高温高圧になり、凝縮器400に送られる。その後、凝縮器400で冷熱源に放熱H2して凝縮した液相冷媒は減圧膨張弁500で所定の圧力にまで減圧され、再び蒸発器100に送られる。 Referring to FIG. 2 again, in the vapor compression cooling system F as described above, the vapor phase refrigerant evaporated by absorbing the heat H1 from the heat source in the evaporator 2 is compressed by the compressor 300 to become high temperature and high pressure. , is sent to the condenser 400 . Thereafter, the liquid-phase refrigerant condensed by the condenser 400 radiating heat H2 to the cold heat source is decompressed to a predetermined pressure by the decompression expansion valve 500 and sent to the evaporator 100 again.

冷媒流入管220の流入口(液分離器200へ液が流入するための開口)220Aの下方には、図4ならびに図5Aおよび図5Bに示されるように、冷媒流入管220を通じて供給された気相冷媒C1が、筐体210内に滞留した液相冷媒C2を吹き上げるのを防止するメッシュ状の飛沫防止板240が設置されている。
筐体210内では、冷媒流入管220を通じて供給される気相冷媒C1の流速が大きい場合に、この冷媒C1に液相冷媒が混入していなくとも、気相冷媒C1の勢いによって筐体210の底面に滞留した液相冷媒C2が吹き上げられる可能性がある。この場合、吹き上げられた液相冷媒C2は、冷媒流出管230の流出口(筐体210から液が流出するための開口)230Aから流れ出る恐れがある。
このため、図5A及び図5Bに示されるように、冷媒流入管220の下方にメッシュ状の飛沫防止板240が設置される。このメッシュ状の飛沫防止板240によって、気相冷媒C1が液相冷媒C2の液面に与える衝撃を緩和することで、液相冷媒C2が吹き上げられることを未然に防止する。
Below inlet 220A (opening for liquid to flow into liquid separator 200) of refrigerant inflow pipe 220, air supplied through refrigerant inflow pipe 220 is provided, as shown in FIGS. A mesh-like splash prevention plate 240 is installed to prevent the phase refrigerant C1 from blowing up the liquid-phase refrigerant C2 staying in the housing 210 .
In the housing 210, when the flow velocity of the gas-phase refrigerant C1 supplied through the refrigerant inflow pipe 220 is high, the momentum of the gas-phase refrigerant C1 causes the housing 210 to move even if the refrigerant C1 is not mixed with the liquid-phase refrigerant. There is a possibility that the liquid-phase refrigerant C2 staying on the bottom surface is blown up. In this case, the blown-up liquid-phase refrigerant C2 may flow out from the outlet (opening for the liquid to flow out from the housing 210) 230A of the refrigerant outflow pipe 230. FIG.
Therefore, as shown in FIGS. 5A and 5B, a mesh-like splash prevention plate 240 is installed below the coolant inflow pipe 220 . The mesh-like splash prevention plate 240 mitigates the impact of the gas-phase coolant C1 on the liquid surface of the liquid-phase coolant C2, thereby preventing the liquid-phase coolant C2 from blowing up.

以上説明したように第1実施形態に係る液分離器200においては、筐体210が、径方向(R方向)に対して高さhが相対的に小さい短筒状に形成されているので、この筐体210の上部面210Aに重量の大きな圧縮機300を配置したとしても、トップヘビーにならず安定した状態で圧縮機300を保持することができる。
また、上記液分離器200においては、筐体210が短筒状に形成されているので、筐体210の上部面210Aに、径方向(R方向)に一定の間隔を置いて冷媒流入管220及び冷媒流出管230を配置することができる。
その結果、上記液分離器200においては、冷媒流入管220から筐体210内への冷媒流入で生じた液相冷媒C2の液面の波打ち(乱れ)の影響が、冷媒流出管230に及ぶことを防止する。したがって、筐体210内の液相冷媒C2が吹き上げられて冷媒流出管230から流出することを防止することができる。
As described above, in the liquid separator 200 according to the first embodiment, the housing 210 is formed in a short cylindrical shape with a relatively small height h relative to the radial direction (R direction). Even if the heavy compressor 300 is arranged on the upper surface 210A of the housing 210, the compressor 300 can be stably held without being top-heavy.
Further, in the liquid separator 200, the housing 210 is formed in a short cylindrical shape. and a coolant outflow tube 230 can be arranged.
As a result, in the liquid separator 200, the influence of the waving (turbulence) of the liquid surface of the liquid-phase refrigerant C2 caused by the inflow of the refrigerant from the refrigerant inflow pipe 220 into the housing 210 affects the refrigerant outflow pipe 230. to prevent Therefore, it is possible to prevent the liquid-phase refrigerant C<b>2 in the housing 210 from blowing up and flowing out of the refrigerant outflow pipe 230 .

さらに、上記液分離器200においては、冷媒流入管220の流入口220Aの下方にメッシュ状の飛沫防止板240を設けたことにより、気相冷媒C1が液面に衝突する勢いを緩和して、液相冷媒C2の液面が波打つことを防ぐ。これによっても筐体210内の液相冷媒C2が冷媒流出管230の流出口230Aから流れ出ることを防止することができる。 Furthermore, in the liquid separator 200, a mesh-like splash prevention plate 240 is provided below the inlet 220A of the refrigerant inflow pipe 220 to reduce the impetus of the gas-phase refrigerant C1 colliding with the liquid surface, This prevents the liquid surface of the liquid phase refrigerant C2 from waving. This also prevents the liquid-phase refrigerant C2 in the housing 210 from flowing out from the outlet 230A of the refrigerant outflow pipe 230. As shown in FIG.

また、上記液分離器200においては、冷媒流入管220から冷媒流出管230に至るまでの気相冷媒の流路に、大きな圧力損失を生むような複雑な構造が存在しない。これにより、上記液分離器200では、冷媒の気液分離時の圧力損失を抑えつつも、圧縮機300へのいわゆる液バック現象(冷媒の液滴が運動エネルギーを持って流路を流れることによる、冷却システムの管路や機器の損傷)を防止することが可能となる。 Further, in the liquid separator 200, there is no complicated structure that causes a large pressure loss in the flow path of the gas-phase refrigerant from the refrigerant inflow pipe 220 to the refrigerant outflow pipe 230. FIG. As a result, in the liquid separator 200, while suppressing pressure loss during gas-liquid separation of the refrigerant, the so-called liquid back phenomenon to the compressor 300 (due to the liquid droplets flowing through the flow path with kinetic energy) , cooling system pipelines and equipment damage).

(変形例1)
上記実施形態では、飛沫防止板240としてメッシュ状の板体を使用したが、これに限定されない。すなわち、飛沫防止板240として、図6に示されるような多数の貫通孔240aを有する板体、例えば、パンチングメタルのように複数の穴の開いた板などを使用しても良い。
(Modification 1)
In the above embodiment, a mesh plate is used as the splash prevention plate 240, but the present invention is not limited to this. That is, as the splash prevention plate 240, a plate having a large number of through holes 240a as shown in FIG. 6, for example, a plate with a plurality of holes such as punching metal may be used.

(変形例2)
さらに、飛沫防止板240として、図7に示されるような複数の繊維240bが絡み合うことで形成された網状体、例えば、金属たわしを偏平状に加工した形状のものを使用しても良い。
(Modification 2)
Furthermore, as the splash prevention plate 240, a net-like body formed by entangling a plurality of fibers 240b as shown in FIG.

(第2実施形態)
本発明の第2実施形態に係る液分離器200’について図8を参照して説明する。
第2実施形態による液分離器200’が、第1実施形態による液分離器200と構成を異にする点は、冷媒流出管230の出口の下方に液侵入防止板250を設けた点にある。
(Second embodiment)
A liquid separator 200' according to a second embodiment of the present invention will be described with reference to FIG.
The liquid separator 200' according to the second embodiment differs in configuration from the liquid separator 200 according to the first embodiment in that a liquid entry prevention plate 250 is provided below the outlet of the refrigerant outflow pipe 230. .

第2の実施形態に示される液分離器200’では、気相冷媒C1の流速が大きい場合に、筐体210内に貯留された液相冷媒C2を吹き上げる力が強く、飛沫防止板240だけでは飛沫の飛散防止が不十分になる恐れがある。このため、液分離器200’では、冷媒流入管220の流入口(液分離器200’に向かう出口)220Aの下方に飛沫防止板240を設けることに加えて、冷媒流出管230の流出口(液分離器200’からの液が向かう口)230Aの下方に、液相冷媒C2の吸入を防止する液侵入防止板250を設けるている。 In the liquid separator 200' shown in the second embodiment, when the flow velocity of the gas-phase refrigerant C1 is high, the force to blow up the liquid-phase refrigerant C2 stored in the housing 210 is strong, and the splash prevention plate 240 alone There is a risk that the prevention of scattering of droplets will be insufficient. For this reason, in the liquid separator 200', in addition to providing the splash prevention plate 240 below the inlet (outlet toward the liquid separator 200') 220A of the refrigerant inflow pipe 220, the outlet of the refrigerant outflow pipe 230 ( Below the port 230A to which the liquid from the liquid separator 200' is directed, a liquid intrusion prevention plate 250 is provided to prevent suction of the liquid phase refrigerant C2.

これにより、第2の実施形態に示される液分離器200’では、冷媒流入管220の下方に液侵入防止板240を追加することで、液相冷媒C2の飛沫が冷媒流出管230に吸引されることを防止し、その液分離機能を向上させることができる。
なお、液侵入防止板240としては、通常の板体の他、図5Bに示されるメッシュ状の板体、図6に示される多数の貫通孔を有する板体、又は図7に示される複数の繊維が絡み合うことで形成された網状体(ないしは綿状体)、なども使用可能である。
Accordingly, in the liquid separator 200′ shown in the second embodiment, the droplets of the liquid-phase refrigerant C2 are sucked into the refrigerant outflow pipe 230 by adding the liquid intrusion prevention plate 240 below the refrigerant inflow pipe 220. can be prevented, and the liquid separation function can be improved.
As the liquid intrusion prevention plate 240, in addition to a normal plate, a mesh-like plate shown in FIG. A net-like body (or cotton-like body) formed by entangling fibers can also be used.

(第3実施形態)
本発明の第3実施形態に係る液分離器200”について図9及び図10を参照して説明する。
(Third embodiment)
A liquid separator 200″ according to a third embodiment of the present invention will be described with reference to FIGS. 9 and 10. FIG.

第3実施形態に示す液分離器200”が、第1及び第2実施形態に示す液分離器200,200’と構成を異にする点は、液面センサ260、メンテバルブ270及び制御部700を設けた点にある。 The liquid separator 200″ shown in the third embodiment differs in configuration from the liquid separators 200 and 200′ shown in the first and second embodiments in that the liquid level sensor 260, the maintenance valve 270 and the controller 700 The point is that

通常の冷却システムの運転では、蒸発器100の出口から完全に気体冷媒が送られるようになっており、外乱によって不安定動作になった場合のみ、液相冷媒が蒸発器100から液分離器200に送られる。このとき、不安定動作によって筐体210内に滞留した液相冷媒C2は、その後の通常運転の最中に徐々に蒸発して気相冷媒C1となり、その滞留が解消される。 In normal operation of the cooling system, the gas refrigerant is completely sent from the outlet of the evaporator 100, and only when the operation becomes unstable due to disturbance, the liquid phase refrigerant is transferred from the evaporator 100 to the liquid separator 200. sent to At this time, the liquid-phase refrigerant C2 that has accumulated in the housing 210 due to the unstable operation gradually evaporates to become the gas-phase refrigerant C1 during the subsequent normal operation, and the accumulation is eliminated.

しかしながら、継続的に不安定動作が起こった場合には、液分離器200の筐体210内に滞留する液相冷媒C2の量が徐々に増えることが予想される。
このため、第3実施形態に示す液分離器200”では、図9に示すように、筐体210内に滞留する液相冷媒C2の液量を監視するための液面センサ260をこの筐体210に取り付けている。
仮に、筐体210内に滞留する液相冷媒C2の液面が、飛沫防止板240の位置より高くなった場合には、飛沫防止板240が機能しなくなり、液分離機能が著しく低下することが予想される。
この場合には、冷媒流出管230から液相冷媒C2が流れ出て液バックを引き起こす恐れがあるので、圧縮機300を停止させる必要がある。
However, if unstable operations continue to occur, it is expected that the amount of liquid-phase refrigerant C2 remaining in housing 210 of liquid separator 200 will gradually increase.
For this reason, in the liquid separator 200″ shown in the third embodiment, as shown in FIG. 210 is installed.
If the liquid level of the liquid-phase refrigerant C2 remaining in the housing 210 becomes higher than the position of the splash prevention plate 240, the splash prevention plate 240 will not function, and the liquid separation function may be significantly reduced. is expected.
In this case, the liquid-phase refrigerant C2 may flow out from the refrigerant outflow pipe 230 and cause liquid backflow, so it is necessary to stop the compressor 300 .

このため、第3実施形態の液分離器200”では、図10に示すように、液分離器200の液面センサ260の値を監視し、液相冷媒C2の液面が限界値を超えた場合に、圧縮機300を含む冷却システムF’全体を停止させる制御部700を設けるようにしている。
そして、第3実施形態の液分離器200”では、冷却システムF’の停止後に、筐体210の下部のメンテバルブ270を開として、滞留した液相冷媒C2を放出することによって正常状態に復帰することができる。
なお、このメンテバルブ270は作業員が手動で開閉しても良いし、別途設けた制御部700により動作される駆動手段により開閉しても良い。
Therefore, in the liquid separator 200″ of the third embodiment, the value of the liquid level sensor 260 of the liquid separator 200 is monitored as shown in FIG. In this case, a controller 700 is provided to stop the entire cooling system F' including the compressor 300. FIG.
Then, in the liquid separator 200″ of the third embodiment, after the cooling system F′ is stopped, the maintenance valve 270 at the bottom of the housing 210 is opened to release the stagnant liquid phase refrigerant C2, thereby restoring the normal state. can do.
The maintenance valve 270 may be opened and closed manually by an operator, or may be opened and closed by a drive means operated by a control unit 700 provided separately.

以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and design changes and the like are included within the scope of the present invention.

本願は、2019年3月22日に、日本に出願された特願2019-55600号に基づき優先権を主張し、その内容をここに援用する。 This application claims priority based on Japanese Patent Application No. 2019-55600 filed in Japan on March 22, 2019, the content of which is incorporated herein.

本発明は、主に冷却システムに使用され、蒸発器から圧縮機に流れ込む液体を分離する液分離器、冷却システム及び気液分離方法に適用でき、液分離器の上部に重量を有する圧縮機を配置したとしても、液分離器を安定した状態で保持することができる。。 INDUSTRIAL APPLICABILITY The present invention is mainly used in a cooling system and can be applied to a liquid separator, a cooling system, and a gas-liquid separation method for separating liquid flowing into a compressor from an evaporator, and a compressor having a weight on the upper part of the liquid separator. Even when arranged, the liquid separator can be held in a stable state. .

1 冷却システム
1A 冷媒流路
2 蒸発器
3 圧縮機
4 凝縮器
5 減圧膨張弁
10 液分離器
11 密閉容器
12 冷媒流入管
13 冷媒流出管
100 蒸発器
200 液分離器
200’ 液分離器
200” 液分離器
210 筐体
240 飛沫防止板
250 液侵入防止板
260 液面センサ
270 メンテバルブ
300 圧縮機
400 凝縮器
500 減圧膨張弁
610 冷媒流路
620 冷媒流路
630 冷媒流路
640 液管
650 液管
700 制御部
C 冷媒
C1 気相冷媒
C2 液相冷媒
F 冷却サイクル
F’ 冷却サイクル
R 径方向
REFERENCE SIGNS LIST 1 cooling system 1A refrigerant flow path 2 evaporator 3 compressor 4 condenser 5 pressure reducing expansion valve 10 liquid separator 11 sealed container 12 refrigerant inflow pipe 13 refrigerant outflow pipe 100 evaporator 200 liquid separator 200′ liquid separator 200″ liquid Separator 210 Case 240 Splash Prevention Plate 250 Liquid Intrusion Prevention Plate 260 Liquid Level Sensor 270 Maintenance Valve 300 Compressor 400 Condenser 500 Decompression Expansion Valve 610 Refrigerant Channel 620 Refrigerant Channel 630 Refrigerant Channel 640 Liquid Pipe 650 Liquid Pipe 700 Control unit C Refrigerant C1 Gas-phase refrigerant C2 Liquid-phase refrigerant F Cooling cycle F' Cooling cycle R Radial direction

Claims (8)

冷媒が貯留される筒状の密閉容器と、該密閉容器内に冷媒を流入させる冷媒流入管と、該密閉容器内の空間に流入した冷媒を外部に流出させる冷媒流出管と、該冷媒流出管から冷媒を受け入れて圧縮し、前記密閉容器の上に配置された圧縮機と、を有し、
前記冷媒流入管及び前記冷媒流出管は、前記密閉容器の上部から容器内部へ向けてそれぞれ配置されており、
前記密閉容器は径に対して高さが相対的に小さい短筒状をなし、
前記密閉容器内に位置する前記冷媒流入管の出口付近には、前記冷媒の飛沫が散乱することを防止する飛沫防止板が設置されていることを特徴とする冷却システム。
A cylindrical closed container in which a refrigerant is stored, a refrigerant inflow pipe for inflowing the refrigerant into the closed container, a refrigerant outflow pipe for outflowing the refrigerant that has flowed into the space in the closed container, and the refrigerant outflow pipe. a compressor that receives and compresses refrigerant from and is disposed above the closed vessel;
The refrigerant inflow pipe and the refrigerant outflow pipe are arranged from the upper part of the closed container toward the inside of the container,
The closed container has a short cylindrical shape with a relatively small height relative to the diameter,
A cooling system according to claim 1, wherein a splash prevention plate is installed near an outlet of the refrigerant inflow pipe located in the sealed container to prevent splashes of the refrigerant from scattering.
冷媒が貯留される筒状の密閉容器と、該密閉容器内に冷媒を流入させる冷媒流入管と、該密閉容器内の空間に流入した冷媒を外部に流出させる冷媒流出管と、該冷媒流出管から冷媒を受け入れて圧縮し、前記密閉容器の上に配置された圧縮機と、を有し、
前記冷媒流入管及び前記冷媒流出管は、前記密閉容器の上部から容器内部へ向けてそれぞれ配置されており、
前記密閉容器は径に対して高さが相対的に小さい短筒状をなし、
前記密閉容器内に位置する前記冷媒流出管の入口付近には、前記密閉容器内の液相冷媒の侵入を防止する液侵入防止板が設けられることを特徴とする冷却システム。
A cylindrical closed container in which a refrigerant is stored, a refrigerant inflow pipe for inflowing the refrigerant into the closed container, a refrigerant outflow pipe for outflowing the refrigerant that has flowed into the space in the closed container, and the refrigerant outflow pipe. a compressor that receives and compresses refrigerant from and is disposed above the closed vessel;
The refrigerant inflow pipe and the refrigerant outflow pipe are arranged from the upper part of the closed container toward the inside of the container,
The closed container has a short cylindrical shape with a relatively small height relative to the diameter,
A cooling system according to claim 1, wherein a liquid intrusion prevention plate is provided near an entrance of the refrigerant outflow pipe located in the closed container to prevent intrusion of the liquid-phase refrigerant in the closed container.
前記飛沫防止板はメッシュ状の板体により構成されることを特徴とする請求項1に記載の冷却システム。 2. The cooling system according to claim 1, wherein said splash prevention plate is composed of a mesh plate. 前記飛沫防止板は多数の貫通孔を有する板体で構成されることを特徴とする請求項1に記載の冷却システム。 2. The cooling system according to claim 1, wherein said splash prevention plate is composed of a plate having a large number of through holes. 前記飛沫防止板は複数の繊維が絡み合うことで形成された網状体により構成されることを特徴とする請求項1に記載の冷却システム。 2. The cooling system according to claim 1, wherein said splash prevention plate is composed of a net-like body formed by entangling a plurality of fibers. 前記密閉容器には液相冷媒の液面高さを検出する液面センサと、該液面センサの検出値が予め定めた限界値を越えた場合に装置全体を停止する制御部とが設けられることを特徴とする請求項1~5のいずれか1項に記載の冷却システム。 The airtight container is provided with a liquid level sensor for detecting the height of the liquid level of the liquid refrigerant, and a control section for stopping the entire apparatus when the detected value of the liquid level sensor exceeds a predetermined limit value. The cooling system according to any one of claims 1 to 5, characterized in that: 前記密閉容器の下部には液相冷媒を排出する排出バルブが設けられることを特徴とする請求項1~5のいずれか1項に記載の冷却システム。 The cooling system according to any one of claims 1 to 5, wherein a discharge valve for discharging the liquid-phase refrigerant is provided at the bottom of the closed container. 冷媒流路に沿って、液相冷媒を蒸発させることで周囲の熱を吸収する蒸発器と、冷媒を圧縮する圧縮機と、該圧縮機によって高圧となった冷媒の熱を放出し気相冷媒を凝縮させる凝縮器と、該凝縮器によって冷やされた液相冷媒を減圧膨張させる減圧膨張弁とを備える冷却システムであって、
前記圧縮機の上流側には、前記蒸発器を経由した後の冷媒を気液分離する液分離器が設けられ、
前記液分離器は、冷媒が貯留される筒状の密閉容器と、該密閉容器内の空間に冷媒を流入させる冷媒流入管と、該密閉容器内の空間中の冷媒を外部に流出させる冷媒流出管とを有し、前記密閉容器は径に対して高さが相対的に小さい短筒状をなすように構成され、
前記圧縮機は、前記密閉容器の上に搭載されることを特徴とする冷却システム。
Along the refrigerant flow path, there are an evaporator that absorbs surrounding heat by evaporating a liquid-phase refrigerant, a compressor that compresses the refrigerant, and a gas-phase refrigerant that releases the heat of the refrigerant that has been pressurized by the compressor. A cooling system comprising a condenser for condensing and a decompression expansion valve for decompressing and expanding the liquid phase refrigerant cooled by the condenser,
A liquid separator is provided on the upstream side of the compressor for gas-liquid separation of the refrigerant after passing through the evaporator,
The liquid separator includes a cylindrical closed container in which a refrigerant is stored, a refrigerant inflow pipe that allows the refrigerant to flow into the space inside the closed container, and a refrigerant outflow that allows the refrigerant in the space inside the closed container to flow out to the outside. and a pipe, wherein the closed container is configured to have a short cylindrical shape with a relatively small height relative to the diameter,
A cooling system, wherein the compressor is mounted on the closed container.
JP2021508941A 2019-03-22 2020-03-06 cooling system Active JP7188563B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019055600 2019-03-22
JP2019055600 2019-03-22
PCT/JP2020/009696 WO2020195711A1 (en) 2019-03-22 2020-03-06 Liquid separator, cooling system, and gas-liquid separation method

Publications (2)

Publication Number Publication Date
JPWO2020195711A1 JPWO2020195711A1 (en) 2021-10-21
JP7188563B2 true JP7188563B2 (en) 2022-12-13

Family

ID=72610063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021508941A Active JP7188563B2 (en) 2019-03-22 2020-03-06 cooling system

Country Status (5)

Country Link
US (1) US20220154988A1 (en)
EP (1) EP3943839A4 (en)
JP (1) JP7188563B2 (en)
AU (1) AU2020248049B2 (en)
WO (1) WO2020195711A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240328689A1 (en) * 2021-05-14 2024-10-03 Mitsubishi Electric Corporation Refrigerant reservoir container and refrigeration cycle apparatus provided with the refrigerant reservoir container
WO2023166705A1 (en) * 2022-03-04 2023-09-07 三菱電機株式会社 Refrigerant storage container and refrigeration cycle device provided with said refrigerant storage container

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156274A (en) 2000-11-17 2002-05-31 Mitsubishi Electric Corp Liquid level position detection mechanism of tank for freezing cycle apparatus
JP2004037050A (en) 2002-07-08 2004-02-05 Zexel Valeo Climate Control Corp Horizontal type accumulator
JP2015017720A (en) 2013-07-09 2015-01-29 日立アプライアンス株式会社 Air conditioning equipment

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2868315A (en) * 1957-05-24 1959-01-13 Black Sivalls & Bryson Inc Apparatus for separating fluids
US3070977A (en) * 1961-03-31 1963-01-01 Heat X Inc Refrigeration system, including oil separator and muffler unit and oil return arrangement
US3163998A (en) * 1962-09-06 1965-01-05 Recold Corp Refrigerant flow control apparatus
US3255574A (en) * 1965-08-23 1966-06-14 Nat Tank Co Methods and means for treating oil well emulsions
JPS477170Y1 (en) * 1969-11-13 1972-03-15
JPS477170U (en) * 1971-02-17 1972-09-26
AT323311B (en) * 1972-07-14 1975-07-10 Bauer Heinz DEVICE FOR DRAINING OIL FROM OIL SEPARATOR CARTRIDGES
US4308136A (en) * 1978-04-21 1981-12-29 Conoco Inc. Internally baffled, horizontal flow, vertical oil skimmer
JPS563372U (en) * 1979-06-21 1981-01-13
DE3014148C2 (en) * 1980-04-12 1985-11-28 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Oil separator for compressors in heat pumps and chillers
US4566288A (en) * 1984-08-09 1986-01-28 Neal Andrew W O Energy saving head pressure control system
US5214937A (en) * 1991-10-28 1993-06-01 Carrier Corporation Integral oil separator and muffler
JP3376641B2 (en) * 1993-07-06 2003-02-10 三菱電機株式会社 Air conditioner
JP3439178B2 (en) * 1993-12-28 2003-08-25 三菱電機株式会社 Refrigeration cycle device
JPH08271093A (en) * 1995-03-30 1996-10-18 Sanyo Electric Co Ltd Refrigeration machine
JPH10111047A (en) * 1996-10-03 1998-04-28 Hitachi Ltd Air conditioner
BR0008743B1 (en) * 1999-03-05 2010-02-09 three-phase separator, and process for separating a mixture of gas, oil and water into the gas, oil and water constituents.
US6941769B1 (en) * 2004-04-08 2005-09-13 York International Corporation Flash tank economizer refrigeration systems
CN101738034B (en) * 2009-12-11 2012-07-25 上海环球制冷设备有限公司 High-efficiency vertical oil separator device and using method
WO2012012491A2 (en) * 2010-07-23 2012-01-26 Carrier Corporation Ejector cycle refrigerant separator
KR101767063B1 (en) * 2010-12-29 2017-08-10 엘지전자 주식회사 Hermetic compressor
JP2013120028A (en) 2011-12-08 2013-06-17 Panasonic Corp Gas-liquid separator and refrigerating cycle device
CN104741066A (en) * 2013-12-27 2015-07-01 超重力有限公司 Mass transfer device with liquid seal device
JP2015172469A (en) 2014-03-12 2015-10-01 カルソニックカンセイ株式会社 gas-liquid separator
JP2019055600A (en) 2014-06-23 2019-04-11 セイコーエプソン株式会社 Liquid storage container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156274A (en) 2000-11-17 2002-05-31 Mitsubishi Electric Corp Liquid level position detection mechanism of tank for freezing cycle apparatus
JP2004037050A (en) 2002-07-08 2004-02-05 Zexel Valeo Climate Control Corp Horizontal type accumulator
JP2015017720A (en) 2013-07-09 2015-01-29 日立アプライアンス株式会社 Air conditioning equipment

Also Published As

Publication number Publication date
EP3943839A1 (en) 2022-01-26
AU2020248049B2 (en) 2023-06-01
AU2020248049A1 (en) 2021-11-11
EP3943839A4 (en) 2022-05-18
WO2020195711A1 (en) 2020-10-01
US20220154988A1 (en) 2022-05-19
JPWO2020195711A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP7188563B2 (en) cooling system
CN107677016B (en) Economizer
JP4404148B2 (en) Economizer
EP2676085B1 (en) Liquid vapor phase separation apparatus
JP4626531B2 (en) Ejector refrigeration cycle
JP6771642B2 (en) Air conditioner
JP2008196721A (en) Gas-liquid separator
JP2007162988A (en) Vapor compression refrigerating cycle
JP2008275211A (en) Vapor compression-type refrigerating cycle
WO2017179631A1 (en) Condenser, and turbo-refrigerating apparatus equipped with same
JP2010266198A (en) Ejector type refrigerating cycle
JP5498715B2 (en) Gas-liquid separator and refrigeration apparatus equipped with the gas-liquid separator
JP5601764B2 (en) Gas-liquid separator and air compressor and air conditioner equipped with the same
JP6945202B2 (en) Cyclone type freezer and heat pump system equipped with the cyclone type freezer
WO2021229649A1 (en) Accumulator and refrigeration cycle device
JP2005233470A (en) Gas-liquid separator
JP2010078248A (en) Gas-liquid separator and refrigerating cycle device including the same
US20210348809A1 (en) Condenser subassembly with integrated flash tank
WO2013125215A1 (en) Refrigeration machine
KR100920819B1 (en) Accumulator for air-conditioning apparatus and air-conditioning apparatus comprising the same
KR101155701B1 (en) Economizer with fluid velocity reduction apparatus and multi-stage compressing refrigeration apparatus having the same
EP2766655A1 (en) Condensate trap
JP2005265388A (en) Gas-liquid separator
KR102408552B1 (en) air conditioner
US20220275986A1 (en) Refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220915

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220915

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221013

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221114

R151 Written notification of patent or utility model registration

Ref document number: 7188563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151