JP6459235B2 - Gas-liquid separator - Google Patents

Gas-liquid separator Download PDF

Info

Publication number
JP6459235B2
JP6459235B2 JP2014124937A JP2014124937A JP6459235B2 JP 6459235 B2 JP6459235 B2 JP 6459235B2 JP 2014124937 A JP2014124937 A JP 2014124937A JP 2014124937 A JP2014124937 A JP 2014124937A JP 6459235 B2 JP6459235 B2 JP 6459235B2
Authority
JP
Japan
Prior art keywords
gas
liquid
phase refrigerant
flow
container body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014124937A
Other languages
Japanese (ja)
Other versions
JP2016003825A (en
Inventor
実 柿沼
実 柿沼
鶴羽 健
鶴羽  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014124937A priority Critical patent/JP6459235B2/en
Publication of JP2016003825A publication Critical patent/JP2016003825A/en
Application granted granted Critical
Publication of JP6459235B2 publication Critical patent/JP6459235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cyclones (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Description

本発明は、冷凍サイクル装置などで使用される気液二相冷媒(気液混合冷媒)を気相冷媒(気体冷媒)と液相冷媒(液体冷媒)とに分離する気液分離器に関する。   The present invention relates to a gas-liquid separator that separates a gas-liquid two-phase refrigerant (gas-liquid mixed refrigerant) used in a refrigeration cycle apparatus into a gas-phase refrigerant (gas refrigerant) and a liquid-phase refrigerant (liquid refrigerant).

自動販売機や冷凍/冷蔵ショーケース、飲料ディスペンサなどに設けられる断熱筐体の内部雰囲気を冷却するための冷凍サイクル装置は、圧縮機、放熱器、蒸発器、エジェクタおよび気液分離器などを備えて構成されている。   A refrigeration cycle device for cooling the internal atmosphere of a heat-insulated housing provided in vending machines, refrigerated / refrigerated showcases, beverage dispensers, etc., includes a compressor, radiator, evaporator, ejector, gas-liquid separator, etc. Configured.

圧縮機は、供給された冷媒を圧縮するものである。放熱器は、圧縮機で圧縮された高圧冷媒を放熱させるものである。蒸発器は、商品収容庫などの断熱筐体の内部に配設されており、供給された冷媒を蒸発させるものである。   The compressor compresses the supplied refrigerant. The radiator radiates heat from the high-pressure refrigerant compressed by the compressor. An evaporator is arrange | positioned inside heat insulation housing | casings, such as goods storage, and evaporates the supplied refrigerant | coolant.

エジェクタは、放熱器から供給された高圧の冷媒(高圧冷媒)を減圧させることによるエネルギーを利用して、蒸発器で蒸発した低圧の冷媒(低圧冷媒)を吸引し、吸引した低圧冷媒を高圧冷媒と混合させ、低圧冷媒を昇圧させた後に吐出するものである。気液分離器は、エジェクタから供給された気液二相冷媒を気相冷媒と液相冷媒とに分離し、気相冷媒を圧縮機に送出する一方、液相冷媒を蒸発器に送出するものである。   The ejector uses the energy generated by depressurizing the high-pressure refrigerant (high-pressure refrigerant) supplied from the radiator to suck the low-pressure refrigerant (low-pressure refrigerant) evaporated in the evaporator, and the sucked low-pressure refrigerant is used as the high-pressure refrigerant. And the low-pressure refrigerant is discharged after being pressurized. The gas-liquid separator separates the gas-liquid two-phase refrigerant supplied from the ejector into a gas-phase refrigerant and a liquid-phase refrigerant, and sends the gas-phase refrigerant to the compressor, while sending the liquid-phase refrigerant to the evaporator. It is.

そして、圧縮機、放熱器、エジェクタおよび気液分離器が冷媒管路で順次環状に接続され、エジェクタの低圧冷媒の吸入口と気液分離器の液相冷媒の送出口との間に蒸発器が設けられることにより、冷媒循環回路が構成され、この冷媒循環回路に冷媒を循環させるようにしている。これにより、蒸発器の周辺領域は、冷媒が蒸発することで熱を吸収することにより冷却され、断熱筐体の内部雰囲気が冷却される(例えば、特許文献1参照)。   A compressor, a radiator, an ejector, and a gas-liquid separator are sequentially connected in an annular manner through a refrigerant pipe, and an evaporator is provided between the low-pressure refrigerant inlet of the ejector and the liquid-phase refrigerant outlet of the gas-liquid separator. Is provided to constitute a refrigerant circulation circuit, and the refrigerant is circulated through the refrigerant circulation circuit. Thereby, the peripheral region of the evaporator is cooled by absorbing heat by evaporating the refrigerant, and the internal atmosphere of the heat insulating housing is cooled (for example, see Patent Document 1).

このような構成の冷凍サイクル装置に備えられている気液分離器で、気液二相冷媒の中の液滴を凝縮させて気相冷媒と液相冷媒に分離する方式には、主に、重力分離方式、表面張力分離方式、遠心分離方式と3つの方式がある。   In the method of condensing droplets in the gas-liquid two-phase refrigerant and separating them into the gas-phase refrigerant and the liquid-phase refrigerant in the gas-liquid separator provided in the refrigeration cycle apparatus having such a configuration, mainly, There are three methods: gravity separation method, surface tension separation method, and centrifugal separation method.

例えば、重力分離方式による気液分離器は、密閉容器の上部側に気液二相冷媒入口管を、下部側に密閉容器の内部上方に向けて伸びる気相冷媒出口管をそれぞれ接続するとともに、気液二相冷媒入口管の気液二相冷媒流出口と気相冷媒出口管の気相冷媒流入口とを、それぞれ密閉容器の内部上方において開口させるとともに、密閉容器内の上部で、気液二相冷媒流出口と気相冷媒流入口の間にバッフル板を設け、このバッフル板の下部には、密閉容器内壁に外周が近接する傘形状板を固着させるようにしている。   For example, a gas-liquid separator using a gravity separation system has a gas-liquid two-phase refrigerant inlet pipe connected to the upper side of the sealed container and a gas-phase refrigerant outlet pipe extending toward the upper part of the sealed container on the lower side, respectively. A gas-liquid two-phase refrigerant outlet of the gas-liquid two-phase refrigerant inlet pipe and a gas-phase refrigerant inlet of the gas-phase refrigerant outlet pipe are opened above the inside of the sealed container, respectively. A baffle plate is provided between the two-phase refrigerant outlet and the gas-phase refrigerant inlet, and an umbrella-shaped plate whose outer periphery is close to the inner wall of the sealed container is fixed to the lower portion of the baffle plate.

そして、密閉容器内壁に外周が近接する傘形状板をバッフル板下部に固着させることにより、密閉容器の上部側に接続している気液二相冷媒入口管の気液二相冷媒流出口から密閉容器内に流入した気液二相冷媒を傘形状板で密閉容器壁面に当てることで、気液二相冷媒の中の液滴を密閉容器壁面に付着させて落下させ、気液二相冷媒を気相冷媒と液相冷媒とに分離するようにしている(例えば、特許文献2参照)。   Then, an umbrella-shaped plate whose outer periphery is close to the inner wall of the sealed container is fixed to the lower part of the baffle plate, thereby sealing from the gas-liquid two-phase refrigerant outlet of the gas-liquid two-phase refrigerant inlet pipe connected to the upper side of the sealed container. By applying the gas-liquid two-phase refrigerant that has flowed into the container to the wall surface of the sealed container with an umbrella-shaped plate, droplets in the gas-liquid two-phase refrigerant adhere to the wall surface of the sealed container and fall, It is made to isolate | separate into a gaseous-phase refrigerant | coolant and a liquid-phase refrigerant | coolant (for example, refer patent document 2).

また、重力分離方式と表面張力分離方式とを組み合わせた気液分離器では、気液二相冷媒が流入する冷媒流入配管に管の向きが途中で曲げられている流入配管曲がり部を設け、また、冷媒流入配管の途中に冷媒流入配管の内径よりも小さな外径を持つ気相冷媒流出管を流入配管曲がり部の管壁を貫通して接続して設けて冷媒流入配管と気相冷媒流出管の中心軸を略一致させ、さらに、冷媒流入配管内側にある気相冷媒流出管の端部である気相冷媒流入口を流入配管曲がり部から所定の距離位置となるように気相冷媒流出管を配設し、そして、気液分離後に液相冷媒が流出する液相冷媒流出管を冷媒流入配管と同一の管で構成するようにしている。   In addition, in a gas-liquid separator that combines the gravity separation method and the surface tension separation method, the refrigerant inflow piping into which the gas-liquid two-phase refrigerant flows is provided with a bent portion of the inflow piping in which the direction of the tube is bent halfway. In the middle of the refrigerant inflow pipe, a gas phase refrigerant outflow pipe having an outer diameter smaller than the inner diameter of the refrigerant inflow pipe is connected through the pipe wall of the inflow pipe bent portion, and the refrigerant inflow pipe and the gas phase refrigerant outflow pipe are provided. The gas-phase refrigerant outflow pipe is arranged so that the center axis of the gas-phase refrigerant is substantially coincided and the gas-phase refrigerant inflow port, which is the end of the gas-phase refrigerant outflow pipe inside the refrigerant inflow pipe, is located at a predetermined distance from the bent part of the inflow pipe. The liquid-phase refrigerant outflow pipe from which the liquid-phase refrigerant flows out after gas-liquid separation is constituted by the same pipe as the refrigerant inflow pipe.

このように気液分離器を構成することにより、気相冷媒流出管の端部付近において気液二相冷媒が環状流になっている場合、冷媒流入配管と気相冷媒流出管の中心軸は略一致しているため、気液二相冷媒の中から気相冷媒を分離して取り出すことができる。一方、気相冷媒流出管の端部付近において気液二相冷媒が環状流になっていない場合でも、流れ方向に進む慣性力が大きな液相冷媒は液相冷媒流出管方向に流れていき、気相冷媒は気相冷媒流出管を通過するため、気相冷媒を分離して取り出すことができるようになる(例えば、特許文献3参照)。   By configuring the gas-liquid separator in this way, when the gas-liquid two-phase refrigerant is in an annular flow near the end of the gas-phase refrigerant outflow pipe, the central axes of the refrigerant inflow pipe and the gas-phase refrigerant outflow pipe are Since they substantially coincide, the gas-phase refrigerant can be separated and taken out from the gas-liquid two-phase refrigerant. On the other hand, even when the gas-liquid two-phase refrigerant is not in an annular flow near the end of the gas-phase refrigerant outflow pipe, the liquid phase refrigerant with a large inertial force going in the flow direction flows in the liquid phase refrigerant outflow pipe direction, Since the gas-phase refrigerant passes through the gas-phase refrigerant outflow pipe, the gas-phase refrigerant can be separated and taken out (see, for example, Patent Document 3).

さらに、遠心分離方式による気液分離器は、液相冷媒を溜めることができる貯液室と、側周面が円周面で攪拌促進部を設けている貯液室に気液二相冷媒を供給する冷媒入口と、貯液室の上部に開口し、貯液室の気相冷媒を排出する冷媒出口と、貯液室の冷媒入口より下方に配置され、冷媒入口から供給される気液二相冷媒を旋回方向に流す旋回溝を有して気液二相冷媒が外面側を流れて所定の冷媒流れを形成する整流部材と、を備えている。   Furthermore, the gas-liquid separator using the centrifugal separation system stores the gas-liquid two-phase refrigerant in the liquid storage chamber in which the liquid phase refrigerant can be stored, and in the liquid storage chamber in which the side peripheral surface is a circumferential surface and the stirring promoting portion is provided. A refrigerant inlet to be supplied, a refrigerant outlet that opens to the top of the liquid storage chamber and discharges the gas-phase refrigerant in the liquid storage chamber, and a gas-liquid two that is disposed below the refrigerant inlet of the liquid storage chamber and is supplied from the refrigerant inlet A rectifying member having a swirling groove for flowing the phase refrigerant in the swirling direction, and the gas-liquid two-phase refrigerant flowing on the outer surface side to form a predetermined refrigerant flow.

そして、冷媒入口より貯液室に供給された気液二相冷媒は、整流部材の外面側の旋回溝に沿って流れる。旋回溝を流れる気液二相冷媒は旋回方向に流れて貯液室へと落下する。旋回溝から落下する気液二相冷媒は、旋回方向の流れ力と気液二相冷媒の自重の合力によって、貯液室の円周内壁面に沿った旋回流となって貯液室を流下し、液相冷媒が気液二相冷媒から分離して貯液室の下方に溜まる(例えば、特許文献4参照)。   And the gas-liquid two-phase refrigerant | coolant supplied to the liquid storage chamber from the refrigerant | coolant inlet flows along the turning groove | channel on the outer surface side of a rectification | straightening member. The gas-liquid two-phase refrigerant flowing in the swirling groove flows in the swirling direction and falls into the liquid storage chamber. The gas-liquid two-phase refrigerant falling from the swirling groove flows down the storage chamber as a swirling flow along the circumferential inner wall surface of the storage chamber by the resultant force of the swirling flow force and the self-weight of the gas-liquid two-phase refrigerant. Then, the liquid-phase refrigerant is separated from the gas-liquid two-phase refrigerant and accumulated below the liquid storage chamber (see, for example, Patent Document 4).

特開2008−57941号公報JP 2008-57941 A 特開平8−261603号公報JP-A-8-261603 特開2011−247473号公報JP 2011-247473 A 特開2012−233664号公報JP 2012-233664 A

しかしながら、重力分離方式による気液分離器は、液滴捕捉部材の面積に限りがあり、多量の気液二相冷媒が流入してきた場合に気液分離効率が悪くなるという課題がある。   However, the gas-liquid separator based on the gravity separation method has a problem that the area of the droplet trapping member is limited, and the gas-liquid separation efficiency deteriorates when a large amount of gas-liquid two-phase refrigerant flows in.

また、表面張力分離方式による気液分離器は、小型化に適する反面、構造が複雑となり、コスト増加および圧力損失が増加するという課題がある。   Further, the gas-liquid separator based on the surface tension separation method is suitable for downsizing, but has a problem that the structure becomes complicated, and the cost and pressure loss increase.

さらに、遠心分離方式による気液分離器は、大型化、大口径化が求められるが、コスト増加および大型化、大口径化に伴う配置スペースに制約が生じることとなる。   Furthermore, a gas-liquid separator using a centrifugal separation system is required to be large and have a large diameter. However, the cost is increased and the arrangement space associated with the large diameter and the large diameter is limited.

本発明は、以上のような課題を解決するためになされたものであり、気液二相冷媒の旋回流の遠心力により分離した液滴が、速い流速の旋回流によって乱された液相冷媒液面から液滴が再飛散して気液分離した後の気相冷媒を流出する気相冷媒流出管の気相冷媒流出口へと混入することを防止し、気相冷媒と液相冷媒に気液分離した後の気相冷媒への液滴の混入を防いで気液分離効率の低下を防止することができる気液分離器を提供することを目的とする。   The present invention has been made to solve the above-described problems, and a liquid phase refrigerant in which droplets separated by a centrifugal force of a swirling flow of a gas-liquid two-phase refrigerant are disturbed by a swirling flow having a high flow velocity. Prevents liquid droplets from re-spraying from the liquid surface and entering the gas-phase refrigerant outlet of the gas-phase refrigerant outflow pipe that flows out the gas-phase refrigerant after gas-liquid separation. It is an object of the present invention to provide a gas-liquid separator that can prevent the droplets from being mixed into the gas-phase refrigerant after the gas-liquid separation and prevent the gas-liquid separation efficiency from being lowered.

上記の目的を達成するために、本発明の請求項1に係る気液分離器は、円筒型の容器本体と、前記容器本体の中心部に位置して容器本体内の上部に気相冷媒流出口を有する気相冷媒流出管と、前記容器本体の底部側に位置する液相冷媒流出管とを有し、前記容器本体に供給された気液二相冷媒を気相冷媒と液相冷媒とに分離したうえで気液二相冷媒から分離された気相冷媒を、前記気相媒流出管を介して流出する一方、気液二相冷媒から分離された液相冷媒を、前記液相冷媒流出管を介して流出する気液分離器であって、前記容器本体内に供給された前記気液二相冷媒に旋回流を発生させる旋回流発生手段と、前記旋回流発生手段で発生させた旋回流を抑制する旋回流抑制手段と、を備えた気液分離器において、前記旋回流抑制手段は、前記容器本体の底部側に位置して周縁が前記容器本体の胴部内壁面と離隔する態様で配設された円板状の底板とこの底板に固着された複数の旋回流抑制板とからなり、旋回流抑制板は前記底板に当接する底辺が前記底板の中心部近傍から底板の周縁に向かうように延在し、当該底辺と角を介して相対する対辺が容器本体の胴部内壁面と離隔する態様で当該胴部内壁面に沿って上下方向に延在し、斜辺が前記底辺における底板の中心部近傍の端部と前記対辺の上端とを結ぶ態様で延在し、前記気液二相冷媒から分離された前記液相冷媒の液面に近くなるほど大きい面積となる態様の三角形に形成されてなることを特徴とする In order to achieve the above object, a gas-liquid separator according to claim 1 of the present invention includes a cylindrical container body and a gas-phase refrigerant flow at the upper part of the container body located at the center of the container body. A gas-phase refrigerant outflow pipe having an outlet; and a liquid-phase refrigerant outflow pipe located on the bottom side of the container body, and the gas-liquid two-phase refrigerant supplied to the container body is converted into a gas-phase refrigerant and a liquid-phase refrigerant. The gas-phase refrigerant separated from the gas-liquid two-phase refrigerant flows out through the gas-phase medium outlet pipe, while the liquid-phase refrigerant separated from the gas-liquid two-phase refrigerant is discharged from the liquid-phase refrigerant. A gas-liquid separator that flows out through an outflow pipe, the swirling flow generating means for generating a swirling flow in the gas-liquid two-phase refrigerant supplied into the container body, and the swirling flow generating means A gas-liquid separator including a swirling flow suppressing means for suppressing swirling flow, A disc-shaped bottom plate located on the bottom side of the vessel body and arranged in a manner in which the periphery is separated from the inner wall surface of the body of the container body, and a plurality of swirl flow suppression plates fixed to the bottom plate. The flow suppressing plate extends so that the bottom side that contacts the bottom plate extends from the vicinity of the center of the bottom plate toward the periphery of the bottom plate, and the opposite side that faces the bottom side through the corner is separated from the inner wall surface of the body portion of the container body Extending in the vertical direction along the inner wall surface of the trunk portion, and the hypotenuse extends in a form connecting the end portion of the bottom plate near the center of the bottom plate and the upper end of the opposite side, and is separated from the gas-liquid two-phase refrigerant It is formed in a triangular shape having a larger area as it gets closer to the liquid level of the liquid-phase refrigerant.

請求項1の発明によれば、円筒型の容器本体と、前記容器本体の中心部に位置して容器本体内の上部に気相冷媒流出口を有する気相冷媒流出管と、前記容器本体の底部側に位置する液相冷媒流出管とを有し、前記容器本体に供給された気液二相冷媒を気相冷媒と液相冷媒とに分離したうえで気液二相冷媒から分離された気相冷媒を、前記気相冷媒流出管を介して流出する一方、気液二相冷媒から分離された液相冷媒を、前記液相冷媒流出管を介して流出する気液分離器であって、前記容器本体内に供給された前記気液二相冷媒に旋回流を発生させる旋回流発生手段と、前記旋回流発生手段で発生させた旋回流を抑制する旋回流抑制手段と、を備えた気液分離器において、前記旋回流抑制手段は、前記容器本体の底部側に位置して周縁が前記容器本体の胴部内壁面と離隔する態様で配設された円板状の底板とこの底板に固着された複数の旋回流抑制板とからなり、旋回流抑制板は前記底板に当接する底辺が前記底板の中心部近傍から底板の周縁に向かうように延在し、当該底辺と角を介して相対する対辺が容器本体の胴部内壁面と離隔する態様で当該胴部内壁面に沿って上下方向に延在し、斜辺が前記底辺における底板の中心部近傍の端部と前記対辺の上端とを結ぶ態様で延在し、前記気液二相冷媒から分離された前記液相冷媒の液面に近くなるほど大きい面積となる態様の三角形に形成されてなり、前記旋回流抑制板を、前記気液二相冷媒から分離された前記液相冷媒の液面に近くなるほど大きい面積となる三角形に形成したことにより、気液分離器内の旋回流によって遠心力が大きく働く範囲と、反対に旋回流を抑制する範囲とを両立させることができ、気液二相冷媒の旋回流の遠心力により分離した液滴が、速い流速の旋回流によって乱された液相冷媒液面から液滴が再飛散して気液分離した後の気相冷媒を流出する気相冷媒流出管の気相冷媒流出口へと混入することを防止し、気相冷媒と液相冷媒に気液分離した後の気相冷媒への液滴の混入を防いで気液分離効率の低下を防止することができる気液分離器を提供することが可能となる。 According to the first aspect of the present invention, a cylindrical container main body, a gas-phase refrigerant outflow pipe located at the center of the container main body and having a gas-phase refrigerant outlet at the top of the container main body, and the container main body A liquid-phase refrigerant outflow pipe located on the bottom side, and separated from the gas-liquid two-phase refrigerant after separating the gas-liquid two-phase refrigerant supplied to the container body into a gas-phase refrigerant and a liquid-phase refrigerant A gas-liquid separator that flows out the gas-phase refrigerant through the gas-phase refrigerant outflow pipe while outflowing the liquid-phase refrigerant separated from the gas-liquid two-phase refrigerant through the liquid-phase refrigerant outflow pipe. A swirling flow generating means for generating a swirling flow in the gas-liquid two-phase refrigerant supplied into the container body, and a swirling flow suppressing means for suppressing the swirling flow generated by the swirling flow generating means. In the gas-liquid separator, the swirl flow suppressing means is located on the bottom side of the container body and has a peripheral edge with the container. A disc-shaped bottom plate disposed in a manner separated from the inner wall surface of the body portion of the main body and a plurality of swirl flow suppression plates fixed to the bottom plate, and the swirl flow suppression plate has a bottom side that abuts against the bottom plate as the bottom plate Extending from the vicinity of the center of the container toward the periphery of the bottom plate, and extending vertically along the inner wall surface of the container body in such a manner that the opposite side opposite the base and the corner is separated from the inner wall surface of the container body And the hypotenuse extends in a mode connecting an end portion of the bottom side near the center of the bottom plate and the upper end of the opposite side, and becomes larger as it approaches the liquid level of the liquid-phase refrigerant separated from the gas-liquid two-phase refrigerant. By forming the swirl flow suppression plate into a triangle having a larger area as it approaches the liquid surface of the liquid-phase refrigerant separated from the gas-liquid two-phase refrigerant, Centrifugal force is large due to the swirling flow in the gas-liquid separator The liquid phase in which the droplets separated by the centrifugal force of the swirl flow of the gas-liquid two-phase refrigerant are disturbed by the swirl flow at a high flow rate The liquid phase refrigerant and liquid phase refrigerant are prevented from being mixed into the gas phase refrigerant outlet of the gas phase refrigerant outlet pipe from which the liquid droplets are re-sprayed from the refrigerant liquid surface and separated after gas-liquid separation. Thus, it is possible to provide a gas-liquid separator that can prevent the droplets from being mixed into the gas-phase refrigerant after the gas-liquid separation and prevent the gas-liquid separation efficiency from being lowered.

本発明に係る気液分離器の実施の形態1の概略構成を示し、(a)は断面側面図、(b)は旋回流抑制手段を示す断面平面図である。BRIEF DESCRIPTION OF THE DRAWINGS The schematic structure of Embodiment 1 of the gas-liquid separator which concerns on this invention is shown, (a) is a cross-sectional side view, (b) is a cross-sectional top view which shows a swirl flow suppression means. 図1に示した旋回流抑制手段を示す図である。It is a figure which shows the swirl | vortex flow suppression means shown in FIG. 旋回流抑制手段が旋回流の抑制に働く流量を検討した流路モデル図である。It is the flow-path model figure which examined the flow volume which a swirl flow suppression means acts on suppression of a swirl flow. 旋回流抑制手段が旋回流の抑制に働く流量を検討した図である。It is the figure which examined the flow volume which a swirl flow suppression means acts on suppression of a swirl flow. 旋回流抑制手段を傾けて旋回流の抑制に働く流量を検討した図である。It is the figure which examined the flow volume which inclines a swirl flow suppression means and acts on suppression of a swirl flow. 本発明に係る気液分離器の実施の形態2の概略構成を示し、(a)は断面側面図、(b)は旋回流抑制手段を示す断面平面図である。The schematic structure of Embodiment 2 of the gas-liquid separator which concerns on this invention is shown, (a) is a cross-sectional side view, (b) is a cross-sectional top view which shows a swirl flow suppression means. 図6に示した旋回流発生手段を下面側から見た図を示し、(a)は図6のA−A矢視図、(b)は図7(a)のB−B断面矢視図、(c)は図7(a)のC−C断面矢視図である。The figure which looked at the swirl | vortex flow generation means shown in FIG. 6 from the lower surface side is shown, (a) is an AA arrow directional view of FIG. 6, (b) is a BB cross-sectional arrow directional view of FIG. (C) is CC sectional view taken on the line of Fig.7 (a).

以下、図面を参照しながら、本発明に係る気液分離器の好適な実施の形態について詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, preferred embodiments of a gas-liquid separator according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

この実施の形態の気液分離器は、冷凍サイクル装置などで使用されている気液二相冷媒(気液混合冷媒)の中の液滴を凝縮させて気相冷媒(気体冷媒)と液相冷媒(液体冷媒)とに分離する装置である。
(実施の形態1)
図1は、本発明に係る気液分離器の実施の形態1の概略構成を示し、(a)は断面側面図、(b)は旋回流抑制板(旋回流抑制手段)を示す断面平面図である。
The gas-liquid separator according to this embodiment condenses droplets in a gas-liquid two-phase refrigerant (gas-liquid mixed refrigerant) used in a refrigeration cycle apparatus and the like, thereby vapor-phase refrigerant (gas refrigerant) and liquid phase It is an apparatus that separates into refrigerant (liquid refrigerant).
(Embodiment 1)
FIG. 1 shows a schematic configuration of Embodiment 1 of a gas-liquid separator according to the present invention, (a) is a sectional side view, and (b) is a sectional plan view showing a swirl flow restraining plate (swirling flow restraining means). It is.

図1に示すように、気液分離器1には、頂部2a、底部2c、および、頂部2aと底部2cの間を連結する中空胴部2bからなる円筒型の容器本体2、容器本体2中空胴部2bの上部側壁を接線方向に中空胴部2b側壁面を貫通して取付けられ、中空胴部2bの側壁接線方向から容器本体2内に気液二相冷媒を流入させて旋回流を発生させる気液二相冷媒流入口3aを有する気液二相冷媒流入管3(旋回流発生手段)、底部2cを貫通して容器本体2内上部から気液二相冷媒から分離された気相冷媒を流出させるための気相冷媒流出口4aを有する気相冷媒流出管4、気液二相冷媒から分離された液相冷媒を流出させるための液相冷媒流出管5が設けられている。   As shown in FIG. 1, the gas-liquid separator 1 includes a cylindrical container body 2 having a top 2a, a bottom 2c, and a hollow body 2b connecting the top 2a and the bottom 2c, and a hollow container body 2 The upper side wall of the body portion 2b is attached tangentially through the side wall surface of the hollow body portion 2b, and a swirling flow is generated by flowing a gas-liquid two-phase refrigerant into the container body 2 from the side wall tangential direction of the hollow body portion 2b. Gas-phase refrigerant separated from the gas-liquid two-phase refrigerant from the upper part in the container body 2 through the bottom part 2c and the gas-liquid two-phase refrigerant inlet pipe 3 (swirl flow generating means) having the gas-liquid two-phase refrigerant inlet 3a A gas phase refrigerant outflow pipe 4 having a gas phase refrigerant outlet 4a for flowing out the liquid and a liquid phase refrigerant outflow pipe 5 for flowing out the liquid phase refrigerant separated from the gas-liquid two-phase refrigerant are provided.

また、気液二相冷媒流入口3aから流入して中空胴部2b内を旋回する流れとなった気液二相冷媒の旋回流を抑制する旋回流抑制板(旋回流抑制手段)6が底板6aに複数(例えば、3枚)備えられている。この旋回流抑制板6は、気液二相冷媒から分離された液相冷媒の液面に近くなるほど大きい面積とし、例えば、図2に示しているように、底面に近くなるほど面積が大きくなる三角形に形成されている。このようにして使用される旋回流抑制板6および底板6aは、例えば、ステンレス鋼等の耐浸食性鋼板を形成したものである。そして、旋回流抑制板6を底板6aに取り付けるには、ろう付けや溶接等を用いて固着したり、ねじ止めにより固定する等の方法がある。なお、旋回流抑制板6の枚数や形状(三角形)は、図1や図2に示されている枚数や形状に限定されるものではない。   Further, a swirl flow restraining plate (swirl flow restraining means) 6 for restraining the swirling flow of the gas-liquid two-phase refrigerant that has entered the gas-liquid two-phase refrigerant inlet 3a and swirled in the hollow body 2b is a bottom plate. A plurality (for example, three) of 6a are provided. The swirl flow suppressing plate 6 has a larger area as it approaches the liquid surface of the liquid phase refrigerant separated from the gas-liquid two-phase refrigerant. For example, as shown in FIG. 2, a triangle whose area increases as it approaches the bottom surface. Is formed. The swirl flow suppressing plate 6 and the bottom plate 6a used in this manner are formed by forming erosion resistant steel plates such as stainless steel, for example. In order to attach the swirl flow suppressing plate 6 to the bottom plate 6a, there are methods such as fixing by brazing or welding or fixing by screwing. The number and shape (triangles) of the swirl flow suppressing plate 6 are not limited to the number and shape shown in FIGS.

そして、上述した実施の形態1である気液分離器1で、気液二相冷媒を気相冷媒と液相冷媒に分離させる動作を説明すると、気液二相冷媒は、容器本体2中空胴部2bの上部側壁を接線方向に中空胴部2b側壁面を貫通して取付けられ、中空胴部2bの側壁接線方向から容器本体2内に気液二相冷媒を流入させて旋回流を発生させる気液二相冷媒流入管3の気液二相冷媒流入口3aから円筒型の容器本体2内上部を周方向に流入する。容器本体2内上部を周方向に流入した気液二相冷媒は、円筒型の容器本体2の中空胴部2b内壁面に沿うように流れて旋回流となる(図1(b)矢印を参照)。円筒型の容器本体2の中空胴部2b内壁面を周方向に旋回流となって流れる気液二相冷媒は、液相冷媒の液面に近くなるほど大きい面積を有する旋回流抑制板6によって流速を抑制(低下)されながら下方に流れていく。   The operation of separating the gas-liquid two-phase refrigerant into the gas-phase refrigerant and the liquid-phase refrigerant in the gas-liquid separator 1 according to the first embodiment described above will be described. The upper side wall of the part 2b is attached in a tangential direction through the side wall surface of the hollow body 2b, and a swirling flow is generated by flowing a gas-liquid two-phase refrigerant into the container body 2 from the tangential direction of the side wall of the hollow body 2b. From the gas-liquid two-phase refrigerant inlet 3a of the gas-liquid two-phase refrigerant inflow pipe 3, the upper part in the cylindrical container body 2 flows in the circumferential direction. The gas-liquid two-phase refrigerant that has flowed in the upper part of the container body 2 in the circumferential direction flows along the inner wall surface of the hollow body 2b of the cylindrical container body 2 to form a swirling flow (see the arrow in FIG. 1B). ). The gas-liquid two-phase refrigerant flowing as a swirl flow in the circumferential direction on the inner wall surface of the hollow body 2b of the cylindrical container body 2 is flowed by the swirl flow suppressing plate 6 having a larger area as it approaches the liquid surface of the liquid refrigerant. It flows downward while being suppressed (decreased).

このようにして、円筒型の容器本体2の中空胴部2b内壁面を周方向に旋回しながら流れる気液二相冷媒は、旋回流の遠心力により、気体と液体の密度の差から、内側に密度が小さい気相冷媒、外側に密度が大きい液滴(液相冷媒)に分離される。気液二相冷媒が気相冷媒と液相冷媒とに分離されると、重力により、密度の小さい気相冷媒は上昇し、密度の大きい液滴は容器本体2の中空胴部2b内壁面を下方に流下する。   In this way, the gas-liquid two-phase refrigerant that flows while swirling in the circumferential direction on the inner wall surface of the hollow body portion 2b of the cylindrical container body 2 is caused by the centrifugal force of the swirl flow, and from the difference in density between the gas and the liquid, Into a gas phase refrigerant having a low density and liquid droplets having a high density on the outside (liquid phase refrigerant). When the gas-liquid two-phase refrigerant is separated into the gas-phase refrigerant and the liquid-phase refrigerant, the gas-phase refrigerant having a low density rises due to gravity, and the liquid droplet having a high density moves on the inner wall surface of the hollow body 2b of the container body 2. Flow down.

そして、容器本体2内を上昇した気相冷媒は、容器本体2の頂部2aに達すると、気相冷媒流出口4aに流入して気相冷媒流出管4から圧縮機に送出される。また、容器本体2の中空胴部2b内壁面を下方に流下した液滴(液相冷媒)は容器本体2の底部2cの液溜領域に降下して溜まる。この底部2cの液溜領域に溜まった液相冷媒は液相冷媒流出管5から蒸発器に送出される。   Then, when the gas-phase refrigerant rising in the container body 2 reaches the top 2a of the container body 2, it flows into the gas-phase refrigerant outlet 4a and is sent out from the gas-phase refrigerant outlet pipe 4 to the compressor. Further, the liquid droplet (liquid phase refrigerant) that has flowed down the inner wall surface of the hollow body 2b of the container body 2 drops and accumulates in the liquid storage region of the bottom 2c of the container body 2. The liquid refrigerant accumulated in the liquid reservoir region of the bottom 2c is sent from the liquid refrigerant outlet pipe 5 to the evaporator.

上述したように、液相冷媒の液面に近くなるほど旋回流を抑制する旋回流抑制板6の面積を大きい形状にしたことにより、気液分離器1内の旋回流によって遠心力が大きく働く範囲と、反対に旋回流を抑制する範囲とを、旋回流抑制板6を設けることで両立させることができる(徐々に変化させることができる)ので、速い流速の旋回流によって生じる液相冷媒液面の乱れを抑制することができ、よって液相冷媒液面からの液滴の再飛散を防ぐことができる。   As described above, the area of the swirl flow suppression plate 6 that suppresses the swirl flow as it approaches the liquid level of the liquid-phase refrigerant has a large area, so that the centrifugal force is greatly affected by the swirl flow in the gas-liquid separator 1. On the contrary, the range in which the swirling flow is suppressed can be made compatible by providing the swirling flow suppressing plate 6 (can be gradually changed), so that the liquid phase refrigerant liquid level generated by the swirling flow at a high flow velocity Turbulence can be suppressed, and therefore re-scattering of liquid droplets from the liquid refrigerant surface can be prevented.

このように、旋回流抑制板6により旋回流の流速が抑制されながら下方に流れていくことで、気液二相冷媒の旋回流の遠心力により分離した液滴が、速い流速の旋回流によって乱された液相冷媒液面から液滴が再飛散して気液分離した後の気相冷媒を流出する気相冷媒流出管4の気相冷媒流出口4aへと混入することを防止し、気相冷媒と液相冷媒に気液分離した後の気相冷媒への液滴の混入を防いで気液分離効率の低下を防止することができる気液分離器1を提供することができる。   In this way, the droplets separated by the centrifugal force of the swirling flow of the gas-liquid two-phase refrigerant are caused by the swirling flow having a high flow velocity by flowing downward while the swirling flow suppressing plate 6 suppresses the swirling flow velocity. Preventing liquid droplets from splashing again from the disturbed liquid phase refrigerant liquid surface and mixing into the gas phase refrigerant outlet 4a of the gas phase refrigerant outlet pipe 4 that flows out the gas phase refrigerant after gas-liquid separation; It is possible to provide the gas-liquid separator 1 that can prevent the droplets from being mixed into the gas-phase refrigerant after the gas-liquid separation into the gas-phase refrigerant and the liquid-phase refrigerant and prevent the gas-liquid separation efficiency from being lowered.

次に、旋回流抑制板6による旋回流の抑制に働く流量を検討した。図3を流路モデルとして、旋回流抑制板6にぶつかる流量と素通し(スルー)の流量から流れの抑制に働く流量を検討した。この時、気液二相冷媒は旋回流抑制板6を通過しないものとした(旋回流抑制板6はメッシュ等の気液二相冷媒が通過する部材ではないものとした)。   Next, the flow rate that acts to suppress the swirling flow by the swirling flow suppressing plate 6 was examined. Using FIG. 3 as a flow channel model, the flow rate that works for flow suppression was examined from the flow rate that hits the swirl flow suppression plate 6 and the flow rate of the through (through). At this time, the gas-liquid two-phase refrigerant is assumed not to pass through the swirl flow suppressing plate 6 (the swirl flow suppressing plate 6 is not a member through which the gas-liquid two-phase refrigerant such as a mesh passes).

検討時に仮定した条件は、旋回流抑制板6にぶつからない(素通し)流量は、流れの抑制には寄与しない。旋回流抑制板6にぶつかる流量のうち、旋回流抑制板6の壁面側に流れる流量は全て流れ抑制に働く流量とした(せき止められて渦になり流れの向きが様々に変化するため)。残りの旋回流抑制板6にぶつからない流量は、素通し(スルー)流量へ合流する角度によって流れ抑制に働く流量が変化すると仮定した。   The condition assumed at the time of examination is that the flow rate that does not collide with the swirl flow suppressing plate 6 (through) does not contribute to the flow suppression. Of the flow rate hitting the swirl flow suppression plate 6, all flow rates that flow on the wall surface side of the swirl flow suppression plate 6 are flow rates that work for flow suppression (because they are dammed and vortexed to change the flow direction in various ways). It was assumed that the flow rate that does not collide with the remaining swirl flow suppression plate 6 varies depending on the angle at which it merges with the through flow rate.

例えば、旋回流抑制板6の配設角度θ=90度の場合(図4参照)、流入する気液二相冷媒が垂直に旋回流抑制板6にぶつかるため、ぶつかった流量の半分が旋回流抑制板6壁面側と素通し側に分かれる。このうち旋回流抑制板6壁面側に流れる流量は全て流れ抑制に働く流量となる。素通し側に流れる流量は、垂直に合流するので流れを横方向に乱すことになるが、完全に流れを抑制するまでにはならない。旋回流抑制板6を気液分離後の液相冷媒液面に近くなるほど大きい形状(大きい面積)としたことにより、気液分離器1内の上位置では旋回流の流れ抑制に働く流量が小さいので旋回流の流速は遅くならずに速いままである。よって旋回流による遠心力は大きくなる。反対に気液分離器1内の下位置では旋回流の流れ抑制に働く流量が大きくなるので、旋回流の流速は遅くなり、よって遠心力は小さくなる。よって旋回流抑制板6を設けることにより、遠心力により気液二相冷媒の中の液滴を凝縮させて気相冷媒と液相冷媒とに分離する範囲と、旋回流を抑制して分離後の液相冷媒液面の乱れを抑える範囲とを両立することができる。この結果、液相冷媒液面の乱れを抑制でき、液滴の再飛散を防ぐことができる。   For example, when the arrangement angle θ of the swirl flow suppressing plate 6 is 90 degrees (see FIG. 4), the inflowing gas-liquid two-phase refrigerant hits the swirl flow suppressing plate 6 vertically, so that half of the bumped flow rate is swirling flow. The suppression plate 6 is divided into a wall surface side and a through side. Among these, all the flow volume which flows to the swirl flow suppression board 6 wall surface side turns into a flow volume which acts on flow suppression. Since the flow rate that flows to the through side merges vertically, the flow is disturbed in the lateral direction, but the flow is not completely suppressed. Since the swirl flow suppressing plate 6 has a larger shape (larger area) closer to the liquid-phase refrigerant liquid level after gas-liquid separation, the flow rate for suppressing swirl flow is small at the upper position in the gas-liquid separator 1. Therefore, the flow velocity of the swirl flow remains high without being slow. Therefore, the centrifugal force due to the swirl flow increases. On the contrary, since the flow rate that acts to suppress the flow of the swirling flow is increased at the lower position in the gas-liquid separator 1, the flow velocity of the swirling flow is decreased, and thus the centrifugal force is decreased. Therefore, by providing the swirl flow suppression plate 6, the range in which the droplets in the gas-liquid two-phase refrigerant are condensed by centrifugal force and separated into the gas phase refrigerant and the liquid phase refrigerant, and the swirl flow is suppressed and separated It is possible to achieve both a range that suppresses the disturbance of the liquid-phase refrigerant liquid level. As a result, it is possible to suppress the disturbance of the liquid phase refrigerant liquid level, and to prevent re-scattering of the droplets.

また、例えば、旋回流抑制板6の配設角度を変更した場合(図5参照)、流入する気液二相冷媒のうち旋回流抑制板6にぶつかる長さが同じ場合でも、旋回流抑制板6の角度を変えると流れ抑制に働く流量は変化する。配設角度θを90度よりも大きくするほど、旋回流抑制板6にぶつかる流量のうち旋回流抑制板6壁面側に流れる流量が大きくなり、よって流れ抑制に働く流量が大きくなる。また、素通し側に合流する流量についても、流れの逆向き成分を含むことになり、この逆向き成分が流れ抑制に働く流量となる。よって、より流れ抑制に働く流量が大きくなることが分かる。旋回流が速くθ=90度では液滴が再飛散する場合には、旋回流抑制板6の配設角度θ=90度よりも大きくして流れ抑制に働く流量を大きくし、液相冷媒液面の乱れを抑制する。このように旋回流方向に対する旋回流抑制板6の配設角度を大きくするほど、旋回流の流れ抑制に働く流量を大きくすることができる。
(実施の形態2)
図6は、本発明に係る気液分離器の実施の形態2の概略構成を示し、(a)は断面側面図、(b)は旋回流抑制手段を示す断面平面図である。また、図7は、図6に示した旋回流発生手段を下面側から見た図を示し、(a)は図6のA−A矢視図、(b)は図7(a)のB−B断面矢視図、(c)は図7(a)のC−C断面矢視図である。なお、実施の形態1と同一構成に関しては同一符号を用いる。
Further, for example, when the arrangement angle of the swirl flow suppression plate 6 is changed (see FIG. 5), even if the length of the gas-liquid two-phase refrigerant that hits the swirl flow suppression plate 6 is the same, the swirl flow suppression plate When the angle of 6 is changed, the flow rate that acts to suppress the flow changes. As the arrangement angle θ is larger than 90 degrees, the flow rate that flows to the wall surface side of the swirl flow suppression plate 6 out of the flow rate that hits the swirl flow suppression plate 6 increases. Further, the flow rate that merges with the flow-through side also includes a backward component of the flow, and this reverse component is a flow rate that acts to suppress the flow. Therefore, it turns out that the flow volume which acts on flow control becomes larger. When the swirl flow is fast and the droplets are re-scattered at θ = 90 degrees, the flow angle for suppressing the flow is increased by setting the swirl flow suppression plate 6 to be larger than the arrangement angle θ = 90 degrees, and the liquid-phase refrigerant liquid Suppresses surface disturbance. Thus, the flow rate which acts on the flow control of a swirl flow can be enlarged, so that the arrangement | positioning angle of the swirl flow suppression board 6 with respect to a swirl flow direction is enlarged.
(Embodiment 2)
6 shows a schematic configuration of a gas-liquid separator according to a second embodiment of the present invention, in which (a) is a cross-sectional side view and (b) is a cross-sectional plan view showing swirl flow suppressing means. 7 shows a view of the swirling flow generating means shown in FIG. 6 as viewed from the lower surface side, (a) is a view taken along arrow AA in FIG. 6, and (b) is B in FIG. 7 (a). -B cross-sectional arrow view, (c) is CC cross-sectional arrow view of Fig.7 (a). The same reference numerals are used for the same configurations as those in the first embodiment.

実施の形態1の気液分離器1では、旋回流発生手段を、容器本体2中空胴部2bの上部側壁を接線方向に中空胴部2b側壁面を貫通して取付けられ、中空胴部2bの側壁接線方向から容器本体2内に気液二相冷媒を流入させて旋回流を発生させる気液二相冷媒流入口3aを有する気液二相冷媒流入管3から構成しているが、実施の形態2の気液分離器10では、旋回流発生手段として、円周方向に開口11bを有する窪み11aを複数設けたバッフル11を容器本体2内に設け、窪み11aの開口11bから気液二相冷媒を斜め下方向に流下させて旋回流を発生させるようにしている。   In the gas-liquid separator 1 of the first embodiment, the swirl flow generating means is attached to the upper side wall of the container body 2 hollow body 2b in a tangential direction through the side wall surface of the hollow body 2b. The gas-liquid two-phase refrigerant inflow pipe 3 having the gas-liquid two-phase refrigerant inlet 3a that causes the gas-liquid two-phase refrigerant to flow into the container body 2 from the side wall tangential direction to generate a swirling flow is provided. In the gas-liquid separator 10 of the form 2, as the swirl flow generating means, the baffle 11 provided with a plurality of dents 11a having openings 11b in the circumferential direction is provided in the container body 2, and the gas-liquid two-phase is formed from the openings 11b of the dents 11a. The refrigerant is caused to flow obliquely downward to generate a swirling flow.

詳述すると、図6(a)に示しているように、容器本体2内で気液二相冷媒流入管3の気液二相冷媒流入口3aと、気相冷媒流出管4の気相冷媒流出口4aとの間にバッフル11を設けている。また、バッフル11の上部には、流入する気液二相冷媒から異物を除去するメッシュ12を設けている。このバッフル11は図7に示しているように、円周方向に開口11bを有する窪み11aを複数(例えば、円周4等分)設けている。そして、気液二相冷媒流入管3の気液二相冷媒流入口3aから容器本体2内に供給された気液二相冷媒は、バッフル11の窪み11aの開口11bから斜め下方向に流下することで旋回流となる。   More specifically, as shown in FIG. 6A, the gas-liquid two-phase refrigerant inlet 3 a of the gas-liquid two-phase refrigerant inlet pipe 3 and the gas-phase refrigerant of the gas-phase refrigerant outlet pipe 4 in the container body 2. A baffle 11 is provided between the outlet 4a. Further, a mesh 12 for removing foreign substances from the flowing gas-liquid two-phase refrigerant is provided on the baffle 11. As shown in FIG. 7, the baffle 11 is provided with a plurality of depressions 11a (for example, equally divided into four circumferences) having openings 11b in the circumferential direction. And the gas-liquid two-phase refrigerant | coolant supplied in the container main body 2 from the gas-liquid two-phase refrigerant inlet 3a of the gas-liquid two-phase refrigerant inlet pipe 3 flows down diagonally downward from the opening 11b of the hollow 11a of the baffle 11. It becomes a swirl flow.

このように、実施の形態2の気液分離器10の構成によっても、旋回流発生手段は、円周方向に開口11bを有する窪み11aを複数設けたバッフル11を容器本体2内に設け、窪み11aの開口11bから気液二相冷媒を斜め下方向に流下させて旋回流を発生させることにより、容器本体2内に気液二相冷媒の旋回流を容易に発生させることが可能となる。   As described above, even in the configuration of the gas-liquid separator 10 according to the second embodiment, the swirl flow generating means includes the baffle 11 provided with a plurality of recesses 11a having the openings 11b in the circumferential direction in the container body 2, and the recesses. The swirling flow of the gas-liquid two-phase refrigerant can be easily generated in the container body 2 by causing the gas-liquid two-phase refrigerant to flow obliquely downward from the opening 11b of 11a and generating the swirling flow.

以上説明したように本発明によれば、円筒型の容器本体2に供給された気液二相冷媒を気相冷媒と液相冷媒とに分離する気液分離器1において、容器本体2内に供給された気液二相冷媒に旋回流を発生させる旋回流発生手段と、旋回流発生手段で発生させた旋回流を抑制する旋回流抑制板6と、を備えたことにより、気液二相冷媒の旋回流の遠心力により分離した液滴が、速い流速の旋回流によって乱された液相冷媒液面から液滴が再飛散して気液分離した後の気相冷媒を流出する気相冷媒流出管4の気相冷媒流出口4aへと混入することを防止し、気相冷媒と液相冷媒に気液分離した後の気相冷媒への液滴の混入を防いで気液分離効率の低下を防止することができる気液分離器1を提供することが可能となる。   As described above, according to the present invention, in the gas-liquid separator 1 that separates the gas-liquid two-phase refrigerant supplied to the cylindrical container main body 2 into the gas-phase refrigerant and the liquid-phase refrigerant, By providing the swirling flow generating means for generating a swirling flow in the supplied gas-liquid two-phase refrigerant and the swirling flow suppressing plate 6 for suppressing the swirling flow generated by the swirling flow generating means, the gas-liquid two-phase is provided. The gas phase from which the liquid droplets separated by the centrifugal force of the swirling flow of the refrigerant flow out of the gas-phase refrigerant after the droplets respray from the liquid surface of the liquid-phase refrigerant disturbed by the swirling flow at a high flow velocity and gas-liquid separated. Gas-liquid separation efficiency by preventing mixing into the gas-phase refrigerant outlet 4a of the refrigerant outflow pipe 4 and preventing liquid droplets from being mixed into the gas-phase refrigerant after gas-liquid separation into the gas-phase refrigerant and the liquid-phase refrigerant It is possible to provide the gas-liquid separator 1 that can prevent the deterioration of the gas.

また、旋回流抑制板6は、気液二相冷媒から分離された液相冷媒の液面に近くなるほど大きい面積としたことにより、気液分離器1内の旋回流によって遠心力が大きく働く範囲と、反対に旋回流を抑制する範囲とを、旋回流抑制板6を設けることで両立させることができ、気液二相冷媒の旋回流の遠心力により分離した液滴が、速い流速の旋回流によって乱された液相冷媒液面から液滴が再飛散して気液分離した後の気相冷媒を流出する気相冷媒流出管4の気相冷媒流出口4aへと混入することを防止することが可能となる。   Further, the swirl flow suppressing plate 6 has a larger area as it approaches the liquid level of the liquid phase refrigerant separated from the gas-liquid two-phase refrigerant, so that the centrifugal force is greatly affected by the swirl flow in the gas-liquid separator 1. On the contrary, the range in which the swirl flow is suppressed can be made compatible by providing the swirl flow suppressing plate 6, and the liquid droplets separated by the centrifugal force of the swirl flow of the gas-liquid two-phase refrigerant are swirled at a high flow velocity. Prevents droplets from splashing from the liquid-phase refrigerant liquid level disturbed by the flow and mixing into the gas-phase refrigerant outlet 4a of the gas-phase refrigerant outlet pipe 4 that flows out the gas-phase refrigerant after gas-liquid separation. It becomes possible to do.

また、気液二相冷媒の旋回流に対して旋回流抑制板6を所定の角度(例えば、120度以上)を設けて配設したことにより、旋回流方向に対する旋回流抑制板6の配設角度を大きくするほど旋回流の流れ抑制に働く流量を大きくすることができ、気液二相冷媒の旋回流の遠心力により分離した液滴が、速い流速の旋回流によって乱された液相冷媒液面から液滴が再飛散して気液分離した後の気相冷媒を流出する気相冷媒流出管4の気相冷媒流出口4aへと混入することを防止することが可能となる。   Further, the swirl flow suppressing plate 6 is disposed at a predetermined angle (for example, 120 degrees or more) with respect to the swirl flow of the gas-liquid two-phase refrigerant, whereby the swirl flow suppressing plate 6 is disposed in the swirl flow direction. The larger the angle, the larger the flow rate that acts to suppress the flow of the swirling flow, and the liquid phase refrigerant in which the droplets separated by the centrifugal force of the swirling flow of the gas-liquid two-phase refrigerant are disturbed by the swirling flow at a high flow rate. It is possible to prevent liquid droplets from splashing from the liquid surface and mixing into the gas-phase refrigerant outlet 4a of the gas-phase refrigerant outflow pipe 4 that flows out the gas-phase refrigerant after gas-liquid separation.

また、旋回流発生手段は、容器本体2中空胴部2bの上部側壁を接線方向に中空胴部2b側壁面を貫通して取付けられ、中空胴部2bの側壁接線方向から容器本体2内に気液二相冷媒を流入させて旋回流を発生させる気液二相冷媒流入口3aを有する気液二相冷媒流入管3から構成することにより、容器本体2内に気液二相冷媒の旋回流を容易に発生させることが可能となる。   Further, the swirl flow generating means is attached to the upper side wall of the container body 2 hollow body part 2b in a tangential direction through the side wall surface of the hollow body part 2b, and air is introduced into the container body 2 from the side wall tangential direction of the hollow body part 2b. By comprising the gas-liquid two-phase refrigerant inlet pipe 3 having the gas-liquid two-phase refrigerant inlet 3a that causes the liquid two-phase refrigerant to flow and generate a swirling flow, the swirling flow of the gas-liquid two-phase refrigerant into the container body 2 Can be easily generated.

また、旋回流発生手段は、円周方向に開口11bを有する窪み11aを複数設けたバッフル11を容器本体2内に設け、窪み11aの開口11bから気液二相冷媒を流下させて旋回流を発生させることにより、容器本体2内に気液二相冷媒の旋回流を容易に発生させることが可能となる。   Further, the swirl flow generating means is provided with a baffle 11 provided with a plurality of depressions 11a having openings 11b in the circumferential direction in the container body 2, and the gas-liquid two-phase refrigerant is caused to flow down from the openings 11b of the depressions 11a to generate a swirl flow. By making it generate | occur | produce, it becomes possible to generate | occur | produce the swirl | vortex flow of a gas-liquid two-phase refrigerant | coolant in the container main body 2 easily.

1 気液分離器
2 容器本体
2a 頂部
2b 中空胴部(胴部)
2c 底部
3 気液二相冷媒流入管(旋回流発生手段)
3a 気液二相冷媒流入口(旋回流発生手段)
4 気相冷媒流出管
4a 気相冷媒流出口
5 液相冷媒流出管
6 旋回流抑制板(旋回流抑制手段)
10 気液分離器
11 バッフル(旋回流発生手段)
11a 窪み
11b 開口
12 メッシュ

















1 Gas-liquid separator 2 Container body 2a Top 2b Hollow body (body)
2c Bottom 3 Gas-liquid two-phase refrigerant inlet pipe (swirl flow generating means)
3a Gas-liquid two-phase refrigerant inlet (swirl flow generating means)
4 Gas Phase Refrigerant Outlet Pipe 4a Gas Phase Refrigerant Outlet 5 Liquid Phase Refrigerant Outlet Pipe 6 Swirl Flow Suppression Plate (Swirl Flow Suppression Means)
10 Gas-liquid separator 11 Baffle (Swirl flow generating means)
11a hollow 11b opening 12 mesh

















Claims (1)

円筒型の容器本体と、前記容器本体の中心部に位置して容器本体内の上部に気相冷媒流出口を有する気相冷媒流出管と、前記容器本体の底部側に位置する液相冷媒流出管とを有し、前記容器本体に供給された気液二相冷媒を気相冷媒と液相冷媒とに分離したうえで気液二相冷媒から分離された気相冷媒を、前記気相冷媒流出管を介して流出する一方、気液二相冷媒から分離された液相冷媒を、前記液相冷媒流出管を介して流出する気液分離器であって、前記容器本体内に供給された前記気液二相冷媒に旋回流を発生させる旋回流発生手段と、前記旋回流発生手段で発生させた旋回流を抑制する旋回流抑制手段と、を備えた気液分離器において、前記旋回流抑制手段は、前記容器本体の底部側に位置して周縁が前記容器本体の胴部内壁面と離隔する態様で配設された円板状の底板とこの底板に固着された複数の旋回流抑制板とからなり、旋回流抑制板は前記底板に当接する底辺が前記底板の中心部近傍から底板の周縁に向かうように延在し、当該底辺と角を介して相対する対辺が容器本体の胴部内壁面と離隔する態様で当該胴部内壁面に沿って上下方向に延在し、斜辺が前記底辺における底板の中心部近傍の端部と前記対辺の上端とを結ぶ態様で延在し、前記気液二相冷媒から分離された前記液相冷媒の液面に近くなるほど大きい面積となる態様の三角形に形成されてなることを特徴とする気液分離器。 A cylindrical container body, a gas-phase refrigerant outlet pipe located at the center of the container body and having a gas-phase refrigerant outlet at the top of the container body, and a liquid-phase refrigerant outlet located on the bottom side of the container body A gas-phase refrigerant separated from the gas-liquid two-phase refrigerant after separating the gas-liquid two-phase refrigerant supplied to the container main body into a gas-phase refrigerant and a liquid-phase refrigerant, and the gas-phase refrigerant A gas-liquid separator that flows out through the liquid-phase refrigerant outflow pipe while supplying the liquid-phase refrigerant separated from the gas-liquid two-phase refrigerant through the outflow pipe, and is supplied into the container body In the gas-liquid separator, comprising: a swirling flow generating means for generating a swirling flow in the gas-liquid two-phase refrigerant; and a swirling flow suppressing means for suppressing the swirling flow generated by the swirling flow generating means. The restraining means is located on the bottom side of the container body and has a peripheral edge separated from the inner wall surface of the body of the container body. And a plurality of swirl flow restraining plates fixed to the bottom plate, and the swirl flow restraining plate has a bottom side abutting on the bottom plate from the vicinity of the center of the bottom plate. It extends so as to face the periphery, and the opposite side opposite to the bottom side through the corner extends in the vertical direction along the inner wall surface of the body of the container body, and the hypotenuse on the bottom side. It extends in a mode that connects the end near the center of the bottom plate and the upper end of the opposite side, and has a triangular shape that has a larger area as it approaches the liquid surface of the liquid-phase refrigerant separated from the gas-liquid two-phase refrigerant. A gas-liquid separator characterized by being formed.
JP2014124937A 2014-06-18 2014-06-18 Gas-liquid separator Active JP6459235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014124937A JP6459235B2 (en) 2014-06-18 2014-06-18 Gas-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014124937A JP6459235B2 (en) 2014-06-18 2014-06-18 Gas-liquid separator

Publications (2)

Publication Number Publication Date
JP2016003825A JP2016003825A (en) 2016-01-12
JP6459235B2 true JP6459235B2 (en) 2019-01-30

Family

ID=55223221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014124937A Active JP6459235B2 (en) 2014-06-18 2014-06-18 Gas-liquid separator

Country Status (1)

Country Link
JP (1) JP6459235B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112097426B (en) * 2020-09-07 2024-04-19 珠海格力电器股份有限公司 Gas-liquid separator, air conditioning system and control method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3304697A (en) * 1964-05-21 1967-02-21 Worthington Corp Oil separator
JPS60188971U (en) * 1984-05-25 1985-12-14 株式会社東芝 Accumulator
JP4147793B2 (en) * 2002-03-19 2008-09-10 株式会社デンソー Gas-liquid separator for ejector cycle
JP4255817B2 (en) * 2003-08-27 2009-04-15 株式会社不二工機 Gas-liquid separator
JP5977952B2 (en) * 2012-02-03 2016-08-24 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Economizer and refrigerator
JP2014047969A (en) * 2012-08-31 2014-03-17 Hitachi Appliances Inc Oil separator

Also Published As

Publication number Publication date
JP2016003825A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
US20080000263A1 (en) Distributor of a gas-liquid two phase fluid
US10222104B2 (en) Distributor and turbo refrigerating machine and evaporator having the same
US20170276415A1 (en) Oil separator
JP3945252B2 (en) Gas-liquid separator for ejector cycle
JP2013044456A (en) Oil separator and refrigerating cycle apparatus
JP2015218982A (en) Gas-liquid separator
JP2008032269A (en) Accumulator
JP2015034637A (en) Gas-liquid separator and refrigeration cycle device
CN203848566U (en) Gas-liquid separator for airborne refrigerating system
JP2018155485A (en) Gas-liquid separation device and refrigeration device including gas-liquid separation device
JP6459235B2 (en) Gas-liquid separator
JP5977952B2 (en) Economizer and refrigerator
JP5620736B2 (en) Refrigerant tank and its header
CN105899893A (en) Accumulator, and refrigeration device with said accumulator
JP2016114308A (en) Intermediate pressure receiver and refrigeration cycle device
KR20220158796A (en) evaporator
JP6296322B2 (en) Oil separator
US20180038618A1 (en) Lubricant separator
JP2017020768A (en) Centrifugal separation-type oil separator and refrigeration cycle device using the same
JP6403061B2 (en) Oil separator
JP7430759B2 (en) Accumulator and refrigeration cycle
CN203586633U (en) Low-pressure circulating liquid reservoir for ship refrigerating system
JP5814616B2 (en) Oil separator, compression refrigeration apparatus and air compression apparatus
JP5803263B2 (en) Gas-liquid separator
JP2016038119A (en) Gas-liquid separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181217

R150 Certificate of patent or registration of utility model

Ref document number: 6459235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250